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Abstract It is a fact simple to establish that the mixing time of the simple random walk on a d-regular

graph Gn with n vertices is asymptotically bounded from below by d
d−2

logn
log(d−1)

. Such a bound is

obtained by comparing the walk on Gn to the walk on d-regular tree Td . If one can map another
transitive graph G onto Gn , then we can improve the strategy by using a comparison with the random
walk on G (instead of that of Td ), and we obtain a lower bound of the form 1

h
logn, where h is the entropy

rate associated with G. We call this the entropic lower bound.

It was recently proved that in the case G = Td , this entropic lower bound (in that case d
d−2

logn
log(d−1)

)

is sharp when graphs have minimal spectral radius and thus that in that case the random walk exhibits
cutoff at the entropic time. In this article, we provide a generalisation of the result by providing a sufficient
condition on the spectra of the random walks on Gn under which the random walk exhibits cutoff at
the entropic time. It applies notably to anisotropic random walks on random d-regular graphs and to
random walks on random n-lifts of a base graph (including nonreversible walks).
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1. Introduction

This article is aimed at understanding the mixing properties of random walks on a finite
regular graph. We are going to be focused on asymptotic properties when the number of

vertices goes to infinity.

Minimal mixing time for the simple random walk.

Let 3 ≤ d ≤ n − 1 be integers with nd even and let Gn = (Vn,En) be a finite simple d -
regular graph on a vertex set Vn of size #Vn = n. Let (Xt )t≥0 be the simple random walk
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1572 C. Bordenave and H. Lacoin

on Gn , which is the Markov process taking values in Vn with transition matrix

Pn(x,y) = 1{{x,y}∈En }
d

for x,y ∈ Vn .

The uniform measure on Vn denoted by πn is reversible for the process. Furthermore, if

Gn is connected, then πn is the unique invariant probability measure of Pn . If additionally

Gn is not bipartite, then P t
n(x,·) converges to πn when t tends to infinity.

We are interested in estimating the time at which P t
n(x,·) falls in a close neighbourhood

of πn in terms of the total variation distance. More formally, the total variation mixing

time associated with threshold ε ∈ (0,1) and initial condition x ∈ Vn is defined by

Tmix
n (x,ε) := inf {t ∈ N : dn(x,t) < ε},

where dn(x,t) is the total variation distance to equilibrium

dn(x,t) := ‖P t
n(x,·)−πn‖TV = 1

2

∑
y∈Vn

∣∣P t
n(x,y)−πn(y)

∣∣= max
A⊂Vn

{
P t

n(x,A)−πn(A)
}
. (1)

The worst-case mixing time is classically defined as

Tmix
n (ε) = max

x∈Vn
Tmix

n (x,ε).

The mixing properties for the random walk are intimately related to the spectrum of Pn .
An illustration of this is the classical computation based on the spectral decomposition

of Pn (see [36, Theorem 12.4] for a proof in the reversible case), which allows controlling

the distance as a function of the singular radius of Pn . For all x ∈ Vn ,

dn(x,t) ≤
√

n −1
2

σ t
n, (2)

where the singular radius σn

σn = ‖(Pn)|1⊥‖2→2

is the �2 operator norm of Pn restricted to functions with zero sum. Because Pn is

reversible, we have σn = �n where �n is the spectral radius of Pn ; that is, the second
largest eigenvalue of Pn in absolute value counting multiplicities. This yields in particular

that

Tmix
n (ε) ≤ 1

| log�n |
(

1
2

logn − log(2ε)

)
. (3)

In particular, if we have �n < 1−δ for some fixed δ ∈ (0,1) along some sequence of integers

going to infinity, then the upper bound in (3) is of order logn along that sequence.
On the other hand, a naive lower bound of the same order of Tmix

n (ε) can be obtaind by

using the elementary fact that the graph distance Dist(x,Xt ) between Xt and the initial

condition x is stochastically dominated by a random walk on the set of nonnegative
integers, starting at 0, with jump probabilities 1/d to the left and (d −1)/d to the right,

except at 0 where the probability to jump to the right is equal to 1. Thus, when starting

from X0 = x , Xt remains within distance r from x at least during a random time of order

https://doi.org/10.1017/S1474748020000663 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000663


Cutoff at the entropic time for random walks on covered expander graphs 1573

d
d−2r + O(

√
r). Combining this with the fact that a ball of radius r contains at most

d(d −1)r−1 vertices, we obtain that for any x ∈ Vn ,

Tmix
n (x,1− ε) ≥ d

(d −2) log(d −1)

(
logn −Cε

√
logn

)
. (4)

Though the strategy might seem a bit rough, the above bound (4) can be sharp. This
was first discovered for random d -regular graphs in [39].

However, an important observation is that the factor in front of logn in (3) and (4)

cannot match. From the Alon-Boppana lower bound [4, 41], for any sequence of d -regular
graphs (Gn)n≥0 on n vertices we have liminfn �n ≥ � := 2

√
d−1
d . More precisely, there exists

a constant C = C (d) such that for every n and every d -regular graph on n vertices,

�n ≥ �− C
(logn)2

. (5)

The number � = 2
√

d −1/d is the spectral radius of the simple random walk on the infinite
d -regular tree Td (and, incidentally, also that of the biased random walk on integers used in

the lower-bound strategy). A graph such that �n ≤ � is called a (nonbipartite) Ramanujan

graph. Hence, a natural question is the following: If a sequence of graphs on n vertices
has an asymptotically minimal spectral radius in the sense that �n = (1+o(1))�, does it

also have a minimal mixing time in the sense that Tmix
n (ε) = (1+o(1)) (d−2)

d log(d−1)
logn for

any fixed ε ∈ (0,1)?

An affirmative answer was given to this question in [38] (see also [29]).

Theorem A ([38]). Let d ≥ 3 be an integer and let (Gn)n∈N be a sequence of d-
regular graphs on n vertices, for which the associated sequence of spectral radii satisfy

limn→∞ �n = � = 2
√

d −1/d . Then for any ε ∈ (0,1), we have

lim
n→∞

Tmix
n (ε)

logn
= d

(d −2) log(d −1)
. (6)

Remark 1.1. The result above remains, of course, valid if our sequence (Gn) is indexed

by an infinite subset of N provided that �n converges to � when n → ∞ in this subset.
In the remainder of the article, with some small abuse of notation, when using lim, we

always assume that the considered sequence may not be defined for every n.

Theorem A is an illustration of the cutoff phenomenon. A sequence of finite Markov

chains corresponding to the sequence of transition matrices (Pn) exhibits cutoff if up
to first order in n the mixing time Tmix

n (ε) does not depend on ε ∈ (0,1); that is, for

any ε ∈ (0,1), limn→∞ Tmix
n (ε)/Tmix

n (1− ε) = 1. Since its original discovery by Diaconis,

Shashahani and Aldous in the context of card shuffling [2, 3, 21], this phenomenon has
attracted much attention. We refer to [20, 36] for an introduction and to [9] for an

alternative characterisation of cutoff. For other recent contributions on cutoff for random

walks on graphs with bounded degrees, see [10, 11, 14].
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As a warmup, we provide a novel proof of Theorem A that is simpler than those
presented in [38] and [29].1 A more precise version of Theorem A will be proved in

Proposition 11 below (it notably allows obtaining the second-order term in the asymptotic

development of Tmix
n (ε)). With our approach we can also relax the assumption by allowing

the presence of nα eigenvalues at a positive distance from the interval [−�,�], with α ∈
(0,1) small enough, at the cost of discarding a small proportion of possibly bad starting

points (the methods in [29, 38] only allow for no(1) outlying eigenvalues; see remark

below [38, Corollary 5]). More precisely, given (Gn) a sequence of d -regular graphs on n
vertices, we define the upper semicontinuous function I : [0,1] → {−∞}∪ [0,1], which can

be interpreted as an asymptotic density of eigenvalues on log-log scale

I (u) = inf
ε↓0

limsup
n→∞

log
(∑

{λ∈Sp(Pn ) : ||λ|−u |<ε}dim(E λ
n)
)

logn
, (7)

where dim(E λ
n) denotes the dimension of the eigenspace corresponding to λ.

Theorem B. Let δ ∈ (0,1), d ≥ 3 an integer and let (Gn) be a sequence of d-regular
graphs on n vertices whose spectral radii satisfy, for all n, �n ≤ 1− δ, and for all, u > �,

I (u) ≤ 1−2
log(u/�+√(u/�)2 −1)

log(d −1)
. (8)

Then, there exists c = c(δ,d) > 0 such that for any ε ∈ (0,1) and η > 0,

lim
n→∞#

{
x ∈ Vn :

Tmix
n (x,ε)

logn
≥ (1+η)

d
(d −2) log(d −1)

}
/n1−cη = 0. (9)

We note that if the graph Gn is transitive (that is, for any pair x,y ∈ Vn , there exists

an automorphism of Gn that maps x to y), then Tmix
n (x,ε) does not depend on x , and (9)

implies that limn→∞ Tmix
n (ε)/ logn = d/((d −2) log(d −1)). See Remark 3.1 for a variant

of Theorem B that allows controlling Tmix
n (ε) at the cost of modifying the definition of

the function I (u). The principal aim of this article is to obtain a better understanding of

this phenomenon via bringing the question to a larger setup.

Minimal mixing time for the anisotropic random walk.

A first possible extension is to consider a random walk on Gn with nonuniform jump
rates. For d ∈ N, we set [d ] = {1, . . . ,d}. One way to define a biaised random walk on a

d -regular graph Gn = (Vn,En) with #Vn = n is to assume that En can be partitioned

into d sets of edges (En,i)i∈[d] where each vertex of Vn is adjacent to exactly one edge
of each type (this implies in particular that n is even) and to associate a transition rate

pi to each type of edge with
∑

i∈[d] pi = 1. For more generality, we consider an involution

∗ : i �→ i∗ of [d ] = {1, . . . ,d}. We are going to make the weaker assumption that Gn is a
Schreier graph. This means that its adjacency matrix Pn may be written as a sum of

1We have been informed during the writing of the paper that such a simplification was
independently obtained by Eyal Lubetzky (New York University).
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permutation matrices. That is, for all x,y ∈ Vn , we have

Pn(x,y) =
d∑

i=1

Si(x,y), (10)

where, for every i ∈ [d ], Si (x,y) = 1I(x = αi(y)) for some permutation αi on Vn and Si∗ =
S−1
i . In full generality the expression (10) allows for both Pn(x,y) ≥ 2 and Pn(x,x ) ≥ 1,

so that we consider graphs that may include loops and/or multiple edges. For example, if

the involution ∗ on [d ] is the identity, then the permutations αi are involutions: For every

i ∈ [d ], we have α−1
i = αi∗ = αi . In this case, the set (En,i)i∈[d] defined for every i ∈ [d ] by

En,i = {{x,αi(x )} : x ∈ Vn} is a partition of the edge set En . We thus recover the above

setting.

If d is even, any finite d -regular graph is a Schreier graph for some collection of d/2
permutations and their inverses (another formulation of this result is any 2k -regular graph
is 2-factorable; see [42]. This is now a standard exercise in graph theory and can be proved

using König’s theorem for bipartite graphs, see, e.g., [37, Theorem 6.2.4].)

This definition of Schreier graphs can be extended to regular graphs on countably many
vertices. Note that any Cayley graph of a finitely generated group with a symmetric set

of generators of size d is a Schreier graph: The natural choice for the permutations Si in

(10) corresponds to the (left or right) multiplication by an element of the symmetric set
of generators, and the involution maps a generator to its inverse.

Now we consider Gn is a d -regular Schreier graph with #Vn = n, given with an

involution ∗ and a decomposition of the adjacency matrix into permutations (10) and

p = (p1, . . . ,pd ) a probability vector (that is, a vector whose coordinates are nonnegative
and sum to one), we define the matrix

Pn,p =
d∑

i=1

piSi . (11)

Note that by construction Pn,p is a stochastic matrix. This is the transition kernel of a

random walk on Gn , which we refer to as the p-anisotropic random walk. Again, πn , the
uniform measure on Vn , is invariant for this process. We are going to assume that

d ≥ 3 and ∀i ∈ [d ], pi +pi∗ > 0. (12)

The condition pi + pi∗ > 0 is not really a restriction because it can be satisfied by just

eliminating the coordinates for which pi + pi∗ = 0. The condition d ≥ 3 (which is not
the same as asking that three coordinates of p are positive) is very natural and justified

below Equation (19). The singular radius of Pn,p is defined as the �2 operator norm of

Pn,p projected onto the orthogonal of constant functions

σn,p = ‖(Pn,p)1⊥‖2→2. (13)

Recall that the singular values of a matrix T are the square of the eigenvalues of TT ∗. By
definition, σn,p is the second largest singular value of Pn,p (we are counting eigenvalues

with multiplicities, meaning that σn,p = 1 for a nonconnected graph). If Pn,p is reversible,

then σn,p coincides with the spectral radius �n,p; that is, the second largest eigenvalue of
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Pn,p in absolute value. Note that Pn,p is reversible if the following condition holds:

∀i ∈ [d ], pi∗ = pi . (14)

Our aim is to prove a result analogous to Theorem A for p-anisotropic walks on Schreier
graphs. We fix the involution ∗ and p and then investigate the asymptotic behavior of

the mixing time for p-anisotropic random walks on a sequence of Schreier graphs (Gn)

associated with the involution ∗.
Instead of comparing the spectral radius of Pn with that of the simple random walk on

the d -regular tree, we need here to compare it with that of a p-anisotropic walk on the

tree Td considered as a Cayley graph. There are several natural ways to endow Td with

a Cayley graph structure. For instance, we can consider k free copies of Z/2Z and l free
copies of Z with their natural generators, for any value of k and l satisfying k +2l = d .
We are going to choose k to be equal to the number of fixed points of ∗ so that the infinite

object we consider has a structure that is analogous to our finite Schreier graphs (we will
formalise this remark with Definition 2 below).

Using the Schreier graph structure of Td considered as a Cayley graph, we define in

a manner analogous to (11) the p-anisotropic random walk on Td . We denote by Pp its

transition kernel. These random walk have been extensively studied in the literature (see,
e.g., [22, 24, 34]).

In analogy with (5), in the reversible case where (14) holds, one can asymptotically

compare the spectral radius of Pn,p with that of Pp. From [17, 26], the Alon-Bopanna
lower bound for the spectral radius states that for any sequence of Schreier graphs we

have

liminf
n→∞ �n,p ≥ �p, (15)

where �p is the spectral radius of Pp given by the classical Akemann-Ostrand formula [1].
In the general case, a lower bound of this type holds for the singular radii of powers of

Pn,p. More precisely, for integer t ≥ 1, we define the tth singular radius as

σn,p(t) = ‖(P t
n,p)1⊥‖1/t

2→2 and σp(t) = ‖(Pt
p)‖1/t

2→2. (16)

We simply write σn,p and σp when t = 1. Moreover, Gelfand’s formula asserts that the

tth singular radius converges to the spectral radius

lim
t→∞σn,p(t) = �n,p and lim

t→∞σp(t) = �p. (17)

Note that if (14) holds, then for any t ≥ 1, σn,p(t) = �n,p and σp(t) = �p. Beware here
and througout this text that the spectral radius �p is the spectral radius of the bounded

operator Pp on �2(G). It can differ (in fact, it is larger than or equal to) from what is

often called the spectral radius of the walk in the literature, which is the asymptotic rate
of decay the return probability; that is, limt→∞P2t

p (e,e)1/(2t) (in the reversible case, the

two notions coincide). From [26], the Alon-Bopanna lower bound claims that for any fixed

t , for any sequence of Schreier graphs we have

liminf
n→∞ σn,p(t) ≥ σp(t). (18)
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In particular, from Gelfand’s formula (17), we get

lim
t→∞ liminf

n→∞ σn,p(t) ≥ �p. (19)

The latter formula can be thought as an extension of (15) to the nonreversible case.

Note that our assumption (12) simply corresponds to assuming that �p < 1 (in the

discarded cases, the anisotropic random walk on Td remains on a subset of the tree
that is homeomorphic to Z).

Adapting the reasoning that yields (4) to the isotropic case, we can also obtain an

asymptotic lower bound in n for the mixing time for the p-anisotropic random walk on

Gn . Consider (Xt )t≥0 an anisotropic random walk on Td with transition kernel Pp and
starting from the root of Td denoted by e. Introduced by Avez [8], the entropy rate h(p)

of Pp is defined as

h(p) := lim
t→∞−1

t

∑
g∈Td

Pt
p(e,g) logPt

p(e,g). (20)

We have h(p) > 0 as soon as (12) holds. From the Shannon-McMillan-Breiman theorem

[31, Theorem 2.1], we have almost surely

lim
t→∞

logPt
p(e,Xt )

t
= −h(p). (21)

A way to interpret this convergence is to say that at large times t , the marginal
distribution of Xt is roughly uniform on a (deterministic) set of size eh(p)t(1+o(1)). We

have chosen our setup so that we can construct the random walk on Gn by taking the

image of Xt by some function Td → Vn (see Definition 2). Thus, for any time t > 0
and x ∈ Vn , the entropy of P t

n,p(x,·) is at most the entropy of Pt
p(e,·) (details are in

Proposition 6 below). As a consequence, for any fixed ε ∈ (0,1), we have

liminf
t→∞ min

x∈Vn

Tmix
n,p (x,1− ε)

logn
≥ 1

h(p)
. (22)

In the spirit of Theorem A, for a given probability vector p, a natural question is thus the

following: If a sequence of graphs on n vertices has a minimal asymptotic spectral radius
in the sense that limt→∞ limsupn→∞ σn,p(t) = �p, does it also have an asympotic minimal

mixing time in the sense that limn→∞
Tmix

n (ε)

logn = (logn)/h(p) for any fixed ε ∈ (0,1)?

It turns out that in the anisotropic setup, the relation between spectral gap and mixing
time could be more subtle. We have an asymptotically minimal mixing time for the p-

anisotropic random walk if the spectral radius is asymptotically minimal for another

anisotropy vector p′.

Theorem 1. Let d ≥ 3 be an integer, ∗ an involution on [d ] and p be a probability vector

on [d ] that satisfies the condition (12). Then, there exists another probability vector p′
with the same support than p such that the following holds. If a sequence of Schreier

graphs Gn on n vertices as in (10) satisfies for all integers t ≥ 1,

lim
n→∞σn,p′(t) = σp′(t), (23)
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then for every ε ∈ (0,1),

lim
n→∞

Tmix
n,p (ε)

logn
= 1

h(p)
. (24)

Finally, if p satisfies (14), then p′ also satisfies (14).

The condition (23) can be thought as a Ramanujan property for the anisotropic random

walk with probability p′. If (14) holds, condition (23) is equivalent to

lim
n→∞�n,p′ = �p′ .

In the nonreversible case, because σn,p(t) ≥ �n,p for any t ≥ 1, condition (23) implies

that

limsup
n→∞

�n,p′ ≤ �p′ .

Note also that in some cases, this condition (23) can be relaxed to allow for no(1) singular

values outside a neighbourhood of the interval [−�p′,�p′ ]; see Remark 5.1 below. An

explicit expression for the vector p′ is provided in the proof. In particular, we have that
p′ = p in only two cases. The first one is the simple random walk – that is, p is the uniform

vector (pi = 1/d for all i ∈ [d ]) – and our result is thus a generalisation of Theorem A.

The other case is the totally asymmetric isotropic walk. It corresponds to the case where
∗ has no fixed point and we have

∀i ∈ [d ], pipi∗ = 0 and pi +pi∗ = 2
d

.

In that case, we have �p = √
2/d (see [28, Example 5.5]) and h(p) = log d

2 . From Poincaré’s

inequality (32) below, Theorem 1 is extremely easy to prove in this case. For p different

from the uniform vector, a source of example for Theorem 1 is in [15]. Up to the
involution, we consider independent permutations σi on [n] vertices: If i �= i∗, σi is a

uniform permutation on n elements and, if i∗ = i , we take n even and σi is a uniform

matching on n elements (where a matching is an involution without a fixed point). Then,

in probability, the condition (23) is true for any probability vector p′ that satisfies the
condition (14).

A couple of open questions concerning anisotropic random walks.Let us focus
for simplicity on the reversible case (14). We emphasise again that as soon as p is not

the uniform vector, the condition (23) differs from what would be the most natural
generalisation of the Ramanujan property in the anisotropic setup. We call this property

R(p):

lim
n→∞�n,p = �p. (25)

We believe that this is not an artifact of our proof and that the result would be false

if (23) is replaced by (25). More precisely, we believe that for every p that is not the
uniform vector there should exist sequences of graphs satisfying (25) but such that (24)

does not hold. We cannot, however, prove that R(p) and R(p′) are not equivalent. In

fact, this question yields two natural open problems:
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(A) With the setup described above, can one find a sequence of Schreier graphs and
two probability vectors p and q satisfying (14) such that R(p) holds and R(q)
does not?

(B) Given p �= q satisfying (14), can one find a sequence of Schreier graphs such that
R(p) holds and R(q) does not?

Though we believe that the answer to (B) (and hence also to (A)) is positive, to our

knowledge, all known examples of graphs satisfying R(p) for one value of p satisfy the

property for all values of p.

Minimal mixing time for covered random walks.

We now present another extension of Theorem A. We start with an extension of the

notion of Schreier graphs beyond the case of the free group.

Definition 2 (Group action, covering and Schreier graphs). Let G be a finitely generated

group with unit e and V a finite set. A map ϕ : G×V → V is an action of G on V if we
have

∀x ∈ V , ∀g,h ∈ G, ϕ(e,x ) = x and ϕ(gh,x ) = ϕ(g,ϕ(h,x )).

For any g ∈ G, we denote by Sg the permutation matrix on V associated to the bijective

map on V : x �→ ϕ(g,x ).

If A is a finite symmetric subset of G, then the Schreier graph of (G,A,ϕ) is the graph

(with possible loops and multiple edges) on V whose adjacency matrix is
∑

g∈ASg . If
G = (V ,E ) is the Schreier graph of (G,A,ϕ), we say that (G,A) is a covering of G .

Let us check that this definition of a Schreier graph is equivalent to that given earlier.
If the adjacency matrix of a finite graph G = (V ,E ) is of the form (10), then G is the

Schreier graph of (SV ,A,ϕ) where SV is the symmetric group on V , A = (S1, . . . ,Sd )

and the covering map is ϕ(σ,x ) = σ(x ). Conversely, if G is the Schreier graph of (G,A,ϕ)

as in Definition 2 with A = {a1, . . . ,ad }, then its adjacency matrix is of the form (10)

where the involution ∗ : i �→ i∗ is defined as i∗ = j if and only if aj = a−1
i . Note that

if the involution ∗ on [d ] has q1 fixed points and q1 + q2 equivalence classes, then G is
d -regular with d = q1 + 2q2. As already pointed out, the infinite tree Td is the Cayley

graph of the group G(q1,q2)

free generated by q1 free copies of Z and q2 free copies of Z/2Z
with their natural generators denoted Afree. By considering the group homeomorphism

from Gq1,q2
free to G that maps Afree to A, we deduce that all Schreier graphs are covered by

(Gq1,q2
free ,Afree) with the corresponding involution.

Remark 1.2. Note that if p is fixed, the definition of the p-anisotropic random walk
Td is the same (up to graph isomorphism) for all possible values of q1 and q2. However,

the choice of the group structure we endow Td with turns out to be of importance when

considering coverings. Because the groups corresponding to different values of q1 and q2
are not isomorphic, there are d -regular graphs G that can be expressed as the Schreier

graph for G(q1,q2)

free (with q1 + 2q2 = d) for some values of q2 and not for others (more

precisely, it is harder to find a covering for smaller values of q2).
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The standard example of an action on a finite set is the following. Let G be a finitely
generated group and H be a subgroup of G with a finite index. Then the set of left cosets

V = {gH : g ∈ G} (with gH = {gh : h ∈ H }) is a finite set and ϕ defined by ϕ(a,bH ) = abH
is an action of G on V .
We introduce now a notion of anisotropic walk on a (sequence of) Schreier graph. Fixing

a group G, we assume that we have a sequence of finite sets (Vn) with #Vn = n and (ϕn)

a sequence of actions of G on Vn . We consider p to be a probability vector G with finite

support. We are interested in the random walk on Vn with transition matrix

Pn,p =
∑
g∈A

pgSg, (26)

where for g ∈ G, Sg is the permutation matrix associated to the action ϕn as in Definition
2. Note that if the support of p is contained in a finite symmetric set A, then Pn,p is

an anisotropic random walk on the Schreier graph of (G,A,ϕn). This situation extends

the previous setup in both directions: the underlying group is not necessarily the free
group and the generating set is not necessarily the natural set of generators. Note that

the uniform measure on Vn is always stationary for this random walk. It is reversible if

we assume

∀g ∈ G, pg = pg−1 . (27)

We are going to compare the random walk on Vn with a random walk on G. To this end,

we define Pp the transition kernel of this random walk on G defined by

Pp =
∑
g∈A

pgλ(g), (28)

where, for g ∈ G, λ(g) is the left multiplication operator (or the left regular representation

of g) defined on G by λ(g)(h) = gh.
Our aim is to provide an extension of Theorem 1 that gives a condition in terms of

spectral properties for the mixing time to be minimal.

Let �p and σp be the spectral radius and the singular radius of Pp and let σn,p be the

singular radius of Pn,p defined in (13). For integer t ≥ 1, we define σn,p(t) and σn,p(t) as
in (16). From [26], the Alon-Boppana lower bound (19) is still valid.

We wish to focus on sequences of random walks whose spectral gap is uniformly bounded

away from one. Hence, we will assume that �p < 1. This is equivalent to assuming that

the subgroup 〈Ap〉 of G generated by Ap := {g : pg > 0} is nonamenable (or simply
that G is nonamenable if one takes as an assumption that Ap generates G). Recall that
a group is said to be amenable if it admits a finitely additive left-invariant probability

measure. The equivalence between nonamenability of 〈Ap〉 and �p < 1 for p satisfying
(27) was established by Kesten [32, 33]. In the nonreversible case, see forthcoming

Lemma 8.

As before, we can determine an asymptotic lower bound for the mixing time of the
random walk with generator Pn,p (valid for any sequence of group actions) in terms of the

entropy rate of Pp denoted by h(p) and defined by Equation (20). In Subsection 2.1 below,

we will check that the Avez lower bound h(p) ≥ −2log�p holds and that the mixing time
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of the anisotropic random walk on Gn is asymptotically larger than (1−o(1))(logn)/h(p)

in the sense that for any fixed ε ∈ (0,1), uniformly in x ∈ Vn , the inequality (22)

holds.

For a given probability vector p supported by a generator, a natural question is thus
the following: Are there spectral conditions for a sequence of actions (ϕn) of G on Vn with

#Vn = n to guarantee that the anisotropic random walk on Vn has an asymptotically min-

imal mixing time in the sense that Tmix
n (ε) = (1+o(1))(logn)/h(p) for any fixed ε ∈ (0,1)?

Our answer to this question is based on the two following notions of group algebra.

Definition 3 (RD property). A finitely generated group G has the Rapid Decay (RD)

property (for Markov operators) if for every finitely supported probability vector p the

singular radius σp = ‖Pp‖2→2 of Pp is well controlled by the �2-norm of p in the following
sense: For any finite symmetric generating set A of G, there exists a constant C = C (G,A)

such that

σp ≤ CRC‖p‖2, (29)

where R is the diameter of the support of p in the Cayley graph associated with (G,A).

We refer to [18] for an introduction to the RD property. Among nonamenable groups,

we note that free groups and hyperbolic groups satisfy the RD property. Observe also
that because the distance corresponding to different generating sets is comparable (if dA
and dA′ are the graph distance for the Caley graph associated with generators A and A′
respectively, we have dA′ ≤ CA,A′dA where CA,A′ = maxy∈A′ dA(e,y)), it is sufficient to

check (29) for a single finite symmetric generating set A of G.
Recall that we automatically have σp ≤ ‖p‖1, and hence (29) is trivially satisfied when

‖p‖2 ≥ CR−C ‖p‖1. Therefore, the condition (29) says something about σp for p that have

large support and whose mass is well spread on that support. In fact, because we have
σp ≥ ‖p‖2, the property (29) for a nonamenable group tells us in particular that σp is

close to this trivial lower bound (in the sense that σp = ‖p‖1+o(1)
2 ) when p is reasonably

spread out on the ball of radius R for large values of R (recall that a nonamenable group

has exponential growth).
Our second notion is the strong convergence of operator algebras, which we define here

in our specific Markovian setting. It can be thought as an analogue of the Ramanujan

property for a sequence of group actions on finite sets. It is a stronger assumption because

the Ramanujan property only refers to one particular random walk on the free group and
the property below must be valid for every random walk.

Definition 4 (Strong convergence). Let G be a finitely generated group, (Vn) a sequence

of finite sets and (ϕn) a sequence of covering maps of G on Vn . We say that the sequence
of covering maps (ϕn) converges strongly (on Markov operators) if for every finitely

supported probability vector p we have

lim
n→∞σn,p = σp,

where σp is the singular radius of Pp defined in (28) and σn,p is the singular radius of

Pn,p defined in (26) and (13).
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From (17), the strong convergence of (ϕn) implies in particular that

lim
t→∞ lim

n→∞σn,p(t) = �p. (30)

We are now ready to state the last result of this introduction.

Theorem 5. Let G be a finitely generated nonamenable group with the property RD,

(Vn) a sequence of finite sets with #Vn = n and (ϕn) a sequence of actions of G on Vn

that converges strongly. Then for every finitely supported probability vector p on G such
that �p < 1, the mixing time of the random walk with transition matrix Pn,p satisfies, for

every ε ∈ (0,1),

lim
n→∞

Tmix
n,p (ε)

logn
= 1

h(p)
.

The assumption that the group actions converge strongly is a strong assumption.

Notably, Theorem 5 does not imply either Theorem A or Theorem 1. These two theorems
rely on special properties of free groups. Nevertheless, in some cases, it is possible to

relax the assumption that the group actions converge strongly by supposing instead that

the strong convergence holds on some vector spaces of codimension no(1) (we discuss this
point further in Remark 4.2).

The paper [15] provides a source of examples for Theorem 5 by establishing that random

actions of the free group are strongly convergent. We consider an involution ∗ in [d ] with q1
fixed points, and G(q1,q2)

free the group generated by q1 free copies of Z/2Z and q2 = (d −q1)/2
free copies of Z with its natural set of generators. We consider permutations αn,i , i ∈ [d ]
on [n] vertices that are chosen such that

(A) If i �= i∗, αn,i is a uniform permutation on n elements and αn,i∗ = α−1
n,i .

(B) If i = i∗, αn,i is a uniform involution on n elements without a fixed point (the
construction is made only for even n).

(C) The permutations are chosen independently for each equivalence class of the
involution ∗.

We consider the action of G(q1,q2)

free on Vn = [n] defined by ϕn(ai,x ) = αn,i(x ). Then, in
probability, this sequence of actions is strongly convergent. These random actions on the

free group are the only known examples of strongly convergent sequences of actions, but

it could indicate that choosing the action at random amongst all possible choices might
yield a strongly convergent sequence also for other choices of nonamenable groups.

Minimal mixing time for color covered random walks.

Finally, we also consider yet another extension that allows, in particular, considering

random walks on n-lifts of a base graph (not necessarily regular). Since the work of Amit
and Linial [6, 7] and Friedman [23], this model has attracted substantial attention. In this

context, we will give the analogue of Theorem 5. To avoid any confusion on notation, we

postpone the treatment of this model to Section 6.
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Organisation of the article

In Section 2 we provide a short proof for the entropic lower bound (22) only stetched in

this introduction and provide a general result (Proposition 9) that allows estimating the

mixing time of a Markov chain in terms of the distribution of a stopping time at which

the chain is close to equilibrium.
In Section 3, we provide a simple proof of Theorem A/B, proving and using a relation

between the k -nonbacktracking random walk on trees and Chebychev polynomials.

In Section 4, we prove Theorem 4 concerning cutoff in the more general setup under
the assumption of strong convergence (Definition 4).

In Section 5, we prove Theorem 1 concerning anisotropic walks by combining the ideas

of Section 4 with an analysis of the resolvent of the anisotropic random walk on Td .
Finally, in Section 6 we deal with the model of color covered random walks.

Notation

If V is a countable set and M is a bounded operator in �2(V ), we use the matrix notation

M (x,y) = 〈1x,M 1y 〉 for x,y ∈ V , where 1x denotes the indicator function of x . The integer
part of real number t is denoted by �t�.

2. Preliminaries

2.1. The entropic time lower bound

For the sake of completeness, we provide a complete proof of the entropic lower bound
(22) that is only sketched in the introduction. The result is stated in the more general

setup of Theorem 5. Recall that G is a finitely generated group, (Vn)n≥0 a sequence of

finite sets with #Vn = n, (ϕn)n≥0 a sequence of actions of G on Vn , Pn,p, Pp denote the
transition matrices on Vn and G respectively defined by (26) and (28) and h(p) is the

entropy rate associated with Pp.

Proposition 6. Let p be a finitely supported probability vector on G such that h(p) > 0.
Given any sequence (Vn), (ϕn)n≥0 as above, the mixing time associated with the random

walk on Vn with transition Pn,p satisfies, for any ε ∈ (0,1),

liminf
n

min
x∈Vn

Tmix
n,p (x,1− ε)

logn
≥ 1

h(p)
.

We consider Tmix
n,p (x,1−ε) (rather than Tmix

n,p (x,ε)) when lower bounds on the mixing time

are concerned so that for both the upper and lower bounds, it is sufficient to consider
small values of ε.

Proof. Let (Xt ) denote the random walk on G starting from the unit e and with transition

Pp. Its distribution is denoted by P. The result is an almost direct consequence of the

Shannon-McMillan-Breiman theorem [31, Theorem 2.1], which states that logPp(e,Xt )

concentrates around its mean; see (21). In particular, given ε,δ > 0, we have for all t
sufficiently large

P[ logPt
p(e,Xt ) < −(1+ δ)h(p)t ] ≤ ε/2.
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Thus, if one sets

Vδ(t) := {g ∈ G : Pt
p(e,g) ≥ e−(1+δ)h(p)t},

we have

|Vδ(t)| ≤ e(1+δ)h(p)t and P[Xt /∈ Vδ(t)] ≤ ε/2.

Now, given x ∈ Vn arbitrary, we consider Xt := ϕn(Xt,x ), which is a random walk with
transition matrix Pn,p started at x , and let Vδ(t) := {ϕn(g,x ) : g ∈ Vδ(t)}, the image of

Vδ(t) by the action. We have, for all t sufficiently large,

πn(Vδ(t)) = |Vδ(t)|
n

≤ |Vδ(t)|
n

≤ e(1+δ)h(p)t

n
,

and P t
n,p(x,Vδ(t)) = P(Xt ∈ Vδ(t)) ≥ 1− ε/2. Thus, we have

‖P t
n,p(x,·)−πn‖TV ≥ 1− ε/2− e(1+δ)h(p)t/n.

Considering t = �log(nε/2)/((1+δ)h(p))�, we conclude that for any arbitrarily small ε,δ >

0, we have for n sufficiently large

Tmix
n,p (x,1− ε) ≥ �log(nε/2)/((1+ δ)h(p))� ≥ (1− δ)

(logn)

h(p)
.

This concludes the proof.

The next lemma is the classical Avez lower bound adapted to our definition of spectral

radius. It implies notably that if �p < 1, then h(p) > 0.

Lemma 7. If p is a finitely supported probability vector on G, we have h(p) ≥ −2log�p.

Proof. We may assume �p < 1. Let h ≥ 0 be such that �p < e−h . From (17), there exists
an integer t0 ≥ 1 such that for ‖Pt

p‖2 = ‖Pt
pPt

p
∗‖ ≤ e−2ht for all t ≥ t0. In particular,∑

g∈G

(
Pt
p(e,g)

)2 = (Pt
p(P∗

p)
t)(e,e) ≤ e−2ht .

From Jensen’s inequality, we deduce that

∑
g∈G

Pt
p(e,g) log(Pt

p(e,g)) ≤ log

⎛
⎝∑

g∈G

(
Pt
p(e,g)

)2⎞⎠≤ −2ht .

It follows that h(p) ≥ 2h.

We conclude this subsection with a corollary of Kesten’s criterion for nonamenability

applicable to nonreversible walks.

Lemma 8. Let p be a finitely supported probability vector on G and Ap = {g : pg > 0}.
The subgroup 〈Ap〉 generated by Ap is nonamenable if and only if �p < 1.

Proof. It is convenient to introduce the lazy random walk, Lp = (I +Pp)/2 = Pδe/2+p/2,

where I is the identity operator. Assume that 〈Ap〉 is nonamenable. Then LpL∗
p is of the
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form Pp′ for some p′ that satisfies (27) and 〈Ap〉 = 〈Ap′ 〉. Kesten’s result then implies

that the singular radius of Lp is smaller than 1− δ for some δ > 0. The operator norm

of operators of the form Pp′ with p′ a probability vector can be obtained by taking
the supremum over nonnegative functions. We can thus compare the norm of L2t

p =
((I +Pp)/2)2t with that of any term appearing in its binomial expansion. In particular,

we have

‖Pt
p‖2→2 ≤ 22t

(
2t
t

)−1

‖L2t
p ‖2→2 ≤ 2

√
t‖Lp‖2t

2→2 ≤ 2
√

t(1− δ)2t

(where we have used that
(2t

t

) ≥ 22t/(2
√

t)). From (17), it follows that �p ≤ (1− δ)2 < 1.
Conversely, if �p < 1 then, from (17), the singular radius of Lt

p is strictly smaller than

one for some t . From the definition, it follows that the spectral radius of Pp′′ := Lt
p(Lt

p)
∗

is smaller than one, which, by Kesten’s reciprocal, implies the nonamenability of 〈Ap′′ 〉 =
〈Ap〉.

2.2. Mixing time from stopping time

We present here a result derived from [9] that allows estimating the distance from

equilibrium using arbitrary stopping times. In this subsection, (Xt ) is an arbitrary Markov

chain on a finite set V with transition matrix P , and for x ∈V , Px denotes the distribution
of this process with initial condition X0 = x .
A classical way to obtain mixing time upper-bounds is via the use of strong stationary

times (see [36, Chapter 6]). A strong stationary time is defined as a stopping time T
for the chain X for which XT is at equilibrium and XT and T are independent. The
standard bound [36, Lemma 6.11] says that if T is a strong stationary time for (1), then

(the bound is in fact proved for the separation distance, which is larger)

‖P t (x,·)−π‖TV ≤ Px [T > t ].

A careful inspection of the proof in [36] reveals that one can allow XT to admit another
distribution provided that an adequate error term is added. However, the assumption

that XT and T are independent is crucial in the mechanism of proof. However, using

recent techniques developed in [30, 9] to compare mixing times with hitting times, we can

bypass this independence assumption if the chain is reversible and if the mixing time is
much larger than the relaxation time, at the cost of a second error term. We will present

a variant of this argument for general finite Markov chains (which, in particular, does not

require reversibility).
We say that a filtration (Ft ), is adapted to (Xt ) if for any t ≥ 0, x,y ∈ V .

E[1{Xt=x,Xt+1=y} | Ft ] = P(x,y)1{Xt=x } (31)

(in particular, this implies that Xt is Ft measurable). We denote by �2(π) the vector

space R
V endowed with the scalar product

〈f ,g〉π =
∑
x∈V

π(x )f (x )g(x ).
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Let us recall the definition singular radius given in (16) for a finite Markov chain P with

invariant measure π ,

σ = ‖P|1⊥‖�2(π)→�2(π) = sup
{‖P|1⊥ f ‖�2(π)

‖f ‖�2(π)

: f �= 0
}
.

For any integer t ≥ 1, we define the tth singular radius as

σ(t) = ‖(P t )|1⊥‖1/t
�2(π)→�2(π)

.

Note that σ(t) ≤ σ . Moreover, in our context, the Poincaré inequality is the claim that

for any vector f ∈ R
V , with π(f ) = 〈1,f 〉π ,

‖P t f −π(f )1‖�2(π) = ‖(P t )|1⊥ f ‖�2(π) ≤ σ(t)t‖f ‖�2(π). (32)

This follows immediately from the definition of tth singular radius. We control distance
to equilibrium with the help of stopping time with the following result (in the present

article, the inequality (33) is sufficient for all purposes, but because the result might have

other applications, we also include a reversible version that is significantly better when �

is close to 1).

Proposition 9. Let (Xt ) be a finite irreducible Markov chain with transition matrix P ,

equilibrium measure π and with tth singular radius σ(t). If T is a stopping time with
respect to a filtration adapted to X and Px (XT ∈ ·) = ν, then we have for any positive

integers t and s

‖P t+s(x,·)−π‖TV ≤ ‖ν −π‖TV +Px [T > t ]+2(1−σ(s))−1/3σ(s)2s/3. (33)

Moreover, if (Xt ) is reversible and � = σ(1) denotes the spectral radius of P , we have

‖P t+s(x,·)−π‖TV ≤ ‖ν −π‖TV +Px [T > t ]+3�2s/3. (34)

Proof. In the reversible case, the main ingredient of our proof is [9, Corollary 2.4], which
we reformulate as follows. Given a set A ⊂ V , s ≥ 0 and ε > 0, we set

U (A,s,ε) := {y ∈ V : ∃t ≥ s, |P t (y,A)−π(A)| > ε}.
Then we have

π(U (A,s,ε)) ≤ 2ε−2�2s .

From the definition of total variation distance, we deduce

ν(U (A,s,ε)) ≤ 2ε−2�2s +‖ν −π‖TV. (35)

For every x , t and s, using the triangle inequality and the fact that XT ∼ ν, we obtain

(using the shorthand notation U for U (A,s,ε)) that

P t+s(x,A)−π(A) ≤
t∑

i=0

∑
y /∈U

Px (T = i ;XT = y)(P s+t−i(y,A)−π(A))+Px [T > t ]+ν(U ).
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From the definition of U (A,t,ε), the double sum above is smaller than ε. Thus, from (35),

we obtain (maximising over A)

‖P t+s(x,·)−π‖TV ≤ Px [T > t ]+‖ν −π‖TV +2ε−2�2s + ε,

and one can conclude by choosing ε = �2s/3. In the general case, we define for integer
s ≥ 0,

V (A,s,ε) := {y ∈ V : |P s(y,A)−π(A)| > ε} and U (A,s,ε) =
∞⋃
t=s

V (A,k,ε).

In particular, we recover the above definition for U (A,s,ε). From the Markov inequality

and (32), for any integer t ≥ 0, we have

π(V (A,t,ε)) ≤ ε−2‖P t1A −π(A)1‖2
�2(π)

≤ ε−2σ(t)2tπ(A).

Because σt is nonincreasing, we thus have for any s and A,

π(U (A,s,ε)) ≤
∞∑

k=s

π(V (A,k,ε)) ≤ ε−2(1−σ(s)2)−1σ(s)2s .

We deduce a slightly modified form of Equation (35):

ν(U (A,s,ε)) ≤ ε−2(1−σ(s)2)−1σ(s)2s +‖ν −π‖TV.

We may thus reproduce the same argument.

3. Simple random walks on Ramanujan graphs revisited

3.1. Sketch of proof of Theorem A and Theorem B

In order to prove Theorem A and Theorem B, we apply Proposition 9 for a stopping time

defined using a coupling between the random walk on Gn and that on Td , the infinite

d -regular tree. This coupling is defined thanks to a covering map from Td to Gn .
We denote by e the root vertex of Td . Let X be the simple random walk on Td starting

from e. Given x ∈ Vn , we fix a local graph homeomorphism ϕ : Td → Gn (each vertex v in

Td has its d neighbours mapped to the d neighbours of ϕ(v) in Gn) such that ϕ(e) = x . We
may construct the simple random walk on Gn by setting Xt := ϕ(Xt ). For a well-chosen

integer k ≥ 1, we define the stopping time τ as

τ = inf{t ≥ 0 : Dist(Xt,e) = k}, (36)

where Dist(v,e) is the distance of the vertex v in Td to the root e. With k = logn
log(d−1)

(1+
o(1)), we show that at the time τ , Xτ = ϕ(Xτ ) is close to equilibrium. More precisely, we
use that the distribution of Xτ can be expressed as an explicit polynomial of the transition

matrix Pn (cf. Lemma 10), and thus its �2-norm can be controlled in terms of the spectral

radius of Pn (cf. Lemma 12). This spectral bound turns out to be optimal.
Then the proof is concluded easily by using Proposition 9 and the fact that the detailed

behavior of τ , which is a hitting time for a biased random walk, is known. It is worth

mentioning that this reasoning leads to a more quantitative result in Proposition 11 below
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(which can also be obtained using methods from [38]). We note also that the variables

Xτ and τ are independent and Proposition 9 in its full strength is not really needed here.

3.2. Nonbacktracking walks and Chebyshev polynomials

In this subsection, let us consider G = (V ,E ) an arbitrary simple d -regular graph. Given

k ≥ 1 integer, we let

Wk := {(xi)
k
i=0 ∈ V k+1 : ∀i ∈ [k ], {xi−1,xi } ∈ E }

denote the set of paths of length k in G . Given x,y ∈ V , we define the set of

nonbacktracking paths of length k from x to y as (with the convention that [0] is the

empty set)

NBk (x,y) := {x ∈ Wk : x0 = x, xk = y , ∀i ∈ [k −1],xi−1 �= xi+1},
and NBk (x ) :=⋃y∈V NBk (x,y). We define the nonbacktracking operator of length k on

G to be the following stochastic matrix on V ×V :

Qk (x,y) := #NBk (x,y)

#NBk (x )
= #NBk (x,y)

d(d −1)k−1 .

We let P denote the transition matrix for the simple random walk on G (i.e., P = Q1).

The following well-known result (see, e.g., [5, 44] and [16] for an early reference) will help

us to control the spectral radius of Qk in terms of that of P .

Lemma 10. For every integer k , there exists a polynomial pk such that Qk = pk (P) for
every simple d-regular graph G. More precisely, we have

pk (x ) = 1
d(d −1)k/2

(
(d −1)Uk

(
x
�

)
−Uk−2

(
x
�

))
,

where � := (2
√

d −1)/d and (Uk ), k ≥ −1, are the Chebyshev polynomials of the second

type defined recursively by

U−1 = 0, U0 = 1, and Uk+1(x ) = 2xUk (x )−Uk−1(x ).

Proof (sketch). For a more detailed proof, we refer to the above-mentioned references
[5, 16, 44]. It is sufficient to check that the identity Qk = pk (P) is valid on the d -regular
infinite tree Td (it is the universal covering of G and the preimage by a covering map

of the nonbactracking paths on G that are the nonbacktracking paths on Td). We set

Q̄k := d(d −1)k−1Qk . Using that Q̄k (x,y) = 1{Dist(x,y)=k}, it is simple to check that

Q̄k+1 = dPQ̄k − Q̄k−1. (37)

The result then follows by induction on k . We find p1 = x , p2 = x 2d/(d − 1)− 1/(d − 1)

and, from (37),

pk+1 = d
d −1

xpk − 1
d −1

pk−1.
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It is then immediate to check that this recursion coincides with the recursion satisfied
by the polynomials d−1(d −1)−k/2((d −1)Uk (x/�)−Uk−2( x/�)). The conclusion follows.

The polynomials (pk ) are called the Geronimus polynomials (in reference to [25]) or the

nonbacktracking polynomials.

3.3. Proof of Theorem A

Recall that �n denotes the spectral radius for Pn restricted to a nonconstant function.

We let

ηn := max
(

0,
d�n

2
√

d −1
−1
)

quantify by how much Gn is far from being a Ramanujan graph. Theorem A is a

consequence of this more quantitative statement.

Proposition 11. Let (Gn) be a sequence of d-regular graphs on n vertices such that
limn→∞ ηn = 0. There exists a constant C and a sequence δn tending to zero such that

for all ε ∈ (0,1) for all n sufficiently large (depending on ε),

Tmix
n (ε) ≤

(
d

(d −2) log(d −1)
+C

√
ηn

)
logn + (�(ε)+ δn)

√
logn, (38)

where, if Z is a standard normal distribution, the function �(·) is defined as the inverse
of

s �→ P

[
Z ≥ (d −2)3/2

2
√

d(d −1)
s
]
.

In particular, if limn→∞ ηn logn = 0, then

Tmix
n (ε) = d

(d −2) log(d −1)
logn +�(ε)

√
logn +o(

√
logn). (39)

Note that the upper bound in (39) is an immediate consequence of (38), and the lower
bound (displayed in [38, Fact 2.1]), which is valid for any d -regular graph, follows from

the argument sketched in the introduction. We note also that it follows from [13] that, if

Gn is a uniform random d -regular graph on n vertices, then ηn
√

logn converges to 0 in
probability. Hence, we recover the main result of [39] from Proposition 11. The remainder

of this subsection is devoted to the proof of Proposition 11. The proof includes a technical

lemma whose proof is postponed to the end of the section.

Proof of Proposition 11. We apply the content of the previous subsection to our
problem. Let x be in Vn and ϕ : Td → Gn be as in Subsection 3.1 be a local graph

homeomorphism such that ϕ(e) = x , where e is the root of Td . Let Xt be the simple

random walk on Td started at the root vertex e. Then Xt := ϕ(Xt ) is a simple random
walk on Gn starting from x . For an integer k to be chosen later on, let τ be defined as in

(36). Because nonbacktracking paths in a tree are geodesic paths, it is immediate to see

that the distribution of Xτ is given by Qk,n(x,·), where Qk,n(x,·) is the nonbacktracking
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operator on Gn . Hence, in particular, the standard �2 upper bound on total variation
distance (2) applied for t = 1 yields

‖Qk,n(x,·)−πn‖TV ≤ rk,n
√

n, (40)

where, using Lemma 10,

rk,n := max
λ∈Sp(Qk,n )\1

|λ| = max
λ∈Sp(Pn )\1

pk (λ).

Hence, if one sets

k = kn := min
{
k : rk,n ≤ 1√

n logn

}
,

we deduce from (40) that ‖Qkn,n(x,·)−πn‖TV ≤ (logn)−1. We now apply Proposition 9

for T = τ . We obtain that, provided that �n ≤ 1− δ (which is true for all n large enough

if ηn → 0 for, e.g., δ = 1/20), for all t ≥ 0,

dn(x,t + s) ≤ ‖Qkn,n(x,·)−πn‖TV +P[τ ≥ t ]+3(1− δ)2s/3. (41)

The last term can be made smaller than (logn)−1 for all n large enough by choosing
s = sn := (log logn)2. Hence, setting

tn(ε) := inf
{
t : P[τ > t ] ≤ ε −2(logn)−1},

we obtain

Tmix
n (ε) ≤ tn(ε)+ sn .

Now, the central limit theorem for the biased random walk on the line implies that

Dist(Xt,o)− t((d −2)/d)

2
√

d −1/d

converges weakly to a standard normal distribution. We may thus easily estimate tn as a

function of kn . Hence, the only missing part is an estimate for kn .

Lemma 12. For any integer d ≥ 3, there exists a constant C such that for all n
sufficiently large we have

kn ≤
{

logn
log(d−1)

+C (log logn), if η ≤ (logn)−2(log logn)2,
logn

log(d−1)
(1+C

√
η) if η ≥ (logn)−2(log logn)2.

The above estimates combined with the use of the central limit theorem (details are

left to the reader) imply that

tn(ε) ≤
(

d
(d −2) log(d −1)

+C
√

ηn

)
logn + (�(ε)+ δn)

√
logn.

This concludes the proof of Proposition 11 (provided that Lemma 12 has been

established).
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Proof of Lemma 12. We use the following classic identities, valid for all θ ∈ R\{0} and
k ∈ N:

Uk (coshθ) = sinh((k +1)θ)

sinhθ
and Uk (cosθ) = sin((k +1)θ)

sinθ
. (42)

We note that Uk is either an even or an odd function (depending on the parity of k). We
thus have for any λ,

|pk (λ)| ≤ 1
d(d −1)k/2 [(d −1)|Uk (|λ|/�)|+ |Uk−2(λ/�)|].

Using the fact (it can be checked using (42)) that |Uk (x )| ≤ k + 1 on [0,1] and Uk (x ) is

increasing on [1,∞), we obtain that

max
λ∈Sp(Pn )\1

|pk (λ)| ≤ 1
d(d −1)k/2 [(d −1)Uk (1+ηn)+Uk−2(1+ηn)], (43)

and hence rk,n ≤ (d − 1)−k/2Uk (1 + ηn). Using the identity (42), we obtain that there

exists a constant C such that

rk,n ≤ C
(d −1)k/2 min(η−1/2,k)eCk

√
η.

This is sufficient to obtain the desired estimate on kn .

3.4. Proof of Theorem B

Let η > 0. To prove Theorem B, we use (41) with kn replaced by k ′
n = logn

log(d−1)
(1+η/2).

By the law of large numbers, τ = τ(k) is asymptotically equivalent to kd/d −2 when k
goes to infinity. Hence, to prove Theorem B, it is sufficient to show that there exists c > 0
such that for all n large enough, we have ‖Qk ′

n,n(x,·)−πn‖TV ≤ n−cη for at least n1−2cη

vertices x in Vn . It is thus sufficient to show that for all n sufficiently large,∑
x∈Vn

‖Qk ′
n,n(x,·)−πn‖TV ≤ n1−3cη. (44)

To take into account the information we have about the multiplicity of eigenvalues, we

must be more precise than (40) in our decomposition. For λ ∈ Sp(Pn) \ {1}, we let αλ(x )

be the square norm of the projection of the vector δx onto E λ
n , the eigenspace of Pn

corresponding to λ; that is,

αλ(x ) := max
f ∈Eλ

n

f (x )2∑
y∈Vn

f (y)2
.

From the spectral theorem, we have
∑

x∈Vn
αλ(x ) = dim(E λ

n). Using the Cauchy-Schwartz

inequality and the decomposition on the eigenspaces of Pn , we obtain

(
2‖Qk,n(x,·)−πn‖TV

)2 ≤ n
∑
y∈Vn

(
Qk,n(x,y)− 1

n

)2

=
∑

λ∈Sp(Pn )\{1}
npk (λ)2αλ(x ).
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Hence, averaging over x , we have

1
n

∑
x∈Vn

‖Qk,n(x,·)−πn‖2
TV ≤

∑
λ∈Sp(Pn )\{1}

pk (λ)2dim(E λ
n).

Using the fact (recall (43)) that pk (λ) ≤ (d −1)−k/2(k +1) when λ ≤ �, we obtain that∑
λ∈Sp(Pn )∩[−�,�]

pk (λ)2dim(E λ
n) ≤ (d −1)−k (k +1)2n. (45)

For λ /∈ [−�,�], as a consequence of (42) we have

limsup
k→∞

1
k

log |pk (λ)| ≤ lim
k→∞

1
k

logUk (|λ|/�)− 1
2

log(d −1)

= log
(

|λ|/�−
√

(λ/�)2 −1
)

− 1
2

log(d −1).

Hence, recalling the definition of I (u) in (7) and the assumption �n ≤ 1− δ, we arrive at

limsup
n→∞

1
logn

log
∑

λ∈Sp(Pn )\[−�,�]

pk ′
n (λ)2dim(E λ

n)

≤ sup
u∈[�,1−δ]

⎡
⎣(1+η/2)

⎛
⎝2log

(
u/�−

√
(u/�)2 −1

)
log(d −1)

−1

⎞
⎠+ I (u)

⎤
⎦ (46)

(where we have used the upper semicontinuity of u �→ I (u)). Using the assumption (8),

we obtain that the left-hand side of (46) is at most c0η with

c0 := 1
2

−
log
(
(1− δ)/�−

√
((1− δ)/�)2 −1

)
log(d −1)

> 0.

Together with (45), it concludes the proof of (44) with c = c0/4.

Remark 3.1 (Variant of Theorem B). If H is a vector space of RVn with #Vn = n, we
define the flat dimension of H as dim0(H ) = n maxx∈Vn ‖PH 1x‖2

2 where PH is the orthog-

onal projection onto H . This definition implies dim0(H ) ≥ dim(H ), dim0(span(πn)) = 1
and dim0(span(1x )) = n. If the graph Gn is a transitive graph and H is the invariant
vector space generated by k eigenvalues of Pn , then we have dim0(H ) = dim(H ). Now,

we define I0 exactly as I in (7) except that we replace dim(E λ
n) in (7) by dim0(E λ

n). The

proof of Theorem B actually proves that (6) holds if �n < 1 − δ and for all u > �, (8)
holds with I0 instead of I .

4. Covered random walks: proof of Theorem 5

4.1. Notation

In this section, we fix a finitely supported probability vector p on G and we denote by

(Xt )t≥0 the random walk on G with transition kernel Pp started at X0 = e, the unit of G.
The underlying probability distribution of the process (Xt )t≥0 on GN will be denoted by
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P(·). Finally, if ϕn is the action of G on Vn as in Theorem 5, given a fixed x ∈ Vn , we set
Xt = ϕn(Xt,x ). Then (Xt )t≥0 is a trajectory of the Markov chain on Vn with transition

kernel Pn,p and initial condition x .

4.2. Proof strategy

Our strategy shares some similarities with that adopted in the Ramanujan case: We try

to build a backbone walk (Ys)s≥0 with Ys = Xτs using stopping times that are defined in

terms of the walk performed on the covering (our term ‘backbone’ comes from the fact
that the complete walk can be recovered from the backbone by adding the missing pieces).

The two important properties that our backbone walk must satisfy are the following:

(i) At each step, one jumps more or less uniformly to one of k vertices for a large
k .

(ii) The spectral gap associated with the backbone walk is close to the Alon-Boppana
bound.

The second property is obtained from our assumptions that the RD property on G
holds and that the sequence of actions converges strongly. To obtain a backbone walk

that jumps close to uniformity on large sets, we perform an explicit construction based
on the Green’s operator associated to Pp.

To conclude, we need to relate the mixing time of the backbone walk to that of the

original one. This is done using the tools developed in Subsection 2.2 that relate mixing

times and hitting times. Indeed, hitting times of the backbone walk provide an upper
bound for the hitting times of the original walk.

4.3. Construction of the backbone walk from the Green’s operator

Given k a large integer, our task is to find a stopping time τ for the process (Xt ) starting

from X0 = e such that Xτ is close to being uniformly distributed on a set of k vertices.

We denote by A = {a1, . . . ,ad } the symmetric support of Pp. We define � as the Cayley
graph of G generated by A. By construction, (Xt ) is a random walk on �. We are going

to choose our stopping time of the form

τ := inf {t ≥ 0 : Xt /∈ U }, (47)

where U is finite and contains e. Notably, τ is almost surely finite and Xτ is supported
on the set ∂U defined by

∂U := {g /∈ U : a−1
i g ∈ U for some i ∈ [d ]},

which satisfies #∂U ≤ (d −1)#U .

Now let us specify our choice for U . We let Rp = (I −Pp)
−1 be the Green’s operator

associated with Pp. The Green’s operator is a well-defined bounded operator; because

�p < 1, 1 is not in the spectrum of Pp. We define u to be the image of the coordinate

vector at e by Rp. The scalar u(g) corresponds to the expected number of visits at g
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starting from e:

u(g) := Rp(e,g) =
∞∑
t=0

Pt
p(e,g). (48)

Given k ≥ 1 , we define the set

U :=
{
g ∈ G : u(g) >

1
k

}
. (49)

In the reversible case, our set U can be interpreted as the complement of a ball around e
in the Green metric on G associated to Pp. The Green metric is defined for all g,h ∈ G by
d(g,h) = logRp(e,e)− logRp(g,h) and it is closely related to the entropy of the random

walk (Xt ); see [12]. Our backbone walk is the induced walk on the successive exit times

from U . More precisely, we define τ0 := 0, τ1 = τ and, for integer s ≥ 1, τs+1 := inf{t ≥ τs :
XtX−1

τs /∈ U }. We finally set Ys := Xτs . We denote by Q the transition kernel associated

with the Markov chain (Ys): For any g,h ∈ G,

Q(g,h) = P(Xτ = hg−1). (50)

By construction, we have Q = Pq where, for all g ∈ G,

qg := Q(e,g) = P [Y1 = g ] = P [Xτ = g ] . (51)

We let (Ys) be the projection of the walk (Ys) onto Vn , Ys := ϕn(Ys,x ) and let Qn denote

the associated transition kernel. This Markov chain is our backbone walk. The following

result establishes that U has the desired property.

Proposition 13. Assume that �p < 1. Then there exists a constant C such that for

every integer k ≥ 2, the set defined by Equation (49) satisfies e ∈ U , #U ≤ Ck logk ,
diam(U ) ≤ C logk (where diam denotes the diameter for the graph distance in �) and
such that for q defined by (51),

∀g ∈ ∂U , qg ≤ 1
k

. (52)

Proof. By definition of the function u, we have e ∈ U and for any g ∈ ∂U , qg =
P [Xτ = g ] ≤ u(g) ≤ 1/k, as requested. We now check that the cardinality of U is controlled

by k logk . This is a simple consequence of the assumption that �p < 1. We fix � such that
�p < � < 1. Then, from (17), there exists s ≥ 1 such that ‖Pt

p‖ ≤ �t for all t ≥ s. Hence,
there exists a constant C0 ≥ 1, such that ‖Pt

p‖ ≤ C0�
t for all t ≥ 1. Notably, we deduce

that for all g,h ∈ G,

Pt
p(g,h) ≤ ‖Pt

p‖ ≤ C0�
t (53)

(see forthcoming Lemma 25 for an improvement of this inequality). Thus, if Dist(g,e) is

the graph distance between g and e in �,

u(g) =
∑
t≥|g|

Pt
p(e,g) ≤ C0(1−�)−1�Dist(g,e).
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This implies that U is included in the ball Br of radius r = �C1 logk� around the unit e.
For any integer b ≥ 1, we find

#U
k

≤
∑
g∈U

u(g) ≤
∑
g∈Br

∞∑
t=1

Pt
p(e,g)

≤
br∑
t=1

∑
g∈Br

Pt
p(e,g)+

∞∑
t=br+1

∑
g∈Br

Pt
p(e,g)

≤ br +
∞∑

t=br+1

(#Br )C0�
t .

We choose b > 0 such that (d −1)�b < 1. Because #Br ≤ d(d −1)r−1, we thus find that

#U /k is at most C2 logk as requested (with C2 = 2bC1).

4.4. Deducing mixing times from RD property and the strong convergence

To compare the original walk with the backbone walk, the first requirement is to control

how much time each backbone step requires on average. This can be deduced from the
definition of the entropy of G. Recall the definition of τ in (47).

Lemma 14. Assume that �p < 1. For any ε > 0, there exists k(ε) > 1 such that for all

integers k ≥ k(ε),

E[τ ] ≤ (1+ ε)
logk
h(p)

.

Proof. Given t1 < t2 < ∞, we decompose the expectation in three contributions (τ ≤ t1,
τ ∈ (t1,t2], τ > t2) and obtain

E[τ ] ≤ t1 + t2P(τ > t1)+E[τ1I{τ>t2}]. (54)

We set

t1 := (1+ ε/2)
logk
h(p)

and t2 := C logk

for some adequate constant C and prove that the second and third terms in (54) are

smaller than (ε/4)(logk/h(p)). We start by bounding the tail probability of τ . Recall that

�p is the spectral radius of Pp. We fix � such that �p < � < 1. From (53),

P(τ > t) ≤ P(Xt ∈ U ) ≤
∑
g∈U

Pt
p(e,g) ≤ #UC0�

t .

Hence, for any s > 0,

P

(
τ >

log(C0#U )+ s
log(1/�)

)
≤ e−s .

By Proposition 13, we deduce for some choice of constant C > 0, for any s > 0 and integer

k ≥ 2,

P(τ > (C /2)(logk + s)) ≤ e−s .
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It follows that for any ε > 0, for all k large enough,

E [τ1I{τ>t2}] ≤ 1
logk

≤ ε logk
4h(p)

.

Now to control the second term, we need to show that P(τ > t1) ≤ ε/(4Ch(p)). Set

H = {g ∈ G : Pt1
p (e,g) ≤ e−(1−ε/3)t1h(p)

}
and, arguing as above,

P(τ > t1) ≤ P(Xt1 ∈ U ) ≤
∑

g∈U∩H

Pt1
p (e,g)+P(Xt /∈ H ).

Now, from (21), if k is large enough, P(Xt /∈ H ) ≤ ε/(8Ch(p)) and, by Proposition 13,∑
g∈U∩H

Pt1
p (e,g) ≤ #Ue−(1−ε/3)t1h(p) ≤ (Ck logk)k−(1+ε/10) ≤ ε/(8Ch(p)),

as requested.

Remark 4.1. The above proof actually shows that the conclusion of Lemma 14 is true

for any exit time from a set of cardinality k1+o(1). On the other hand, (21) and the
lower bound u(Xt ) ≥ Pt

p(e,Xt ) imply easily that E[τ ] ≥ (1− ε)(logk)/h(p) for all k large

enough. Hence, our set U asymptotically maximises the mean exit time (among all sets

of cardinality k1+o(1)).

All ingredients are now gathered to conclude.

Proof of Theorem 5. We fix ε ∈ (0,1), δ > 0 and x ∈ Vn arbitrary and prove that for n
sufficiently large,

Tmix
n,p (x,ε) ≤ (1+ δ) logn/h(p).

We consider τ constructed with U from Proposition 13 for some large k , which we are

going to choose depending on δ but not on n, and we set m := �(1+ δ/4)(logn)/ logk�.
We use Proposition 9 for the walk Xt := ϕn(Xt,x ) with

T = τm, t = tn = �(1+ δ) logn/h(p)− log logn� and s = sn = �log logn�.
We have

‖P tn+sn
n,p (x,·)−π‖TV ≤ ‖Qm

n −π‖TV +P[τm > tn ]+2(1−σn,p(sn))−1/3σn,p(sn)2sn /3. (55)

We are going to show that for n sufficiently large, each of the three terms in the right-hand

side are smaller than ε/3.
We start with the third term. To deal with it we prove the following statement:

limsup
n→∞
s→∞

σn,p(s) ≤ �p, (56)

where the limit can be taken over arbitrary sequences of n and s, which both go to infinity

(though it is sufficient for our purpose to know that the limsup is < 1). If s = as0 + b
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with a,b,s1 nonnegative integers, we have

‖(P s
n,p)1⊥‖2→2 ≤ ‖(P s0

n,p)1⊥‖a
2→2‖(Pb

n,p)1⊥‖2→2 ≤ ‖(P s0
n,p)1⊥‖a

2→2.

Applied to a = �s/s0�, we deduce that for all t ≥ t1,

σn,p(s) ≤ σn,p(s0)1− s0−1
s . (57)

From (30), we can choose s0(δ) and n0(δ) such that σn,p(s0) ≤ �p+δ/2 and we can deduce

from (57) that σn,p(s) ≤ �p + δ for n ≥ n0(δ) and s ≥ s1(δ) sufficiently large. Let us now
move the second and third terms in (34).

The probability P[τm > tn ] is small as a consequence of the law of large numbers.

Indeed, choosing k(δ) sufficiently large, Lemma 14, guarantees that tn ≥ (1+ δ/2)mE[τ ].
The smallness of ‖Qm

n − π‖TV is obtained using spectral estimates for Qn . Because G
has the RD property (29), we deduce from Proposition 13 that for some constants C,C ′
(depending on p),

σq = ‖Pq‖ ≤ C (logk)C
(
k−2#∂U

)1/2 ≤ C ′k−1/2(logk)C+1/2.

Now, the assumption that (ϕn) converges strongly applied to q implies that for all n large

enough (depending on k), the singular radius σn,q of Qn satisfies

σn,q ≤ 2C ′k−1/2(logk)C+1/2.

Then, we use the Cauchy-Schwarz inequality and the usual �2-distance bound (32). We
obtain that for any m ≥ 1,

‖Qm
n (x,·)−πn‖TV ≤ √

n‖Qm
n (x,·)−πn‖2 ≤ √

nσm
n,q, (58)

and we can conclude by replacing m by its value.

Remark 4.2 (Relaxation of the definition of the spectral radius). We may slightly relax

the assumption of strong convergence. If H is a vector subspace of RVn that is invariant

under Pn,p, we set σH
n,p to be the operator norm of Pn,p on the orthogonal of H . Recall

the definition of the flat dimension dim0 in Remark 3.1.

Now, we say that the sequence of actions (ϕn) converges relatively strongly if for any

finitely supported probability vector p∈ �2(G) we have limsupn σn,p < 1 and limn σHn
n,p = σp

for a sequence (Hn) of invariant vector spaces such that πn ∈ Hn and dim0(Hn) ≤ nεn

with limn εn = 0. Then Theorem 5 also holds under this weaker assumption. Indeed, we

simply replace the bound (58) by the bound valid for any invariant vector space H of Qn

that contains πn :

‖Qm
n (x,·)−πn‖TV ≤ √

n‖Qm
n (x,·)−πn‖2 ≤ √

nσm
n,q

√
dim0(H )/n +√

n
(
σH
n,q

)m
, (59)

which follows directly from the spectral theorem and the observation that, if PH is the

orthogonal projection onto a vector space H , then

‖PH f ‖2 ≤
∑
x

|f (x )|‖PH 1x‖2 ≤ ‖f ‖1
√

dim0(H )/n.
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Finally, we notice that if dim0(H ) = no(1) and limsupn σn,q < 1, then the first term on

the right-hand side of (59) goes to 0 as soon as m is of order logn.

5. Anisotropic random walks: proof of Theorem 1

5.1. Notation

In this section, we fix an involution as in Theorem 1. We define G as the group obtained
by k free copies of Z and l free copies of Z /2Z where k + l is the number of equivalence

classes of the involution, as detailed below Definition 2. We denote by A = {g1, . . . ,gd }
its natural set of generators. The probability vector p = (p1, . . . ,pd ) as in Theorem 1 is
identified with a vector in �2(G) defined by, for all i ∈ [d ], pgi = pi and pg = 0 otherwise. As

in the previous section, we denote by (Xt )t≥0 the random walk on G with transition kernel

Pp started at X0 = e, the unit of G. The underlying probability distribution of the process

(Xt )t≥0 on GN will be denoted by P(·). Finally, we define ϕn as the action of G on Vn

such that for all i ∈ [d ], Sgi = Si where Si is as in (11) and Sg is the permutation matrix

associated to ϕn(g,·). Finally, given x ∈ Vn , we set Xt = ϕn(Xt,x ); that is, (Xt )t≥0 is a

trajectory of the Markov chain on Vn with transition kernel Pn,p with initial condition x .

5.2. Proof strategy and organisation

Our starting point is to use the same stopping time strategy as that for the previous
section. But instead of using the RD property to conclude, we are going to show that the

generator of the backbone random walk can be reasonably approximated by a polynomial

in Pn,p′ , the generator of the random walk with anisotropy given by p′. Our first job is
thus to identify the value of p′ that is possible. We perform this approximation for the

backbone walk on the covering graph G (it is then sufficient to use the covering to have

an approximation for the walk on Vn). With the definition of the stopping set U in (49),
a natural object to compare Q to is the Green’s operator, which is expressed as a series

in Pp. After a suitable truncation, we can in fact obtain a polynomial in Pp that is a good

approximation of Q . By good approximation in the �1 sense we mean that one can find

a polynomial R that is such that

Q(x,y) ≤ R(Pp)(x,y) (60)

for all x and y and also such that ‖R(Pp)(e,·)‖�1(G) is not much larger than ‖Q(e,·)‖�1(G)

(which is equal to 1). However, for our spectral computations, we want an approximation

of Q in the �2 sense and it turns out that the above one is not satisfactory. In the same
way that the Green’s operator helps to find a good approximation in �1, we want to use

the operator R′
p defined by

R′
p(x,y) :=√Rp(x,y)

to find a good approximation of Q ∈ �2(G). What makes this approach successful for

anisotropic random walks on free groups is that R′
p correspond to a point of the resolvent

of another anisotropic random walk Pp′ for a vector p′ that has the same support as

p. Again, we can approximate the resolvent operator by a polynomial by an ad hoc

truncation procedure.
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Our study of the resolvent of the random walk, presented in Subsection 5.3, allows us
to derive an explicit relation between p and p′. Then in Subsection 5.4 we show that this

relation combined with a technical but somehow natural truncation procedure yields a

relevant bound on the kernel of the backbone walk (Proposition 21). Combining this with
a few �2 computations (Lemma 22), this allows us to prove Theorem 1 by adapting the

approach used for Theorem 5.

5.3. The relation between p and p′ via resolvent

The resolvent of Pp is defined for z /∈ σ(Pp) by

Rz
p = (zI −Pp)

−1.

In the above expression, I is the identity operator on �2(G). Because we are particularly

interested in the behavior of the operator Rz
p as |z | > �p approaches �p, we consider

the following alternative definition of Rz
p(x,y) (which coincides with the one above for

|z | > �p):

Rz
p(x,y) :=

∑
t≥0

z−(t+1)Pt
p(x,y). (61)

As shown in [24] (see Lemma 16 below), the above series converges for all x and y if

and only if |z | ≥ �′
p where (�′

p)
−1 is the radius of convergence of the series Pt

p(e,e). It is
given by the following generalisation of the Akemann-Ostrand formula (see [24, Equation

(2.6)]):

�′
p = min

s>0

{
2s +

d∑
i=1

(√
s2 +pipi∗ − s

)}
(62)

and satisfies �′
p ≤ �p (with equality in the symmetric case pi = p∗

i for all i ∈ [d ]).
Because our group is nonamenable, the vector (R1

p(e,x ))x∈G is very close to being

integrable (it does not belong to �1(G) but (Rz
p(e,x ))x∈G is in �1(G) for all z > 1), and

(R�p
p (e,x ))x∈G is close to being in �2(G) in the same sense. What we prove in this section

(and which is made plausible by the observation above) is the following.

Proposition 15. Given p a probability vector on [d ] such that (12) holds, there exists a

unique probability vector p′ and a real C = C (p) such that for all x,y ∈ G,

R1
p(x,y) = C

(
R�p′

p′ (x,y)
)2

.

To our knowledge, this quadratic identity has not been discovered before. It is of
fundamental importance in what follows: It establishes a relation between the vector

(R1
p(e,x ))x∈G – which, as seen in Subsection 4.4 is intimately connected with the entropy

h(p) – and (R�p′
p′ (e,x ))x∈G , the resolvent of Pp′ at its spectral edge. As a consequence of

the tree structure of the Cayley graph associated with (G,A), which can be identified
with the regular tree Td , the resolvent admits a simple ‘multiplicative’ expression (this

is a well-established result that can be found, e.g., in [24] or [22]). Indeed, Rz
p(e,x ) can

be obtained by multiplying Rz
p(e,e) by a quantity r z

i (p) for each edge of type i that is
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crossed on the minimal path linking e to x . Hence, to prove Proposition 15, we need to

find a probability vector p′ such that for all i ∈ [d ], r1
i (p) =

(
r

�p′
i (p′)

)2
.

We need some extra notation to give an expression for the coefficients ri . Let us denote
by Rz

p,i the resolvent of the operator Pp,i = Pp − (piδe ⊗ δgi +pi∗δgi ⊗ δe) (defined as in

(61) for |z | ≥ �′
p) obtained from Pp by removing the transitions between e and gi . Finally,

we let γ z
i be the diagonal coefficient of Rz

p,i :

γ z
i = γ z

i (p) := Rz
p,i (e,e) =

∑
t≥0

∑
t≥0

z−(t+1)Pt
p,i (e,e). (63)

Note that Pt
p(e,e) is a function of pipi∗ , i ∈ [d ] (because every transition from e to e

involves the same number of multiplications by gi and gi∗). This implies in particular

that γ z
i = γ z

i∗ . Note that the reference in [24] only treats the case q2 = d/2 and assumes

that every coordinate is positive. The positivity assumption, however, is not used in the
proof (save for the fact that the return probability to zero decays exponentially, which

is ensured by (12)). The proof also adapts to arbitrary values of q1 and q2 without any

change (cf. [22, Proposition 3.4], which only deals with the case q1 = d).

Lemma 16 (see Lemma 2 and Lemma 3 in [24], [22]). For any reduced word x =
gi1 . . . gin ∈ G written in reduced form (that is, gik+1 �= gi∗k for all k) and |z | ≥ �′

p (recall

(62)),

Rz
p(e,x ) = Rz

p(e,e)

n∏
t=1

pit γ
z
it .

Moreover,

Rz
p(e,e) =

⎛
⎝z −

∑
j∈[d]

pj ∗pjγ
z
j

⎞
⎠

−1

and γ z
i =
⎛
⎝z −

∑
j �=i∗

pj ∗pjγ
z
j

⎞
⎠

−1

. (64)

The above lemma allows one to compute explicitly the resolvent operator.

Lemma 17. We assume that (12) holds and that z ∈ [�′
p,∞). If s = sz = 1/(2Rz

p(e,e))

and ri = piγ
z
i , we have riri∗ < 1,

ri =
√

s2 +pipi∗ − s
pi∗

when pi∗ > 0, ri = pi

2s
when pi∗ = 0 and pi = 2sri

1− riri∗
.

Moreover, sz is the largest real solution of the following equation in x :

z = 2x +
d∑

j=1

(√
x 2 +pjpj ∗ −x

)
.

Proof. From (64) and the fact that γi = γi∗ (recall (63)), we have 2s = z −∑j pj ∗rj and
pipi∗γ 2

i + 2sγi − 1 = 0. The inequality riri∗ = pipi∗γ 2
i < 1 and the formulas follow (also

in the case pipi∗ = 0). It remains to prove that s is the largest solution of f (x ) = z with

f (x ) = 2x +∑j
(√

x 2 +pjpj ∗ −x
)
. Because f is strictly convex and has a unique minimiser
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xmin ≥ 0 such that f (xmin) = �′
p, the equation f (x ) = z has either zero, one or two solutions

according to whether z < �′
p, z = �′

p, z > �′
p. In the latter case, we let x−(z ) < xmin < x+(z )

denote the two solutions. Because sz is an increasing function of z , we have sz > xmin for

z > �′
p and thus s(z ) = x+(z ).

Lemma 18. Let z ∈ [�p,∞) and ri = piγ
z
i . We have

d∑
i=1

ri(1− ri∗)
1− riri∗

= 1 ⇔ z = 1 and

d∑
i=1

r2
i (1− r2

i∗)

1− (riri∗)2
= 1 ⇔ z = �p.

The result is a direct consequence of the following combinatorial statement (whose proof

we include in the Appendix A for completeness).

Lemma 19. For any (αi)
d
i=1 in [0,1)d , the function defined on G by F (x ) :=∏n

t=1 αit , if

x = gi1 . . . gin in reduced form, then F is integrable for the uniform counting measure on

G if and only if

d∑
i=1

αi(1−αi∗)

1−αiαi∗
< 1.

Proof of Lemma 18. From (61),
∑

x∈GRz
p(e,x ) < ∞ if and only if z > 1. On the other

hand, from spectral considerations, ‖Rz
pδe‖2 is finite for z > �p and diverges as z goes to

�p. Hence, recalling definition (61), we have
∑

x∈G
(
Rz

p(e,x )
)2

< ∞ if and only if z > �p.

Lemma 19 implies that

d∑
i=1

ri(1− ri∗)
1− riri∗

< 1 ⇔ z > 1 and

d∑
i=1

r2
i (1− (ri∗)2)
1− (riri∗)2

< 1 ⇔ z > �p.

We can conclude using the fact that (cf. (63)) the γ z
i s are continuous functions of z .

Now we are ready to identify the value of p′ that is such that (15) holds. We set, for
i ∈ [d ], r z

i (p) = piγ
z
i (p), and we introduce the vectors a and b whose coordinates are given

for all i ∈ [d ] by

ai(p) := r1
i (p) and bi(p) := r�p

i (p).
The formulas for the coordinates ai and bi of a and b are given in Lemma 17, and
Lemma 18 can be used to determine �p (this characterisation of �p could also be deduced

from [35, Corollary 3.1]). Notably, by Lemma 17 we have aiai∗,bibi∗ ∈ [0,1). We can now

reformulate and prove Proposition 15.

Proposition 20. For any probability vector p on [d ], there exists a unique probability

vector p′ on [d ] with the same support as p such that for all i ∈ [d ], we have

ai(p) = (bi(p′)
)2 .

It is given by the formula, for all i ∈ [d ],

p ′
i =

√
ai(p)

1−√
ai(p)ai∗(p)

⎛
⎝∑

j∈[d]

√
aj (p)

1−√aj (p)aj ∗(p)

⎞
⎠

−1

.
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Proof of Proposition 20. For ease of notation, we set r ′
i = √

ai(p). Assume that p′ is
a probability vector such that bi(p′) = r ′

i for all i ∈ [d ]. By Lemma 17, (p ′
i)i∈[d] is the

probability vector proportional to
(
r ′
i/(1− r ′

ir
′
i∗)
)
i∈[d] and hence we have uniqueness. We

now prove existence. We set p ′
i = 2sr ′

i/(1− r ′
ir

′
i∗), where s is the normalisation constant

such that p′ is a probability vector. Now, setting

z = 2s +
d∑

j=1

(√
s2 +p ′

jp
′
j ∗ − s

)
, (65)

we only need to check that s = 2/Rz
p′(e,e). Indeed, if this is the case, Lemma 17 implies

that r ′
i = r z

i (p′) and Lemma 18 implies that z = �p′ . In view of (65) and the proof of Lemma

17, we only need to discard the possibility that s < xmin where xmin is the minimiser of

f (x ) := 2x +∑d
j=1

(√
x 2 +p ′

jp
′
j ∗ −x

)
. Our definitions for p ′

i and s imply that

r ′
i =
√

s2 +p ′
ip

′
i∗ − s

p ′
i∗

if p ′
i∗ > 0 and r ′

i = p ′
i

2s
if not. (66)

Because both expressions above are monotone in s, if s < xmin, one would have r ′
i > q

�′
p′

i (p′)

whenever p ′
i > 0 because r

�′
p′

i (p) is obtained by substituting s by xmin in (66) (here we

use the definition (62), which implies that �′
p′ = f (xmin), as well as Lemma 17). Because

�′
p′ ≤ �p′ , this also implies that r ′

i > r
�p′
i (p′) and thus that

d∑
i=1

(r ′
i )

2(1− (r ′
i∗)

2)

1− (r ′
ir

′
i∗)

2 > 1, (67)

which yields a contradiction to the definition of r ′
i .

5.4. Deducing mixing time from a bounding kernel

Our aim now is to work with the same stopping time and backbone walk as in Subsection

4.3 and use the information we have to approximate the transition matrix of the backbone

walk Qn = Pn,q where the probability vector q was defined below (51), with a power series

of Pn,p′ the transition matrix of the nearest neighbour random walk associated with p′
of Proposition 20. We further define Q ′

n to be the following truncated series (which

approximates a multiple of the resolvent of Pn,p′ at z = �p′):

Q ′
n := 1√

k

�logk�4∑
t=0

(
Pn,p′

�p′

)t

.

(The fact that �p′ is positive can be deduced from the expression (61) with a few simple
computations. It also follows from the forthcoming Lemma 25.)

Proposition 21. Given p a probability vector on [d ], there exists a real C = C (p) such

that for p′ given by Proposition 20, we have, for all x,y ∈ Vn ,

Qn(x,y) ≤ CQ ′
n(x,y).
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We postpone the proof of this proposition to Subsection 5.6 and deduce Theorem 1 out
of it. The proof includes a few technical lemmas whose proofs are postponed to the end

of this section.

Proof of Theorem 1. Our first step is to use the comparison above to obtain spectral

estimates for Qn . We cannot control directly the spectral gap but we can estimate the
contraction of functions with large variance. More precisely, given a matrix A of size n ×n
and 1 ≤ u ≤ √

n, we define

κu(A) :=
√

max
f :‖f ‖2≥ u√

n ‖f ‖1
〈Af ,Af 〉

〈f ,f 〉 . (68)

Note that κ1(A) is the operator norm of A and κ√
n(A) is the square root of the maximal

diagonal entry of A∗A. For general u, the scalar κu(A) can be thought of as a kind of

pseudonorm of A restricted to vectors that are localised in terms of their �2 over �1 ratio.
The function u �→ κu(A) can be thought of as a spectral analogu (for a matrix) of the

isoperimetric profile of a graph (if A is the adjacency matrix of a graph, the isoperimetric

profile is essentially obtained by restricting the maximum in (68) to functions f that are
indicator functions of a subset of vertices).

Lemma 22. Let A,B be two n ×n matrices such that B is a bistochastic matrix. Assume

that for some real c ≥ 0 and all x,y ∈ [n], we have |A(x,y)| ≤ cB(x,y), then for all

1 ≤ u ≤ √
n,

κu(A) ≤ cσ(B)+ c
u

, (69)

where σ(B) = ‖B|1I⊥‖2→2 is the singular radius of B .

From Proposition 21, we may apply Lemma 22 when A = Qn and B = αQ ′
n , with

α = k−1/2∑[logk ]4
t=0 �−t

p′ and c = Cα−1 for the constant C given by Proposition 21. In this

case, from the triangle inequality, we have

cσ(B) =
∥∥∥∥∥∥

C√
k

�logk�4∑
t=0

(P t
n,p′)|1I⊥
�t
p′

∥∥∥∥∥∥≤ C√
k

�logk�4∑
t=0

(
σn,p′(t)

�p′

)t

(70)

and, because �p′ > 0 (see forthcoming Lemma 25), for some adequate choice of C ′

c = C√
k

�logk�4∑
t=0

�−t
p′ ≤ eC ′(logk)4 .

We now bound (70). For that, we use the next proposition, which quantifies the

convergence of σp(t) to �p in (14).

Proposition 23. For any probability vector p and integer t ≥ 1, we have

�p ≤ σp(t) ≤ (t +1)2/t�p.
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From Proposition 23, we deduce that

�logk�4∑
t=0

(
σp′(t)
�p′

)t

≤ ((logk)4 +1)3.

Using Assumption (23) and Lemma 22, for any fixed k ≥ 5, for all n ≥ n0(k) sufficiently
large, we obtain

κu(Qn) ≤ (logk)13√
k

. (71)

Now we want to use this estimate to build an adapted time for the original walk Pn,p.
The idea is first to iterate Qn several times in order to contract the �2-norm below the

threshold u and then use the original transition matrix Pn,p to finish the job. For this

purpose, for a large integer k (we assume k > (logk)26) that will be conveniently fixed
later on, and for n ≥ 3, we set

an :=
⌊

logn
logk −26log logk

⌋
and bn := �log logn�.

We define T := bn + τan where (τs)s≥0 are the successive times of the backbone walk as
in Subsection 4.3. Our spectral estimate (71) implies that XT is close to equilibrium.

Lemma 24. For any fixed integer k ≥ 3, let an,bn be as above and T = bn + τan . If

Assumption (23) holds, then we have

lim
n→∞ max

x∈Vn
‖Px [XT ∈ ·]−πn‖TV = 0.

To show that

max
x∈Vn

Tmix
n,p (x,ε) ≤ (1+ δ)(logn)/h(p)

for n sufficiently large, we use Proposition 9 with t = tn and s = sn where

T = bn + τan , tn := �(1+ δ/2)(logn)/h(p)� and sn := �(δ/2)(logn)/h(p)�.
With this setup, the first term in (33) tends to zero according to Lemma 24. For the third

one we need to show that σn,p(sn) is bounded away from one. Because (30) holds for p′,
we have (cf. (56))

limsup
n→∞
s→∞

σn,p′(s) = �p′ < 1. (72)

Now because p and p′ have the same support, one can compare σn,p′(s) and σn,p′(s). More

precisely, applying [36, Lemma 13.22] to the operators Ps
p (P∗

p)
s and Ps

p′(P∗
p′)s yields for

every s and n

1−σn,p(s)2s

1−σn,p′(s)2s
≥ min

i∈[d]

(
pi

p ′
i

)2s

. (73)
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Hence, limsupn≥1 σn,p(s0) < 1 for some s0 and thus from (57) we get that

limsup
n→∞
s→∞

σn,p(s) < 1. (74)

It remains to show that

lim
n→∞P[τan > t − bn ] = 0.

From the law of large numbers and Lemma 14, for any δ > 0, we may choose an integer

k sufficiently large such that

lim
n→∞P

[
T ≤

(
1+ δ

4

)
an

logk
h(p)

]
= 1.

This concludes the proof of Theorem 1.

Proof of Lemma 22. The statement is an immediate consequence of the following

functional inequality valid for every f :√〈Af ,Af 〉 ≤ cσ(B)‖f ‖2 + c√
n

‖f ‖1. (75)

Because B is bistochastic, the constant functions are left-invariant by B and its transpose.
It follows that σ(B) is the operator norm of B projected on functions with zero sum. Now

given f , if |f | is the vector |f |(x ) := |f (x )| and |A| is the matrix |A|(x,y) := |A(x,y)|, we
have

〈Af ,Af 〉 ≤ 〈|A||f |,|A||f |〉 ≤ c2〈B |f |,B |f |〉.
The orthogonal projection of |f | on zero-sum functions is f (x ) := |f |(x )−‖f ‖1/n. We have

〈B |f |,B |f |〉 = ‖f ‖2
1/n +〈Bf ,Bf 〉 ≤ ‖f ‖2

1/n +σ(B)2‖f ‖2
2. (76)

We deduce (75) using the triangle inequality,
√

a2 + b2 ≤ |a|+ |b|.
Proof of Lemma 24. Recall that T = bn + τan . The distribution of XT can be written

as

Px [XT ∈ ·] = (Pbn
n,pQ

an
n )(x,·).

We first show that for any x ∈ Vn (recall that u = uk := e(logk)5),

‖Qan
n (x,·)−πn‖2 ≤ 2u√

n
. (77)

Because Qn is a contraction, we note that ‖Q t
n(x,·)−πn‖2 is nondecreasing in t . Moreover,

‖Q t+1
n (x,·)−πn‖2 = ‖Qn(Q t

n(x,·)−πn)‖2 ≤ max
(

κu(Q)‖Q t
n(x,·)−πn‖2,

2u√
n

)
,

where we have used that ‖Q t
n(x,·)−πn‖1 ≤ 2. Hence, an immediate induction yields for

all t ≥ 0,

‖Q t
n(x,·)−πn‖2 ≤ max

(
κu(Q)t,

2u√
n

)
.
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Thus, our bound (71) and our choice for an imply (77). To conclude the proof, we use

the usual �2 bound and combine it with (77). This gives

‖Pbn
n,pQ

an
n (x,·)−πn‖TV ≤

√
n

2
‖Pbn

n,pQ
an
n (x,·)−πn‖2 ≤

√
n

2
σp,n(bn)bn ‖Qan (x,·)

−πn‖2 ≤ σp,n(bn)bnu. (78)

Finally, we conclude by using (72) and that bn tends to infinity.

Remark 5.1 (Relaxation of our assumption concerning the spectral radius). As in

Remark 3.1, we denote by dim0(H ) the flat dimension of a vector space H of RVn and

we set �H
n,p to be the operator norm of Pn,p on the orthogonal of H . We may modify

Theorem 1 as follows: If (Hn) is a sequence of invariant vector spaces of Pn,p′ such that

limn �
Hn
n,p′ = �p′ and dim0(Hn) ≤ no(1) (that is, limn logdim0(Hn)/ logn = 0), then the

conclusion of Theorem 1 holds.
Indeed, in Lemma 22, if H is an invariant subspace of the bistochastic matrix B and

its transpose, then (69) can be improved to κu(A) ≤ c�H (B) + c
√

dim0(H )/u, where

�H (B) is the operator norm of B on the orthogonal of H . Recall that if PH is the
orthogonal projection onto H , then ‖PH g‖2 ≤ ‖g‖1

√
dim0(H )/n. Setting g = |f |−PH |f |,

we may thus replace the bound (76) by 〈B |f |,B |f |〉 ≤ ‖f ‖2
1 dim0(H )/n + 〈Bg,Bg〉 ≤

‖f ‖2
1 dim0(H )/n + �H (B)‖f ‖2

2. It gives the claimed improvement of (69). The rest of

the argument is essentially unchanged (the sequence bn has to be chosen so that
εn logn � bn � logn).

Remark 5.2 (More quantitative bound on the mixing time). A more quantitative upper
bound on Tmix

n (ε) can be obtained by choosing kn tending to infinity and using a more

quantitative version of Proposition 6 for anisotropic walks on trees. In the reversible case

(14), optimising all choices of parameters in our proof, we obtain a result of the form

Tmix
n,p (ε) ≤ logn

h(p)
+C (logn)2/3

provided that �n,p′ converges fast enough to �p′ as n goes to infinity (more specifically, we

require �n,p′ ≤ �p′ +C (logn)−1/3). Note that our correction term is larger than (logn)1/2,

and thus the proof developed in this section does not allow one to obtain the anisotropic
counterpart of Equations (38), (39), which allow one to describe more accurately the

profile of relaxation to equilibrium provided that some quantitative information about

the convergence (23) is given.

5.5. Proof of Proposition 23

We start with a general lemma on the spectral radius of the operator Pp and the
probability of transitions.

Lemma 25. Let G be a finitely generated group. For any probability vector p ∈ �2(G),

any integer t ≥ 1 and any x ∈ G, we have

‖Pt
pδx‖2 ≤ �t

p.
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Proof. We may assume x = e without loss of generality. Because Pt
p is the generator of

a random walk with spectral radius �t
p, we may also assume that t = 1. We have that

‖Ppδe‖2 ≤ σp(1) = ‖Pp‖2→2. If the reversibility condition (14) holds, then σp(1) = �p and
the lemma follows. In the general case, we use the group structure to obtain the required

bound. We first write that for any integer k ≥ 1,

‖Ppδe‖2k
2 =

(∑
x∈G

Pp(e,x )2

)k

=
∑

x1,...,xk

(
Pp(e,x1) · · ·Pp(e,xk )

)2 .

Using that Pp(xg,yg) = Pp(x,y) for all x,y,g in G, we may write

Pp(e,x1) · · ·Pp(e,xk ) = Pp(e,x1)Pp(x1,x2x1) · · ·Pp(xk−1 · · ·x1,xk · · ·x1),

and

∑
x∈G

(
Pk
p (e,x )

)2 =
∑
x

⎛
⎝ ∑

x1,...,xk−1

Pp(e,x1)Pp(x1,x2x1) · · ·Pp(xk−1 · · ·x1,x )

⎞
⎠

2

≥
∑
x

∑
x1,...,xk−1

(
Pp(e,x1)Pp(x1,x2x1) · · ·Pp(xk−1 · · ·x1,x )

)2
=
∑

x1,...,xk

(
Pp(e,x1)Pp(x1,x2x1) · · ·Pp(xk−1 · · ·x1,xk · · ·x1)

)2 .

We deduce that

‖Ppδe‖2k
2 ≤ ‖Pk

p δe‖2
2 ≤ σp(k)2.

We now let k tend to infinity and apply (17).

Proposition 23 is now an immediate consequence of the RD property (29) for the free
group.

Proof of Proposition 23. Haagerup’s inequality (that is, RD property for free groups)

implies that for any t ≥ 0,

σp(t)t = ‖Pt
p‖2→2 ≤ (t +1)2‖Pt

pδe‖2;
see [27, Lemma 1.4] (the proof is written in the case of the free group, denoted by Gd,0

free

with our notation, but also applies to Gq1,q2
free with q1 +2q2 = d). It remains to use Lemma

25.

5.6. Proof of Proposition 21

The matrices Qn and Pn,p′ are both defined as the transition kernel corresponding to

projections of Markov chains on the group G on Vn . From (26)–(28), if q is a finitely

supported probability vector on G, for all x,y in Vn ,

Pn,q(x,y) =
∑
g∈G

Pq(e,g)1I(ϕn(g,x ) = y),
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where ϕn is the action of G on Vn . It is thus sufficient to prove the inequality for the
corresponding kernels Q (as in (51)) and Pp′ on G; that is,

∀x ∈ G, Q(e,x ) ≤ C√
k

�logk�4∑
t=0

(Pp′

�p′

)t

(e,x ). (79)

Because Q(e,x ) = 0 for all x /∈ ∂U , it is sufficient to check (79) for x ∈ ∂U . By Lemma

16, if z ≥ �p and x = giy for some gi ∈ A, then Rz (e,x ) ≥ cRz (e,y) for some positive
c = c(p,z ). Because R1(e,y) ≥ 1/k for all y ∈ U , we find for all x ∈ ∂U ,

Q(e,x ) ≤ 1
k

≤ C√
k

√
R1

p(e,x ),

with C = 1/
√

c. Thus, from Proposition 15, for some new constant C = C (p), for all

x ∈ ∂U ,

Q(e,x ) ≤ C√
k
R�p′

p′ (e,x ).

To deduce (79) from this last bound, we expand the resolvent as a power series. It requires
some care because, when the reversibility condition (14) holds, z = �p′ is precisely the

threshold �′
p for convergence of the power series (61).

With the notation of Lemma 16, for any p and i ∈ [d ], the function z �→ γ z
i is decreasing

in z ≥ �p. Moreover, by Lemma 17, using the strict convexity of the function f there, we
have for all z ≥ �p, γ

�p
i −γ z

i ≤ C
√

z −�p for some C = C (p) (the inequality is even valid

without square root when �p < �′
p for an adequate choice of constant). By Lemma 16, it

follows that for some new C = C (p) for all x ∈ G,

|R�p
p (e,x )−Rz

p(e,x )| ≤ C (|x |+1)
√

z −�pR
�p
p (e,x ),

where |x | is the distance of x to e in the tree Td and where we have used the telescopic

sum decomposition (with the convention that a product over an empty set is one)

k∏
i=1

ai −
k∏

i=1

bi =
k∑

j=1

(j−1∏
i=1

ai

)
(bj −aj )

⎛
⎝ k∏

i=j+1

bi

⎞
⎠ .

By Lemma 13, the diameter of ∂U being at most C logk , we find that for all x ∈ ∂U ,

R�p
p (e,x ) ≤ 2Rz

p(e,x ) provided that 0 ≤ z − �p ≤ c(logk)−2 for some positive constant

c = c(p) > 0. We now fix z = �p′ + c(p′)(logk)−2. From what precedes, for all x ∈ ∂U ,

R�p′
p′ (e,x ) ≤ 2Rz

p′(e,x ) = 2
z

∞∑
t=0

(Pp′

z

)t

(e,x ).

By Lemma 25, we have Pt
p′(e,x ) ≤ �t

p′ and, for some new constant C = C (p′), for any
s ≥ 0,

∞∑
t=s

(Pp′

z

)t

(e,x ) ≤ C (logk)2e
− s

C (logk)2 .
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We now recall that by Proposition 15, for all x ∈ ∂U , Rz
p′(e,x ) ≥ R�p′

p′ (e,x )/2 ≥ c/
√

k . It
follows that if s = �C ′ logk�3 for some large enough constant C ′, we have

1
z

∞∑
t=s

(Pp′

z

)t

(e,x ) ≤ 1
2
Rz

p′(e,x ).

Consequently, for this value of s,

Rz
p′(e,x ) ≤ 2

z

s∑
t=0

(Pp′

z

)t

(e,x ) ≤ 2
�p′

s∑
t=0

(Pp′

�p′

)t

(e,x ).

This concludes the proof of (79).

6. Random walks covered by a colored group

6.1. Minimal mixing time for color covered random walks

We now present a last extension of our results. As in the setting of Theorem 5, we assume

that for a finitely generated nonamenable group G we have a sequence of finite sets (Vn)

with #Vn = n and (ϕn) a sequence of actions of G on Vn . Let r ≥ 1 be an integer. We
think of [r ] = {1, . . . ,r} as a set of colors. An element p ∈ Mr (R)G is written as a matrix-

valued vector p= (pg)g∈G with pg ∈ Mr (R). The support of p is then the subset of G such

that pg is not the null matrix. We consider p ∈ Mr (R)G with finite support such that

P1,p :=
∑
g∈G

pg

is an irreducible stochastic matrix on [r ] with invariant probability measure μ. Then, we
denote by Pp the operator on �2(G× [r ]) defined by

Pp =
∑
g∈G

pg ⊗λ(g), (80)

where λ(g) is as in (28) and ⊗ is the tensor product. In probabilistic terms, Pp is the

transition kernel of a random walk (Xt ) on G × [r ] where the probability to jump from

(g,u) to (h,v) is phg−1(u,v). We denote by �p the spectral radius of Pp and by h(p) the
entropy rate of Pp defined by the following: For any u0 ∈ [r ],

h(p) = lim
t→∞−1

t

∑
(g,u)∈G×[r ]

Pt
p((e,u0),(g,u)) logPt

p((e,u0),(g,u)).

The fact that h(p) does not depend on u0 is an easy consequence of the assumption that

P1,p is irreducible. Again, if G is nonamenable and �p < 1 holds, then h(p) > 0. Besides,
the proof of the Shannon-McMillan-Breiman theorem in [31, Theorem 2.1] actually proves
that if X0 = (e,u0), almost surely.

h(p) = lim
t→∞− logPt

p((e,u0),Xt )

t
. (81)
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With (Sg)g∈G as in (26), we define the stochastic matrix on R
Vn×[r ]

Pn,p =
∑
g∈G

pg ⊗Sg . (82)

This matrix is the transition kernel of a Markov chain on Vn × [r ] covered by (Xt ) in

the sense that if we define for (g,u) ∈ G × [r ] and x ∈ Vn , ϕ̄n((g,u),x ) := (ϕn(g,x ),u),

then Xt := ϕ̄n(Xt,x ) is a Markov chain with transition matrix Pn,p started at (x,u0). The
measure πn(x,u) = μ(u)/n is an invariant probability of Pn,p. Moreover, because (81)

holds, the proof of Proposition 6 actually implies that the mixing time of Xt , Tmix
n,p (x,ε),

for any fixed ε ∈ (0,1) and uniformly in x ∈ Vn , satisfies the lower bound (22).
This setting allows considering a random walk on the n-lift of a base graph. More

precisely, let G1 be a finite simple connected graph with d/2 undirected edges on the

vertex set [r ]. We consider the free group Gfree with d/2 generators and their d/2
inverses (g1, . . . ,gd ); that is, g−1

i = gi∗ for some involution on [d ] without fixed point.

Each generator gi is associated to a directed edge (ui,vi) of G1 and g−1
i = (vi,ui) is the

inverse directed edge. We consider the action of Gfree on [n] defined by ϕn(gi,x ) = σi(x )

where (σ1, . . . ,σd ) are permutation matrices such that σ−1
i = σi∗ . Then, if Ek,� ∈ Mr (R) is

the canonical matrix defined by Ek,�(i,j ) = 1I{(k,�)=(i,j )}, then the graph Gn with vertex set

[n]× [r ] and adjacency matrix
∑

i Eui ,vi ⊗Si is a simple graph that is called an n-lift (or
an n-covering) of G1: The [n]× [r ] → [r ] map ψ(x,u) = u is n to 1 and, for any (x,u), the
image by ψ of the adjacent vertices of (x,u) in Gn coincides with the adjacent vertices of

ψ(x,u) in G1. If du is the degree of the vertex u in G1 and pgi = Eui,vi /dui , then P1,p and

Pn,p are the transition matrices of the simple random walks on G1 and Gn respectively.
We are ready to state the analogue of Theorem 5.

Theorem 26. Let G be a finitely generated nonamenable group with the property RD,
(Vn) a sequence of finite sets with #Vn = n and (ϕn) a sequence of actions of G on Vn

that converge strongly. For any integer r ≥ 1 and any finitely supported p ∈ Mr (R)G such

that �p < 1 and P1,p is an irreducible aperiodic Markov chain, the mixing time of the
random walk with transition matrix Pn,p satisfies, for every ε ∈ (0,1),

lim
n→∞

Tmix
n,p (ε)

logn
= 1

h(p)
.

Note that in the above statement the RD property and the strong convergence
property are defined in terms of scalar-valued vectors p ∈ �2(G). From [15], an example

of application of Theorem 26 is the random walk on a random n-lift of a weighted base

graph such that P1,p is irreducible and aperiodic (see [19] for a recent alternative and
independent proof of this case).

6.2. Proof of Theorem 26

We let (Xt ) be the random walk with kernel Pp started from X0 = (e,u0). For (g,u) ∈G× [r ]
and x ∈ Vn , we set ϕ̄n((g,u),x ) = (ϕn(g,x ),u) and let Xt := ϕ̄n(Xt,x ) be a Markov chain

with transition matrix Pn,p started at (x,u0). We adapt the arguments of Section 4 to

our matrix-valued context.
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6.2.1. Relative spectral radius, strong convergence and RD property. Let
q= (qg) ∈Mr (R)G with finite support. We define �2(μ) as the Hilbert space on R

r endowed

with the scalar product 〈f ,g〉μ =∑i μ(i)f̄ (i)g(i). Similarly, �2
n(μ) and �2

G(μ) are the

Hilbert spaces on the vector spaces RVn×[r ] and R
G×[r ] endowed with the scalar products

〈f ,g〉μ =
∑

(x,i)∈X×[r ]

μ(i)f̄ (x,i)g(x,i),

with X = Vn and X =G respectively. We note that the subspace of RVn×[r ]: Hr =R
r ⊗1 of

vectors f of the form for some g ∈R
r , f (x,i) = g(i) is an invariant subspace of dimension

r for Pn,q and its adjoint in �2
n(μ). Hence, Pn,q admits a direct sum decomposition on

Hr ⊕H ⊥
r . We note also that the restriction of Pn,q to Hr coincides with P1,q. We define

the relative singular radius as the following operator norm:

σ̄n,q := ‖(Pn,q)|H⊥
r

‖�2n (μ)→�2n (μ). (83)

From [40, p. 256] (see also [43]), if (ϕn) converges strongly, then we have

lim
n→∞ σ̄n,q = σq, (84)

where σq := ‖Pq‖�2G (μ)→�2G (μ).

In addition, let Eij ∈ Mr (R) be the canonical matrix with all entries zero but entry (i,j )
equal to 1. The �2(μ) → �2(μ) operator norm of Eij is

√
μ(i)/μ(j ). Because �q coincides

with the �2
G(μ) → �2

G(μ) operator norm, from the triangle inequality we have

σq =
∥∥∥∥∥∥
∑

i,j∈[r ]2

∑
g∈G

qg(i,j )Eij ⊗λ(g)

∥∥∥∥∥∥
�2G (μ)→�2G (μ)

≤
∑

(i,j )∈[r ]2

√
μ(i)
μ(j )

σq(i,j ),

where q(i,j ) = (qg(i,j )) ∈R
G and σq(i,j ) is the singular radius of Pq(i,j ) in �2(G). It follows

that if G has the RD property and R is the diameter of the support of q (in the Cayley
graph associated to any symmetric generating setA), then, for some constant C (G,A) > 0,

σq ≤ CRC
∑

(i,j )∈[r ]2

√
μ(i)
μ(j )

√∑
g∈G

qg(i,j )2 ≤ Cr2RC
√∑

g∈G
‖qg‖2

�2(μ)→�2(μ)
, (85)

where we have used that
√

μ(i)/μ(j )|qg(i,j )| = ‖qg(i,j )Eij ‖�2(μ)→�2(μ) ≤ ‖qg‖�2(μ)→�2(μ).

6.2.2. Skeleton Walk. We now adapt the argument of Subsection 4.3. We let Rp =
(IG×[r ] −Pp)

−1 be the Green’s operator associated with Pp. For g,h ∈ G, we denote by
Rp(g,h) ∈ Mr (R) the matrix whose entry (i,j ) is Rp((g,i),(h,j )). For g ∈ G, we define

u(g) ∈ Mr (R) as the matrix

u(g) := Rp(e,g) =
∞∑
t=0

Pt
p(e,g),
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where Pt
p(g,h) ∈ Mr (R) has entry (i,j ) equal to Pt

p((g,i),(h,j )). Given k ≥ 1, we define

the set

U := {g ∈ G : ‖u(g)‖�2(μ)→�2(μ) ≥ 1/k
}
. (86)

The backbone walk is the induced walk on the successive exit times from U : τ0 := 0,
τ1 = τ and, for integer s ≥ 1, τs+1 := inf{t ≥ τk : XtX−1

τs /∈ U }. We define Q = Pq as the
transition kernel of the random walk Xτm .

From (81) and �p < 1, the proofs and statements of Proposition 13 and Lemma 14

continue to hold in our new setting (in (52), we replace qg ≤ 1/k by ‖qg‖�2(μ)→�2(μ) ≤ 1/k).

6.2.3. Deducing mixing time from the RD property and the strong conver-
gence. We may now conclude the proof of Theorem 26 by adapting the content of

Subsection 4.4.

Proof of Theorem 26. We fix ε ∈ (0,1), δ > 0 and (x,u0) ∈ Vn × [r ] and prove that for
n sufficiently large,

Tmix
n,p ((x,u0),ε) ≤ (1+ δ) logn/h(p).

Let (τm) and U be as above for some large k to be chosen. We set m := �(1 +
δ/4)(logn)/ logk�.
For integer s ≥ 1, the relative sth singular radius is

σ̄n,p(s) := ‖(P s
n,p)|H⊥

r
‖1/s

�2n (μ)→�2n (μ)
and σp(s) := ‖Ps

p‖1/s
�2G (μ)→�2G (μ)

.

From (84), for all s ≥ 1, limn σ̄n,p(s) = σp(s) < 1. Because �p < 1 and lims→∞ σp(s) = �p,

we deduce that for all s ≥ s0 large enough and all n ≤ n0 large enough, σn,p(s) ≤ 1−δ0 for
some δ0 > 0 (we argue as below (57)). Moreover, because P1,p is irreducible and aperiodic,

we have that σ1,p < 1. We deduce that for δ = min(δ0,1−σ1,p) > 0, for all s ≥ s0 and all

n ≥ n0,

σn,p(s) = ‖(P s
n,p)|1I⊥‖1/s

�2n (μ)→�2n (μ)
= max(σ̄n,p(s),σ1,p(s)) ≤ 1− δ. (87)

We use Proposition 9 for the walk Xt = ϕ̄n(Xt,x ) with

T = τm + s, t = �(1+ δ) logn/h−2log logn� and s = �log logn�.
For our choice of s, it follows from (87) that the third term in (33) is smaller than ε/3.

It remains to prove that for n sufficiently large,

P[τm > t ] ≤ ε/3 and ‖P s
n,pQ

m
n ((x,u0),·)−πn‖TV ≤ ε/3, (88)

where Qn = Pn,q is the Markov chain of the induced walk Xτm = ϕ̄n(Xτm ,x ) on Vn × [r ].
For the first inequality of (88), we choose k(δ) sufficiently large and it is a consequence
of Lemma 14 and the law of large numbers.

The second inequality of (88) is obtained using spectral estimates for Qn = Pn,q. The

Cauchy-Schwarz inequality gives

‖P s
n,pQ

m
n ((x,u0),·)−πn‖TV ≤ C0

√
n‖Qm

n P s
n,pf ‖�2n (μ), (89)
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with C0 = √
r/mini μ(i) and f (y,v) = δ(x,u0)(y,v)/μ(v)−1/n. Let �H be the orthogonal

projection in �2
n(μ) onto a vector space H . We find

‖Qm
n P s

n,pf ‖�2n (μ) ≤ ‖Qm
n P s

n,p�Hr f ‖�2n (μ) +‖Qm
n P s

n,p�H⊥
r
f ‖�2n (μ). (90)

We now compute a spectral bound of the two terms on the right-hand side of (90). We

first observe that ‖f ‖�2n (μ) ≤ 1 and ‖�Hr f ‖�2n (μ) ≤ C /
√

n with C = 1/
√

mini μ(i). Because
〈f ,1I〉μ = 0, we find from (87) and the fact that Qn is a contraction in �2

n(μ),

‖Qm
n P s

n,p�Hr f ‖�2n (μ) ≤ ‖P s
n,p�Hr f ‖�2n (μ) ≤ C√

n
σn,p(s)s ≤ C√

n
(1− δ)s . (91)

We now give a bound of the second term on the right-hand side of (90). From (85) and

Proposition 13, we have for some constant C

σq ≤ Ck−1/2(logk)C .

From (84) we deduce that for all n large enough,

σ̄n,q ≤ 2Ck−1/2(logk)C .

Because ‖f ‖�2n (μ) ≤ 1, P s
n,p�H⊥

r
= �H⊥

r
P s

n,p and Pn,p is a contraction in �2
n(μ), we deduce

that

‖Qm
n P s

n,p�H⊥
r
f ‖�2n (μ) ≤ σ̄m

n,q‖f ‖�2n (μ) ≤ 2Ck−1/2(logk)C . (92)

Equation (89) together with (90), (91) and (92) guarantees that Xτm+s is close to
equilibrium in total variation. This concludes the proof of (88).

7. Appendix A. Proof of Lemma 19

Let us consider A the set of finite words in the alphabet [d ], B the set of words without

repetition in [d ] and, for a fixed involution ∗ on [d ], C the set of finite words in which the

patterns ii∗ and i∗i do not appear.

Given α = (αi)
d
i=1 a set of nonnegative numbers in [0,1)d , we define the function

Fα(i1.. . . .it ) = αi1 · · ·αit . We have immediately∑
A

Fα(i) < ∞ ⇔
∑
[d]

αi < 1. (93)

Now a word i ∈ A can be encoded by a word j ∈ B and and a sequence (nt )
|j|
t=1 that

counts how many time each letter is repeated. For this reason we have, given β = (βi )
d
i=1,∑

AFβ(i) =∑B Fβ ′(i), where β ′
i =∑n≥1 βn

i = βi/(1−βi ). Hence, taking βi = αi/(1+αi ),

we obtain ∑
B

Fα(i) < ∞ ⇔
∑
[d]

αi

1+αi
< 1. (94)

Finally, to encode a word in i ∈ C, we first consider a finite word j without repetition

in [d ′] where d ′ is the number of conjugation classes for ∗. Let B′ be the set of such

words j. Then, to encode i, we have to replace each of the letters of j by a pattern. If the
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conjugation class j ∈ [d ′] is a single element {i} in [d ], there is only one possible pattern,

which is i . We thus define the weight of j as γj := αi . Otherwise, the conjugation class
j ∈ [d ′] is a pair {i,i∗}. Then the possible patterns are (i∗)n and in , with n ≥ 1. This gives
a total weight γj := αi/(1−αi )+αi∗/(1−αi∗). We thus have

∑
i∈C Fα(i) =∑j∈B′ Fγ (j). In

particular, the sum is finite if and only if

∑
j∈[d ′]

γj

1+γj
=
∑
i∈[d]

(
αi

1+αi
1{i=i∗} + 1

2
αi (1−αi)

−1 +αi∗(1−αi∗)−1

1+αi (1−αi)−1 +αi∗(1−αi∗)−1 1{i �=i∗}
)

< 1. (95)

This is the required statement.
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[26] R. I. Grigorchuk and A. Żuk, On the asymptotic spectrum of random walks on infinite

families of graphs, in Random Walks and Discrete Potential Theory (Cortona, 1997), pp.
188–204 (Cambridge University Press, Cambridge, 1999).

[27] U. Haagerup, An example of a nonnuclear C ∗-algebra, which has the metric approxima-
tion property, Invent. Math. 50(3) (1978/79), 279–293.

[28] U. Haagerup and F. Larsen, Brown’s spectral distribution measure for R-diagonal
elements in finite von Neumann algebras, J. Funct. Anal. 176(2) (2000), 331–367.

[29] J. Hermon, Cutoff for Ramanujan graphs via degree inflation, Electron. Commun. Probab.
22 (2017), 45.

[30] J. Hermon, A technical report on hitting times, mixing and cutoff, ALEA Lat. Am. J.
Probab. Math. Stat. 15(1) (2018), 101–120.

[31] V. A. Ka anovich and A. M. Vershik, Random walks on discrete groups: boundary
and entropy, Ann. Probab. 11(3) (1983), 457–490.

[32] H. Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146–
156.

[33] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959),
336–354.

[34] F. Ledrappier, Some asymptotic properties of random walks on free groups, in Topics in
Probability and Lie Groups: Boundary Theory, Vol. 28 of CRM Proceedings and Lecture
Notes, pp. 117–152 (American Mathematical Society, Providence, RI, 2001).

[35] F. Lehner, On the computation of spectra in free probability, J. Funct. Anal. 183(2)
(2001), 451–471.

[36] D. A. Levin, Y. Peres and E. L. Wilmer, Markov Chains and Mixing Times (American
Mathematical Society, Providence, RI, 2017). Second edition of Markov Chains and Mixing
Times (2017) Second Edition, With a chapter on “Coupling from the past” by James G.
Propp and David B. Wilson.

[37] L. Lovász and M. D. Plummer,Matching Theory (AMS Chelsea Publishing, Providence,
RI, 2009).

https://doi.org/10.1017/S1474748020000663 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000663


1616 C. Bordenave and H. Lacoin

[38] E. Lubetzky and Y. Peres, Cutoff on all Ramanujan graphs, Geom. Funct. Anal. 26(4)
(2016), 1190–1216.

[39] E. Lubetzky and A. Sly, Cutoff phenomena for random walks on random regular graphs,
Duke Math. J. 153(3) (2010), 475–510.

[40] J. A. Mingo and R. Speicher, Free Probability and Random Matrices, Vol. 35 of Fields
Institute Monographs (Springer, New York, 2017).

[41] B. Mohar, A strengthening and a multipartite generalisation of the Alon-Boppana-Serre
theorem, Proc. Amer. Math. Soc. 138(11) (2010), 3899–3909.
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