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SUMMARY

Manipulators with some flexible links are attractive
because they avoid the severe control problems
associated with the large inertia forces generated when
the large-mass, rigid links in conventional robot
manipulators move at high speed. In fact, only two of the
links within a typical six degrees of freedom revolute-
geometry industrial robot cause significant inertia forces,
and so only these two links need to be flexible. The
development of a two-flexible-link system controller is
therefore very relevant to larger manipulators, because it
can be readily expanded by adding simple controllers for
the other rigid links. Two alternative controllers are
developed in this paper, a computed-torque controller
and a quadratic optimal controller. Simulations confirm
the superior performance of the latter.

1. INTRODUCTION
With the increasing demand for faster robot movements
in manufacturing operations, there is now widespread
interest in developing low-mass, flexible-link robot
manipulators which avoid the severe control problems
caused by the large inertia forces generated when the
large-mass, rigid links associated with conventional robot
manipulators move at high speed. The necessary
pre-requisite for a flexible manipulator controller is the
existence of a suitable-accurate model of the manipulator
system. In practice, a typical revolute-geometry industrial
robot manipulator has six degrees of freedom but the
problematical inertia forces are due to just two of the
links within it and so only these two links have to be
lightweight, flexible ones. Hence, the necessary man-
ipulator model can be divided into two connected
sub-systems: a two-flexible-link model and a model of the
other rigid links. The detailed development of a
two-flexible-link system model has been described
previously,' and so, only an overview is presented in this
paper. The method of approach is to develop an accurate
single-flexible-link model and then to expand this into a
two-flexible-link model, taking proper account of the
coupling and interactions between the two links. As
errors are cumulative due to the dynamic coupling, it is
essential that the basic single-link model on which the
two-link model is built is of very high accuracy.

The controller of a flexible manipulator system must
fulfil two functions. Firstly, it must compensate for the
static deflection of the flexible links under gravity forces
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and, secondly, it must act to reduce both the magnitude
and time duration of link oscillations which arise
naturally out of its flexibility. A computed-torque
controller is able to fulfil both of these functions to a
limited extent, but simulations comparing its perfor-
mance with that of a quadratic optimal controller confirm
the superior performance of the latter.

2. MODEL FOR A SINGLE FLEXIBLE LINK
The assumed mode method (AMM) is a computationally
efficient scheme which serves as a useful starting point in
formulating a flexible link model. Assuming the
magnitude of flexure to be low, the slope and static
deflection of a flexible beam bending under gravity are
described by:
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where m is the mass of the beam, / is the length of the
beam, EI is the flexural stiffness of the beam, g is the
gravity vector, x is the position on the beam of the point
where the slope and deflection is measured and the
subscript m denotes the slope or deflection resulting from
the mass of the beam.

For a flexible link with an end-tip load m, (Figure
1(a)), the mass m, produces a negative slope and
deflection given by:
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By the principle of superposition the total static slope
and deflection for a flexible link are given by:
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Fig. 1(a). Deflection of a flexible link due to its mass and the
payload.
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The maximum static slope and deflection of the flexible
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At max I’g
=— +
dx 2y 3T m);
i ®)
g
ax = — T 4+
Umax 2E] (m/ 2m[/3)

The deflection of the link end-tip is calculated in the
above equations on the assumption that the end-tip
moves vertically downwards instead of in a circular arc.
This is clearly only valid if the magnitude of flexure is
low. This condition is unlikely to be satisfied in typical
industrial flexible manipulator links, and modification of
the equations is therefore necessary. Previous work' has
shown that the case of large magnitude flexure can be
handled by adding a correction factor to the basic
equations. This is calculated by considering the link as a
body composed of n equal sections and applying finite
element analysis. The corrected coordinates of the
end-tip are then given by:'

x,=l—s; v.=u(l—s) (6)

where:
u(l = s —w,) =~’V—Vf u(l - s) (7)
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2.1. Dynamic modelling
The equation of motion of an undamped flexible link
without payload is described by:?

Puly,t) (EI d%u(x, 1)
Y ax? ax*

) aten =60
©)

where p is the mass per unit length of the link, u(x, ¢) is
the deflection of the link, ¢(x) is the assumed mode
shape function and ¢g(¢) is the modal function. Assuming
that EI is a constant, equation (9) can be written as:

_EL 1 &0
p ¢(x) dx*

1 d’q(r) _

% dt2 (10)
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which leads to the two following differential equations:

d*o(x) d*q(2)
dx* dr?

—Blo(x)=0; +o’q@)=0 (11

where o is a constant and B8* = pw?/El. The solution, as
given in?, is:
¢;(x) = Ci(cos B;x — cosh B;x) + (sin B;x — sinh B,x);
qi(t) = A; cos w;t + B, sin w;t (1

where A;, B;, C,, and w; are constants, { denotes the
number of modes of vibration. The deflection is then
given by:

umo=§@amm (13)

From the boundary conditions (u(0,1)=u(l )=
ou(0, t)/ox = a*u(l, t)/9x*> = 0) we obtain
- c?s Bl + closh Bil (14)
sin 8,/ — sinh B;/
and B; as a solution to:
cos B, - cosh B,/ = —1 (15)

Solving equation (15) for the first four modes gives
Bil=1.875, B,l=4.694, B3/=7.854 and B,/ =10.995.
From here, using the definition that 8* = pw?/EI, we can
deduce the values of the natural frequencies w; of the
flexible link for the first four modes. This means that,
given an initial excitation F, the link is going to oscillate
according to a combination of these four natural
frequencies. The equation of motion can be generalised
as an eigenvalue problem linking the two parts of the
system (the assumed mode shape functions ¢;(x) and the
modal functions g,(t). Subsequent analysis' taking into
account the first three modes (i = 1, 2 and 3) leads to the
following equations for the vertical displacement u(x, t)
of any point x on the link at any time ¢, the slope u'(x, t)
of the link at any point x and any time ¢ and the velocity
t(x, t) of any point x on the link at any time ¢:

u(x, t) = @1(x)q:(0) cos (w1t) + @»(x)q2(0) cos (wt)

+ @3(x)q3(0) cos (w3t) (16)
u'(x, t)= W—aug); )
= ¢{(x)q1(0) cos (w1) + @3(x)g2(0) cos (wo1)
+ @3(x)g(0) cos (wsr) (17)
au(x t)
u(x, t)=

= 901(X)QI(0)0)1 sin (1) + @2(x)q2(0)w; sin (wyt)

+ @3(x)g3(0)w; sin (w3?) (18)
subject to the initial conditions:
u(x, 0) = 21 ¢i(x)q:(0) = f(x);
" (19)

Mnm=§@ummrwm
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Using the orthogonal relation, the corresponding initial
conditions in the rnormal coordinates (the normalisation
or weighting is operated on all modes) are:

l {
a0 == | f@)ex) dv;

- 0)
G =2 [ o x)

ii Y0
Similarly, ¢,(0) and ¢,(0) can be obtained from the
normalised flexural stiffness as

EI (!
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!
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When an end-tip load is added to the link, an extra

eigenvalue will appear in the boundary conditions and it

can be shown' that the effect is to cause the link to

vibrate at a slower frequency and for vibrations to persist
for a longer period of time.

2.2 Inclusion of shear deformation effect

The assumed mode method calculates link deformation
on the assumption that this is due only to the bending
moment created by the mass and end-tip load of the link.
This assumption appears to have been made in all
flexible link models previously reported. However, a
shear force also exists which acts in the opposite
direction to the bending moment and, in the interests of
accurate modelling, its effect must be included in both
static and dynamic models of a flexible link. It is known
that the shear force of flexible arms depends on the
shape of the cross-section of the arm. Therefore, a
physical —quantity called the numerical factor,
representing the geometric characteristics of the link
cross-section, is required in the dynamic formulation of
the manipulator. The numerical factor’ of a flexible
beam is defined as:

_40

K=
1,d

(22)
where, I, is the moment of inertia of the cross-sectional
shape of the link computed with respect to its neutral
axis, Q denotes the first moment about the neutral axis
of the area contained between an edge of the
cross-section of the beam parallel to the main axis and
the surface at which the shear stress is to be computed, A
is the cross-sectional area and d is the width of the
cross-sectional area at which the shear deformation is
required. For a uniform link of square cross section, the
factor K is given by:

_AQ _dphyP/2_3d

Ld (pPd/3 2 (23)

An element dx of the flexible link is deformed by the
shear force V and the bending moment M shown in
Figure 1(b). When the shear force is zero, the centre line
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Fig. 1(b). Deformation of link due to shear forces.

of dx i1s normal to the face of the cross-section. If
au(x, r)/dx is the slope due to the bending moment M,
neglecting the interaction between the shear and the
moment, the shear force will cause a rectangular element
to become a parallelogram without a rotation of the
faces. Thus, the slope of the deflection curve is decreased
by the shear angle as formulated in the following
equation:
ou (x,t)  ou(x,t) vV
ax ax KAG

(24)

where V is the value of the shear force and is equal to
Elp, G the shear modulus of the material the link is
made of and du,./dx the total slope cause by both shear
and moment. As a result of the above formulation, the
equation of motion of an undamped flexible link after
addition of the shear deformation becomes

d*u.,  u. Elp du,
e < — = 25
ot Por TKAGax or (23)

EI

This equation is very difficult to solve because of the last
term in the left hand-side. However, supposing that the
shear force affects only the modal functions q.(t), a
solution is found as being*

@i(x) = A;(cos (Bix) — cosh (B:x))
+sin (B;x) — sinh (B:x); (26)

q.i(t) = q.i(0) cos (w it +W¥)

where B; are obtained in the same manner as for the
system without shear deformation, (i.c., as in section 2.1)
and w,; are the transformed natural frequencies including
the shear deformation and are given by

El
JU P ,2] 27
w; being the natural frequencies of the system without
shear deformation.

The angle W is equal to:

vV Elp

KAG KAG
From this set of equations, we can see how the shear
deformation decreases the natural frequencies of
vibration of the link. The effect is more pronounced for

the higher modes because of the existence of the term 87
in the equation for w.. The total slope is also decreascd
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by the amount W. Thus it is apparent that the shear
deformation acts similarly to a load on the frequency of
the system, but operates in the opposite manner for the
slope.

3. EXTENSION OF MODEL TO TWO-FLEXIBLE-
LINK SYSTEM

The main difficulty in modeling multi-link flexible
manipulators is that the rigid motion and the elastic
motion are coupled together, and the elastic motion has
direct effects on the transformation matrix between the
link coordinates and the global coordinates. Due to the
complexity of the problem, the modeling of flexible
manipulators is initially simplified by neglecting the effect
of the elastic motion on the transformation matrix and
neglecting the effect of the elastic motion on the rigid
motion. If the rigid motion is not affected by the elastic
motion, the rigid system dynamic equations can be
derived using the Lagrange-Euler principle. These
equations can then be used to predict the dynamic stress
and elastic deformation of the system, by applying the
respective torques obtained for the rigid motion to the
dynamic equations describing the elastic motion. For the
two-link flexible case, this is difficuit because of the
cross-interaction between the two links. The task of
modeling a two-link flexible manipulator is made even
harder by the fact that this cross-interaction between the
two links is permanently present, i.e., a small disturbance
at the end-tip of the first link will cause this link to start a
vibrational motion, causing the second link to engage in
a motion that will affect the vibrational motion of the
first link, and so on. ...

This problem can be avoided without compromising on
accuracy if the first type of cross-interaction is ignored,
i.e. by assuming that any energy produced in the second
link is absorbed through the actuator of this link and
therefore not propagated to the first link. A further
simplification can be achieved by considering only the
first three flexible modes, since higher modes have
negligible influence on the behaviour of the system.' The
full derivation of the two-flexible-link system model is
given elsewhere,' and so only a summary of this is

provided here: The rigid motion of a two-link
manipulator can be described in terms of the
Lagrange—Euler formulation:

d aL] al.

—N=|—-——=1; i=12 29

dz[ae,. a0, T h 29

where L is the Lagrangian function and is equal to
K — P, K is the total kinetic energy of the robot arm, P is
the total potential energy of the robot arm, 6; are the
angular joint positions and 7, are the generalised torques
applied to the system at joint i to drive link i These
torques can be expressed in matrix form as:

(1) = D(8(1))B (1) + h(6(1), (1)) + c(6())  (30)

where:
7(¢t) is a 2X 1 generalised torque vector applied at
joints i =1, 2.

0(t) is a 2 X 1 vector of the joint positions,
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(r) is a 2 X 1 vector of the joint velocities,

6(t) is a 2 X 1 vector of the joint accelerations,
D(6(1)) is a 2 X 2 inertial acceleration-related symmet-
ric matrix.

3.1 State-space representation of the flexible system
The equation of elastic motion of a flexible link which is
part of a multi-link system can be written as:'?

y(x, 1) = Z £,()45(0) 31

where the subscript j denotes the link number (j =1 for
the first link), the subscript i denotes the mode number,
u{x, t) is the vertical deflection of the link j at the
distance x and time f, ¢,(x) is a shape function,” and
q,;(t) is a modal function solution of the following second
order differential equation:

dzCIij(t)_i__C_Z_dCIij(t)
dr’ m; dt

i + wigy(t) = 7,(t) (32)
if
where ¢; is the damping coefficient of the link, m,; is the
normalised mass for each mode i of the link j and w; is
the corresponding frequency equal to Vk;/m;, k; being
the normalised stiffness of the ith mode of the jth link.
Typically, the contributions of the flexible modes
attenuate rapidly with frequency such that it is always
possible to characterise the system dynamics to any
required degree of accuracy with only a finite number of
the lower modes. Considering only the first three flexible
modes of each link, the flexible system can be described
in the following state variable form:

[ 0 1 0 0 0 0 |
i el =9 0 0 0 0
1j wiy; m
. 1j
T 0 0 0 1 0 0
42 }: e
. -/
L o o o 0o 0 1
UEY e
0 0 0 0 wy —
B M
qq; | 0 ]
qu bl;’
q7; 0
x{ 7 ¥+ (1) 33
0 by |” (33)
q3; 0
Q3 me‘_

with the position vector given by:
u;(x, £) = [1;(x) 0 0;(x) 0 p3;(x) 0]
X (9114192 G2 93451 (34)

This description can also be expressed in the following
simplified form:

q;=A;q; + Bit;; ui(x) = Ci(x)g; (35)
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The constants b; are obtained after normalisation of the
torques 7; for each mode of the flexible link j. The
state-space representation given by equation (33) is
incomplete without the initial conditions relating to each
link such as static deflection, relative position of each
link in the reference frame and effect of the first link on
the second link. These points will be discussed in the
next sections by studying each link separately.

3.1.1 Link 1. A state-space representation of the elastic
motion of the first flexible link is obtained by setting j =1
in equations (33, 34). The mass term m;, is then the mass
of the payload for the first link, which consists of the
mass m,, of the actuator of the second link, the mass p/ of
the second link and the mass m, of the payload at the
end-tip of the second link, i.e.:

1
mo= [ o+ mt—Dlghdr; i=1,23. ()
0

The normalised flexural stiffness k;; relative to each
mode is given by:

!
ki = f EI(g})dx; i=1,2,3. (37)
0

The constants b;; are deduced from the normalisation of
the principal torque 7,(t) applied to the link, and are
equal to:

_en(l)

b. =
il k],'

(38)

The position vector giving the deflection of the link at
any point x is

uy(x, t) = [@11(x)0 @21 (x) 0 92, (x) 0]
><[41|C]1161216]21Q31431]T (39)

This vector is increased by a value u,(x) corresponding
to the static deflection caused by the mass of the link
itself and the load attached to its end-tip. So, the
deflection vector becomes:

ui(x, ) = [@11(x) 021 (x) 0 @21 (x) 0]

X [q11411921 G421 9 431]T+um(x) (40)
with:
2.2

I
((pl +2my) ﬁ —(pl + ml) = + pl;c )

(41)

o)== 3pq

The motion of the first link can be obtained from the
inverse Laplace transform of the following equation:

ui(x, 8) = C(x)(s — A) 'By1i(s) + upy(x)  (42)

where s is the Laplace operator and [ the identity matrix.
To determine the deflection u, at the end-tip of the first
link, the variable x is replaced in equation (41) by /. The
limitation of this state-space representation is that the
response uq(x, t) will be relatively correct only for very
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small deflections. Since a good accuracy in determining
the position of the end-tip of the first link is needed to
locate the origin of the second link, the necessity in using
the correction factor (equations 6-8) arises once again.
The difficulty in using the correction factor is that, unlike
the normal procedure required by the state-space
representation where the variable x is replaced by the
value at which the deflection of the link is wanted (in this
case x =), calculation of a correction factor requires the
value of the deflection all along the link. In order to
obtain a good accuracy, the incrementation of the
variable x has to be very small (independently from the
number of finite elements chosen to approximate the
flexible link). All this generates some extensive
calculation and increases the computing time needed to
obtain a response for the corrected deflection.

3.1.2 Link 2. A state-space representation of the elastic
motion of the second flexible link is obtained by setting
j =2 in equations (33, 34). The position vector giving the
deflection at any point x on the link is:

Uy (%, 1) = [@12(x) 0 ©22(x) 0 @35(x) 0]
X [q12G12G22 422 G20 G3]” + ue(x)  (43)

with ug,(x) being the value of the static deflection of the
link at a distance x from its origin. This static deflection
is caused by the mass pl of the link plus its payload m,
and is equal to

2,2

! !
(pz+2m,)i—(pz+m)—+”1;>

(44)

Un(X) ==y (

In a similar manner to that of the first link, the response
of the second link can be obtained from the inverse
Laplace transform of the following equation:

uy(x, 8) = Co(x)(sI — Ay) "' Bo(T1(s) + Ta(s)) + tpafx)
(45)

The next step in the modeling of a two-link flexible
manipulator consists of repositioning the origin of the
second link. This is done by obtaining the corrected
horizontal and vertical positions of the end-tip of the first
link and assigning these values to the coordinates of the
origin of the second link. Then, the vibration and (or)
rotation of the first link is used an additional input to the
second link. This is considered as the effect of the first
link on the second link. This operation is carried out by
obtaining the time-varying slope du,(l,t)/dx of the
end-tip of the first link through the correction factor
method and adding it to the angular position 8,(¢) of the
second link.

3.2 Final model

The block diagram in Figure 2 summarises the modelling
algorithm for the two-link flexible manipulator. The
model is divided into two sub-systems, one for each link.
Desired coordinates (x4, yi4, X24, ¥2d) are fed into the
system through the block representing the inverse
kinematics of the system to generate the desired angles
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Fig. 2. Block diagram of algorithm for modelling a two-flexible-link manipulator.

of rotation 6,,(¢) and 6,,(t). This operation can be
omitted if these two desired angles are known initially.
Both angles are then used as inputs for the rigid system
models representing the two links. Outputs such as link
masses, actuator mass, payload, stiffness, length and
width of each link, etc., are passed to the second part of
each sub-system which computes the elastic motion of
each link. Other important outputs produced by each of
the two rigid model sub-systems are the applied torques
7,(t) and 7,(¢). Each torque induces the corresponding
rigid body to rotate according to the corresponding angle
of rotation 6,(¢) and, simultaneously, provokes a forced
vibration into the corresponding flexible sub-system. The
superposition of both motions (rigid and flexible)
produces a set of variables for each link; among these are
the end-tip vertical positions, the end-tip horizontal
positions, the end-tip deflections and the end-tip slopes.
Using the Correction Factor Method, all of these outputs
are recalculated. As a result, some of them will be used
as a feed-back to the whole system to test if the rotations
are accomplished, while others (the end-tip slope of link
1, for instance) will be added to the angular position of
the rigid body of the second link, therefore quantifying
the effect that the first link has on the second link.

4. CONTROLLER DEVELOPMENT

Control techniques for rigid manipulators are now
reasonably well developed. Since the dynamics at the
hub of such manipulators is the same as the dynamics at
the end-tip, the magnitude of the driving torques and
forces causing the motion of a rigid manipulator can be
used to accurately predict the position of the end-tip at
any time. The absence of flexibility enables the
manipulator to move without the occurrence of
vibrations. Therefore, control techniques are designed to
optimise the transition time between the initial position
and the desired position of the end-effector. However, in
the case of flexible-link manipulators, optimisation of the
transition time between two positions of the end-point of
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the manipulator can generate unwanted characteristics
such as vibrations. Depending on the degree of flexibility
of the manipulator and the time taken to reach the
desired position, the amplitude of these vibrations can be
very significant. In consequence, the time gained in
increasing the speed of the end-effector between the
initial and the final positions may be lost in waiting for
the vibrations to settle down.

Early attempts to design an efficient control law that
will allow an optimisation of both transition time (fast
response) and settling time (decrease of the vibrations)
involved linearising the equations of motion of the
manipulator about a nominal configuration and applying
several linear control schemes,”” but the lack of accuracy
in the model design and the high number of
approximations needed in the linearisation produced a
system which was far from being realistic. Shaped torque
techniques have been proposed® to minimise the residual
vibtrations in flexible manipulators. This technique has
been further developed to suppress multiple mode
variations.” The computed torque method which was
originally developed for rigid manipulators'® was also
tried on flexible link systems. The complexity of the
inverse dynamics makes a straightforward application of
the computed torque method or feedback linearisation
impossible: instead, some approximate schemes have
been proposed'' for open and closed-loop control.

The main drawback of all model-based controllers is
the difficulty in obtaining the exact model necessary.
Therefore, the robustness to parameter uncertaintics has
been a major concern in control design for flexible
manipulators.'”” Another difficulty with the flexible
systems is the so called “spillover” problem which occurs
when one of the links is vertical. Since the actual system
is a distributed parameter system, any designed
controller based on finite dimensional models will
generally suffer from an inability to control or observe
these spillovers.”” Independent joint PD (proportional
plus derivative) controllers have been shown to be stable


https://doi.org/10.1017/S0263574798000186

Quadratic control

for rigid manipulators.”> The same strategy was
experimented with on a two-link rigid-flexible
manipulator'® with satisfactory results, but, since their
design was based on a linearised model, the manoeuver
angles were restricted to small values. Recent research
on one-link flexible manipulators has suggested separat-
ing the flexible system from the rigid system and
controlling the oscillations of the link by the use of
quadratic programming. Previous results'> using this
demonstrated serious inaccuracies for large angle
motions. However, the modified form of this controller
described in section 4.2, based on the improved-accuracy
dynamic model developed in section 3, performs much
better, as the simulations presented demonstrate.

Before engaging in any trajectory planning, and
therefore control strategy, for the two-link flexible
manipulator, it is necessary to initially compensate for
the two static deflections present at the end-tip of each
link. This depends on the link characteristics such as
length, cross-sectional area, flexural stiffness and mass,
plus characteristics linked to the payload carried by the
link such as its mass and position on the link. A
correction procedure was designed to obtain the value of
the deflection and the corresponding slope at any point
of the link. Then, each link is rotated until its vertical
coordinate coincides with the vertical coordinate of its
rigid counterpart. In other words, if the rigid body of the
manipulator is initially positioned on the horizontal axis
(ya(l1, 0) = yo(l5, 0) = 0, where the subscript r relates to
the rigid body), both flexible links are rotated upwards
with an angle equal to:

— ystall(ll) —1 <ystat2(12)>
¢=—tan"' (—m~tan e = 46
Xstar1 (ll ) xslalZ(lZ) ( )

where the subscript stat relates to the end-tip coordinates
when subject to static deflection.

4.1 Computed-torque (open-loop) control
Computed torque control is a well-established open-loop
method for rigid manipulators. It can also be extended to
flexible manipulators, but careful design is then necessary
because of the tendancy of the link end-tip to vibrate
with an inacceptable amplitude if the speed of rotation is
too high. For this reason, the stability of the open-loop of
both flexible subsystems must be carefully analysed.
From equations (42) and (45), the open-loop transfer
function giving the relationship between the input
torques 7;(tf) and the output variables u;(x,t) can be
written as:

ui(x, s) = Ci(x)(sl — A))"'B,1(s) tugi(x); j=1,2. (47)

Concentrating only on the dynamic response of each
subsystem, the corresponding transfer functions can be
rewritten as:

7(s)
=Cix)(sI-A)"'B;; j=1,2. (48)

Gj(x, s) =
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The Matlab package was used to determine the system
poles and zeros. This showed that the open-loop poles
are —1.12+10.24i, —2.81 £52.65; and —7.32 +124.33;
for the first link subsystem and —2.25+ 10.06i,
—5.62+52.42i and —14.24+123.40i for the second
subsystem. These correspond to the first, second and
third flexible modes respectively for each link. The
relative magnitude of these three pole-pairs for each link
demonstrates the dominance of the first and second
flexible modes in the stability of both flexible subsystems
and in the response of the system as a whole. The
pole-pair associated with the first mode of link one is
particularly dominant since the payload is relatively high.

A Nyquist plot (Figure 3) shows the robustness of the
open-loop transfer functions. The gain of the transfer
function of the first link is obviously more important than
that of the second link, proving that the same angle of
rotation will produce vibrations of a larger amplitude for
the first link, and therefore, a longer settling time. To
achieve the control of the vibrations occurring towards
the end of the rotation of cach link, a straightforward
computed torque technique is derived by producing a
smooth trajectory for both flexible links in a way that the
energy produced by each torque is conserved, and the
rotation time is stretched to an optimal value, therefore

001 b S S
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Fig. 3. Nyquist diagrams for the open loop transfer functions.
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limiting the amplitude of the residual vibrations and
shortening the settling time for the links to regain their
static positions.

The relationship between the applied torque 7;(t) and
the dynamic deflection u,(x, t) is given by:

uy(x, s) = Ci(x)(s] = A;)"'B;T(s) + ugy(x)
= Gi(x, $)T;(s) + upi(x) j=1,2. (49)
where |G;(x, iw)| is the gain of amplification. Control of
the amplitude of vibration of the links can be achieved

by limiting the magnitude of the input 7. The control
procedure is then to calculate the torques according to:

D] =[D(6,, 92)][21] +[h(6,, 6,, 6, 6,)]

2 2

+[c(6,, 62)] (50)
such that the following conditions are satisfied:

ua(x, )] = L{utf max (x)}

(51

where uf . (x) and ud,..(x) are the maximum desired
amplitudes for the vibrations at the distance x from the
origin of the respective link. Substituting equation (48)
into equation (49), the necessary conditons become:

|u](x, l(,())| = L{ulllmax(x)};

|T1()C, l(x))| = L{u(llmax(x)} : lGl(x; iw)rl;

(52)
|T2(x, iw)| = LS max(x)} - [Galx, iw)] ™"

In order to obtain a dynamic response for the link
vibrations within the desired scale set by the maximum
desired values uf{ . (x) and uf,.(x), the respective
torques to be delivered to the actuators of both links

should satisfy the control condition given by:

|7(x, i) = L{uf ()} - |Gy(x, i)™
= L{T;lmax}d ] = 1’ 2. (53)

The aim of this control technique is to find the desired
functions giving 6,(¢r) and 8,(t) that will produce a
smooth trajectory for both end-tips and therefore
dampen the residual vibrations of the flexible links. The
nonlinearity of the inverse dynamics equations of the
rigid mode make this control procedure very difficult to
implement.'* It can be seen from equation (50) that to
obtain 6,(t) and 0,(t) from 7,(t) and 7,(f) requires
parallel programming for a set of highly nonlinear
differential equations. A solution adopted was to use a
trial and error method, involving setting an initial
trajectory for both links, calculating the respective
torques, comparing these torques to the conditions
provided by the control procedure, then, if the conditions
are not satisfied, readjusting the trajectories by increasing
the time of rotation.

The control strategy adopted was to apply the
computed torque technique to the part of the motion
where the braking procedure is occurring. The first phase
of the motion (acceleration phase) was left intact to
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optimise on the time criterion. But as soon as the links
start to decelerate, the control procedure limits the value
of the braking torque to allow a smoother motion, and
hence smaller oscillations. The first link rotates at a
slower speed than the second link because, to satisfy the
conditions listed in equation (50), each link has to be
rotated according to a specific optimal time dictated by
the control law applied on the braking torque. Since the
first link is subjected to more inertia, its time of rotation
is increased accordingly.

The computed torque control strategy was tested by
simulating a +30° rotation of the first link and a —30°
rotation of the second link. For this simulation, the
maximum amplitudes for vibration specified in equation
(51) were set at u{ () =24 mm and uf ,..(/) =8 mm.
In the absence of any control law, the rigid mode of the
first link rotated by an amount of 30° in 1.18 seconds.
After applying a computed torque control on the braking
torque relative to the first link, the same rotation was
effected in 1.72 seconds. For the second link, the rigid
mode is rotated by an amount of —30° in 1.18 seconds
when uncontrolled, and 1.5 seconds when subject to the
computed torque control. Figure 4 illustrates of the
end-tip motion of the links, with and without the
computed torque controller. It is clear that controlling
the amplitude of the braking torque improves the
behaviour of the end-tip motion of each link. The
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Fig. 4. End-tip deflection with and without computed-torque
control.
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uncontrolled links are subjected to a very pronounced
braking process and serious vibrations occur at the end
of the rotation. However, with control applied, the
amplitude of the residual link vibrations is much reduced
and the settling time is correspondingly decreased.

Even though the computed torque control is an
efficient method of control for flexible manipulators, the
difficulty in solving the highly nonlinear equations
describing the inverse dynamics of the system is a very
important drawback. The computation burden does not
favour an on-line real-time application for this method.
As a result, research was directed to closed-loop control
and quadratic optimal control in particular.

4.2 Quadratic optimal (closed-loop) control
Given a system described by the following state-space
representation:

X=Ax+ Bu (54)

minimising some function of the error signal will produce
the following quadratic performance index:

j:f() [x/(6) = x(D) QL) —x(t)] dt -~ (55)

where x“(7) represents the desired state, x(¢) the actual
state (thus, x“(t)—x(t) is the error vector), Q a
positive-definite matrix, and the time interval 0=7=T'is
either finite or infinite. The superscript ’ indicating here
the transpose of a vector or matrix. In addition to
considering errors as a measure of system performance,
the energy required for the control action is usually
added to the performance index. Since the control signal
may have the dimension of force or torque, the control
energy is proportional to the integral of such control
signal squared. If the error function is minimised
regardless of the energy required, then a design may
result that calls for overly large values of the control
signal. This is undesirable since all physical systems are
subject to saturation. Large-amplitude control signals are
ineffective outside the range determined by saturation.
Thus, practical considerations place a constraint on the
control vector:

T
J' w'()Ru(r) dt = Iy (56)
0
where R is a positive-definite matrix and J; a positive
constant. The performance index of a control system
over the time interval 0 = ¢ = T may then be written, with
the use of a Lagrange multiplier A, as

J- f () — x()) Ql(r) — x(1)) d
+ )\fru’(t)Ru(z) dt (57)

The Lagrange multiplier A is a positive constant
indicating the weight of control cost with respect to
minimising the error function. In this formulation u(¢) is
unconstrainted. Design based on this performance index
has a practical significance that the resulting system
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compromises between minimising the integral error
squared and minimising the control energy. If 7'= = and
the desired state x“(¢) is the origin (x“(r) = 0), then the
preceding performance index can be expressed as:

J= f i [x (O)Qx(t) + u'()Ru(r)] dt (58)

where A has been included to the matrix R. A choice of
weighting matrices @ and R is in a sense arbitrary.
Although minimising an “arbitrary” quadratic perfor-
mance index may not seem to have much significance,
the advantage of the quadratic optimal control approach
is that the resulting system is a stable system. This
approach is sometimes a better alternative to the pole
placement approach. The optimisation can also be
operated on the output vector (y(r) = Cx(t)) instead of
the state vector x(t), transforming the performance index
nto

J= f "1y OOy + u' (ORu(0)] dr

= f TOC 00K + w' ORu®]dt (59)

In the case of a two-link flexible manipulator, the
state-space representation of the flexible subsystems is
given by equation (33), where j =1, 2 represents the link
number. The problem of determining the optimal control
torques, 7;(t), j=1,2, can be solved by minimising the
following performance index for each flexible link

J; = Jm [u/ (x, NQux, 1) + T/ (OR,T;(1)]dt j=1,2. (60)

)

where u,(x, t) = C;(x)q,(x, t), q,(x, t) is the vector of state
variables of each link at a distance x. Since the control
operates on the end-tip response, x is replaced by L
Replacing the torques 7;(t) by the feed-back command
—K;(x)q;(x, t) gives the new performance index:

Iy = f qi(OLCQ,Cy + KR, Kylgy(r) e j=1,2. (61)
0

where the subscript /j relates to the end-tip of each
flexible link. The performance index is then solved
according to the second method of Liapunov by
assuming that

qi(OIC;Q,Cy + KR K jlgu(t)
d .
=T (qiOPq,)) j=1,2. (62)

where P is a positive-definite matrix of the form

Pint Piz2 Pipsz Pjia Pits Pjie
Pi1z Pjz2 Pjazs Pjppa Pjzs Pjze
Pis Pz Pz Pjza Pjzs Pjse
Pia Pj2a Pjzsa Pjas Pjas  Piss
Diis Djas Pias Pjas Piss  Pjse
Pjie Pj2e Pjze Pjac Pjse  Pjeo
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Equation (62) can be analytically developed as follows:

qi(O[C;Q;Cy + KR Kyjlqut)
= —q4i(0)Pqy(t) — qi() Py (1)
= —ql(A; — B;Ky)'F, + P(A; — B;Ky)lq;  (63)

Comparing both sides of this last equation and noting
that this equation must hold true for any ¢, the
requirement becomes: -

(A;— B,K;)'F, + F(A; — BiK))
= —(C;Q,C; + KjRKy) (64)

The second method of Liapunov states that, if A — BK is
a stable matrix, there exists a positive-definite matrix P
that satisfies the equation above. The performance index
can then be evaluated as

Jy= f gHOLCHO;Cy + KiRiKylay(0) dt
0

= ~lg/() g0
= —qi(*)Fq;(*) + q;(0)Fq,(0) (65)

Since all the poles of A; have negative real parts (see
section 4.1), g,(=)— 0,

Jy = qi(0)Bq 0); j=1,2. (66)

Since R; is assumed to be a positive-definite matrix, it can
be written as follows:

R =TT, j=1,2 (67)

where 7, is a non-singular matrix. Then equation (64) can
be written as

(Aj = K;Bj)F, + P(A; — BiKy) + C;Q,Cy
FRITITR, =0 (68)
which can be rewritten as (by definition, P/ = P))
A[P,+ PA; +[TK; = (T})"'B/P]'[T,K; — (T])"'B/P]
—FBB;R;'B/P+ CiQ;C; =0 (69)

The minimisation of J; with respect to Kj; requires the
minimisation of

il Ky = (T))"'B/PY'|T;K,; — (T}) 'B{Play  (70)

with respect to K. Since the last expression is
nonnegative (a quantity squared), the minimum occurs
when it is zero, or when:

TK;=(T))"'B/P; j=1,2 (71)
Hence:

Ky=T;(T)"'BiR=R;'BjP; j=1,2.  (72)

This last equation gives the optimal matrix K. Thus, the
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optimal control law to the quadratic optimal control
problem where the performance index is given by
equation (60) becomes

7(t) = —Kyqy() = —R;'B/Rq,(r) j=1,2. (73)

The matrix F; must satisfy equation (68) or the following
reduced-matrix Riccati equaiton:

A!P+PA-PBR"'B'P+C'QC

=A/P,+ PA; - BB,R'B/P,
If equation (74) is solved for the matrix P, and P, is then
substituted into equation (72), the resulting matrix Kj; is
the optimal feed-back gain. Since the output to the two

flexible subsystems is the deflection at the respective
end-tips, Q; is a scalar used to weight the output u;(1):

Qi=p; j=12 (75)
and since the input is also a scalar (7;), R; becomes:
Ri=n; j=1,2 (76)
This results in K;(x) being a vector of the following form:
K(x)=1[ky ki ks kia kis kil; j=1,2. (77)
Replacing Q; and R; in equation (74) yields:
A/P,+PA;—PBn;'B/P,+ Cju,C; =0; j=1,2. (78)

Choosing u, = u,=2, and n, = 9, = V2 will result in the
matrices P, and P, [from equation (78)] being equal to:

© 690 0.14 —0.05 —0.01 0 0
0.14 006 001 0 0 0
C|-005 001 139 001 0 o |
P=1"001 o 001 001 0 o |’
0 0 0 0o 107 0
00 0 0 0 2x107%

P =

©3.93 014  —0.10 ~0.01 0 1
0.14 0.03 0.01 0 0

-0.10 0.01 0.72  28%x107% 0 0
—0.01 0  28x107° 2x10% 0 0
0 0 0 0 0% 0

0 0 0 0 0 107
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Substituting these matrices into equation (72) for

Ri=m;= V2 gives the vectors K;; and K, of the optimal

feedback gains:
K;=[—-4.85 199
K,=[—-4.83 1.05

027 2x107° 0 0]

79
025 2x107° 0 0] )

Thus, the closed-loop state matrices A, — B|K;; and
A, — B,K,, have the following poles for the first link,

Si1,12 = —1.29 + 10.24{ S13,14 = —2.90 + 52.65
Sis16 — —7.32 +£124.33;

and for the second link,

o120 = —2.48 £10.060  $y304 = —5.83 £ 52.42i
Sa506 = —7.32 + 124.40i

The first two pairs of poles for ecach link had their real
part shifted further down the real axis (in comparison to
the open-loop poles presented in section 4.1). The
optimal control did not alter the third pole for each link
since its contribution in the final response is negligible.'
The imaginary parts of all the poles of the closed-loop
transfer function were not affected by the optimal
feed-back gains, the aim of any control law being mainly
to stabilise the system by shifting the real part of the
appropriate poles into the negative half-plane. The
outputs u;, (1) and u,(¢f) can now be obtained according
to the following equation:

¢,(0) being the vector of initial conditions at the end-tip
for the state variables of cach link, uo; are the static
deflections at the end-tip of each link. This last equation
could be rewrittcn using the closed-loop poles as:

uy(t) = C//Lil{[»"/i[ —At BjK//]il}@(()) + uoy
i=1,6;j=1,2. (81)

the state number is indicated by the subscript i, the link
number is indicated by the subscript j. L' relates to the
inverse Laplace transform.

Figure 5 shows the time history of the end-tip
deflection of the first and second link, respectively, with
and without optimal control. It can be seen that the
quadratic optimal control allows the links to vibrate
freely as soon as the rotation is started. The manocuver
is operated very smoothly and as soon as the torques
reach a certain magnitude (determined by the controller)
they are automatically decreased (or increased if the link
is in a braking phase). This effect of damping, caused by
the torques, allows the suppression of thce forced
vibrations, and the controlled links are then subject to a
free vibration. Therefore, the scttling time is decreased
enormously. The desired torques 7,(¢) and 7,(¢t) are
obtained by using equation (73) for both flexible links.
They were then used to calculate the angles of rotation
0,(¢) and 6,(¢) of the rigid mode of both links from eqn
(50), by employing the Matlab® package and applying a
Runge-Kutta method using 4tk and 5th order functions.
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Fig. 5. End-tip deflection with and without quadratic optimal
control.

5. CONCLUSIONS

The paper initially explained the necessity for having an
accurate static and dynamic model of the two-flexible-
link manipulator, which properly represents the coupling
and interactions between the links. Such a model has
been developed in previous work and the main steps
involved in the construction of this model have been
reviewed.

The functions to be fulfilled by the controller of a
flexible manipulator system were outlined in scction 1.
Firstly, it must compensate for the static deflection of the
flexible links under gravity forces and, sccondly, it must
act to reduce both the magnitude and time duration of
link oscillations which arise naturally out of its flexibility.
The paper has investigated the ability of two alternative
controllers, a computed-torque controller and a quad-
ratic optimal controller, to fulfill these functions.
Simulation of their rclative performance has shown that,
whilst computed-torque control (which is essentially an
open-loop method) can fulfill these functions to a limited
extent; much better performance is obtained by the
closed-loop, quadratic optimal controller.
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