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The force and couple that result from the shearing motion of a viscous, unbounded
fluid on a Janus drop are the subjects of this investigation. A pair of immiscible,
viscous fluids comprise the Janus drop and render it with a ‘perfect’ shape: spherical
with a flat, internal interface, in which each constituent fluid is bounded by a
hemispherical domain of equal radius. The effect of the arrangement of the internal
interface (drop orientation) relative to the unidirectional shear flow is explored within
the Stokes regime. Projection of the external flow into a reference frame centred
on the drop simplifies the analysis to three cases: (i) a shear flow with a velocity
gradient parallel to the internal interface, (ii) a hyperbolic flow, and (iii) two shear
flows with a velocity gradient normal to the internal interface. Depending on the
viscosity of the internal fluids, the Janus drop behaves as a simple fluid drop or as
a solid body with broken fore and aft symmetry. The resultant couple arises from
both the straining and swirling motions of the external flow in analogy with bodies
of revolution. Owing to the anisotropic resistance of the Janus drop, it is inferred
that the drop can migrate lateral to the streamlines of the undisturbed shear flow. The
grand resistance matrix and Bretherton constant are reported for a Janus drop with
similar internal viscosities.

Key words: drops and bubbles, low-Reynolds-number flows, multiphase flow

1. Introduction

Compound multiphase drops arise in diverse processes of engineering interest such
as direct-contact heat exchangers, melting of ice particles falling in the atmosphere,
rapid evaporation of liquids at superheated conditions, explosions of multicomponent
fuel drops, and in several other settings (Johnson & Sadhal 1985). Typically, a pair
of fluid phases immersed in a host fluid constitute the compound multiphase drop,
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FIGURE 1. A ‘perfect’ Janus drop subject to a unidirectional shear flow. The vector [ is
parallel to the axis of symmetry of the Janus drop and points towards the less viscous
fluid.

where one of the phases may engulf completely or partially its counterpart (Torza
& Mason 1970). A limiting configuration of actual interest for the fabrication of
anisotropic particles arises when two drops (of similar interfacial tension) undergo
partial engulfment, leading to the formation of a compound drop of nearly spherical
shape and an almost flat, internal interface (Guzowski et al. 2012). This particular
object is usually referred to as a Janus drop — named after the Roman god. The
Janus drop is considered to be ‘perfect’” when the constituent fluid phases are each
bounded by a hemispherical domain of equal radius, or equivalently when the drop
exhibits a flat, internal interface (Shklyaev et al. 2013), where the latter is referred
to as ‘the internal interface’ from this point onward for brevity.

This study aims to characterise the hydrodynamic response (forces and couples)
of a ‘perfect’” Janus drop subject to the shearing motion of a viscous unbounded
fluid (ubiquitous flow type), and considers how this response is affected by the drop
orientation (a factor absent in single-phase drops). A schematic representation of a
Janus drop of arbitrary orientation in a simple shear flow is provided in figure 1.
The orientation of the Janus drop is defined by the unit vector I, which is normal to
the internal interface. This study reveals that the anisotropic properties of the Janus
drop arise from the presence of the internal interface; the viscosity of the constituent
fluids is of secondary importance.

Previous theoretical studies have considered the dynamics of compound multiphase
drops in streaming axisymmetric flows (Rushton & Davies 1983; Sadhal & Oguz
1985) and in Marangoni-driven flows (Morton, Subramanian & Balasubramaniam
1990; Rosenfeld, Lavrenteva & Nir 2009). Fluid motion is usually analysed in
the limit of non-deformable interfaces, with the exception of the contributions of
Chervenivanova & Zapryanov (1989) and Vuong & Sadhal (1989). The latter study
reveals little dependence of the drag force on the shape distortion, which justifies
the neglect of interface deformations in prior studies. Stone & Leal (1990) studied
the deformation and breakup of concentric drops in linear flows. Recently, Shardt,
Derksen & Mitra (2014) studied the dynamics of a Janus drop in a simple shear
flow; however, within the restriction of a two-dimensional (2D) flow everywhere.

It is intriguing to note that cross-flow migration of compound multiphase drops
appears to be a fairly unexplored problem despite important implications in mixing
phenomena. For instance, lateral migration can induce coalescence of initially
unaligned drops (Manga & Stone 1993). Interestingly, a Janus drop can display
cross-flow migration in a streaming flow because of the anisotropic resistance imparted
by the internal interface (Shklyaev et al. 2013). From the perspective of hydrodynamic
resistances, the Janus drop behaves as a body of revolution (e.g. spheroid), such that
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the drag force is generally not parallel to the flow. The key finding is that cross-flow
migration can occur without the influence of interface deformations associated with
wall interactions or non-uniform velocity gradients, which are needed to induce the
migration of single-phase drops.

The outline of the article is presented here. The problem statement is formulated
in § 2, where for an arbitrary drop orientation the external shear flow is broken down
into flows with velocity gradients normal and parallel to the internal interface. The
equations that govern fluid motion are presented in § 3, and solved in the creeping
motion limit in §4. The influence of the viscosity of the three fluid phases is
incorporated into the analysis for completeness. In §4.1, it is shown that the Janus
drop behaves as a single-phase drop under the action of a shear flow with a velocity
gradient parallel to the internal interface. The force imposed on the Janus drop by a
plane hyperbolic flow is analysed in §4.2. It is found that the equilibrium orientation
of the Janus drop in a hyperbolic flow occurs when the internal interface is aligned
with the axis of strain or compression. The Janus drop is expected to respond with
a couple that restores this particular arrangement under an external perturbation.
In §4.3, the force and couple imposed by a shear flow with a velocity gradient
normal to the internal interface of the Janus drop are studied. It is found that the
resultant couple arises from both the straining and rotating components of the shear
flow, similar to bodies of revolution. From a practical point of view, knowledge of
the behaviour of a Janus drop in a shear flow is a first step in understanding its
dynamics in experiments (e.g. Poiseuille flows or microfluidic settings). Along this
line of thought, the migration velocity of a Janus drop lateral to a streaming flow is
presented in §4.4. Concluding remarks are given in § 5, where the conditions for the
occurrence of the cross-flow migration of a Janus drop in a shear flow are briefly
discussed. In the appendix, the grand resistance matrix and Bretherton (1962) constant
are provided on account of their potential relevance to experimenters. Since Janus
drops typically comprise fluids of similar viscosity in microfluidic settings (Nisisako
et al. 2006), the results of the appendix are narrowed down to this limit of practical
interest. Interestingly, the coupling tensor, which characterises the torque on a body
in a streaming flow and the force in a rotational flow, is found to be identically zero
at the centre of hydrodynamic reaction of the Janus drop. Additionally, it is found
that the shear force vanishes at the centre of reaction and, therefore, the dynamics
of a ‘freely’ suspended Janus drop in a shear flow are identical to that of a spheroid
of revolution (Jeffery 1922). The stresslet of a Janus drop in an elongational flow
(axisymmetric) is identical to the stresslet produced by a single-phase drop. For
transversal straining flows, the stresslet is found to be intermediate to that of a
single-phase drop and a solid sphere.

2. Problem statement

Figure 1 depicts a neutrally buoyant Janus drop immersed in a viscous shearing
fluid, which is denoted by ‘0’. The Janus drop comprises two internal fluids, denoted
by ‘1’ and ‘2’. The dynamic viscosity of each fluid phase (j=0, 1, 2) is defined by 7;;
conventionally, it is assumed that 7; <7,. The principal objective of this investigation
is to calculate the force and couple on a Janus drop centred in a simple shear flow
with zero mean velocity:

Uy = %G(EOO -x' +e. x x’) =Gxe, 2.1
where G is a constant shear rate, E* is the rate-of-strain tensor of the undisturbed
flow, and x' = (¥, ¥, 7Z/) is a set of space-fixed Cartesian coordinates, with
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corresponding unit vectors (e, e, e.), that ensure a unidirectional flow. The drop

orientation effect is considered by projecting u., into a reference frame centred
and affixed to the Janus drop x = (x, y, z) via the transformation x’ = Ax, where
the transformation matrix A parametrises the drop orientation from a coincident
arrangement of both sets of axes:

cos o 0 —sina
A= | —sinasin cosf —cosasinf |, 2.2)
sinecosB sinf cosacospf

where o and B are the corresponding Euler angles that define the drop orientation.

Projection of u,, into x results in a superposition of flows, which are categorised
with respect to the arrangement of the velocity gradient relative to the internal
interface. Flows with a velocity gradient normal and parallel to the internal interface
are denoted by v and w, respectively. Note that the use of the transformation matrix
formulation shows the relevance of the drop orientation with regard to its resistance to
the external flow; however, the appearance of the Euler angles in the resulting flows
somewhat hinders their presentation. In order to circumvent this, the transformation is
carried out equivalently in terms of fundamental operations (expressions are written
in non-dimensional form):

v, =1-uy =uxe, (2.3a)

v =—1E®-x+1e, xx=—ze, (2.3b)
VS=—P-.u,-P=uxe —ze., (2.3¢)
W=l X e, = Xxe,, (2.3d)

where [ is the identity tensor, the unit dyad P = —e.e;, and the subscripts L and ||
emphasise that the principal direction of the shear flow is normal and parallel to the
internal interface, respectively. Note that v, simply results from a reflection of the
straining part of the flow, that v* is a permutation of u,, into a hyperbolic flow, and
that w is obtained via arrangement of the whole velocity field into a plane parallel to
the internal interface. An illustration of the relation between the flows orthogonal to
the internal interface is provided in figure 2 for further clarification. Arrangement of
the straining axis of v at a diagonal with the internal interface plus a rotational field
yields either v or v,, depending on the direction of the arrangement, as depicted in
figure 2(a) and (b), respectively.

3. Governing equations

As a first step in exploring the behaviour of a Janus drop in a simple shear flow,
fluid motion is analysed in the absence of inertia and in the limit of non-deformable
interfaces. In terms of dimensionless groups, fluid motion is characterised by
both a negligible Reynolds number, Re = a’G/Vy, < 1, and capillary number,
Ca =anyG/6 « 1, where a is the radius of the Janus drop, vy and 7, are the
kinematic and dynamic viscosity of the ambient, respectively, and & is the interfacial
tension of the internal fluids (the limiting interfacial tension in practice, for instance
see Torza & Mason 1970).
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FIGURE 2. Transformation of v* into v; and v,. (a) Alignment of the straining axis (dot-
dashed line) of v at a —45° angle from its horizontal arrangement, plus a rotational field
yields v;. (b) Alignment of the straining axis at a 45° angle from its horizontal position,
plus a rotational field results in v, .

The governing equations are written in non-dimensionalised form by adopting the
following scales for length, fluid velocity and pressure: a, aG and 7,G, respectively.
Under the aforementioned assumptions, fluid flow is described by the Stokes equations,
which are conveniently presented in spherical coordinates (r, ¢, ¢):

V.u? =0, —Vp¥+4nViu =0, (3.1a)
n-u?=0, [ul=[n-8]=0, at r=1, (3.1b)
n-u'?=0, [u]=[n-S]=0, at ¥ =7/2, (3.1¢)
u® =u, as r— oo, (3.1d)

where n is the unit normal vector at interfaces, which is directed outward at every
point on the outer surface and, analogously, at the internal interface it points from fluid
2’ to fluid ‘1’. The fields u'” and p'” denote the respective velocity and pressure of
the jth fluid phase of viscosity n;=1;/1,. All fluids are incompressible and Newtonian,
S = —pW 8y + ni(V,u 4+ Viul”), where 8 is the Kronecker delta. At interfaces
u, =0 because fluids are immiscible. The brackets specify a jump of the fluid velocity
and stresses at interfaces. At r = 1 this jump is directed from the internal to the
ambient fluid, and at ¢ = /2 it is directed from fluid ‘2’ to fluid ‘1’. Far away from
the drop, the flow reduces to the undisturbed velocity u,, (any of the flows presented
in §2).

Continuity of the normal stress at interfaces only enters at the leading order of the
expansion in the Ca <1 limit. One may venture on determining shape distortions via
a perturbation technique; however, it is expected that it will only bring a correction
of O(Ca) to the fluid forces. Accounting for shape distortions is most rewarding in
studies concerned with the conditions for drop breakup, coalescence and rheology of
a suspension (Stone & Leal 1990).
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The force F on the drop is obtained by integrating the stresses at its surface (r=1):

F=j§n-3dA, (3.2)

where A is the area of the outer surface, and the couple (or torque) T is calculated by:

T= j{x X (n - S)dA. 3.3)

The following scales render non-dimensional F and T: a’7,G/2 and a’7,G/2,
respectively, which guarantee that T reduces to that of a solid sphere when 7, =71, > 1.
Variation of F and T with the viscosity of the fluids is presented in terms of the drop
mean viscosity n = (1, 4+ 1n,)/2 and viscosity contrast An/2n = (1, —n1)/(m2 + n1).

The viscosity contrast quantifies the deviation of the Janus drop from one with
equal viscosities (n; =1,). The limit of An/2n < 1 may be of particular interest to
experimenters because of the similar viscosities of the constituent fluids in practice
(Torza & Mason 1970; Nisisako et al. 2006). Nonetheless, the full range (0, 1) is
considered for completeness. (Outside that domain there are no physical solutions.) In
the limit of An/2n— 1 and 1> 1 the Janus drop is composed of a fluid of negligible
and another of very high viscosity; however, this limit may not be of much use in
practical settings.

4. Solution

Shear flow past a body is, inherently, a three-dimensional (3D) problem. For
example, the disturbances caused by a fixed solid sphere result in a 3D flow.
For a Janus drop subject to a simple shear flow, the motion of the fluid phases
can be described via Lamb’s generalised solution (Kim & Karrila 2005) (in
non-dimensionalised form):

. oo 3) 2 Vp (@) o ) )
u =3 [("Jr )V nxp, }+Z (VOO + 1V xe,],
= 12+ D@n+3) (+D@n+3)] =
4.1)
where the following spherical harmonics characterise the flow of the suspending fluid:
2(—2n+1
0= 2020 D p o))t o g, (4.2a)
(n+1)
PO = _ " _ POy cos ¢, 4.2b
V=R © ¢ (4.2b)
x© = —H,P"@)r """ sin ¢, (4.2¢)

with corresponding series coefficients E,, H,, and P{"(0) is the first associated
Legendre polynomial of order n with 6 = cos ¢*. Analogously the internal flows are
described by:

n

ap _ _J2nt D P @) 200d DEn+3) ) PYO) | L
@u—D " PR T @nt3) 02,(0)
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(1) (1)
P — _ Bﬁzl’z) Py,1(0) + 7D, 2n+2(9) P cos ¢
’ @n+1) Py, (0) " 020ia(0)
M (1)(9)
+  FuP2y 1 (0) — 121 G,y 0.0 ! cos ¢, (4.3b)
(12 _ 1.2) p() v ,2n (zll) 1) 50 | .
Xo T = QAT Py (O — Gy o0 sin ¢, (4.3¢)
2n 1

with series coefficients B"?, A2 D, F,, G,, and 0,,(0) = —2n(2n + 1)P,,(0). The
tangent no-slip condition at the internal interface imposes the following constraint:

g0 _ g _2n@n—1@n+1)

@ _ 4
n Yan+ 1) 02.(0) (4,7 —A,7). (4.4)

Although the obtained solution is exact, the series coefficients require numerical
determination. Truncation of the expansion up to order 2N and matching of the
velocity fields at the surface of the drop (r=1) results in a (10N x 10N) system of
linear equations for the unknown coefficients, which is solved with the linear algebra
package (lapack). The truncation order is increased systematically until convergence
is achieved.

4.1. Shear flow with a velocity gradient parallel to the internal interface

It is straightforward to show that w = xe, results in F =T = 0, which is realised
by noting that the Janus drop behaves as a single-phase drop. The particular, yet
instructive, situation of a Janus drop with n; =n, reveals that the flows of a single-
phase drop (Taylor 1932) satisfy the boundary value problem, and consequently, the
forces and couples are identically zero. The situation is not so different for a Janus
drop with different internal viscosities. As in the former case, the internal interface
creates a system of velocity gradients that preserves the symmetric character of the
flow, which guarantees that F =T =0. It is expected that this result holds for a Janus
drop with volume ratios of the internal fluids other than 1:1, despite the fact that the
internal flows will differ from that of a single-phase drop. All fluids simply undergo
a solid-body rotation and the straining field cannot impose a net force or torque in
this configuration.

4.2. Plane hyperbolic flow with a velocity gradient normal to the internal interface

The force and couple imposed by the hyperbolic flow, v = xe, — ze,, on the Janus
drop are considered. An illustration of the flow about the Janus drop is shown in
figure 2(a).

Results show that F =T =0 for a Janus drop with n; =n,. Even then, F, =0 and
T =0 for a Janus drop with different viscosities due to the symmetry of the flow. Thus,
the underlying finding is that this flow-to-drop arrangement is an equilibrium one.
Only the axisymmetric part of the flow imposes a force F, that grows monotonically
with An/2n, as shown by figure 3(a). Initially, the force is of O(An/2n), which is
best shown by the plot with n =1, where deviation from linearity is less than 10 % up
to An/2n=0.55. At greater values of An/2n the force grows quadratically because of
a higher-order system of velocity gradients. In the dual limit of An/2n— 1 and n > 1
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FIGURE 3. Variation of the force F, (in units of a?7,G) with the viscosity contrast at
constant values of n when the Janus drop is subject to v (a). The force F, (in units
of a*7yG) on the Janus drop under the action of v, with increasing viscosity contrast at
constant values of n (b).

the force F, scales as 1,/n; > 1. It is worth noting that the force also diverges for a
fixed ‘slip—stick’ sphere in the extreme limit of a perfect ‘slip’ surface (Ramachandran
& Khair 2009). The plots clearly depict the non-monotonic dependence of the force
F, with the mean viscosity 7. It is interesting to note that the net force reported here
is the manifestation of the centre of hydrodynamic reaction x.. being displaced from
the flow stagnation point. In fact, it is found that the Janus drop experiences a zero
net force when x., coincides with the flow stagnation point of a general straining flow
(verified by independent calculations).

4.3. Shear flows with a velocity gradient normal to the internal interface

The forces and couples exerted by the shear flows, vy = —ze, and v, = xe,, are
considered here. In view of the innate symmetry of the shear flows, it is evident
that F = 0 when 5, = n,. In particular, for v, the force is always zero (F = 0)
regardless of An/2n; there can be no net force in the z direction, and also because
the x component of the straining and rotating fields of v, are equal in magnitude but
opposite in direction, as shown in figure 2(b). Figure 3(b) depicts the effect of An/2n
on the force F, when the Janus drop is subject to v, and it is notable that the effect
is analogous to that found in a hyperbolic flow (figure 3a). It is important to point
out that the appearance of a force is just the manifestation of x., being displaced from
the centreline of the shear flow (in the coincident situation F =0 because of the zero
coupling and shear-force tensors).

Figure 4 shows the variation of the resultant couple 7, (in units of a’*1yG) with the
mean viscosity (n = n, = n,). The solid line depicts 7, due to v,, and the dashed
line shows its counterpart for v. It is readily seen that the couple in v, is of greater
magnitude than v, except in the extreme cases n < 1 (negligible viscous stresses) and
1> 1 (solid-like), where the Janus drop behaves as an isotropic body and the direction
of the shear flow becomes irrelevant. Figure 5 illustrates the velocity fields for both
shear flows, and suggests that the couple is greater for v, (figure 5b) because the
internal interface prohibits, to a greater extent, the circulation flows of a single-phase
drop. One may deduce from figure 4 that the resultant couple unfolds from both the
straining and rotating components of the flow (otherwise, v, and v, would generate
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FIGURE 4. The couple 7, (in units of a*7yG) on a Janus drop with n; = 1,.

@ - B —————

FIGURE 5. The velocity fields in and about a Janus drop subject to v (a) and v, (b).

the same curve). Perhaps, it is more relevant to point out that even a Janus drop with
n, = n, displays anisotropic properties, solely because of the presence of the internal
interface.

The influence of An/2n on T, in v and v, is seen in figure 6 for selected values of
the mean viscosity. It is noteworthy that the dependence of T, on An/2n is analogous
to the dependence of the force in a streaming flow (Shklyaev et al. 2013), in the
sense that the qualitative features are retained. (For small An/2n the couple is O(1),
constant, and equal to the n, = n, case.) Further increase of An/2n induces a decay
of T, at a quadratic rate of the order of (An/2n)?. This marked decrease of 7, is in
agreement with the observation that the less viscous fluid sets up the magnitude of
the couple.

4.4. Cross-stream velocity of a Janus drop in a streaming flow

A closed-form expression for the cross-stream velocity of a Janus drop is obtainable
when the drop moves with a relative velocity (u, — u. ) along the streamlines of a
uniform flow. The external force required to sustain drop motion must pass through
the centre of reaction x.. to prevent rotation. The sought result is obtained by finding
the migration velocity u,, that cancels out the forces lateral to the undisturbed flow
(this is analogous to the settling of anisotropic bodies presented by Happel & Brenner
1965). It is found that u, , depends on the angle o from the scalar product /- u, the
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FIGURE 6. Variation of the couple 7, (in units of a*7oG) with the viscosity contrast at
constant values of the mean viscosity for v, (a) and v, (b).

resistance functions to translation, X* and Y# (tabulated in the appendix), and the drop
relative velocity:

(XA —Y*) cosasina
Uy = AT (XA — YA) oo (uz - uz,oo) . 4.5)

Note that u,,, does not depend on the drop size due to its spherical shape. For
example, a Janus drop with n = 0.1 exhibits a maximum ratio u,,/(u, — U, ) Of
about 0.06.

5. Conclusions

The response (forces and couples) of a Janus drop under the shearing motion of
the suspending fluid is investigated in the limit of negligible Reynolds number and
capillary number (non-deformable interfaces). It is found that for an arbitrary drop
orientation the shear flow can be broken down into flows with velocity gradients
parallel and normal to the internal interface, which greatly reduces the analysis to
four elemental problems. Although an exact solution is found via Lamb’s generalised
solution, numerical evaluation of the series coefficients is needed to calculate the
force and couple on the Janus drop.

Only when the velocity gradient of the shear flow is parallel to the internal interface
does the Janus drop behave as a single-phase drop. For transversal shear flows the
no-penetration condition at the internal interface prohibits the circulation flows of a
single-phase drop, and therefore novel phenomena is found. The resultant couple on
the Janus drop arises from both the straining and rotating motions of the external
flow, in analogy with a spheroid of revolution. In this case the Janus drop exhibits
an anisotropic resistance to the shear flow because of the variation of the couple with
the drop orientation.

The resistance matrix formulation reveals that at the centre of hydrodynamic
reaction, Xx.., the coupling tensor is identically zero, and the shear force vanishes.
From these findings one can conclude that the equations that describe the position
and orientation of a Janus drop ‘freely’ suspended in a shear flow are identical to
those of a spheroid of revolution with Bretherton (1962) constant, B = Y?/YC, with
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tabulated values in the appendix. To avoid reproduction, these equations are omitted
in this study but can be found elsewhere (Jeffery 1922; Kim & Karrila 2005). In
contrast with other bodies of revolution with broken fore and aft symmetry, such
as the spherical cap (Dorrepaal 1978) and an aggregate of spheres (Nir & Acrivos
1973), the results of this study reveal no tendency of a ‘freely’ suspended Janus drop
to experience an axial ‘drift’ velocity in a shear flow. The drop matches the local
streaming velocity, and its orientation follows the periodic orbit of an oblate spheroid.

It is interesting to note that a Janus drop with finite An/2n can undergo a cross-
flow migration in a shear flow by means of an external force (e.g. gravity) in the
streamwise direction that lags the drop relative to the motion of the undisturbed flow.
Due to the anisotropic resistance of the Janus drop to translation (see the appendix),
part of the drag force acts lateral to the streamlines and induces cross-flow migration.
The Janus drop does not rotate because of the coupling of the torque with translation
(the external force must act at any point other than x.). An exact expression (4.5)
for the migration velocity of a Janus drop is found in a streaming flow and may be
used as a rough estimate for the migration in a shear flow when An/2n < 1. The key
observation is that lateral migration of a Janus drop can occur without the influence
of walls and non-uniform velocity gradients, which are required to induce migration
of a simple drop.
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Appendix A. The grand resistance matrix and Bretherton constant

The grand resistance matrix developed by Brenner (1963) for a body of arbitrary
shape is presented for a Janus drop at its centre of hydrodynamic reaction x., in the
limit of An/2n <« 1. Note that, in practice, the internal viscosities are quite similar
(Nisisako et al. 2006) and the effect of An/2n on the non-zero resistances is of the
order of (An/2n)%.

The notation followed here for the resistance tensors is that of Kim & Karrila
(2005):

F A B G\ [U*-U
T|=i|B € H| |2 —-w]. (A1)
S G H M E>

On account of the symmetry of the Janus drop the results are reported in terms of
the resistance functions X, Y and Z associated with axisymmetric and transversal flows,
respectively, relative to x.,., which is found to always be parallel to I. Variation of the
non-zero resistance functions with the mean viscosity 1 is presented in table 1.
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n xAn2n YA YS/m 30YH.2m 3xMpn 3YM2n B

0 2.000  2.000 0.000 0.000 4.000 8.000 0.0000
0.01 2.068 2.010 0359 —-0.701 4.059 8.085 —0.1302
0.1 2339 2091 1786  —2.540 4.545 8.419 —0.0948
1.0 27758 2500 4957 —2.436 7.000 9.225 —0.0328
2.0 2.852 2,667 5997 —1.723 8.000 9.493 —0.0192
3.0 2893 2750 6.504 —1.331 8.500 9.623 —0.0136
4.0 2917 2800 6.806 —1.084 8.800 9.697 —0.0106
5.0 2931 2833 7.006 —0.913 9.000 9.750 —0.0087
10.0 2963 2909 7.460  —0.505 9.455 9.865 —0.0045
100.0 2996 2990 7941 —0.056 9.941 9.985 —0.0005
00 3.000 3.000 8.000 0.000 10.000 10.000 0.0000

TABLE 1. Variation of the non-zero scalar resistance functions and the Bretherton
constant with the mean viscosity of the Janus drop (note that Z is identical to X™).
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