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The problem of determining the threshold of motion of a sediment particle
resting on the bed of an open channel has historically been dominated by an
approach based on the time–space-averaged bed shear stress (i.e. Shields criterion).
Recently, experimental studies have promoted an alternative approach to predict
the dislodgement threshold, which is based on the impulse of the flow-induced
force. Nonetheless, theoretical analyses accompanying these studies result in complex
expressions that fail to provide a direct estimate of said impulse threshold. We
employ the work–energy principle to derive a prediction of the fundamental impulse
threshold that the destabilising hydrodynamic force must overcome in order to achieve
full particle dislodgement. For the bed configuration studied, which is composed of
spheres, the proposed expression depends on the mobile particle’s size and mass, and
shows excellent agreement with experimental observations previously published. The
derivation presented in this paper may thus represent a robust theoretical framework
that aids in the reinterpretation of existing data, as well as in the design of future
experiments aimed at analysing the importance of hydrodynamic impulse as a criterion
for prediction of particle dislodgement.

Key words: particle/fluid flows, river dynamics, sediment transport

1. Introduction
Accurate estimation of erosion and sediment transport rates in natural, erodible

boundaries (e.g. riverine and estuarine beds) is a key and long-standing challenge in
Earth surface dynamics and engineering. A basic problem underpinning this challenge
is that of determining when a sediment particle resting on a bed will be dislodged
by a flow. The classical approach to this problem, based on the well-known work by
A. Shields in the 1930s, employs the temporal–spatial average bed shear stress as a
criterion for prediction of particle dislodgement. A review of Shields-based incipient
motion studies (see e.g. Buffington & Montgomery (1997) and references therein)
illustrates the impossibility of defining an accurate and universal threshold of motion
based on the time–space-averaged shear stress. This impossibility stems from the
intrinsic complexity of the problem, where turbulent flow typically occurs over a bed
surface composed of sediment particles which are inherently heterogeneous in size and
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shape. Thus, recent studies on initiation of motion have shifted towards approaches
that investigate the phenomenon at the spatial scale of individual sediment particles
(often idealised in shape, such as spheres) and the temporal scale of turbulent
fluctuations. For instance, Kudrolli, Scheff & Allen (2016) emphasised the effect
of the torque induced by all relevant forces on a spherical particle under steady
flow conditions. Other studies have focused instead on the influence of turbulence
on initiation of particle motion (e.g. Heathershaw & Thorne 1985; Nelson et al.
1995; Sumer et al. 2003), attributing the latter to the peak velocity magnitude of
hydrodynamic fluctuations. Building on this line of thought, Diplas et al. (2008) (and
subsequent studies discussed below) demonstrated the importance of both magnitude
and duration of turbulent fluctuations in determining whether initiation of motion will
occur, thus establishing a particle dislodgement criterion based on the impulse of the
fluctuating hydrodynamic force (as opposed to its instantaneous maxima). The present
paper is aimed at providing a theoretical analysis for such an impulse-based criterion.

The pioneering experiments by Diplas et al. (2008) demonstrated the importance
of impulse for particle dislodgement by carefully controlling and systematically
manipulating the magnitude and duration of the destabilising force. This work paved
the way for other studies supporting the idea of employing impulse (as opposed
to either instantaneous or time-averaged forces) as a criterion for dislodgement of
individual particles. Nevertheless, theoretical models derived so far to support this
concept (Diplas et al. 2008; Celik et al. 2010; Valyrakis et al. 2010; Valyrakis, Diplas
& Dancey 2013) result in complex relations that do not necessarily predict directly the
impulse threshold for particle dislodgement for a given bed configuration, thus limiting
the interpretation of results obtained from their corresponding, rather insightful
experiments. For example, both Diplas et al. (2008) and Valyrakis et al. (2010)
analytically studied the problem by considering time-independent hydrodynamic
forces acting on a resting particle (in the case of the former, only lift was considered),
yielding second-order differential equations of motion and their respective solutions.
Although these studies relate forces and their durations (not necessarily via simple
expressions), they do not provide a direct prediction of the critical impulse for
dislodgement; and the condition that the force be time-independent (i.e. a pulse) is
unnecessarily restrictive, as we show later. Celik et al. (2010) and Valyrakis et al.
(2013) instead invoked energy principles in their respective theoretical analyses.
Valyrakis et al. (2013) employed the concepts of work done on a particle and
consequent gain in mechanical energy, but, as with Diplas et al. (2008) and Valyrakis
et al. (2010), the dislodgement relation obtained does not provide an estimated value
for the impulse threshold. Celik et al. (2010) approached the problem by considering
a critical drag force capable of dislodging a particle, which is computed by defining
a hypothetical initial velocity that the particle would require in order to gain the
necessary kinetic energy to overcome the local elevation threshold for dislodgement.
This approach is employed to predict a critical initial velocity, with good results,
but the assumption of a non-zero initial particle velocity does not represent the
condition of initiation of motion from rest; and as with previously discussed studies,
a prediction of the critical impulse (not velocity) is not provided (see § 3.2). All the
above-mentioned approaches also depend critically on empirical coefficients such as
drag, lift and energy transfer.

In this paper, we employ the work–energy principle to derive an expression for
the magnitude of impulse threshold necessary for particle dislodgement. The proposed
criterion is defined in terms of the time-varying force exerted on a particle by the flow
(and not the flow variables producing said force), which enables us to derive a relation
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FIGURE 1. (Colour online) Sketch of the problem. (a) Three-dimensional rendered image
of the setting consisting of four spheres of equal radii r, where the mobile particle rests
on top of three fixed and densely packed spheres, which in turn lie on a horizontal plane;
initial and final (dislodged) positions of the particle’s centroid are denoted by points A
and B, coloured blue and red (online version), respectively. (b) Side view illustrating
the trajectory C followed by the particle during dislodgement, and the centroid’s angular
displacement α with respect to the pivot axis P. (c) Top view.

that is simple and independent of empirical coefficients such as drag and lift. The
resulting criterion, which depends on the mobile particle’s size and mass for the bed
setting investigated, shows excellent agreement with previously published experimental
observations.

The derivation of the theoretical impulse threshold is detailed in § 2, while
validation against experiments is presented in § 3. Concluding remarks are discussed
in § 4. Complementary derivations are presented in appendices A and B.

2. The impulse threshold
We are concerned with the conditions leading to full particle dislodgement, defined

as the event when a sediment particle originally at rest on the bed surface is
transported to a different location on the bed (hereinafter we avoid the alternative
terms ‘incipient motion’ or ‘initiation of motion’, which may evoke local particle
movement not necessarily leading to a different resting position). We focus on
the bed configuration employed in previous works (Diplas et al. 2008; Celik et al.
2010; Valyrakis et al. 2010, 2013; Celik, Diplas & Dancey 2013), where a mobile
spherical particle rests on top of three, equal-sized, fixed, well-packed spheres, as
depicted in figure 1 (the same diameter of both top and base spheres is assumed
unless otherwise stated). A Cartesian frame of reference is adopted, where x, y and
z denote streamwise, transverse and vertical coordinates, respectively. Fundamentally,
to achieve full dislodgement, the work done on the particle by the net external
forces must be sufficient to overcome the elevation threshold resulting from the
local micro-topography. This happens when the particle originally at rest in stable
equilibrium (point A) moves to a higher, unstable position, where an infinitesimally
small streamwise force acting at its centre of mass will lead to a new resting position
(point B – a separatrix in the context of oscillators). Therefore, the minimum work
required for full dislodgement can be defined for the condition of the sphere reaching
point B with null kinetic energy. It is assumed that the particle is dislodged by rolling
from A to B, which is in agreement with experimental evidence that highlights this
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entrainment mode as the most common for near-threshold conditions (see e.g. Fenton
& Abbott 1977; Celik et al. 2010; Kudrolli et al. 2016). Moreover, it may be argued
that this trajectory and type of motion (as opposed to sliding) minimises the energy
required to get to B from A, and is thus in line with our objective of finding a
fundamental energy threshold for dislodgement. Since the sphere rolls without sliding,
static friction forces act at the points of contact between the mobile sphere and the
base spheres, which in turn create a resultant torque about the rolling particle’s centre
of mass. However, since the mobile sphere arrives at point B with no angular velocity
(we assume null kinetic energy at point B), no net work is done by this torque on the
sphere, and so we exclude static friction forces from our derivation below. For partly
exposed particles like the one under consideration, the net hydrodynamic force may
not act exactly at the particle’s centre of mass. However, without much knowledge of
the actual line of action of said force (Kudrolli et al. 2016), we assume that it does
for simplicity, as typically done in similar studies (e.g. Celik et al. 2010; Valyrakis
et al. 2010; Kudrolli et al. 2016).

Consider the net force acting on the mobile sphere’s centre of mass at any time t
during a dislodgement event of duration T= t1− t0: F(t)=FH(t)+ws+

∑
Ni(t); where

FH(t) is the net hydrodynamic force (see discussions below); is the
submerged weight of the particle of volume and density ρs, immersed in a fluid of
density ρ, with g representing the gravitational acceleration; and

∑
Ni(t), with i =

1, 2, . . . , p, is the sum of p normal reaction (constraint) forces acting at the p contact
points between the mobile and base particles (e.g. in figure 1, p= 2 for t0 < t 6 t1).
Applying the work–energy principle to the sphere moving along the trajectory C= s(t)
connecting points A and B, and recalling that its change in kinetic energy is taken as
null, yields

∫
C F(t) · ds=

∫
C FH(t) · ds+

∫
C ws · ds+

∑∫
C Ni(t) · ds= 0; which, after

noting that Ni · ds= 0, leads to the dislodgement condition∫
C

FH(t) · ds=
∫ t1

t0

FH(t) ·
ds
dt

dt>ws1z, (2.1)

where ws ≡ ‖ws‖ and 1z is the elevation gained by the particle’s centre of mass (i.e.
the vertical distance between points A and B). Since the particle is at rest at t0, its
velocity v(t) ≡ ds(t)/dt relates, through Newton’s second law, to its own mass and
acceleration, m and a(t), respectively, and F(t) as follows:

v(t)≡
∫ t

t0

a(τ ) dτ =
1
m

∫ t

t0

F(τ ) dτ . (2.2)

Substitution of (2.2) in (2.1) yields the following dislodgement criterion in terms of
time integrals of all relevant forces (i.e. impulses):∫ t1

t0

FH(t) ·

[∫ t

t0

FH(τ ) dτ +ws(t− t0)+
∑

i

∫ t

t0

Ni(τ ) dτ

]
dt>mws1z. (2.3)

Equation (2.3) represents an exact condition to be verified if dislodgement is to
take place. However, in this form it is of no practical use. The above relation can be
simplified under the assumption that the mobile sphere is highly exposed to the flow,
such that (i) the angular displacement of the particle’s centroid during dislodgement
with respect to the pivot axis P is small (see α in figure 1b) and (ii) FH is dominated
by the drag component acting predominantly in the streamwise (x) direction, which
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Critical impulse for dislodgement 897

is supported by experimental evidence for similar bed configurations (Fenton &
Abbott 1977; Schmeeckle, Nelson & Shreve 2007; Celik et al. 2010). Under these
assumptions, approximately FH ⊥ ws and FH ⊥ Ni for all t during the dislodgement
event, thus leading to vanishing of the second and third dot products in the left-hand
side of (2.3). (See appendix A for a more rigorous treatment of (2.3) and discussion
of these assumptions.) Further noting that FH(t) · FH(τ ) represents a symmetric
function f (t, τ ), such that f (t, τ )= f (τ , t), we obtain∫ t1

t0

FH(t) ·
∫ t

t0

FH(τ ) dτ dt=
1
2

∫ t1

t0

∫ t1

t0

f dτ dt=
1
2

∫ t1

t0

FH(t) dt ·

∫ t1

t0

FH(τ ) dτ . (2.4)

Combination of (2.4) and the assumption of approximate orthogonality between FH
and both ws and Ni discussed above permits significant simplification of (2.3) (see
appendix A). This simplification represents an approximate estimate of the magnitude
of the critical impulse imparted to the particle during T , Jc, that a destabilising
hydrodynamic force (capable of doing work on the particle) must overcome in order
to achieve full dislodgement; namely∥∥∥∥∫ t1

t0

FH(t) dt
∥∥∥∥≡ Jc ≈

√
2mws1z. (2.5)

The elevation threshold 1z is left as a free parameter in (2.5) for reasons that
become clear in § 3.2. Note, however, that for certain ideal configurations, 1z has
analytical solutions. For instance, data employed for validation in § 3.1 are derived
from the experimental setting depicted in figure 1, for which it can be shown that
(see appendix B)

1z=

(
3− 2
√

2
√

3

)
r, (2.6)

where r is the radius of the spheres. The mass of the mobile sphere, m, appearing in
(2.5) merits some discussion. If FH(t) is taken as the total hydrodynamic force exerted
on the mobile particle by the surrounding fluid (that is, excluding the buoyancy force,
which is already accounted for in ws) – i.e. the integral of pressure and shear stresses
over the surface of the sphere (minus the buoyancy force) – then m represents the
actual mass of the sphere, i.e. . However, direct measurement of FH(t), thus
defined, is extremely challenging. For this reason, experimentalists and modellers alike
typically estimate this force via parametrisations strictly applicable to non-accelerating
particles (drag and lift coefficients being the prime examples). This in turn prompts
the need to account for the effect of the particle’s acceleration separately, which is
typically done via the added mass coefficient, M, by modifying the sphere’s mass
as . The theoretical value of M = 0.5 for a sphere, arising from
potential flow theory, is commonly employed in studies dealing with the dynamics of
bed particles (see e.g. Barati, Neyshabouri & Ahmadi (2018) for a recent review on
saltating particle models). Although derived from inviscid flow theory, the value of
M ≈ 0.5 also appears to be supported by experiments with spheres in real (viscous)
flows (see e.g. Pantaleone & Messer 2011). In general, if the added mass effect must
be considered (either through a theoretically or empirically defined value of M) due
to the treatment of FH discussed above, (2.5) becomes

Jc ≈
4
3ρπr3

√
2(s+M)(s− 1)g1z, (2.7)
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with s≡ ρs/ρ being the particle’s relative density and g≡‖g‖. The proposed criterion
for critical impulse, derived for spherical particles, is solely dependent on the particle’s
size and density (that is, if M= 0.5 is adopted), and is applicable to a hydrodynamic
time-varying force of arbitrary duration. This contrasts with expressions previously
derived for the same bed configuration, as discussed in § 1. The (relative) lack of
empirical coefficients in our derivation is in good measure achieved by the very
definition of the criterion, which expresses the dislodgement condition as a function
of the hydrodynamic force exerted on the particle, rather than the flow variables
inducing said force. Naturally, coefficients such as drag will be necessary in practice
when relating the fluid force exerted on the particle to local hydrodynamic parameters
(see § 3.2). However, this is beyond the scope of the present paper, the main aim of
which is to provide a theoretical analysis of existing experiments devoted to exploring
the role of hydrodynamic impulse as a criterion for dislodgement.

Even though derivation of (2.5) implicitly assumes a horizontal channel (the
simplifying assumptions invoked depend on this condition), the effect of the local
slope is accounted for via 1z, which will be affected by variations in the local
micro-topography. However, use of (2.5) and (2.7) should be restricted to applications
involving horizontal or nearly horizontal channels, given that terms neglected in (2.3)
are anticipated to grow in importance for steep slopes. In deriving (2.5), we have also
assumed exclusively forces capable of doing work on the particle (but note that this
is not a restriction of the full condition, equation (2.3) – i.e. hydrodynamic forces
too small to move the particle will simply not comply with the inequality). For the
setting considered (figure 1), the maximum force opposing motion will be found at
the initial position (see end of § 3.3).

3. Comparison against experiments
In order to test the validity of the theoretical impulse threshold for particle

dislodgement proposed here, we compare predictions of (2.5) and (2.7) against
experiments by Diplas et al. (2008), Celik et al. (2010), Valyrakis et al. (2010) and
Celik et al. (2013). All these experiments deal with a setting similar to that illustrated
in figure 1, where a mobile spherical particle rests on top of three, fixed, well-packed
spheres. Celik et al. (2010, 2013) employed identical-size top and base spheres, with
s = 2.3 and r = 6.35 mm, subject to water flow. On the other hand, Diplas et al.
(2008) and Valyrakis et al. (2010) investigated different combinations of top and
base metallic spheres’ sizes subject to electromagnetic flux. For each of the above
experiments, the parameters measured and methodologies vary, allowing us to test
the derived theoretical prediction of critical impulse under different conditions, as
detailed next.

3.1. Direct comparison (impulse)
The most direct comparison is made against the experiments by Celik et al. (2013),
who measured pressure time histories at four points on the surface of a stationary
sphere, which were then used to obtain a direct estimate of the force (and thus
impulse) responsible for the dislodgement of another, otherwise identical mobile
sphere subject to the same flow conditions. Celik et al. (2013) estimate impulse
threshold from measurements of the (streamwise-aligned) drag force, in line with
the assumptions we have invoked in § 2. We select for comparison run U8 in the
referred publication, which reports the lowest frequency of particle dislodgement
events observed (namely, 0.14 dislodgement events per minute), which can be
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Critical impulse for dislodgement 899

interpreted as the experimental conditions that are closest to a fundamental threshold
for dislodgement. For run U8, Celik et al. (2013) report a mean value of the critical
impulse of 0.0002 N s. For this experimental setting, use of (2.7), with M= 0.5 and
1z computed from (2.6), yields a prediction of the critical impulse of 2.27×10−4 N s.
In other words, the proposed criterion shows a virtually exact agreement (to the
precision reported by Celik et al. 2013) with these experimental results.

3.2. Indirect comparison (pseudo-impulse)
Next, we consider the experiments by Celik et al. (2010), who measured the
streamwise component of the fluid velocity, u, one particle diameter upstream of
a test (mobile) sphere. Celik et al. (2010) studied particle dislodgement as a function
of pseudo-impulse, defined as the product 〈u2

〉T , where the angle brackets denote
time-averaging over the interval T . The referred researchers employ this surrogate
for impulse based on the proviso that the prevailing hydrodynamic force is drag, FD,
which is proportional to u2. Considering the time-average of the net hydrodynamic
force acting on the particle over the interval T ,

〈FH〉 ≡
1
T

∫ t1

t0

FH(t) dt, (3.1)

the impulse imparted to the particle by the flow over T can also be expressed as J=
〈FH〉T . We can then find an approximate equivalence between the real impulse, J, and
pseudo-impulse employed by Celik et al. (2010), Jps, as follows:

‖Jps‖ ≡ 〈u2
〉T =

〈FD〉T
1
2ρApCD

≈
‖J‖

1
2ρApCD

, (3.2)

where the conventional parametrisation of the drag force has been employed; i.e. FD=

0.5ρApCDu2, with CD representing the drag coefficient and Ap being the projected area
of the spherical particle. The latter may be approximated, due to the assumption of
the particle being highly exposed to the flow (also employed by Celik et al. 2010), as
Ap = πr2. The assumption of drag being the predominant hydrodynamic force acting
on the particle underpins (3.2).

In their experiments, Celik et al. (2010) observe a range of values of pseudo-
impulse of 0.0034 to 0.0095 m2 s−1, for which both dislodgement and no-dislodge-
ment events are observed for all values of 〈u2

〉 considered. In other words, below
(above) this range of pseudo-impulse, the test particle was never (always) dislodged by
the flow. Therefore, the lower limit of this range (0.0034 m2 s−1) can be interpreted
as the fundamental pseudo-impulse threshold, below which no particle dislodgement
is observed.

To test our prediction of critical impulse (2.7), we first convert it to pseudo-impulse
via (3.2), and use 1z = 0.4 mm. The reason for fixing 1z to the value reported
by Celik et al. (2010) is that their experimental setting included the presence of
a retention pin downstream of the mobile particle that ensured that once ‘fully
dislodged’, the particle could return to its original position, thus automating the
experiment. To transform impulse to pseudo-impulse, a value of CD must be assumed
(see (3.2)). To this end, we employ the value of CD from run U8 in Celik et al.
(2013) (namely, CD = 0.818), who carried out very similar experiments to those
of Celik et al. (2010), reporting values of CD for a resting sphere under diverse
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flow conditions. As in § 3.1, our focus is on run U8 because this run represents the
experimental conditions which are closest to a fundamental dislodgement threshold.
Use of (2.7) in (3.2), with CD= 0.818, M= 0.5 and 1z= 0.4 mm, yields a prediction
of critical pseudo-impulse of 0.0035 m2 s−1, which shows a very good agreement
with the lower limit experimentally found by Celik et al. (2010) (i.e. 0.0034 m2 s−1),
thus supporting the argument that (2.7) describes accurately the fundamental impulse
threshold for particle dislodgement.

Celik et al. (2010) also proposed an algorithm to predict the critical pseudo-impulse,
which yielded an estimate of 0.0033 m2 s−1 for this experimental setting. This
estimate is very close to our prediction of 0.0035 m2 s−1, but it is important to
highlight that the method proposed by Celik et al. (2010) (i) represents a methodology,
rather than an expression, to estimate the critical pseudo-impulse; (ii) lacks rigour by
requiring a hypothetical initial velocity of the resting particle; and (iii) needs input
of certain geometric variables (such as lever arms) not required in (2.7).

3.3. Recovery of trend F∝ T−1 obtained empirically
Diplas et al. (2008) were the first to demonstrate experimentally the importance of
force duration by plotting normalised drag force, F̂D, versus its normalised duration,
T̂D. A metallic particle subject to electromagnetic flux was employed to achieve a
highly controllable flow. Measurements by Diplas et al. (2008) (328 in total) collapsed
remarkably well into a curve of the form F̂D = KT̂n

D, where K and n are constants
obtained from best-fit curves, the latter of which takes a value of n≈−1 (n=−0.99,
to be precise). Later, Valyrakis et al. (2010) extended this study and provided different
values of coefficients K and n arising from best-fit curves for different combinations
of top and base spheres’ diameters (a total of 1709 data points was obtained); the
value of n ≈ −1 was confirmed: their reported values of n range from −0.89 to
−1.07 with a mean of −0.99 (Valyrakis et al. (2010) employ squared voltage across
the electromagnet as proxy for force). We conclude our experimental comparisons
by noting that the value of n = −1 is to be expected since, by rewriting (2.5) as
Jc = ‖〈FH〉‖T ≈

√
2mws1z, we obtain

‖〈FH〉‖ ≈

(√
2mws1z

) 1
T
, (3.3)

where
√

2mws1z is indeed a constant for a local bed configuration (i.e. K) and n is
precisely equal to −1. Combinations of ‖〈FH〉‖ and T falling above the curve given
by (3.3) will result in particle dislodgement, so long as the net hydrodynamic force
is capable of doing work on the particle during T . For the problem considered, where
FH equals a virtually time-independent constant F̃H over T (a pulse), the condition to
verify is F̃H cosα0>ws sinα0, where α0=α(t= t0); or F̃H 'ws/3 for the case of equal-
sized top and base spheres (in figure 1, the maximum force opposing motion is found
at t0, where sin α0 = 1/3). It is worth remarking that (3.3) is only approximate. In
appendix A, an exact expression is derived for this experimental setting (A 5), which is
completely determined if the time history of a(t) (or the particle’s position) is known.
However, as discussed in appendix A, this exact equation reduces to the approximation
proposed here (2.5) for small angular displacement of the particle during dislodgement,
as is assumed to be the case with the highly exposed sphere under consideration. A
quantitative comparison between the approximate constant predicted (i.e.

√
2mws1z)

and K empirically found by Valyrakis et al. (2010) cannot be carried out without more
detailed information on the experiment, especially pertaining to the electromagnet (e.g.
resistance, number of turns in the coil, etc.), which unfortunately is unavailable.
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4. Conclusions
We propose a theoretical estimate of the critical impulse of the destabilising

hydrodynamic force that must be exceeded to achieve particle dislodgement. The
proposed expression, derived from the work–energy principle and valid for the bed
setting depicted in figure 1 and assumptions discussed in § 2, represents a scalar value
that depends exclusively on the local bed arrangement. The derived impulse-based
criterion for dislodgement shows excellent agreement with previously published
experimental data by: (i) yielding a virtually exact prediction of the critical impulse
reported by Celik et al. (2013); (ii) predicting well the fundamental threshold for
particle dislodgement, even when converted to pseudo-impulse (as defined in § 3.2),
experimentally observed by Celik et al. (2010); and (iii) naturally recovering the
trend F ∝ T−1 obtained approximately via best-fit curves by Diplas et al. (2008)
and Valyrakis et al. (2010) after analysing a total of 2037 data points combined.
The remarkable agreement between the theory here derived and experimental data
is encouraging, especially in view of the notorious uncertainty associated with the
prediction of initiation of sediment motion. However, availability of relevant empirical
data is still rather limited. We hope, therefore, that the present work may be used
as a theoretical framework that aids in the design of future experiments aimed at
continuing the investigation of the importance of hydrodynamic impulse as a criterion
for particle dislodgement, which will in turn help in testing the present theory further.
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Appendix A
We explore here the simplifications adopted to arrive at (2.5) from (2.3). Referring

to the setting depicted in figure 1, motion takes place in the x–z plane, such that for
t > t0,

∑
Ni(t) ≡ N(t) = Nx(t)î + 0ĵ + Nz(t)k̂, where î, ĵ and k̂ are the unit vectors

pointing in the x, y and z directions, respectively. In general, we have FH(t)=FHx(t)î+
FHy(t)ĵ+FHz(t)k̂, a(t)=ax(t)î+ay(t)ĵ+az(t)k̂ and ws=−wsk̂. At any time, the position
of the particle is completely determined by the angle α(t) formed by the straight line
from the mobile particle’s centroid to the pivot axis P and the vertical (see figure 1),
which varies from α(t= t0)= α0 to α(t= t1)= α1 = 0. For convenience let us define,
for any function g(θ), the operator

〈g(θ)〉ω ≡
∫ ω

t0

g(θ) dθ, (A 1)

which allows us to write the left-hand side of (2.3) as

〈FH(t) · [〈FH(τ )〉t + 〈ws〉t + 〈N(τ )〉t]〉t1 . (A 2)

As discussed in § 2, the first dot product can be written as 0.5〈FH〉
2
t1 (where FH ≡

‖FH‖), so our focus here is on the second and third dot products. Defining n̂(t) =
nx(t)î+ nz(t)k̂ as the unit vector pointing in the direction of N(t), the sum of forces
along n̂(t) yields N(t) = [(ma(t) − ws − FH(t)) · n̂(t)]n̂(t). We can then write the
products of interest as follows:

〈FH(t) · 〈ws〉t〉t1 =−ws〈FHz(t)[t− t0]〉t1 (A 3)
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and (omitting functions’ arguments for clarity)

〈FH · 〈N〉t〉t1 = 〈FH · 〈(ma · n̂)n̂〉t〉t1
+〈FH · 〈−(ws · n̂)n̂〉t〉t1 + 〈FH · 〈−(FH · n̂)n̂〉t〉t1

= m〈FHx〈axn2
x + aznxnz〉t + FHz〈axnxnz + azn2

z 〉t〉t1

+ws〈FHx〈nxnz〉t + FHz〈n2
z 〉t〉t1

−〈FHx〈FHxn2
x + FHznxnz〉t + FHz〈FHxnxnz + FHzn2

z 〉t〉t1 . (A 4)

The assumption invoked in § 2 that FH acts predominantly in the x-direction,
such that FH ≈ FHx î (or FHz ≈ 0), leads to vanishing of (A 3) and reduces (A 4) to
〈mFHx〈axn2

x + aznxnz〉t + wsFHx〈nxnz〉t − FHx〈FHxn2
x〉t〉t1 . The second proviso discussed

in § 2 states that the angular displacement (α1 − α0) is small, such that nx→ 0 (or
nz→ 1), thus further leading to nxnz→ 0 and n2

x→ 0, and hence vanishing of (A 4)
altogether.

The above discussion justifies simplifying (2.3) to (2.5) (for the conditions
stated in § 2) when no detailed information (time series) of all relevant forces is
available, which is the anticipated case for most experimental studies. However,
for highly controlled experiments such as those discussed in § 3.3, where FH has
a time-independent magnitude F̃H and constant direction î, the treatment of the
full dislodgement condition presented in this appendix may be useful. Under said
conditions, (2.3) becomes

F̃H

[
F̃H

2
T2
+ 〈m〈axn2

x + aznxnz〉t +ws〈nxnz〉t − F̃H〈n2
x〉t〉t1

]
>mws1z, (A 5)

which, naturally, reduces to (2.5) if terms nxnz and n2
x are neglected as before.

Appendix B
Consider figure 1, where all spheres have equal radii r. Connecting the centroids of

all four spheres at the initial position draws a regular tetrahedron with edge length 2r.
The distance from any vertex of the base (which is an equilateral triangle) to its own
centroid, c, is thus 2r/

√
3. Then, the vertical distance from c to the centroid of the

upper sphere (point A) is 2
√

2r/
√

3. At the dislodged position, it is readily seen that
the vertical distance from the plane where the centroids of the base spheres lie to the
centroid of the upper (dislodged) sphere (point B) is

√
4r2 − r2 =

√
3r. The change

in vertical distance from the initial to the dislodged position, 1z, is therefore
√

3r−
2
√

2r/
√

3= (3− 2
√

2)r/
√

3 (2.6). Similarly, if we consider spheres of different size,
such that the top (base) sphere (spheres) has (have) a radius r2 (r1), where r2 > r1,
the same procedure yields 1z=

√
2r1r2 + r2

2 −
√

2r1r2 + r2
2 − r2

1/3.
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