
TLP 12 (4–5): 619–637, 2012. C© Cambridge University Press 2012

doi:10.1017/S147106841200021X

619

Annotating answer-set programs in Lana�

MARINA DE VOS

Department of Computing,University of Bath, BA2 7AY, Bath, UK

(e-mail: mdv@cs.bath.ac.uk)

DOĞA GIZEM KISA

Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla, Istanbul 34956, Turkey

(e-mail: dgkisa@su.sabanciuniv.edu)

JOHANNES OETSCH, JÖRG PÜHRER, HANS TOMPITS

Institut für Informationssysteme 184/3, Technische Universität Wien,

Favoritenstraße 9-11, A-1040 Vienna, Austria

(e-mail: {oetsch,puehrer,tompits}@kr.tuwien.ac.at)

Abstract

While past research in answer-set programming (ASP) mainly focused on theory, ASP solver

technology, and applications, the present work situates itself in the context of a quite recent

research trend: development support for ASP. In particular, we propose to augment answer-set

programs with additional meta-information formulated in a dedicated annotation language,

called Lana. This language allows the grouping of rules into coherent blocks and to specify

language signatures, types, pre- and postconditions, as well as unit tests for such blocks. While

these annotations are invisible to an ASP solver, as they take the form of program comments,

they can be interpreted by tools for documentation, testing, and verification purposes, as

well as to eliminate sources of common programming errors by realising syntax checking or

code completion features. To demonstrate its versatility, we introduce two such tools, viz.

(i) ASPDoc, for generating an HTML documentation for a program based on the annotated

information, and (ii) ASPUnit, for running and monitoring unit tests on program blocks.

Lana is also exploited in the SeaLion system, an integrated development environment for

ASP based on Eclipse.

KEYWORDS: answer-set programming, program annotations, documentation, unit testing

1 Introduction

Answer-set programming (ASP) (Gelfond and Lifschitz 1988, 1991; Baral 2003)

is an established approach for declarative problem solving and non-monotonic

reasoning. So far, research in ASP can basically be classified into three categories:

(i) theoretical foundations of ASP including language extensions, (ii) performance

� This work was partially supported by the Austrian Science Fund (FWF) under grant P21698.

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

620 M. De Vos et al.

and capabilities of ASP solvers, and (iii) case studies and applications involving

ASP. More recently, methods and methodologies to support an ASP programmer

are increasingly becoming a focus of research interest (De Vos and Schaub 2007,

2009; Oetsch et al. 2010).

In this paper, we propose to augment programs with additional meta-information

to facilitate the ASP development process. To this end, we devised a dedicated

annotation language, Lana, standing for “Language for ANnotating Answer-

set programs”, that specifies specially formatted program comments. This meta-

information is invisible to an ASP solver—therefore not altering the semantics of

the program—but different tools may interpret and use the annotated information

to various ends like documentation, testing, verification, code completion, or other

development support.

One particular and quite central feature of Lana is grouping rules that are related

in meaning into coherent blocks. Although different notions of modularity have

already been proposed for ASP in the literature (Bugliesi et al. 1994; Eiter et al.

1997; Gelfond and Gabaldon 1999; Balduccini 2007; Janhunen et al. 2009), a strict

concept of a program module can sometimes be a too tight corset. In particular,

notions of modularity in ASP often come with their own semantics and different

kinds of constraints need to be satisfied. For example, DLP-functions (Janhunen

et al. 2009) require that their input and output signatures are disjoint and two DLP-

functions need to satisfy certain syntactic constraints in order to be composable. On

the other hand, lp-functions are a modular approach to build a logic program from

its specification (Gelfond and Gabaldon 1999). That is, an lp-function is used to

realise some functional specification that relates input and output relations for some

domain by means of a logic program. The kind of grouping that we are proposing

has, however, no semantical ramifications other than documenting that some rules

belong together in a certain sense. Nevertheless, the benefit is that we add some

extra structure to a program, improving the clarity and coherence of the program

parts, which in turn can be used by other tools for, e.g., unit testing (Beck 2003).

While unit testing is an integral element in software development using common

languages like Java or C, it has been addressed in ASP only quite recently (Febbraro

et al. 2011). We provide means to formulate unit tests for single blocks using Lana,

allowing for easy regression testing. After rules are grouped into blocks, we may

use further annotations to declare respective input and output signatures, which are

also useful for testing and verification. Furthermore, we can declare the names and

arities of predicates that are used within a block. This information can be exploited

by, e.g., an integrated development environment (IDE) for syntax checking and code

completion features while a user is writing a program. Besides names, description,

and arities of predicates, one can also specify the domains of term arguments of

a predicate using respective language features for declaring types. This information

can be used for automated detection of type violations. These declarations have the

potential to eliminate the source for quite common programmer errors with only

little extra cost. For verification purposes, our annotation language can be used to

specify assertions like pre- and postconditions for blocks. Preconditions are expected

to hold for any input of a block, while postconditions have to hold for any output.

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

Annotating answer-set programs in Lana 621

Together, they can be used to verify correctness of an ASP encoding with respect to

such assertions.

Our main contributions are thus as follows:

• We introduce an annotation language for ASP that offers various ways

to express meta-information for rules and other language elements. This

information can be used to support and ease the development process, test

and verify programs, and to eliminate many sources for common programmer

errors.

• We describe ASPDoc, a JavaDoc
1 inspired tool, which takes an answer-

set program, interprets the meta-comments, and automatically generates an

HTML file documenting the program.

• We introduce ASPUnit, an implementation of a unit-testing framework in the

spirit of JUnit
2 based on the structural annotations found in a program. This

framework allows to formulate unit tests for individual program blocks, to

execute them, and to monitor test runs.

The paper is organised as follows. In Section 2, we provide some background on

ASP. Then, in Section 3, we introduce Lana, explain the basic language features,

and illustrate them using a running example. Section 4 describes the basic features

of ASPDoc while Section 5 does the same for ASPUnit. Finally, we review related

work in Section 6 and conclude in Section 7 with pointers for future work.

2 Background

Answer-set programming (ASP) (Gelfond and Lifschitz 1988, 1991; Baral 2003) is

a declarative programming paradigm in which a logic program is used to describe

the requirements that must be fulfilled by the solutions of a certain problem. The

solutions of the problem can be obtained through the interpretation of the answer

sets of the program, usually defined through a variant or extension of the stable-

model semantics (Gelfond and Lifschitz 1988). This technique has been successfully

applied in various domains such as planning (Eiter et al. 2002; Lifschitz 2002),

configuration and verification (Soininen and Niemelä 1998), music composition

(Boenn et al. 2011), or reasoning about biological networks (Dworschak et al. 2008)

to just name a few. In the following, we briefly cover the essential concepts of ASP;

for in-depth coverage, we refer to the well-known textbook by (Baral 2003).

The basic components of the language are atoms, elements that can be assigned a

truth value. An atom a can be negated using negation as failure. A literal is an atom

a or a negated atom not a. We say that not a is true if we cannot find evidence

supporting the truth of a. Atoms and literals are used to create rules of the general

form

a :- b1, . . . , bm, not c1, . . . , not cn ,

1 http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html.
2 http://www.junit.org.

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

622 M. De Vos et al.

where a, bi, and cj are atoms. Intuitively, this means if all atoms bi are known/true

and no atom ci is known/true, then a must be known/true. We refer to a as the head

and b1, . . . , bm, not c1, . . . , not cn as the body of the rule. Rules with empty body are

called facts. Rules with empty head are referred to as constraints, indicating that no

solution satisfies the body. A (normal) program is a set of rules. The semantics is

defined in terms of answer sets, i.e., assignments of true and false to all atoms in the

program that satisfy the rules in a minimal and consistent fashion. A program has

zero or more answer sets, each corresponding to a solution.

Different extensions to the language have been proposed. On the one hand,

we have syntactic extensions, providing mere, but very useful, syntactic sugar.

On the other hand, we have semantic extensions where the formalism itself is

generalised.

From a programmer’s perspective, choice rules (Niemelä et al. 1999) are probably

the most commonly used extension. Many problems require choices between a set of

atoms to be made. Although this can be modelled in the basic formalism, it tends to

increase to the number of rules and increases the possibility of errors. To avoid this,

choices are introduced. Choices, written L{l1, . . . , ln}M, are a convenient construct to

indicate that at least L and at most M literals from the set {l1, . . . , ln} must be true in

order to satisfy the construct. Bound L defaults to 0 while M defaults to n. Choice

rules are often used with a grounding predicate: L{A(X) : B(X)}M represents the

choice of a number of atoms where A(X) is grounded with all values of X for which

B(X) is true.

One of the major extensions to the language was the introduction of disjunction

in the head of rules (Gelfond and Lifschitz 1991). When the body of the rule is

true, we need to have at least one head atom that is true. Although at first it may

seem that disjunctive programs can easily be translated to non-disjunctive programs,

this is not the case. Both types of programs are in different complexity classes

(under the usual complexity-theoretic proviso that the polynomial hierarchy does not

collapse).

Algorithms and implementations for obtaining answer sets of logic programs are

referred to as answer-set solvers. The most popular and widely used solvers are

DLV (Eiter et al. 1998), providing solver capabilities for disjunctive programs, and

the SAT inspired clasp (Gebser et al. 2007). Alternatives are Smodels (Niemelä and

Simons 1997) and Cmodels (Giunchiglia et al. 2004), a solver based on translating

the program to SAT.

3 An annotation language for ASP

In this section, we describe our annotation language Lana. An overview of most

language elements of Lana appears in Tables 1 and 2 gives a summary of the

remaining language elements related to testing in Lana. We make use of a simple

answer-set program to illustrate all the language features in a step-by-step fashion.

In particular, we use an encoding of the Battleship puzzle. A solved instance of

Battleship appears in Figure 1. In Battleship, a group of ships is hidden on a

grid and one has to find the positions of each. The fleet consists of one four-

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

Annotating answer-set programs in Lana 623

Table 1. Overview of Lana based on BNF

Element Definition Informal Description

block block | atom | term | input Lana elements related to blocks.

element signature | output signature |
precondition | postcondition

block “@block” name “{” Groups ASP rules into coherent parts.

[description] {block element}
[ASP code] “}”

atom “@atom” name “(”termList“)” Defines a predicate; termList are the

[description] predicate’s arguments.

term “@term” name Declares a term from some atom term

[description] [type] list, its meaning, and type information.

type “@from” groundTerms | Type of a term is defined by a list of

“@with” ruleBdy | ground terms, the terms satisfying

“@samerangeas” term ruleBdy, or as the type of another term.

input “@input” inputPredicates | Declares input predicates of a block as a

signature “@requires” inputPredicates list of name/arity pairs.

output “@output” outputPredicates | Declares output predicates of a block as a

signature “@defines” outputPredicates list of name/arity pairs.

assertion “@assert” name “{” A logical condition for answer sets.

[description] assertspec “}”
pre- “@precon” name “{” A logical condition for the inputs of a

condition [description] assertSpec “}” block.

post- “@postcon” name “{” A logical condition for the answer sets

condition [description] assertspec “}” of a block.

assertspec (“@always” | “@never”) atmList The testmode for assertions, preconditions

[embASPcode] and postconditions; embASPcode is code

within the Lana comment environment.

squares long battleship, two three-squares long cruisers, three two-squares long

destroyers, and four one-square long submarines—each ship is placed horizontally

or vertically on the grid such that no ship is touching any other ship (not even

diagonally). To provide hints, some squares may show parts of a ship or water.

Moreover, a number besides each row and each column indicates how many

squares in that row or column are occupied by ship parts. A solution of a

puzzle is a configuration of all the ships that is consistent with the initially given

hints.

Assume that a puzzle instance is defined in terms of facts water/2 and ship/2

for specifying which squares contain water or parts of a ship, respectively. The facts

rowHint/2 and colHint/2 determine the numbers associated with each row and

each column. Problem solutions are represented by facts ship(W,X,Y,Z) expressing

that a ship is occupying the squares from position (W,X) to (Y,Z).

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

624 M. De Vos et al.

Table 2. Test case specification in Lana

Element Definition Informal Description

test case “@testcase” name A test case for the blocks from blocks

[description] “@scope” blocks passes if the blocks joined with ASP code

testcond [ASP code] satisfy all specified test conditions.

testcond “@testhasanswerset” | A test condition holds if one, resp., no,

“@testnoanswerset” | answer set is found, or all ground atoms

“@testatoms” atmList mode in atmList are entailed according to mode.

mode “@trueinall” | Mode of entailment of a test condition,

“@trueinatleast” n | i.e., if test atoms are true, resp., false, in

“@trueinatmost” n | all, at most n, or at least n answer-sets.

“@falseinall” |
“@falseinatleast” n |
“@falseinatmost” n

1 2 1 3 2 2 3 1 5 0

3
2
2
4
2
1
1
2
3
0

Fig. 1. Solved instance of a Battleship puzzle.

3.1 Blocks

In general, all keywords of our annotation language start with the symbol @. A

central feature of Lana is to group rules together. This is done using the @block

keyword. To specify that we are going to define a couple of rules that encode

solutions to the Battleship puzzle, we declare a block with the name Battleship as

follows:

%** @block Battleship { *%

% encoding of the Battleship puzzle

%** } *%

The annotation @block is followed by an optional name of the block and the

opening bracket “{”. Everything between “{” and the closing bracket “}” now

belongs to the block Battleship. Blocks can be nested but they must not overlap.

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

Annotating answer-set programs in Lana 625

Note that every annotation has the form of an ASP comment. ASP block-

comments can be used instead of starting every single line with “%” when an ASP

solver, in particular its grounding component, supports this feature. To distinguish

annotations from ordinary (block-)comments, an additional star “*” is always placed

after “%*” at the beginning.

3.2 Predicate signatures

Lana allows to declare the names and arities of used predicates. Often, predicates

play different roles in an encoding, and it can make sense to explicitly distinguish

between these roles. In particular, it can make sense to document which are the

relations that are defined by the rules of a block (those will usually appear in the

heads of some rules) and which are the relations that are expected to be already

defined by some other rules (the required predicates will usually appear in some rule

bodies). This distinction is closely related to intensional and extensional predicates

in a database setting. If a block is regarded as a declarative problem-solving module,

the predicates that are required will usually encode problem instances, and respective

predicates form the input signature of a block. Accordingly, the relations that are

defined form the output signature of a block. We note, however, that input and

output signatures might overlap in a declarative setting.

We proceed by declaring the predicate names as well as the input and output

signatures of our encoding as described above. Within block Battleship, we add

the following:

%**

@atom water(X,Y)

there is no ship at position (X,Y)

@atom ship(X,Y)

a ship is occupying position (X,Y)

@atom rowHint(X,H)

in row X, H squares are occupied

@atom colHint(Y,H)

in column Y, H squares are occupied

@atom ship(X1,Y1,X2,Y2)

a ship is occupying the squares from (X1,Y1) to (X2,Y2)

@input water/2, ship/2, rowHint/2, colHint/2

@output ship/4

*%

We use @atom to introduce the name of a predicate along with its arity and

some information describing its intended use, and we use @input and @output to

determine which predicates symbols are used to represent input for the block and

which ones correspond to output. For input and output signatures, we also have to

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

626 M. De Vos et al.

explicitly give the arity of the involved predicates. This is needed to disambiguate

between predicates having the same name but a different number of arguments,

as ship in our running example. Note that annotations are optional, declarations

are not enforced. We stress that declaring input and output signatures should be

done only if this is beneficial for the development process and is consistent with

the declarative reading of a program. Input and output are terms that are quite

commonly used in declarative programming—e.g., all problem specifications for the

benchmark problems used for the ASP competitions explicitly define input and

output signatures. However, if rules are seen as more general definitions of relations

of some problem domain, it might be more appropriate to use @defines to declare

the relations that are defined by a block of rules and @requires to declare the

input signature of a block. Again, such annotations are not mandatory. The more

information is made explicit, the more it can be used by tools that interpret such

information to the benefit of the developer.

3.3 Types

Regarding the declaration of predicates, we can provide information about the types

of its term arguments. Assume that row and column positions are specified by

ascending integers starting from 1. To make this assumption explicit, we add the

following lines to the block:

%**

@term X, Y

@from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

X (Y) is a row (column) index ranging from 1 to 10

*%

Here, we use @term to declare variable names and @from to specify the type of a

variable by means of a non-empty comma-separated list of admissible ground terms.

As an alternative to @from, we can use @with followed by a rule body:

%** @with integer(#V), #V>1, #V<10 *%

integer(1..1000).

The type of X and Y is now determined by the ground substitutions for the reserved

symbol #V that satisfy the rule body given after @with. Here, “integer(1..1000).”

is regular ASP code for defining facts that encode the integer range that we are

considering. Furthermore, to express that variables are of the same type as ones

already known, we can use @samerangeas, as illustrated next:

%**

@term X1, Y1, X2, Y2

further row and column indices

@samerangeas X

*%

Thus, any of X1, Y1, X2, and Y2 is of the same type as X. For future work, we also

plan to extend Lana so that predefined names for at least basic types like strings or

integers can directly be used to specify the types of variables.

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

Annotating answer-set programs in Lana 627

As mentioned previously, blocks can be nested. To proceed with our Battleship

encoding, we add a block of rules within block Battleship for guessing solution

candidates according to the usual guess-and-check paradigm:

%**

@block Guess {

guess a configuration of battleships on the grid

*%

r(1..10). c(1..10).

{ship(X1,Y1,X2,Y2):r(X1):c(Y1):r(X2):c(Y2):X2>=X1:Y2>=Y1}.

:- ship(X1,Y1,X2,Y2), X1!=X2, Y1!=Y2.

%** } *%

Note that in block Guess, all declarations for predicates and terms are inherited

from the enclosing block Battleship. One can proceed in a similar way to define

blocks for constraints (along with auxiliary definitions) to prune away unwanted

solution candidates to complete the encoding.

3.4 Assertions

Towards testing and the verification of programs, Lana allows the formulation of

general assertions, as well as pre- and postconditions for blocks. A precondition is a

logical condition that is assumed to hold for any input while a postcondition has to

hold on any output of a block. Together, pre- and postconditions can be regarded as

a contract: it is the responsibility of any input provider that a block’s preconditions

are satisfied, and it is the responsibility of the rules in the respective block that

its postconditions are satisfied. Both pre- and postconditions are formulated in

ASP itself; they are placed within the block they belong to. As an illustration, we

formulate as a precondition of our Battleship encoding that no square shows both

water and parts of a ship jointly as follows:

%**

@precon Excl {

no square shows both water and a part of a ship

@never clash

clash :- water(X,Y), ship(X,Y).

}

*%

In general, a precondition is introduced with the keyword @precon followed by

a name for the condition. The actual content is then written enclosed between “{”

and “}”, similar to the definition of blocks. An optional description follows. Then,

we have to specify a non-empty list of ground atoms after the keyword @never

or @always. After that, we add some ASP rules that define the before-mentioned

ground atoms. The intended semantics is as follows. Some input, i.e., a set of facts

over a block’s input signature, passes a precondition if that input combined with the

rules of the precondition cautiously entails all the ground atoms after @always and

the negation of the atoms after @never.

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

628 M. De Vos et al.

Postconditions are expressed analogously to preconditions. To say that battleships

must not be longer than four squares, we add the following code to our Battleship

block:

%**

@postcon Overlength {

battleships are never longer than four squares

@never ov

ov :- ship(X1,Y1,X2,Y2),L=X2-X1,L>4.

ov :- ship(X1,Y1,X2,Y2),L=Y2-Y1,L>4.

}

*%

A block and an input for a block satisfy a postcondition if the block joined with

the input and the rules of the postcondition cautiously entails all the ground atoms

after @always and the negation of the atoms after @never.

Having pre- and postconditions explicitly formalised offers various ways to

support the development process. For one thing, they can be used to automatically

generate input instances for testing purposes. This can be automated for systematic

testing of a block, including random testing and structure-based testing (Janhunen

et al. 2010, 2011). Towards program verification, one can check whether a block

passes its postconditions for any admissible input, at least from some fixed small

scope, i.e., involving only a bounded number of constant symbols. Exhaustive testing

with respect to a small scope showed to be quite effective in ASP (Oetsch et al.

2012). Though they are formulated in ASP itself and thus tend to duplicate some

code from within a block, pre- and postconditions are especially of great value if

the rules in a block are changed, e.g., to optimise an encoding, and one wants to be

sure that the changes did not render the program incorrect. This can be done, e.g.,

by searching for inputs within some small scope that violate some postcondition of

the optimised program, provided respective tool support is available.

We note that pre- and postconditions make only sense in a setting where we can

also distinguish between input and output relations. If this is not the case and one

wants to formulate general assertions on the answer sets of a program, Lana allows

to define them using @assert. Semantically, an assert statement is a postcondition

of the whole program.

3.5 Unit tests

Though pre- and postconditions allow to partially verify program correctness, Lana

also supports a light-weight form of program verification that is inspired by unit

testing. A unit test in procedural languages is commonly a test for an individual

function or procedure. While in a related approach for unit testing answer-set

programs (Febbraro et al. 2011), the scope of a test is defined in terms of sets of

rules, unit tests are formulated for blocks or sets of blocks in our setting. To check

whether the guessing part of our running example generates solution candidates

where one ship occupies precisely the first four horizontal squares of the field, we

could formulate a unit test as follows:

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

Annotating answer-set programs in Lana 629

%**

@testcase ShipTopLeftCorner

a ship is horizontally placed at the top-left corner

@scope Guess

@testatoms goalShip @trueinatleast 1

*%

goalShip :- ship(1,1,1,4).

A unit test starts with the reserved word @testcase followed by a name. Then,

a short description of the purpose of the unit test may be given as a comment.

After @scope, a list of block names is expected. In the above example, we used

@testatoms to declare that goalShip is an atom that has to be true in at least

one answer set (@trueinatleast 1) of block Guess joined with the subsequent

rule that defines goalShip. Instead of or additional to @trueinatleast n, a tester

might use @trueinatmost m, trueinall, falseinatleast p, falseinatmost q, and

falseinall, where m, n, p, and q are positive integers. Also, instead of @testatoms,

one may use @testhasanswerset or @testnoanswerset to express that at least one

or no answer set is expected, respectively.

The semantics of a unit test is as follows. A test case passes iff the answer sets of

the rules of the test case combined with all the blocks specified after @scope satisfy

the testing conditions expressed using any of @testatoms, @testhasanswerset, and

@testhasnoanswerset. For example, to additionally test that a ship is never placed

diagonally on the field, one could formulate a further test case:

%**

@testcase NoDiagonalShips

ships are never placed diagonally on the field

@scope Guess

@testatoms forbiddenShip @falseinall

*%

forbiddenShip :- ship(1,1,3,3).

Of course, this test case can only guarantee that one particular ship is not placed

diagonally at some particular position. However, this distinguishes test cases from

more general assertions like postconditions. To generalise the above test case to

arbitrary ships, we would rather use a postcondition. Typically, test cases represent

concrete situations by means of facts that can be easily verified by a user and

document individual situations that are allowed or forbidden. They cannot, however,

guarantee correctness of an encoding but only increase our confidence regarding its

functionality.

Unit testing is a convenient way to test properties of individual blocks of an

ASP encoding. Furthermore, they can be used to iteratively develop programs in a

test-driven fashion. In test-driven development, unit tests are formulated before the

code is written. First, a unit test for a single property of the block that we want to

develop is specified. Then, it is checked whether the test case fails for the program

under development. If this is the case, the block is extended by the necessary rules

to make the failed test case pass. After the code is refactored towards efficiency,

readability, etc., and after it is verified that all test cases still pass, the next property

is addressed by formulating a respective unit test. This continues until the program is

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

630 M. De Vos et al.

complete. For illustration, the unit tests ShipTopLeftCorner and NoDiagonalShips

will pass for the current state of the Battleship program. However, if we want to

implement the property that ships must not touch each other, we could specify the

following test case (which will currently fail):

%**

@testcase TouchingShips

two ships must not touch each other

@scope Guess,Touch

@testatoms forbiddenShip @falseinall

*%

forbiddenShip :- ship(1,1,1,2), ship(1,2,1,4).

Then, we would proceed to implement a block Touch with a constraint that forbids

answer sets with ships that are touching each other and check whether the new test

case and the old ones pass.

4 ASPDoc

ASPDoc is a command-line tool that interprets meta-information given in an answer-

set program and generates a corresponding HTML documentation file similar to,

e.g., JavaDoc for Java programs. Information regarding block structure, input and

output signatures, used predicate symbols, etc. is clearly arranged so that the answer-

set program can easily be understood, used, or extended by other developers. Such

documentation features are especially useful to make ASP problem-solving libraries,

i.e., collections of ASP encodings that can be used as building blocks for larger

programs, accessible to developers.

The tool is developed in Java; an executable JAR file is available on the web.3

Assume that the source code of our running example is stored in a file, say

battleship.gr. A corresponding HTML documentation can be created as follows:

java -jar aspdoc.jar -p battleship.gr

Different HTML documents are created with index.html as the usual entry point.

Here, option -p, or -potassco, is used to tell ASPDoc that the answer-set program

is written using gringo syntax. For DLV, option -d or -dlv can be used instead.

Furthermore, an output directory d can be specified with option -o=d, and help

on available options can be obtained with the option -h. A summary of ASPDoc

options is given in Table 3.

A screenshot of the documentation for the Battleship example presented above

is given in Figure 2. The documentation of the complete encoding can be found

online.4 The document contains descriptions of all the blocks of the answer-set

program, where sub blocks are indented relative to their parent blocks. To provide

an overview, a summary of the block structure of the entire answer-set program is

3 http://students.sabanciuniv.edu/dgkisa/aspdoc-aspunit.
4 http://www.kr.tuwien.ac.at/research/projects/mmdasp/battleship.

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

Annotating answer-set programs in Lana 631

Table 3. Command-line options for ASPDoc

Option Description

-o=path set output directory to path

-HA show hidden atoms

-ha do not show hidden atoms

-S include ASP code in the HTML document

-s do not include ASP code in the HTML document

-A include Lana code in generated ASP code

-a do not include Lana code in generated ASP code

-potassco, -p input language is that of gringo

-dlv, -d input language is that of DLV

-help, -h print usage information

Fig. 2. (Colour online) HTML documentation of the Battleship program.

presented at the beginning of the documentation. We note that programmers are

not forced to declare blocks at all. If no block is specified in a file, all rules in that

file belong to a dedicated default block. For each block, descriptions of the used

predicates and types of involved terms, as well as pre- and postconditions are given.

By default, hidden atoms, i.e., atoms mentioned neither in a block’s input nor in

its output signature, are displayed as well in a dedicated section entitled “Hidden

Atoms”. To hide them, option -ha can be used. The document also contains a link

to the actual rules inside a block, unless this is suppressed using option -s. These

rules are, by default, displayed together with the meta-comments of Lana. If option

-a is used, such comments are not shown. Likewise, the rules for defining pre- and

postconditions can be inspected by using the respective links. To enhance navigability

between different parts of the document, predicates used in the source code view or

in signature declarations are, if available, linked to their respective descriptions. For

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

632 M. De Vos et al.

instance, to find out the range of a variable in the output atoms section, say X1, the

user can simply follow the link and thereby navigate to the description of X1 (and

X) in the term description section. Further options to customise the appearance of

the documentation are planned for future work.

5 ASPUnit

ASPUnit is a tool to execute test cases that are formulated in Lana. Like ASPDoc,

it is a command-line tool. An executable JAR file can be downloaded from the same

web page as ASPDoc. For ASPUnit, each unit test has to be stored in a separate

file. Although test cases are required to have a name, we allow that a user may omit

an explicit name, in which case the file name is used by default. The tool takes as

input a test-suite specification file, i.e., a file that contains the relevant information

regarding locations of the answer-set program, the files containing individual test

cases, and the ASP solver that is needed to execute them. The syntax of a test-suite

specification file is closely related to our annotation language itself. In particular,

the specification of a test-suite has the following form:

@testsuite name

description

@program ASPfiles

@programdir pathToASPfile

@test testCaseFile1

@test testCaseFile2

...

@testdir pathToTestFiles

@solvertype ASPsolver

@solver solverFile

@grounder grounderFile

Hence, a test-suite specification starts with @testsuite followed by a name. Then,

a short description may be given. A list of file names that together contain the

answer-set program under test is expected after @program. These file names are

relative to a path specified after @programdir. For each test case that we want to

execute, we have to provide the file name that contains that test case specified by

@test. The path to these files appears after @testdir. Then, information regarding

the ASP solver has to be given. For this, @solvertype is used; the solver type is

one of DLV, clasp, or clingo. After @solver, an absolute file name of the ASP

solver is expected. This file name may include additional parameters for that solver.

If a separate grounder is needed, like for clasp, an absolute file name including

command-line parameters have to be specified after @grounder.

Now, to run a bunch of test cases specified within a test-suite file, say testsuite,

ASPUnit is invoked as follows:

java -jar aspunit.jar testsuite

The tool will run all the unit tests on the answer-set program using the solver settings

according to specifications in testsuite. A test report is printed to standard-output.

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

Annotating answer-set programs in Lana 633

Table 4. Command-line options for ASPUnit

Option Description

-CE show counterexample if a test case fails

-ce do not show counterexample if a test case fails

-D show description of a test case if it fails

-d do not show description of a test case if it fails

-help, -h print usage information

Test Case ShipTopLeftCorner: Successful

Test Case NoDiagonalShips : Successful

Test Case TouchingShips : Failed

two ships must not touch each other

Failed Test : @falseinall forbiddenShip

Counterexample:

Answer set:

c(1).c(10).c(2).c(3).c(4).c(5).

c(6).c(7).c(8).c(9).forbiddenShip.

r(1).r(10).r(2).r(3).r(4).

r(5).r(6).r(7).r(8).r(9).

ship(1, 1, 1, 2).ship(1, 2, 1, 4).

Fig. 3. A test report for the Battleship program.

This report contains information regarding success or failure for each test case. If

a test case fails, a counterexample may be included, depending whether option

-CE is set when ASPUnit is executed. Furthermore, if option -D is used, the test

report will contain a short description of each test case that fails, obtained from the

specification of the test cases themselves. For illustration, assume we run the test

cases presented in Section 3 on the partial encoding of Battleship. Recall that the

first and second test case pass while the third one fails. The resulting test report,

including a description of each test case and counterexamples for the failing test

case, is given in Figure 3. A summary of ASPUnit command-line options is given

in Table 4.

6 Related work

As mentioned earlier, there are many notions of modularity for ASP in exis-

tence (Bugliesi et al. 1994; Eiter et al. 1997; Gelfond and Gabaldon 1999; Balduccini

2007; Janhunen et al. 2009). The advantage of the light-weight approach of Lana for

grouping rules together by means of declaring blocks is that we do not change the

semantics of programs and they can be directly parsed by ASP solvers. However,

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

634 M. De Vos et al.

there are also disadvantages compared to other approaches to modularise logic

programs. For example, related to our approach for annotating type information

is RSig (Balduccini 2007). RSig is an language extension for specifying simple

type information for programs and modules and thus requires its own parser.

However, this type information simplifies the program rules as information about

the type of variables is not required to be provided. On the other hand, DLP-

functions (Janhunen et al. 2009) allow to compute the semantics of a logic program

based on the semantics of its separate DLP-functions which opens up new paths

for potentially more efficient answer-set computation. To support the incremental

development of logic programs, lp-functions can be used to structure a program

and to develop it along with its specification by using specification constructors and

their realisation theorems (Gelfond and Gabaldon 1999). Blocks in Lana are not

designed to serve one particular purpose, different interpretations are conceivable

and are eventually determined by respective tool support like ASPUnit for unit

testing blocks of rules.

In general, developing and debugging a declarative language is quite different

from software engineering in a more traditional procedural or object-oriented

programming language. With larger programs for real-world applications being

written, it is vital to support the programmer with the right tools. In recent years,

some work has been done to provide the ASP programmer with dedicated tools. The

integrated development environments APE (Sureshkumar et al. 2007) and SeaLion

(Oetsch et al. 2011) provide, among other features, syntax colouring and syntax

checking for ASP programs and run as an Eclipse front-end to solvers. IDEs for the

DLV solver and its extensions are discussed by (Perri et al. 2007) and (Febbraro et al.

2011). Debugging in ASP is supported by spock (Brain et al. 2007), which makes

use of ASP to explain and handle unexpected outcomes like missing atoms in an

answer set or the absence of an answer set. (Cliffe et al. 2008) and (Kloimüllner et al.

2011) provide mechanisms to visualise answer sets of a given program to support

code debugging.

To support large application developments, traditional languages offer program-

ming tools that automatically generate searchable documentation, like e.g., JavaDoc.

Methodologies like test-driven development provide a mechanism to incrementally

unit test code and to support regression testing; JUnit is an example of this for Java.

Lana provides the support for both, incorporating the annotation of tests directly

into the documentation of the program. The use of assertions in Lana is inspired by

the Java Modelling Language (Leavens and Cheon 2006) and annotations as used

in Prolog (Kulas 2000).

Similar to our unit testing approach, Prolog offers unit-testing functionality called

PLUnit.5 As in our approach, where tests are expressed using ASP itself and only

a Java wrapper is used to call all tests within a given test-suite, tests in PLUnit are

formulated as Prolog clauses.

5 http://www.swi-prolog.org/pldoc/package/plunit.html.

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

Annotating answer-set programs in Lana 635

(Febbraro et al. 2011) provide a mechanism for unit testing in ASP, which is

incorporated in their IDE Aspide. They base unit tests on clusters on the dependency

graphs or rule labelling, while we allow the user to decide which rules belong to a

test by defining blocks.

7 Conclusion and future work

In this paper, we presented Lana, an annotation language for ASP. This language

can be used to structure a program into blocks and to declare language elements like

predicates with type information, input and output signatures, pre- and postcondi-

tions, test cases, etc. Annotations do not interfere with the languages of answer-set

solvers as they have the form of program comments. The main advantage of such

annotations is that they can be interpreted by tools to support the development

process, to automatically test and verify programs, and to increase maintainability

by enhancing program documentation. In fact, we implemented and described two

such tools, namely ASPDoc for generating an HTML documentation for a program,

and ASPUnit for running and monitoring unit tests. The former tool is especially

useful for maintaining and using larger collections of program modules; the latter

tool is used for managing a test corpus when a program is developed and to enable

test-driven development methods, a methodology popular in industry, e.g., as in

extreme and agile programming.

While many interesting features of Lana for development support can be realised

by stand-alone tools like ASPDoc and ASPUnit, things become more interesting

when the respective functionalities are available within an IDE for ASP. The two

most actively developed IDEs for ASP at present are SeaLion (Oetsch et al. 2011)

and Aspide (Febbraro et al. 2011). Then, the proposed language can be used as a

basis to realise intelligent syntax highlighting, static or dynamic type checking, code

completion, and so on. Indeed, Lana can already be parsed by SeaLion and the

features of ASPDOC are already available from within the IDE. Further integration

is planned with the goal that all features sketched in this paper are supported in

SeaLion.

Furthermore, we want to empirically evaluate to what extent additional meta-

information is beneficial for program development within courses on declarative

problem solving at our universities. In general, program annotations provide a

wealth of information. One of the main issues with debugging ASP programs is

the difficulty of working out the program’s interpretation of the problem (resp.,

solution), and the programmer’s view of the problem (resp., solution). Using the

meta-data, it would be possible to automatically generate a semi-natural language

reading of the program, allowing programmers to cross-check their interpretation of

the program with that of the program itself. This is only possible if developers use

a specific grammar to annotate the various components of the program.

In traditional software engineering, coding standards including documentation are

imposed, especially in case of developing large software projects. In this paper, we

propose Lana as part of coding standards for ASP. Future work will look into other

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

636 M. De Vos et al.

best-practices for writing and maintaining ASP programs. The growing number of

applications of ASP can provide a wealth of information for this.

References

Balduccini, M. 2007. Modules and signature declarations for A-Prolog: Progress report. See

De Vos and Schaub (2007), 41–55.

Baral, C. 2003. Knowledge Representation, Reasoning, and Declarative Problem Solving.

Cambridge University Press, Cambridge, England.

Beck, K. 2003. Test-Driven Development: By Example. Addison-Wesley Professional.

Boenn, G., Brain, M., De Vos, M. and Fitch, J. 2011. Automatic music composition using

answer set programming. Theory and Practice of Logic Programming 11, 2–3, 397–427.

Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H. and Woltran, S. 2007. “That

is illogical captain!” – The debugging support tool spock for answer-set programs: System

description. See De Vos and Schaub (2007), 71–85.

Bugliesi, M., Lamma, E. and Mello, P. 1994. Modularity in logic programming. The Journal

of Logic Programming 19 & 20, 443–502.

Cliffe, O., De Vos, M., Brain, M. and Padget, J. 2008. ASPVIZ: Declarative visualisation

and animation using answer set programming. In Proceedings of the ICLP 2008. Lecture

Notes in Computer Science, vol. 5366. Springer, 724–728.

De Vos, M. and Schaub, T., Eds. 2007. First International Workshop on Software Engineering

for Answer Set Programming (SEA 2007).

De Vos, M. and Schaub, T., Eds. 2009. Second International Workshop on Software Engineering

for Answer Set Programming (SEA 2009).

Dworschak, S., Grell, S., Nikiforova, V. J., Schaub, T. and Selbig, J. 2008. Modelling

biological networks by action languages via answer set programming. Constraints 12, 1,

21–65.

Eiter, T., Faber, W., Leone, N., Pfeifer, G. and Polleres, A. 2002. The DLVk planning

system: Progress report. In Proceedings of the JELIA 2002. Lecture Notes in Computer

Science, vol. 2424. Springer, 541–544.

Eiter, T., Gottlob, G. and Veith, H. 1997. Modular logic programming and generalized

quantifiers. In Proceedings of the LPNMR’97. Lecture Notes in Computer Science, vol.

1265. Springer, 290–309.

Eiter, T., Leone, N., Mateis, C., Pfeifer, G. and Scarcello, F. 1998. The KR system

DLV: Progress report, comparisons and benchmarks. In Proceedings of the KR’98. Morgan

Kaufmann, 406–417.

Febbraro, O., Leone, N., Reale, K. and Ricca, F. 2011. Unit testing in ASPIDE. In

Proceedings of the INAP/WLP 2011. INFSYS Research Report 1843-11-06, 165–176.

Febbraro, O., Reale, K. and Ricca, F. 2011. ASPIDE: Integrated development environment

for answer set programming. In Proceedings of the LPNMR 2011. Lecture Notes in

Computer Science, vol. 6645. Springer, 317–330.

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2007. Conflict-driven answer set

solving. In Proceedings of the IJCAI 2007. AAAI Press/The MIT Press, 386–392.

Gelfond, M. and Gabaldon, A. 1999. Building a knowledge base: An example. Annals of

Mathematics and Artificial Intelligence 25, 3-4, 165–199.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.

In Proceedings of the 5th International Conference and Symposium on Logic Programming.

MIT Press, 1070–1080.

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

Annotating answer-set programs in Lana 637

Gelfond, M. and Lifschitz, V. 1991. Classical Negation in Logic Programs and Disjunctive

Databases. New Generation Computing 9, 3-4, 365–386.

Giunchiglia, E., Lierler, Y. and Maratea, M. 2004. SAT-based answer set programming.

In Proceedings of the AAAI 2004. AAAI Press / The MIT Press, 61–66.

Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J. and Tompits, H. 2010. On testing answer-

set programs. In Proceedings of the ECAI 2010. Frontiers in Artificial Intelligence and

Applications, vol. 215. IOS Press, 951–956.

Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J. and Tompits, H. 2011. Random

vs. structure-based testing of answer-set programs: An experimental comparison. In

Proceedings of the LPNMR 2011. Lecture Notes in Computer Science, vol. 6645. Springer,

242–247.

Janhunen, T., Oikarinen, E., Tompits, H. and Woltran, S. 2009. Modularity aspects of

disjunctive stable models. Journal Artificial Intelligence Research 35, 813–857.

Kloimüllner, C., Oetsch, J., Pührer, J. and Tompits, H. 2011. Kara: A system for

visualising and visual editing of interpretations for answer-set programs. In Proceedings of

the INAP/WLP 2011. INFSYS Research Report 1843-11-06, 152–164.

Kulas, M. 2000. Annotations for Prolog - A concept and runtime handling. In Selected Papers

of the 9th International Workshop on Logic-Based Program Synthesis and Transformation

(LOPSTR 1999). Lecture Notes in Computer Science, vol. 1817. Springer-Verlag, 234–254.

Leavens, G. T. and Cheon, Y. 2006. Design by contract with JML. ftp://ftp.cs.iastate.

edu/pub/leavens/JML/jmldbc.pdf.

Lifschitz, V. 2002. Answer set programming and plan generation. Journal of Artificial

Intelligence 138, 1-2, 39–54.

Niemelä, I. and Simons, P. 1997. Smodels – an implementation of the stable model and well-

founded semantics for normal logic programs. In Proceedings of the LPNMR’97. Lecture

Notes in Computer Science, vol. 1265. Springer, 420–429.

Niemelä, I., Simons, P. and Soininen, T. 1999. Stable model semantics of weight constraint

rules. In Proceedings of the LPNMR’99. Lecture Notes in Computer Science, vol. 1730.

Springer, 317–331.

Oetsch, J., Prischink, M., Pührer, J., Schwengerer, M. and Tompits, H. 2012. On the

small-scope hypothesis for testing answer-set programs. In Proceedings of the KR 2012.

Oetsch, J., Pührer, J. and Tompits, H. 2010. Methods and methodologies for developing

answer-set programs—project description. In Technical Communications of the 26th

International Conference on Logic Programming (ICLP 2010). LIPIcs, vol. 7. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 154–161.

Oetsch, J., Pührer, J. and Tompits, H. 2011. The SeaLion has landed: An IDE for answer-

set programming—preliminary report. In Proceedings of the INAP/WLP 2011. INFSYS

Research Report 1843-11-06, 141–151.

Perri, S., Ricca, F., Terracina, G., Cianni, D. and Veltri, P. 2007. An integrated graphic

tool for developing and testing DLV programs. See De Vos and Schaub (2007), 86–100.

Soininen, T. and Niemelä, I. 1998. Developing a declarative rule language for applications in

product configuration. In Proceedings of the PADL’98. Lecture Notes in Computer Science,

vol. 1551. Springer, 305–319.

Sureshkumar, A., De Vos, M., Brain, M. and Fitch, J. 2007. APE: An Ans Prolog*

environment. See De Vos and Schaub (2007), 101–115.

https://doi.org/10.1017/S147106841200021X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200021X

