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An investigation of optimal feedback controllers’ performance and robustness is
carried out for vortex shedding behind a two-dimensional cylinder at low Reynolds
numbers. To facilitate controller design, we present an efficient modelling approach in
which we utilise the resolvent operator to recast the linearised Navier–Stokes equations
into an input–output form from which frequency responses can be computed. The
difficulty of applying modern control design techniques to high-dimensional flow
systems is overcome by using low-order models identified from frequency responses.
These low-order models are used to design optimal controllers using H∞ loop shaping.
Two distinct single-input single-output control arrangements are considered. In the first
arrangement, a velocity sensor located in the wake drives a pair of body forces near
the cylinder. Complete suppression of shedding is observed up to Re=110. Due to the
convective nature of vortex shedding and the corresponding time delays, we observe
a fundamental trade-off: the sensor should be close enough to the cylinder to avoid
excessive time lag, but it should be kept sufficiently far from the cylinder to measure
unstable modes developing downstream. These two conflicting requirements become
more difficult to satisfy for larger Reynolds numbers. In the second arrangement, we
consider a practical set-up with an actuator that oscillates the cylinder according to
the lift measurement. The system is stabilised up to Re = 100, and we demonstrate
why the performance of the resulting feedback controllers deteriorates more rapidly
with increasing Reynolds number. The challenges of designing robust controllers for
each control set-up are also analysed and discussed.

Key words: vortex shedding, vortex instability

1. Introduction
In the last few decades, the control of fluid dynamics has received considerable

attention from researchers and engineers. Indeed, the ability to manipulate fluid flows
can be of tremendous benefit in a number of applications. A typical example is
the flow past a circular cylinder which becomes unstable above a critical Reynolds
number near 47 and results in vortex shedding (Jackson 1987; Provansal, Mathis &
Boyer 1987; Zebib 1987; Dušek, Le Gal & Fraunié 1994). This gives rise to strong
force fluctuations which are responsible for structural vibrations, acoustic noise and
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resonance (Williamson 1996). Much research has been conducted on the suppression
of vortex shedding using either passive strategies (without additional energy input) or
active strategies (with an external energy source), as summarised by Choi, Jeon &
Kim (2008).

1.1. Feedback control and model reduction
Closed-loop control, where actuators operate actively according to real-time measure-
ments of the flow field, is a robust and energetically efficient way to control fluid
flows. In some studies, feedback control has been applied without knowledge of
the flow dynamics. Simple proportional feedback laws were designed by trial
and error to eliminate vortex shedding in various control arrangements, such as
loudspeakers (Roussopoulos 1993), blowing/suction slots (Park, Ladd & Hendricks
1994; Gunzburger & Lee 1996) and small rotary control cylinders (Muddada &
Patnaik 2010). Zhang, Cheng & Zhou (2004) developed a proportional–integral–
derivative controller to suppress vortex-induced vibration on a spring-supported
cylinder. A further investigation of proportional, proportional–derivative, proportional–
integral and proportional–integral–derivative feedback control was carried out (see
Son, Jeon & Choi 2011; Son & Choi 2018) to compare and optimise control laws
for suppression of vortex shedding. The parameters in these control laws were chosen
based on either a brute-force approach or physical intuition.

Although these studies have met with some success, they are not model-based.
There exists a large set of well-developed and powerful control design tools providing
efficient and robust methods for model-based control design. However, due to the
nonlinearity and high dimensionality of the Navier–Stokes equations, they are in
general computationally intractable to apply directly to fluid flows. This difficulty can
be bypassed by means of flow linearisation (Kim & Bewley 2007; Sipp et al. 2010)
and model reduction (Rowley & Dawson 2017; Taira et al. 2017), where important
features of fluid flows are approximated by low-order linear models.

A number of techniques have been developed to approximate flow dynamics by
reduced-order models (ROMs) for the purpose of control design, such as proper
orthogonal decomposition (POD), balanced POD, Eigensystem Realisation Algorithm
(ERA), etc. One of the earliest studies is that of Aubry et al. (1988), who
approximated important features of the boundary layer by a low-dimensional nonlinear
model based on POD. The method has shown its effectiveness in later research for
flow control problems, such as cylinder wake (Gillies 1998; Singh et al. 2001) and
channel flow (Ilak & Rowley 2008).

Much recent work on flow control has focused on linear input–output formulations
of flow systems (Bagheri et al. 2009). Using this approach, the governing equations
are projected onto the most controllable and observable modes to capture important
input–output dynamics. These modes can be generated by either balanced POD
(Rowley 2005) or the ERA (Juang & Pappa 1985). These methods were originally
designed for stable systems of large dimension and were subsequently extended to
unstable systems either by a state-projection method (Ahuja & Rowley 2010) or
by limiting the simulation time (Flinois & Morgans 2016). A detailed comparison
between these methods was presented by Ma, Ahuja & Rowley (2011) using the
example of the flow past an inclined flat plate. Without using any adjoint information,
the ERA produced the same ROMs as those given by balanced POD, which allows its
direct application to flow systems using only simulation or experimental data (Belson
et al. 2013; Illingworth 2016; Yao & Jaiman 2017a,b). A stochastic modelling
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approach was also presented for three-dimensional bluff body wakes and the model
was used in the design of a feedback controller which reduced the drag on a bluff
body (Brackston et al. 2016; Brackston, Wynn & Morrison 2018).

The accuracy of these snapshot-based truncation methods is generally dependent
on the time interval chosen and the final time of simulation or experimental data.
Recently, model reduction based on resolvent analysis has shown good potential. The
method has been applied to efficiently identify physical flow structures in a broad
range of nonlinear flows, such as cavity flow (Gómez et al. 2016), flat-plate boundary
layer flow (Sipp & Marquet 2013), pipe flow (McKeon & Sharma 2010) and flow
past a cylinder (Symon et al. 2018). The method allows direct formulation of the flow
system in the frequency domain. There is no special treatment required for unstable
systems and no restriction on the frequency range over which the linear dynamics can
be captured.

Some recent studies have demonstrated a significant influence of actuator–sensor
choice and placement on the performance and robustness of feedback controllers.
In a two-dimensional Blasius boundary layer, the type and relative position of the
sensor and the actuator have been shown to be crucial to the controller’s performance
(Belson et al. 2013). Some early works indicated that any sensors should be placed
based on the unstable global modes, and that any actuators should be placed based on
the corresponding adjoint modes (Åkervik et al. 2007; Bagheri et al. 2009). Previous
work conducted by Giannetti & Luchini (2007) introduced a region that describes the
overlap between eigenmodes and adjoint eigenmodes known as the wavemaker region.
Placing both the actuator and sensor in this region of the flow resulted in closed-loop
control performance that was almost optimal (Chen & Rowley 2011). However, the
wavemaker region does not represent the optimal location for actuators or sensors
for the Ginzburg–Landau system (Chen & Rowley 2011; Oehler & Illingworth 2018).
Indeed Oehler & Illingworth (2018) found that the wavemaker region has no special
significance for the placement of actuators and sensors. They investigated optimal
actuator–sensor placement for the one-dimensional complex Ginzburg–Landau system
and found that, with increasing instability, the optimal actuator or sensor location
moves further away from that predicted by the wavemaker region.

1.2. This article
The current work uses an efficient modelling approach with an input–output
formulation based on resolvent analysis (Sipp & Marquet 2013). This allows one
to directly obtain frequency responses for a broad range of control configurations.
The MATLAB package VECTFIT (Gustavsen 2013) is used to fit ROMs to these
frequency responses. The H∞ loop shaping method (Glover & McFarlane 1989) is
employed to design optimal feedback controllers and also provides a stability margin
which serves as an indicator of the control performance achieved. We demonstrate
the effectiveness of the method for the feedback control of the instabilities that lead
to vortex shedding for the flow past a two-dimensional circular cylinder.

Another contribution of this work is to analyse the effect of different control
configurations on control performance and robustness. We shall see that in-flow
actuator and sensor outperforms the body-mounted set-up. A further investigation
of optimal in-flow sensor placement in a two-dimensional flow allows us to
observe a fundamental trade-off which is consistent with the conclusions of Belson
et al. (2013) and Oehler & Illingworth (2018). We show that the deterioration of
the control performance in a bluff body flow also has a variety of root causes
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(Hoagg & Bernstein 2007). By examining different sensor positions for a range
of Reynolds numbers, we demonstrate how these roots affect the performance of
controllers as well as possible physical mechanisms behind them.

The article starts with the definition of the flow and control configurations in § 2.
In § 3, we form ROMs using an input–output framework and explain the numerical
set-ups and control design techniques. The results and analysis of the in-flow and
body-mounted control set-ups are presented in §§ 4 and 5, respectively. Conclusions
are given in § 6.

2. Problem formulation
The objective of feedback control is to completely suppress vortex shedding

behind a two-dimensional circular cylinder. In other words, we attempt to drive the
flow towards its unstable steady state (base flow), around which the Navier–Stokes
equations are linearised. The governing equations are the incompressible Navier–
Stokes equations with external forcing:

∂u
∂t
+ u · ∇u=−∇p+ ν∇2u+ f ′, ∇ · u= 0, (2.1a,b)

where the source term f ′ = [ fx
′ fy

′
]

T in the momentum equation models the external
forcing which is assumed to have zero mean. To investigate the instability of the
cylinder flow near its steady state, we perform an input–output analysis by linearising
about the laminar base flow (U, P):

∂u′

∂t
+U · ∇u′ + u′ · ∇U=−∇p′ + ν∇2u′ + f ′, ∇ · u′ = 0. (2.2a,b)

Here, (u′, p′) represents the unsteady components of velocity and pressure which are
assumed to be small perturbations about the steady state and ν is the kinematic
viscosity. The Reynolds number is defined as Re = U∞D/ν, where U∞ is the
free-stream velocity and D is the diameter of the cylinder. The range of Reynolds
numbers considered is Re∈ [50, 110] and all lengths are non-dimensionalised by D. At
these Reynolds numbers the cylinder wake has a single linearly unstable mode which
drives the flow to periodic self-sustained limit-cycle oscillations (vortex shedding).
The controllers we design aim to keep perturbations small, and so the nonlinear term
u′ · ∇u′ can be neglected. This formulation allows us to use existing linear control
theory and analysis techniques.

In-flow and body-mounted sensors and actuators are used and compared. We
choose two simple set-ups as representatives of in-flow and body-mounted control
arrangements and figure 1 shows a schematic of them.

2.1. In-flow control set-up
In the first control set-up, the momentum equation (2.2) is forced by a pair of
antisymmetric body forces f ′ that serve as an in-flow actuator:

f ′ =B(x, y)[u(t)+w(t)], (2.3)

where u(t) is the actuator signal provided by a transverse velocity sensor positioned
a distance d downstream of the cylinder, w(t) is a disturbance from the actuator and
B(x, y) is the spatial distribution of the actuator and disturbance. More specifically,

B=
[

cos θ(S(A, σ , r, θ)− S(A, σ , r,−θ))
sin θ(S(A, σ , r, θ)+ S(A, σ , r,−θ)),

]
, (2.4)
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FIGURE 1. (a) A pair of body forces f ′ applied near the cylinder surface cooperates with
a velocity sensor placed on the centreline at a distance d from the centre of the cylinder.
(b) The force sensor is placed on the cylinder to measure the lift l′ which is fed to the
actuator that controls the transverse acceleration a of the cylinder.

where

S(A, σ , r, θ)=
A

2πσ 2
exp

(
−
(x− r cos θ)2 + (y− r sin θ)2

2σ 2

)
, (2.5)

where the magnitude is A = 1.0 and the standard deviation σ = 0.1. The centres of
the above distributions are near the separation points at a distance of r= 0.6 from the
cylinder’s centre and an angle of θ =±70◦ from the cylinder’s downstream-pointing
horizontal. We fix the form and the location of the actuator and vary only the sensor
position along the centreline to investigate the influence of sensor placement. This
arrangement is similar to that used by Illingworth (2016).

2.2. Body-mounted control set-up
The second control set-up considered uses a body-mounted actuator and a body-
mounted sensor. Similar to a fluid–structure interaction system, we consider an
oscillatory cylinder whose transverse acceleration a is controlled according to the
feedback signal provided by a lift sensor attached on the cylinder. Optimal feedback
controllers are designed for different Reynolds numbers to suppress vortex shedding
and the vibration of the bluff body.

3. Modelling and control methods
3.1. State-space formulation and system identification

The linearised Navier–Stokes equations can be written in standard state-space form
which is useful for performing input–output analysis. To evaluate the linear dynamics
of a flow system, it is convenient to take Laplace transforms. Introducing the
transformation into (2.2), we obtain the equations

sû+U · ∇û+ û · ∇U=−∇p̂+ ν∇2û+ f̂ , ∇ · û= 0, (3.1a,b)

where (û, p̂) and f̂ represent the (complex-valued) spatial structure of the velocity
and body forcing and s= σ + jω is the Laplace variable. Thus, the transfer function
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between the external forcing and response can be written as[
û
p̂

]
= (sE −A)−1

[
f̂
0

]
, (3.2)

where (sE −A)−1 is known as the resolvent operator and A is the linearised Navier–
Stokes operator around the base flow:

A=
[
−U · ∇− () · ∇U+ ν∇2

−∇

∇ · () 0

]
, E =

[
I 0
0 0

]
. (3.3a,b)

We now consider writing (3.2) in state-space form for a linear, time-variant dynamical
system P(s):

sEx=A x+Be,
y= Cx+De, (3.4)

where x = [û p̂]T is the system state, e is an input vector of dimension p and y
is an output vector of dimension q. The feedback control arrangement used here is
single-input single-output with p= q= 1. The vector B is determined by the shape of
the actuation, which is from the spatial discretisation of the external forcing term f̂ .
The matrices C and D represent output and feed-forward dynamics, respectively. The
transfer function between the output y and input e can then be written as

P(s)= C(sE −A)−1B+D. (3.5)

In general, P(s) is of high dimension, which makes the control design problem
computationally intractable. However, it is feasible to solve this linear system and get
the frequency response data from the actuation to the measurement. Reduced-order
models can then be formed for the corresponding frequency responses using the vector-
fitting algorithm VECTFIT (Gustavsen & Semlyen 1999; Gustavsen 2006; Deschrijver
et al. 2008). VECTFIT identifies a ROM P̃(s) of a significantly smaller dimension N
in the rational form

P̃(s)=
N∑

m=1

rm

s− am
+ sh+ d, (3.6)

where the poles am, residues rm and terms d and h are identified such that the
frequency response of P̃(s) is within a distance ε of the original system P(s) over a
broad frequency range.

3.2. Feedback controller design

The feedback controller is designed based on the ROM P̃(s) using H∞ loop shaping.
The control block diagram is shown in figure 2, where ŵ represents disturbances
from the actuator and n represents noise at the sensor. We assume a positive
feedback configuration as illustrated in figure 2. The controller K(s) for plant P(s) is
designed using the loop-shaping design method of Glover & McFarlane (1989) which
maximises the normalised coprime stability margin b(P̃, K) of the plant–controller
feedback loop

b=
∥∥∥∥[K

I

]
(I + P̃K)−1

[
P̃ I

]∥∥∥∥−1

∞

, (3.7)

where b ∈ [0, 1], which can be maximised over all stabilising K to give

bopt(P̃)= sup
K

b(P̃,K). (3.8)
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FIGURE 2. Block diagram of the closed-loop control system.

Physically, bopt is an indication of the robustness of the closed-loop system to
unmodelled dynamics and also serves as a performance measure: the larger the value
of bopt, the better the performance and the greater the robustness of the closed-loop
system.

For single-input single-output systems as considered here, a compensator which
weights the plant according to the control objectives is used of the form

W(s)= k
a2

(s+ a)2
. (3.9)

The parameters k and a are chosen such that the gain of the weighted plant is
sufficiently high at frequencies where good disturbance attenuation is required and
is sufficiently low at high frequencies where modelling uncertainties will be greatest
(Illingworth 2016).

3.3. Numerical set-up
We consider an incompressible flow with free-stream velocity U∞ past a two-
dimensional circular cylinder of diameter D. Simulations are conducted on the
computing platform FEniCS (Logg, Mardal & Wells 2012) which has been extensively
used for fluid mechanics (Mortensen, Langtangen & Wells 2011; Nguyen et al. 2019;
Vasilyeva et al. 2019). Three versions of the flow are solved: the steady solution of
(2.1) (base flow), the linearised perturbation equation (3.4) in state-space form and the
fully nonlinear Navier–Stokes equations. We employ the same computational domain
as that used by Leontini et al. (2006), as shown in figure 3, and discretise using
Taylor–Hood finite elements over a structured mesh. In order to appropriately resolve
the details of the flow, the mesh points are clustered smoothly near the cylinder and
in the wake. More specifically, the mesh consists of 5.46 × 104 triangles and the
minimum wall-normal size around the cylinder is 0.01. A backward Euler scheme is
used for time discretisation (1t = 0.01) in the direct numerical simulations with the
maximum Courant number below 0.6 to ensure accuracy.

The base flow (U, P), which is governed by the unforced steady Navier–Stokes
equations, is solved using a Newton method. The corresponding boundary conditions
are summarised in figure 3. Dirichlet boundary conditions are imposed at the inlet
Γin (x< 0) and at the cylinder surface Γwall (centred at x= y= 0):

U = 1, V = 0 on Γin, (3.10a,b)

U = 0, V = 0 on Γwall. (3.10c,d)

Symmetry conditions are enforced on the top and bottom boundaries Γtop and Γbottom
(0< x/D< 23, y/D=±15):

∂U
∂y
= 0, V = 0 on Γtop ∪ Γbottom, (3.11a,b)
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˝top

˝bottom

˝wall

˝in ˝out

™U/™y = V = 0

U = 1, V = 0
u� = √� = 0

U = V = 0
u� = √� = 0

-Pn + ˜◊U · n = 0
-p�n + ˜◊u� · n = 0

™u�/™y = √� = 0

™U/™y = V = 0 ™u�/™y = √� = 0

FIGURE 3. Computational domain and boundary conditions for the steady and unsteady
linearised Navier–Stokes equations for the in-flow set-up.

while the pressure and the velocity are combined into the standard outflow conditions
on the outlet boundary Γout (x/D= 23,−15< y/D< 15):

− Pn+ ν∇U · n= 0 on Γout, (3.12)

where n denotes the outward-pointing normal vector on the boundary. The base flow
is the same for all control set-ups. Vorticity contours for the base flow are shown in
figure 4(a) at Re= 60, 80 and 100.

The basic boundary conditions for the perturbation (u′, p′) are also depicted in
figure 3. For the in-flow control set-up, the linear perturbation system has the same
boundary conditions as the base flow except at the inlet where homogeneous boundary
conditions (u′ = v′ = 0) are enforced to ensure zero perturbations at infinity. In the
body-mounted control set-up, the flow is solved in an accelerated frame of reference
attached to the cylinder instead of moving the cylinder directly. For this, the transverse
acceleration of the frame a is treated as an extra forcing term f ′= [0 a]T. Thus, the
boundary conditions at the inlet, top and bottom boundaries are modified (Leontini
et al. 2006):

u′ = 0, v′ =

∫ t

0
a(t) dt on Γin, (3.13a,b)

∂u′

∂y
= 0, v′ =

∫ t

0
a(t) dt on Γtop ∪ Γbottom, (3.13c,d)

where zero initial conditions are assumed. In the linear state-space model (3.4), these
boundary conditions are enforced in the frequency domain by applying Laplace
transforms:

û= 0, v̂ =
â
s

on Γin, (3.14a,b)

∂ û
∂y
= 0, v̂ =

â
s

on Γtop ∪ Γbottom. (3.14c,d)
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(a) (b)

FIGURE 4. Vorticity contours (dashed lines for negative and solid lines for positive
vorticity) for (a) the unstable base flow and (b) the perturbation system (normalised, real
part) forced by the harmonic forcing at the unstable frequency for Re= 60, 80 and 100
(from top to bottom). A velocity sensor (•) is placed a distance d downstream of the
cylinder. Contours in (a,b) share the same scale for comparison.

The stability analysis of the base flows and discretised perturbation systems have
been validated using the results of Barkley (2006). To validate the controllers,
direct numerical simulations are performed using the IPCS (Incremental Pressure
Correction Scheme) method which has been extensively tested in Logg et al.
(2012). The corresponding boundary conditions are modified based on the identity
(u, p)= (U+ u′, P+ p′).

4. In-flow control set-up case
In the first instance, an in-flow control set-up is considered in which a single sensor

is placed in the wake and a single actuator is applied near the cylinder (see figure 1a).
We first form ROMs for model-based control, and the performance and robustness
of all controllers are characterised and compared. We vary the Reynolds number and
the location of the velocity sensor to investigate the influence of sensor placement on
control at different Reynolds numbers.

4.1. Open-loop system identification
Figure 4(b) shows the normalised vorticity field of the corresponding perturbation
system P(s) actuated by the body force f̂ at the unstable frequency s= jωu (i.e. the
resolvent operator between the input and output in (3.2)). The shear layer emanating
from the separation point is disturbed by the actuator and grows into a large-scale
vortical structure downstream. As the Reynolds number increases, the large vortical
structure formed by the shear layer appears increasingly far downstream. This is
because the length of the absolutely unstable region behind the circular cylinder
increases with increasing Reynolds number. It is noteworthy that the absolutely
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FIGURE 5. (a) Frequency responses from P( jω) (——) compared to those from ROMs
P̃( jω) (•, blue) at Re = 60, 80 and 100. (b) The corresponding open-loop impulse
responses from numerical simulations. The results for Re= 60 and 80 are multiplied by
20 and 3, respectively, so that the same scale can be used.

unstable region has the opposite trend of length variation for the linear flow (base
flow) when compared to the nonlinear (mean) flow (Pier 2002).

After obtaining the base flow, the transfer function between the actuator signal
and the sensor measurement, denoted by P̃(s), is to be determined for control
design. Instead of harvesting data from direct numerical simulations (e.g. Dahan,
Morgans & Lardeau 2012; Illingworth 2016), we obtain frequency responses by
solving (3.5) directly for harmonic inputs (s= jω) over a broad range of frequencies.
The ROMs are identified from the gain and phase of the response data by utilising
a vector-fitting algorithm (Gustavsen 2013). The frequency range chosen here is
ω ∈ [10−6, 106

] rad s−1 with 250 sampling points spaced logarithmically. At each
Reynolds number, the computational cost is less than five minutes using a direct LU
solver (Amestoy et al. 2001, 2006) and a standard node on a cluster. Figure 5(a)
shows comparisons of response data near the unstable frequency (ω ≈ 0.8 rad s−1)
between the linear perturbation systems P(s) and the identified ROMs P̃(s) at
Re = 60, 80 and 100 with the velocity sensor placed at d = 2.8D. The order (or
dimension) of P̃(s) is chosen such that the fitting residual ε is below 10−5. This is
achieved with an order of 30 or less for all Reynolds numbers considered.

The accuracy of the ROMs is validated by the excellent agreement between the
open-loop impulse responses from these models and direct numerical simulations,
which is summarised in figure 5(b). Due to the small-perturbation assumption, the
magnitude of the impulse equals 1 × 10−4 and the linearity of the flow systems is
also confirmed. Thus, the ROMs found are good approximations of the true systems.
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FIGURE 6. Direct numerical simulation results of closed-loop systems. (a) Time evolution
of the transverse velocity at the sensor (•) and the total perturbation energy E(t) in log
scale at Re= 60 (– · –, blue), Re= 80 (- -, red) and Re= 100 (——). (b) Vorticity contours
(dashed lines for negative and solid lines for positive vorticity) for the perturbation systems
at t = 75 (q) at Re = 60, 80 and 100 (from top to bottom). All contour plots share the
same colour range. (c) Table of parameters.

4.2. Model-based feedback control
Based on the identified ROMs, we design an optimal feedback controller for each
model and ensure that the controller satisfies closed-loop stability. The parameters in
the compensator weight are determined after searching different value combinations
to achieve the largest optimal stability margin bopt. The controllers are implemented
in the full nonlinear Navier–Stokes system with an impulse from the actuator of
magnitude 10−3. The resulting performance of the controllers for each of the cases
described in § 4.1 is shown in figure 6.

The stabilising effect of the controller for each case is observed from the time
evolution of the transverse velocity (v′1/v

′

2/v
′

3) at the sensor, as shown in figure 6(a).
More convincing evidence for the complete suppression of vortex shedding is the total
perturbation energy plotted beneath, which is defined as

E(t)=
1
2

∫
Ω

(u′2(x, y, t)+ v′2(x, y, t)) dx dy, (4.1)

where u′ and v′ are the streamwise and transverse perturbation velocity components,
respectively. It is clear that the controller for Re= 60 performs best with the strongest
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FIGURE 7. (a) Optimal sensor locations (the ridge - -) and contour plot of optimal stability
margin bopt against Reynolds number and sensor location d. And the largest bopt (——)
that can be achieved at different Reynolds numbers is plotted beneath. (b) Loci of unstable
poles (×) and critical zeros (•, blue; ◦, red) of transfer functions P̃(s) for two cases. Top:
different sensor locations at Re= 80. Bottom: different Reynolds numbers with a sensor
placed at d= 2.5D downstream of the cylinder.

attenuation. Although the perturbation energy for Re= 100 remains large after t= 150,
a decreasing trend is quite clear. Figure 6(b) shows the instantaneous vorticity
perturbation fields for all three cases at t= 75. The perturbation vorticity at Re= 60
stays small without observable vortex shedding whereas at a higher Reynolds number
of 80, the vorticity remains small near the sensor but is stronger downstream. At
the highest Reynolds number of 100, the vorticity is far stronger with clear vortex
shedding, which is consistent with the oscillations of v′3. From the comparison
between all three cases, we can see that perturbations are harder to control at higher
Reynolds numbers.

The performance of each controller can be quantified using the optimal stability
margin bopt, which is summarised in figure 6(c) together with other important
parameters. Based on the comparison of bopt between the three cases, we can draw a
conclusion consistent with the analysis above: the higher the Reynolds number, the
smaller the optimal stability margin bopt achieved by the optimal feedback controller.

4.3. Optimal sensor placements
The preliminary investigation summarised in figure 6 indicates a severe deterioration
of control performance with increasing Reynolds number for a fixed velocity sensor.
To draw more general conclusions about control performance, we vary the position
of the velocity sensor along the centreline at different Reynolds numbers. For each
case, the position and the form of the actuator are unchanged, and we identify a new
ROM from response data at the corresponding Reynolds number. The performance of
the H∞-optimal controller for each case is quantified by the optimal stability margin
bopt and summarised as a function of Reynolds number and sensor location d in
figure 7(a).
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First, we focus on the optimal sensor location where the optimal controller shows
the best performance at each Reynolds number. Generally, the ideal position for
a sensor should allow not only the measurement of the instability developing
downstream but also the timely feedback of information to the actuator. Figure 7(a)
first shows a contour map of the optimal stability margin bopt against Reynolds
number and sensor location d. It is clear that a ridge exists which indicates the
optimal sensor location as a function of Reynolds number. At each Reynolds number,
the optimal controller for the sensor at the ridge line performs better than those
for other sensor locations. However, the optimal stability margin bopt on the ridge
decreases sharply with increasing Reynolds number, which is shown in the panel
beneath the contour map.

Therefore, a fundamental trade-off can be concluded from figure 7(a): the sensor
should be close enough to the cylinder to reduce the time delay due to convection,
but it should also be far enough from the cylinder to measure important information
(e.g. unstable eigenmodes) developing downstream. The compromise between these
two conflicting requirements becomes harder to satisfy with increasing Reynolds
number, which leads to the optimal sensor location moving downstream linearly.
Similar results have been observed in recent work (Oehler & Illingworth 2018) that
considers feedback control of the linearised Ginzburg–Landau system.

Generally, the performance and robustness of an optimal controller, as quantified
by the optimal stability margin bopt, can be linked to the zeros and poles of the
corresponding system. Mathematically, poles and zeros of a system are roots of the
denominator and numerator of the corresponding transfer function, which determine
whether the system is stable, and how the system performs. More specifically, poles
capture the form of each component in the system response, whereas zeros reflect
how these components combine together, including the phase and magnitude of each
component generated by each pole. To investigate these roots in the perturbation
system, we consider two cases: (i) fixing the Reynolds number at Re = 80 and
moving the sensor from d= 1D to d= 4D; (ii) fixing the sensor position at d= 2.5D
and increasing the Reynolds number from 50 to 110. The root loci of these two cases
are computed, where unstable poles and two kinds of critical zeros (which we label
I and II) are identified and plotted in figure 7(b).

In the first case (top panel in figure 7b), the sensor is moved away from the
cylinder, thus measuring information further downstream. This results in the critical
zero I moving from the right-half plane (RHP) into the left-half plane (LHP) and
the critical zero II moving from the LHP into the RHP. The existence of RHP zeros
is problematic for control design because they limit the maximum bandwidth or the
maximum frequency that can be controlled with good performance and robustness,
as described by Zhou, Doyle & Glover (1996) and Hoagg & Bernstein (2007). In
this case, zero I stays in the LHP for d > 1.6D whereas zero II stays in the LHP
for d < 2.4D. The optimal sensor location at the Reynolds number considered is
d ≈ 2.0D, for which all zeros stay in the LHP (as indicated by ◦ (red) in figure 7).
This is also consistent with the fundamental trade-off described above.

Increasing Reynolds number also moves the zeros into the RHP, which can be seen
from the root loci plotted beneath. In this case, we fix the sensor location at d= 2.5D
and increase Reynolds number from 50 to 110 in intervals of 10. It is interesting to
note that increasing Reynolds number not only increases the real part of the unstable
pole but also moves these critical zeros towards the RHP. Based on the root loci in
the two cases, we can conclude that it becomes harder to find a good sensor location
(where no RHP zeros occur) at higher Reynolds numbers. This difficulty leads to a
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degradation in the performance and robustness of the optimal controllers at higher
Reynolds numbers, as depicted in figure 7(a). Furthermore, zero I appears near the
unstable pole and moves closer to the unstable pole at higher Reynolds numbers (or
more upstream sensor locations), whereas zero II remains at higher frequencies. Due
to the bandwidth limitation from the RHP zeros, the optimal control design algorithm
would be able to compute a better controller if zero I stays in the LHP. Thus, the
systems would prefer a sensor placed further downstream to prevent RHP zero I. This
preference is shown by the contour map in figure 7(a), where a gentle slope of bopt
occurs if the sensor is placed downstream of the optimal location but a rapid drop
occurs if the sensor is placed upstream.

Similar maps of system roots are also summarised and analysed in the work
of Belson et al. (2013), where optimal controllers were designed for a linearised
two-dimensional Blasius boundary layer controlled by different types and positions of
actuators and sensors. A degradation of the controllers’ performance and robustness
was observed when RHP zeros occurred. Generally, the physical mechanisms behind
the RHP zeros are due to (i) the time delay or (ii) the observability of the structures
that are to be controlled. In a flow system, when the sensor is far downstream of the
actuator, it measures the effect of the actuator with a time delay due to the convective
nature of the flow. That is, the sensor measures flow structures that convected past
the actuator at an earlier time. With outdated information, the controller poorly
estimates and controls the flow structures near the actuator. This time delay becomes
more significant as the sensor moves downstream and results in RHP zeros in the
reduced-order transfer function P̃(s).

However, with a sensor close to the actuator, the performance and robustness of
the optimal controller are still restricted by RHP zeros that occur near the unstable
pole. Such RHP zeros cancel the effect of the unstable pole and prevent the sensor
from measuring the instability. In other words, the poor performance and robustness
of the controller are caused by a lack of observability of the unstable mode instead
of excessive time delay.

In this section, we have shown that different sensor locations and Reynolds numbers
have similar properties that restrict the performance and robustness of the optimal
controllers. At higher Reynolds numbers, even an optimal controller performs poorly
for both control set-ups. In other words, the best possible performance that can be
achieved is severely restricted. From the perspective of control theory, we observe
RHP zeros which limit control performance. Thus, we cannot always find a controller
with good performance and robustness, and this can be attributed to the compromise
between the observability of the instability and the size of the convective time delay.

5. Body-mounted control set-up case
We now turn our attention to a more physically representative control set-up with

a body-mounted actuator and a body-mounted sensor. The schematic diagram is
illustrated in figure 1(b), where the flow field is now controlled by the oscillation of
the cylinder itself, which oscillates in response to the lift measured on the cylinder.
Following a procedure similar to that for the in-flow control case, we also consider
the physics behind the difficulty in synthesising controllers with good performance
and robustness.

5.1. Open-loop system identification
The purpose of both control set-ups is to eliminate the perturbations and drive the
system towards the steady solution: the base flow. Figure 8 shows the normalised
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(a) (b) (c)

FIGURE 8. Vorticity contours (dashed lines for negative and solid lines for positive
vorticity) for the perturbation system (normalised, real part) actuated by the harmonic
oscillation of the cylinder at the unstable frequency for (a) Re = 60, (b) Re = 80 and
(c) Re= 100. Contour plots share the same scale.
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FIGURE 9. (a) Frequency responses from P( jω) (——) compared to those from ROMs
P̃( jω) (•, blue) at Re = 60, 80 and 100. (b) The corresponding open-loop impulse
responses from numerical simulations. The results for Re= 60 and 80 are multiplied by
15 and 3, respectively, so that the same scale can be used.

vorticity field of the corresponding perturbation system P(s) actuated by the oscillation
of the cylinder at the instability frequency (i.e. the resolvent operator between the
input and output in (3.2)). Similar to the in-flow set-up, the large vortical structure
actuated on by the moving cylinder develops further downstream as the Reynolds
number increases.

The system identification procedure is carried out in a similar manner to § 4.1
and is summarised in figure 9. The ROMs P̃(s) are chosen such that the fitting
residual ε is below 10−5 with orders less than 35. The Bode plots of identified
transfer functions between the actuator and the sensor are shown in figure 9(a) and
compared to the frequency responses of the true systems. Unlike the in-flow set-up,
the perturbation system with body-mounted set-up has infinite zero-frequency response
(i.e. the system contains an integrator) and constant infinite-frequency response (i.e.
the system contains a non-zero feed-forward term).
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FIGURE 10. Direct numerical simulation results of closed-loop systems. (a) Time
evolution of the cylinder lift and the total perturbation energy E(t) in log scale at Re= 60
(– · –, blue), Re= 80 (- -, red) and Re= 100 (——). (b) Vorticity contours (dashed lines
for negative and solid lines for positive vorticity) for the perturbation systems at t = 75
(q) at Re= 60, 80 and 100 (from top to bottom). All contour plots share the same colour
range. (c) Table of parameters.

Figure 9(b) shows comparisons of open-loop impulse responses (of magnitude 10−4)
from the identified models and direct numerical simulations. The excellent agreement
observed validates the accuracy of the ROMs.

5.2. Model-based feedback control
Following the same procedure as in § 4.2, we design optimal controllers for ROMs
and implement them in the full nonlinear Navier–Stokes system actuated by an initial
impulse of magnitude 10−4. The parameters of controllers and the corresponding
closed-loop simulations are summarised in figure 10. The stabilisation of vortex
shedding is achieved only up to Re = 100, which can be seen both in the time
evolution of the lift l′(t) and in the total perturbation energy E(t). The comparison
among simulations at three Reynolds numbers indicates a similar deterioration of
control performance to that seen for the in-flow set-up of § 4.

The control of vortex shedding using such body-mounted set-up is more challenging
than control with the in-flow set-up in § 4. This is revealed by closed-loop simulations
in three ways. First, controllers designed for Re= 60, 80 and 100, although stabilising,
show poorer performance than controllers designed for the in-flow set-up. Second, the
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FIGURE 11. (a) The largest bopt (——) that can be achieved at different Reynolds
numbers. (b) Loci of unstable poles (×) and critical zeros (•, blue; •, red) of transfer
functions P̃(s) at different Reynolds numbers. (c) Lift distributions (—— for real part and
- - for imaginary part) on the cylinder at RHP zeros I and II and Re= 100.

optimal controller fails to stabilise the flow system if the Reynolds number is greater
than 100. Third, the optimal stability margin bopt, which is a performance indicator of
the controller, decreases from 0.2537 at Re=60 to an extremely small value of 0.0313
at Re = 100. This is a much more severe degradation than that seen for the in-flow
set-up for which the value decreased from 0.3952 at Re= 60 to 0.2495 at Re= 100.

A more detailed trend of the optimal stability margin bopt is depicted in figure 11(a)
as a function of Reynolds number. The severe degradation of control performance is
clearly shown by the reduction in bopt from 0.4484 at Re= 50 to 0.0313 at Re= 100,
whereas the optimal stability margin bopt of the in-flow set-up changes from 0.7 to
0.2495 in the same range of Reynolds numbers.

From the perspective of control theory, the performance and robustness of an
optimal controller, as quantified by the optimal stability margin bopt, can be affected
by the roots (zeros and poles) of the corresponding system, especially those near the
unstable mode. In general, each zero blocks a specific input signal and each RHP
zero blocks a specific input signal which is unbounded (Hoagg & Bernstein 2007).
If a RHP zero occurs at exactly the same location as an unstable pole, it blocks
the unstable mode exactly and the instability cannot be measured by the sensor. The
system is thus unobservable and no controller is able to stabilise the unstable mode.

Figure 11(b) shows the root loci near the unstable mode for the flow systems
between Re = 50 and Re = 110. It can be seen from the figure that as Reynolds
number increases, these poles and zeros move into the RHP, which implies stronger
instability and more RHP zeros. More importantly, the RHP zero I moves closer to
the unstable poles at higher Reynolds numbers, which further blocks the effect of
instability and reduces the observability of the unstable mode. This trend can be better
observed in table 1, which summarises the stability margin and the distances between
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Re bopt ‖pu − zI‖ ‖pu − zII‖

50 0.4484 0.1191 —
60 0.2537 0.1086 —
70 0.1481 0.0954 —
80 0.0764 0.0806 0.1354
90 0.0446 0.0657 0.1358
100 0.0313 0.0531 0.1360
110 0.0122 0.0427 0.1350

TABLE 1. Evolution with Reynolds number of stability margin bopt and distance between
unstable pole pu and RHP zero zi.

the unstable pole and RHP zeros at each Reynolds number. With increasing Reynolds
number, the number of RHP zeros is increasing and their distances to the unstable
pole are decreasing. The signals from the unstable mode are thus more likely to be
blocked by RHP zeros. In other words, the observability of the instability is becoming
worse when more RHP zeros move closer to the unstable pole. These RHP zeros are
thus problematic for control design and restrict the performance and robustness of
optimal controllers. Similar restrictions are also observed from the root loci of the
flow system with an in-flow set-up. However, at low Reynolds numbers, the in-flow
set-up does not have RHP zeros, whereas in the system with body-mounted set-up,
at least one RHP zero occurs near the unstable pole.

For the body-mounted set-up, the sensor and actuator are attached to the cylinder
and no time delay should be present in the transfer function from the actuator to the
sensor. In other words, none of these RHP zeros is caused by the time delay. To
investigate the physical mechanisms represented by these zeros, we take the cylinder
flow at Re= 100 as an example and plot the lift distributions on the cylinder surface
for two RHP zeros in figure 11(c). It is interesting to note that even though zero lift
should act on the cylinder at these zeros, the force acting on the cylinder surface
is non-zero. Instead, the vertical force acting on the rear surface (−90◦ < θ < 90◦)
cancels the force acting on the front surface. Such force cancellations always occur
near the unstable pole which blocks the signal from the unstable mode and prevents it
being measured (the force on the rear surface cancels the force on the front surface).
By using an integrated quantity as the measurement, the observability of the unstable
mode can either be enhanced or weakened. A previous study tried surface pressure
measurements for bluff body control (Dalla Longa, Morgans & Dahan 2017). In
that study it was found that doing (pressure on rear top) minus (pressure on rear
bottom) gave better performance than summing over the whole surface (i.e. a lift-type
measurement).

6. Conclusions
Model-based feedback control of vortex shedding behind a two-dimensional circular

cylinder has been investigated. We have built linear ROMs for the linear dynamics
of the flow systems about unstable equilibrium states in an input–output framework.
The method involves the formulation of the resolvent operator from the linearised
flow system to compute frequency responses for control set-ups. We then identify low-
order models from these responses using vector fitting methods. The resulting models
are capable of accurately capturing the input–output flow behaviour which has been
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demonstrated by comparing their impulse responses to direct numerical simulations.
Stabilising feedback controllers have been designed for these ROMs based on the
H∞ loop-shaping procedure of Glover & McFarlane (1989), and validated by applying
them to the original high-order nonlinear flow systems. The method has been applied
to two single-input single-output control configurations and led to the full stabilisation
of the nonlinear flow systems over a range of Reynolds numbers.

To investigate the role of sensor placement in the performance and robustness of
the closed loop, we chose an in-flow control set-up with a pair of antisymmetric body
forces for actuation and a downstream point sensor measuring the vertical velocity.
Different sensor positions have been examined for a range of Reynolds numbers
and the corresponding optimal sensor locations indicate two principles of the sensor
placement: on the one hand, it should be close enough to the actuator to reduce the
time delay due to the highly convective nature of the system; on the other hand, the
sensor is required to measure the information developing downstream.

Similar trade-offs have also been observed in the feedback control of the linearised
Ginzburg–Landau system by Oehler & Illingworth (2018). Difficulties in satisfying
these two conflicting requirements at a higher Reynolds number cause a deterioration
in the optimal controller performance and robustness. This deterioration has been
shown to be related to the presence of RHP zeros in the transfer function from
actuator to sensor as in Belson et al. (2013), and the sensor location has been
observed to be a significant parameter in feedback flow control. These RHP zeros
prevent robust control tools from designing well-behaved controllers and place severe
limitations on closed-loop performance.

The method has also been applied to a body-mounted control set-up in which the
controller measures the lift on the cylinder and actuates the cylinder’s displacement.
We controlled the acceleration of the oscillatory cylinder according to its lift
measurement and successfully suppressed vortex shedding up to Re = 100. The
deterioration of the optimal controller’s performance and robustness is more severe
than for the in-flow sensor set-up at all Reynolds numbers considered. In this control
set-up both the sensor and actuator are attached to the cylinder, which implies zero
time delay, but the instability developing downstream cannot be sufficiently well
captured. This limitation manifests itself in the form of lift cancellations which are
represented by RHP zeros near the unstable poles.

This study has presented an efficient modelling approach using the resolvent
operator, which does not rely either on expensive direct numerical simulations or on
experimental data. It constructs models of sufficient quality to design and implement
robust stabilising controllers for unstable flows. In addition, the formulation accounts
for actuation and measurements directly, and therefore it can be applied to a broad
range of flow control configurations.
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