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A uniformly valid analytic solution of
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We apply a new kind of analytic technique, namely the homotopy analysis method
(HAM), to give an explicit, totally analytic, uniformly valid solution of the two-
dimensional laminar viscous flow over a semi-infinite flat plate governed by f′′′(η) +
αf(η)f′′(η) + β[1 − f′2(η)] = 0 under the boundary conditions f(0) = f′(0) = 0,
f′(+∞) = 1. This analytic solution is uniformly valid in the whole region 0 6 η < +∞.
For Blasius’ (1908) flow (α = 1/2, β = 0), this solution converges to Howarth’s (1938)
numerical result and gives a purely analytic value f′′(0) = 0.332057. For the Falkner–
Skan (1931) flow (α = 1), it gives the same family of solutions as Hartree’s (1937)
numerical results and a related analytic formula for f′′(0) when 2 > β > 0. Also,
this analytic solution proves that when −0.1988 6 β < 0 Hartree’s (1937) family
of solutions indeed possess the property that f′ → 1 exponentially as η → +∞.
This verifies the validity of the homotopy analysis method and shows the potential
possibility of applying it to some unsolved viscous flow problems in fluid mechanics.

1. Introduction
We consider here the two-dimensional laminar viscous flow over a semi-infinite flat

plate, governed by

f′′′(η) + αf(η)f′′(η) + β[1− f′(η)f′(η)] = 0, η ∈ [0,+∞), (1.1)

with boundary conditions

f(0) = f′(0) = 0, f′(+∞) = 1, (1.2)

where f(η) is a non-dimensional function related to the stream function ψ(x, y)
through

f(η) =
ψ(x, y)

(νUx)1/2

and the non-dimensional variable η is defined by

η = y

(
U

νx

)1/2

.

Here, U is the velocity at infinity, ν is the kinematic viscosity coefficient and x and y
are the two independent coordinates.
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102 S.-J. Liao

When α = 1/2 and β = 0, we have the so-called Blasius (1908) equation

f′′′(η) + 1
2
f(η)f′′(η) = 0, η ∈ [0,+∞), (1.3)

under the same boundary conditions (1.2). Weyl (1942a, b) proved that there exists a
unique solution of the Blasius equation. However, as pointed out by White (1991),
although the Blasius equation (1.3) looks rather simple, it seems difficult to find an
analytic solution. Blasius (1908) gave the power series solution

f(η) =

+∞∑
k=0

(− 1
2
)k
Akσ

k+1

(3k + 2)!
η3k+2 (1.4)

where the coefficients Ak are calculated by a recurrence formula

A0 = A1 = 1, Ak =

k−1∑
r=0

(
3k − 1

3r

)
ArAk−r−1 (k > 2). (1.5)

However, the value σ = f′′(0) in (1.4) must be numerically given. Howarth (1938)
obtained a numerical result f′′(0) = 0.33206. So, rigorously speaking, Blasius’ solution
(1.4) is only a semi-analytic and semi-numerical one. Besides, (1.4) converges in a
rather restricted region |η| 6 ρ0, where ρ0 ≈ 5.690. Bairstow (1925) and Goldstein
(1930) also gave some series solutions, but the convergence radius of their solutions
is finite so that they are invalid for large η. To our knowledge, up to now, no one has
reported an explicit, totally analytic, uniformly valid solution of the Blasius equation
(1.3). On the other hand, it seems much easier to give its numerical solution. Toepher
(1912) and Howarth (1938) applied the Runge–Kutta method to get numerical results.
After the appearance of digital computers, Smith (1956), Rosenhead (1963) and Evans
(1968) gave very accurate numerical results of the Blasius equation.

When α = 1, we get the so-called Falkner–Skan (1931) equation

f′′′(η) + f(η)f′′(η) + β[1− f′(η)f′(η)] = 0, η ∈ [0,+∞) (1.6)

under the same boundary conditions (1.2). Obviously, (1.6) is more complicated than
(1.3) so that it seems more difficult to solve (1.6) analytically. The parameter β can
vary in the region β 6 2 so that Falkner–Skan equation (1.6) describes a class of
laminar viscous flows. It is known that in some regions of β, the Falkner–Skan
equation has multiple solutions. For large η, Hartree (1937) gave an asymptotic
expression for 1− f′(η):

1− f′(η) ≈ Aη−(2β+1) exp (− 1
2
η2) + Bη2β, (1.7)

where A and B are constants. Noticing that when β > 0 the coefficient B must
be zero so as to satisfy the boundary condition at infinity and also that the coef-
ficient A can be uniquely determined by the boundary condition at η = 0, Hartree
(1937) pointed out that when β > 0 the Falkner–Skan equation (1.6) has a unique
solution whose first-order derivative f′(η) exponentially tends to 1 as η → +∞.
However, when β < 0, due to (1.7), the boundary condition at infinity is automat-
ically satisfied for any values of A and B so that condition (1.2) does not specify
a unique solution. Hartree (1937) found that in the region β0 < β < 0, where
β0 = −0.19884 with f′′(β0) = 0, there exists a family of unique solutions whose
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Two-dimensional viscous flow over a semi-infinite flat plate 103

first-order derivative tends to 1 exponentially. Hartree’s (1937) family of solution
has the property f′′(0) > 0 and shows neither reversed flow nor velocity overshoot.
Further, Stewartson (1954) proved that when β > 0 the Falkner–Skan equation (1.6)
has indeed a unique solution, and also, when β < β0 all solutions exhibit the property
f′(η∗) > 1 where η∗ > 0, showing velocity overshoot in some regions. Moreover,
in the region β0 < β < 0, Stewartson (1954) found another new family of numer-
ical solutions exhibiting the property f′′(0) < 0, which shows reversed flow, whose
first-order derivative also seems to tend to 1 exponentially. Unlike Hartree (1937)
and Stewartson (1954), Libby & Liu (1967) believed that the overshoot velocity
profile might have physical meanings, so they gave other branches of numerical
solutions for β < β0. Their numerical calculations showed that when β < β0 mul-
tiple (probably an infinity) solution to (1.6) and (1.2) exist for any given values of
f′′(0).

All of above-mentioned solutions to the Falkner–Skan equation (1.6) and (1.2)
are given by numerical methods. To our knowledge, no analytic solution has been
reported. This unsatisfactory situation might be mainly because our current analytic
techniques for nonlinear equations have many limitations and restrictions. In fluid
mechanics, the perturbation techniques (see, for example, Nayfeh & Mook 1979)
are most widely applied to give analytic approximations of nonlinear problems. For
example, as pointed out by Liao (1997a), the power series (1.4) can be given by
perturbation techniques, too. Another well-known example is Whitehead (1889) and
Proudman & Pearson (1957) who applied perturbation techniques to give analytic
approximations of the laminar viscous flow past a sphere in a uniform stream. In
essence, perturbation techniques use one or more ‘small parameters’ to transform a
nonlinear problem into an infinite sequence of auxiliary linear sub-problems. However,
the so-called small parameter greatly restricts application regions of perturbation
techniques. First, many nonlinear problems do not contain such a small parameter.
Secondly, the validity of perturbation approximations is in general too strongly
dependent upon the value of the small parameters. Finally, we have almost no freedom
in selecting the related initial guess approximations and governing equations of the
related auxiliary sub-problems. Owing to these restrictions, perturbation techniques
have failed to solve many important problems in fluid mechanics. For instance,
as pointed out by White (1991), neither Whitehead’s (1889) straight foreword nor
Proudman & Pearson’s marching perturbation technique has been successful in giving
high-order approximations of the viscous flow past a sphere in a uniform stream,
valid in the high Reynolds number region. Therefore, it seems worthwhile developing
new kinds of analytic techniques which do not depend upon small parameters at
all.

Based on the homotopy method in topology, Liao (1992, 1995, 1997a) proposed
such a new kind of analytic technique, namely the homotopy analysis method (HAM).
The homotopy analysis method has the advantage that in general its validity does not
depend upon whether or not nonlinear problems under consideration contain small
parameters. Therefore, the homotopy analysis method is valid for more nonlinear
problems, especially those with strong nonlinearity. In particular, the homotopy
analysis method provides us with great freedom to select initial guess approximations,
types of governing equations of auxiliary sub-problems and also some auxiliary
parameters. It is just this kind of freedom which makes it easier to ensure that the
corresponding approximation sequence given by the homotopy analysis method is
convergent. For example, Liao (1997a) applied the homotopy analysis method to
solve the Blasius equation (1.3) and gave the family of power series solutions in the
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104 S.-J. Liao

auxiliary parameter ~

f(η) = lim
m→+∞

m∑
k=0

[
(− 1

2
)k
Akσ

k+1

(3k + 2)!
η3k+2

]
Φm,k(~), (1.8)

η ∈ [0,+∞), −2 < ~ < 0,

where σ = f′′(0), Ak(k > 0) is given by (1.5) and the so-called approach function
Φm,n(~) is defined by

Φm,n(~) =


0 (n > m),

(−~)n m−n∑
k=0

(
m

m− n− k
)(

n+ k − 1
k

)
~k (1 6 n 6 m),

1 (n 6 0),

(1.9)

As pointed out by Liao (1997a), the power series solution (1.8) is valid in the region

−ρ0 < η < ρ0

[
2

|~| − 1

]1/3

(−2 < ~ < 0), (1.10)

where ρ0 ≈ 5.690 is the convergence radius of the Blasius’ power series (1.4). Therefore,
different from Blasius’ (1908), Bairstow’s (1925) and Goldstein’s (1930) series solutions,
Liao’s (1997a) power series (1.8) may be valid in the whole region η = [0,+∞) as |~|
(−2 < ~ < 0) tends to zero. Moreover, as pointed out by Liao (1997a), the Blasius
power series (1.4) is only a special case of (1.8) when ~ = −1, because the approach
function Φm,n(~) has the interesting property that Φm,n(−1) = 1 for n 6 m. Thus,
(1.8) is more general than the Blasius’ series (1.4). Also, based on the basic ideas of
the homotopy analysis method, Liao (1997b, c, 1998a, b) also developed some new
numerical techniques, such as the so-called ‘general boundary element method’ and
even a non-iterative numerical approach for nonlinear problems. All of these verify
the validity and great potential of the homotopy analysis method.

However, rigorously speaking, even Liao’s (1997a) power series (1.8) is still a semi-
analytic and semi-numerical solution, because the value of f′′(0) in (1.8) must be
obtained by numerical techniques. Notice that Liao (1997a) used

L0 =
∂3

∂η3
(1.11)

as the auxiliary linear operator and f0(η) = ση2/2 as the initial guess approximation.
The above auxiliary linear operator (1.11) comes directly from the linear term of
the Blasius equation (1.3). However, for the homotopy analysis method, this is not
necessary, because the homotopy analysis method provides us with a large freedom
to select proper auxiliary linear operators and initial guess approximations of many
other types. In this paper, we illustrate that, using a more general auxiliary linear
operator such as

L =

(
∂

∂η
+ γ

)
∂2

∂η2
=

∂3

∂η3
+ γ

∂2

∂η2
, (1.12)

where γ > 0 is an integer, we can obtain a family of explicit, uniformly valid, totally
analytic solutions to (1.1) and (1.2). This is the main purpose of this paper.

This paper has a secondary purpose. Notice that, due to (1.7), when β < 0, the
first-order derivative of the solution to the Falkner–Skan equation (1.6) might tend
to 1 either exponentially or algebraically. When f′ → 1 exponentially as η → +∞, we
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Two-dimensional viscous flow over a semi-infinite flat plate 105

have by (1.7) that

d

dη
ln|1− f′(η)| = −η (1.13)

as η → +∞. When f′ → 1 algebraically as η → +∞,

d

dη
ln|1− f′(η)| = 2β

η
→ 0 (1.14)

as η → +∞. However, owing to truncation errors of numerical computations, rig-
orously speaking, it is impossible by means of any numerical methods to exactly
examine whether a solution has the property (1.13) for very large η. For example, we
analysed numerical solutions to the Falkner–Skan equation (1.6) obtained by Runge–
Kutta’s method and using the values of f′′(0) given by Hartree (1937), Stewartson
(1954) and Libby & Liu (1967), and found that as η becomes sufficiently large the
term d/dη ln|1− f′(η)| tends to zero, similar to (1.14) but not to (1.13), for all values
of β even including β > 0. However, as proved by Hartree (1937) and Stewartson
(1954), f′(η) → 1 exponentially when β > 0. So, numerical methods cannot examine
whether or not a numerical solution possesses the property that f′ → 1 exponentially
as η → +∞. Thus, when β < 0, none of the numerical methods mentioned above
can tell us whether or not f′ → 1 exponentially as η → +∞. From (1.7) there might
exist an infinite number of possibilities, and B = 0 is only one among them. By
(1.7), for small but nor-zero |B|/|A|, |1 − f′(η)| would decrease fast at first but then
rather slowly as η becomes very large, similar to the situations that all numerical
results from the Falkner–Skan equation show. So, we should examine whether or not
the solutions to the Falkner–Skan equation (1.6) (when β < 0) given by the Hartree
(1937), Stewartson (1954) and Libby & Liu (1967) indeed have the property that
f′(η)→ 1 exponentially as η → +∞. To do so, we have to analyse its uniformly valid
analytic solutions.

2. The explicit, totally analytic solution
In this section, we apply the homotopy analysis method to give an explicit, uniformly

valid, totally analytic solution to (1.1) and (1.2). Using L defined by (1.12) as an
auxiliary linear operator, we construct the family of differential equations

(1− p)L[F(η, p)− f0(η)]

= p~

{
∂3F(η, p)

∂η3
+ αF(η, p)

∂2F(η, p)

∂η2
+ β

[
1− ∂F(η, p)

∂η

∂F(η, p)

∂η

]}
,

η ∈ [0,+∞), ~ 6= 0, p ∈ [0, 1], (2.1)

with boundary conditions

F(0, p) = F ′(0, p) = 0, F ′(+∞, p) = 1, p ∈ [0, 1], (2.2)

where the prime denotes the partial derivative with respect to η, and

f0(η) = η − [1− exp (−γη)]

γ
+
$[1− (1 + γη) exp (−γη)]

γ2
(2.3)

is an initial guess approximation which satisfies the boundary conditions (1.2), ~ an
auxiliary parameter, and p an embedding parameter. Clearly, at p = 0, we have by
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106 S.-J. Liao

(2.1) and (2.2) that

F(η, 0) = f0(η), η ∈ [0,+∞). (2.4)

When p = 1, (2.1) and (2.2) are the same as (1.1) and (1.2), respectively, so that we
have

F(η, 1) = f(η), η ∈ [0,+∞). (2.5)

Therefore, according to (2.4) and (2.5), the variation of p from 0 to 1 is just the
continuous variation of F(η, p) from the initial guess approximation f0(η) to the
unknown solution f(η) of (1.1) and (1.2). In topology, this kind of continuous
variation is called deformation; f0(η) and f(η) are called homotopic. Owing to this,
we call (2.1) and (2.2) the zeroth-order deformation equations. Notice that owing to
(1.12) the auxiliary linear operator L is completely determined by the value of γ.
And from (2.3) we have f′′0 (0) = γ+$ so that for any fixed value of γ we can change
the initial guess approximation f0(η) by selecting different values of $ .

Assume that the deformation F(η, p) governed by (2.1) and (2.2) is smooth enough
so that

f
[k]
0 (η) =

∂kF(η, p)

∂pk

∣∣∣∣
p=0

(k > 1), (2.6)

namely the kth-order deformation derivative exists. Then, according to (2.4) and the
Taylor formula, we have

F(η, p) = f0(η) +

+∞∑
k=1

[
f

[k]
0 (η)

k!

]
pk =

+∞∑
k=0

φk(η)pk, (2.7)

where we define

φ0(η) = f0(η), φk(η) =
f

[k]
0 (η)

k!
(k > 1). (2.8)

Clearly, the convergence region of the above Maclaurin series depends upon the
auxiliary parameter ~ (~ 6= 0), the auxiliary linear operator L which is determined
by γ (γ > 0), and the initial guess approximation f0(η) which is determined by both
γ and $ . Assume that ~, $ and γ are selected such that the series (2.7) is convergent
at p = 1. Then, owing to (2.5) and (2.7), we get at p = 1 the important relationship

f(η) = f0(η) +

+∞∑
k=1

f
[k]
0 (η)

k!
=

+∞∑
k=0

φk(η) (2.9)

between the initial guess approximation φ0(η) = f0(η) and the unknown solution f(η).
There are two ways to get the governing equations of the unknown function

φm(η)(m > 1). First, differentiating the zeroth-order deformation equations (2.1) and
(2.2) m times with respect to p and then setting p = 0 and finally dividing it by m!,
we have for m > 1 that

L(φm − χmφm−1) = Gm(η), η ∈ [0,+∞), (2.10)

with boundary conditions

φm(0)− χmφm−1(0) = φ′m(0)− χmφ′m−1(0) = φ′m(+∞)− χmφ′m−1(+∞) = 0, (2.11)

where the prime denotes the derivative with respect to η, and

χm =

{
0 m = 1
1, m > 1,

(2.12)
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Two-dimensional viscous flow over a semi-infinite flat plate 107

G1(η) = ~ {φ′′′0 (η) + αφ0(η)φ′′0(η) + β[1− φ′0(η)φ′0(η)]} , (2.13)

Gm(η) = ~

{
d3φm−1(η)

dη3
+ α

m−1∑
k=0

φk(η)
d2φm−1−k(η)

dη2

− β
m−1∑
k=0

dφk(η)

dη

dφm−1−k(η)

dη

}
, (m > 2). (2.14)

We call equations (2.10) and (2.11) the mth-order deformation equations (m > 1).
The second way to get the governing equations is to substitute the series (2.7), say

F(η, p) = f0(η) +

+∞∑
k=1

φk(η)pk,

into the zeroth-order deformation equations (2.1) and (2.2), and then, by equating the
terms of the same power of p, we can get the same mth-order deformation equations
as (2.10) and (2.11). In general, when nonlinear problems under consideration do not
contain transcendental functions of unknowns, the above two ways give the same
high-order deformation equations. Otherwise, the second approach either does not
work or is less efficient. Thus, the first approach is more general than the second.

Notice that from (2.3) and (2.13) we can first calculate the term G1(η) and then
obtain φ1(η) by solving the corresponding linear first-order deformation equations
(2.10) and (2.11) when m = 1. Further, we can calculate the term G2(η) from (2.14)
and then get φ2(η) by solving the corresponding linear second-order deformation
equations (2.10) and (2.11) when m = 2, and so on. In this way, the linear mth-order
(m > 1) deformation equations (2.10) and (2.11) can be solved one after the other
in order. We emphasize that all of these mth-order (m > 1) deformation equations
(2.10) and (2.11) are linear. Therefore, in essence, we transfer the original nonlinear
equations (1.1) and (1.2) into an infinite number of linear equations (2.10) and
(2.11). However, different from perturbation techniques, this kind of transformation
has nothing to do with ‘small parameters’. Secondly, all of these mth-order (m > 1)
deformation equations possess the same linear operatorL defined by (1.12). Thus, the
current approach is rather suitable for symbolic calculations. We apply the symbolic
computation software MATHEMATICA (Abell & Braselton 1994) to solve the first
few deformation equations (2.10) and (2.11) and find, to some surprise, that φm(η)
can be explicitly expressed in the general form

φm(η) =

m+1∑
k=0

Ψm,k(η) exp (−kγη), m > 0, (2.15)

where the Ψm,k(η) are defined by

Ψ0,0(η) = b0
0,0 + b1

0,0η, (2.16)

Ψ0,1(η) = b0
0,1 + b1

0,1η, (2.17)

Ψm,0(η) = b0
m,0, m > 1, (2.18)

Ψm,k(η) =

2(m+1)−k∑
i=0

bim,kη
i, m > 1, 1 6 k 6 m+ 1. (2.19)
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108 S.-J. Liao

Knowing the structure (2.15) of φm(η), we can rigorously deduce the following
recurrence formulae for the coefficients bkm,n of φm(η), where m > 1, 0 6 n 6 m + 1
and 0 6 k 6 2(m+ 1)− n, as follows:

b0
m,0 = χmb

0
m−1,0 − γ−1

2m∑
q=0

Γ
q
m,1 µ

q
1,1

−
m+1∑
n=2

[
(n− 1)Γ 0

m,n µ
0
n,0 +

2(m+1)−n∑
q=1

Γq
m,n(nµ

q
n,0 − µqn,0 − γ−1µ

q
n,1)

]
, (2.20)

b1
m,0 = 0, (2.21)

b0
m,1 = χmb

0
m−1,1 + γ−1

2m∑
q=0

Γ
q
m,1 µ

q
1,1

+

m+1∑
n=2

[
nΓ 0

m,n µ
0
n,0 +

2(m+1)−n∑
q=1

Γq
m,n(nµ

q
n,0 − γ−1 µ

q
n,1)

]
, (2.22)

bkm,1 = χmb
k
m−1,1 +

2m∑
q=k−1

Γ
q
m,1 µ

q
1,k , 1 6 k 6 2m− 1, (2.23)

bkm,1 =

2m∑
q=k−1

Γ
q
m,1 µ

q
1,k , 2m 6 k 6 2m+ 1, (2.24)

bkm,n = χmb
k
m−1,n −

2(m+1)−n∑
q=k

Γ q
m,n µ

q
n,k, 0 6 k 6 2m− n, 2 6 n 6 m, (2.25)

bkm,n = −
2(m+1)−n∑
q=k

Γ q
m,n µ

q
n,k, 2m− n+ 1 6 k 6 2m− n+ 2, 2 6 n 6 m, (2.26)

bkm,m+1 = −
m+1∑
q=k

Γ
q
m,m+1 µ

q
m+1,k , 0 6 k 6 m+ 1, (2.27)

where

µ
q
1,k =

q!

k!

(q − k + 2)

γq−k+3
, 0 6 k 6 q + 1, q > 0 (2.28)

µ
q
n,k =

q!

k!

1

(n− 1)q−k+1γq−k+3

{
1−

(
1− 1

n

)q−k+1[
(q − k + 2)− (q − k + 1)

(
1− 1

n

)]}
,

0 6 k 6 q, n > 2, q > 0 (2.29)

and the related coefficient Γq
m,n is defined by

Γ
q
m,1 = ~(dqm−1,1 + δ

q
m,1 + ∆q

m,1), 0 6 q 6 2m− 1, (2.30)

Γ 2m
m,1 = ~(δ2m

m,1 + ∆2m
m,1), (2.31)

Γ
q
m,m+1 = ~(δqm,m+1 + ∆q

m,m+1), 0 6 q 6 m+ 1, (2.32)
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Two-dimensional viscous flow over a semi-infinite flat plate 109

and for 2 6 n 6 m,

Γq
m,n =


~(dqm−1,n + δqm,n + ∆q

m,n), 0 6 q 6 2m− n,
~(δqm,n + ∆q

m,n), 2m− n+ 1 6 q 6 2m− n+ 2,

0, otherwise.

(2.33)

Here the coefficients δqm,n and ∆q
m,n, where m > 1, 0 6 n 6 m+ 1, 0 6 q 6 2(m+ 1)− n,

are defined by

δqm,n = α

m−1∑
k=0

min{n,k+1}∑
j=max{1,n+k−m}

min{q,2(k+1)−j}∑
i=max{0,q−2(m−k)+n−j}

cik,jb
q−i
m−1−k,n−jλ

q−i
m−1−k,n−j , (2.34)

and

∆q
m,n = −β

m−1∑
k=0

min{n,k+1}∑
j=max{0,n+k−m}

min{q,2(k+1)−j}∑
i=max{0,q−2(m−k)+n−j}

aik,j a
q−i
m−1−k,n−j , (2.35)

respectively, where

λki,j =



0, i = j = 0, k > 2,

0, i > 0, j = 0, k > 1,

0, j > i+ 1,

0, k > 2(i+ 1)− j,
1, otherwise,

(2.36)

and the related coefficients aim,k , c
i
m,k , d

j
m,k are given by

aim,k = (i+ 1)λi+1
m,k b

i+1
m,k − (kγ) bim,k λ

i
m,k, (2.37)

cim,k = (i+ 1)(i+ 2)bi+2
m,k λ

i+2
m,k − 2(kγ)(i+ 1) bi+1

m,k λ
i+1
m,k + (kγ)2 bim,k λ

i
m,k, (2.38)

and

dim,k = (i+ 1)λi+1
m,k c

i+1
m,k − (kγ) λim,k c

i
m,k. (2.39)

The detailed derivation is given in the Appendix.
Using above recurrence formulae, we can calculate all coefficients bkm,n by using only

the first four:

b0
0,0 =

$

γ2
− 1

γ
, b1

0,0 = 1, b0
0,1 = −$

γ2
+

1

γ
, b1

0,1 = −$
γ
, (2.40)

given by the initial guess approximation (2.3). The corresponding Mth-order approxi-
mation of (1.1) and (1.2) is then given by

f0(η) +

M∑
n=1

φn(η) =

M∑
m=0

m+1∑
n=0

Ψm,n(η) exp (−nγη)

= t+

(
M∑
m=0

b0
m,0

)
+

M+1∑
n=1

exp (−nγη)

(
M∑

m=n−1

2(m+1)−n∑
k=0

bkm,n η
k

)
. (2.41)

Therefore, we obtain in fact the following explicit, totally analytic solution of the
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110 S.-J. Liao

two-dimensional laminar viscous flow over a semi-infinite flat plane:

f(η) =

+∞∑
k=0

φk(η) = t+ lim
M→+∞

[(
M∑
m=0

b0
m,0

)

+

M+1∑
n=1

exp (−nγη)

(
M∑

m=n−1

2(m+1)−n∑
k=0

bkm,nη
k

)]
. (2.42)

3. The convergence of the analytic solution
In this section, we consider the convergence of the infinite series (2.42). First, we

can prove that, if the infinite series

+∞∑
k=0

φk(η) (3.1)

is convergent, it must converge to the solution of equations (1.1) and (1.2).
To prove this, we first assume that ~, $ and γ are selected such that the series (3.1)

converges. Then, it must hold that

lim
m→+∞φm(η) = 0. (3.2)

Further, we have by (2.10) and (2.12) that

m∑
k=1

Gm(η) =

m∑
k=1

L[φk − χkφk−1] =L
[

m∑
k=1

φk −
m∑
k=1

χkφk−1

]
=Lφm.

Thus, owing to (1.12), (3.2) and above expression, we have

lim
m→+∞

m∑
k=1

Gk(η) = lim
m→+∞L[φm(η)] = 0, η ∈ [0,+∞), (3.3)

say, the infinite sequence s1, s2, s3, . . ., where sm =
m∑
k=1

Gk(η), converges to zero. On the

other hand, owing to (2.13) and (2.14), we have

m∑
i=1

Gi(η) = ~
m∑
i=1

{
d3φi−1(η)

dη3
+ α

i−1∑
k=0

φk(η)
d2φi−1−k(η)

dη2

+β

[
(1− χi)−

i−1∑
k=0

dφi−1−k(η)

dη

dφk(η)

dη

]}
. (3.4)

Thus,

lim
m→+∞

m∑
i=1

Gi(η) = ~
+∞∑
i=1

{
d3φi−1(η)

dη3
+ α

i−1∑
k=0

φk(η)
d2φi−1−k(η)

dη2

+ β

[
(1− χi)−

i−1∑
k=0

dφi−1−k(η)

dη

dφk(η)

dη

]}

= ~

{
d3

dη3

+∞∑
i=1

φi−1(η) + α

+∞∑
i=1

i−1∑
k=0

φk(η)
d2φi−1−k(η)

dη2
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+ β

[
+∞∑
i=1

(1− χi)−
+∞∑
i=1

i−1∑
k=0

dφi−1−k(η)

dη

dφk(η)

dη

]}

= ~

{
d3

dη3

+∞∑
i=0

φi(η) + α

+∞∑
k=0

+∞∑
j=k+1

φk(η)
d2φj−1−k(η)

dη2

+ β

[
1−

+∞∑
k=0

+∞∑
j=k+1

dφj−1−k(η)

dη

dφk(η)

dη

]}

= ~

{
d3

dη3

[
+∞∑
k=0

φk(η)

]
+ α

+∞∑
k=0

φk(η)
d2

dη2

[
+∞∑
k=0

φk(η)

]

+ β

1−
(

d

dη

+∞∑
k=0

φk(η)

)2
 . (3.5)

Since ~ 6= 0, we have by (3.3) and (3.5) that

d3

dη3

[
+∞∑
k=0

φk(η)

]
+α

+∞∑
k=0

φk(η)
d2

dη2

[
+∞∑
k=0

φk(η)

]
+β

1−
(

d

dη

+∞∑
k=0

φk(η)

)2
 = 0. (3.6)

Furthermore, from (2.3) and (2.11), we have

+∞∑
k=0

φk(0) = 0,

+∞∑
k=0

φ′k(0) = 0,

+∞∑
k=0

φ′k(+∞) = 1. (3.7)

Therefore owing to (3.6) and (3.7), if the infinite series (2.42) converges, it must be a
solution of equations (1.1) and (1.2). Thus, we only need to concentrate on selecting
the appropriate initial guess approximation f0(η), auxiliary linear operator L and
auxiliary parameter ~ to ensure the infinite series (2.42) is convergent.

Notice that the infinite sequence (2.42) gives a family of explicit analytic solutions
in three parameters $, γ (γ > 0) and ~ (~ 6= 0). Certainly, some among them may
converge to f(η) but others might not, dependent upon their values. Moreover, some
of them might be ‘better’ than others; we emphasize that it is the homotopy analysis
method which provides us with great freedom and large flexibility to select ‘better’
values of $, γ and ~ to ensure the related series (2.42) convergent to f(η), although
this kind of freedom has its negative side which we will discuss later in this paper.

The essence of any an approximation approach is to express a solution of a problem
as a complete set of base functions. From (2.42), our current base functions are

1, η, ηm exp (−nγη) (n > 1, m > 0). (3.8)

According to (1.7), if f′(η)→ 1 exponentially as η → +∞, we have

1− f′(η) ∝ η−(2β+1) exp (− 1
2
η2). (3.9)

Notice that we can rewrite the term exp (−η2/2) in the following form:

exp (− 1
2
η2) = exp (−γη) exp (− 1

2
η2 + γη)

= exp (−γη)

[
1 + (− 1

2
η2 + γη) +

1

2!

(− 1
2
η2 + γη

)2
+

1

3!

(− 1
2
η2 + γη

)3
+ · · ·

]
.

Therefore, f′(η) can be expressed by the set of base functions (3.8) if f′(η) → 1,
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112 S.-J. Liao

indeed exponentially as η → +∞. However, if f′(η) → 1 algebraically as η → +∞,
obviously, f′(η) cannot be expressed by the set of base functions (3.8). Therefore, (3.8)
is complete only for the solutions possessing the property f′(η)→ 1 exponentially as
η → +∞. In this way, we can exactly find if a solution of equations (2.1) and (2.2)
indeed possesses the property f′(η)→ 1 exponentially as η → +∞.

Secondly, if the sequence (2.42) converges, its second-order derivatives with respect
to η at η = 0, say,

+∞∑
k=0

φ′′k(0), (3.10)

must be convergent, too. From (A 11), we have its corresponding mth-order approxi-
mation

σm =

m∑
k=0

φ′′k(0) =

m∑
k=0

k+1∑
n=1

c0
k,n. (3.11)

The first- and second-order approximations are

σ1 = (γ + $)(1 + ~)− ~
γ

(
1
2
α+ 3

2
β
)

+
$~

γ2

(
1
2
α+ 3

2
β
)

+
$2~

γ3

(
α

4
+
β

4

)
,

σ2 = (γ + $)(1 + ~)2 − ~
γ

(α+ 3β) +
$~

γ2
(α+ 3β) +

$~2

γ2

(
3
4
α+ 7

4
β
)

+
$2~

γ3

(
1
2
α+ 1

2
β
)

+
$2~2

γ3

(
3
8
α+ 3

8
β
)− ~2

γ3

(
5
6
α2 + 3αβ + 8

3
β2
)

+
$~2

γ4

(
35
24
α2 + 43

8
αβ + 59

12
β2
)

+
$2~2

γ5

(
101
72
α2 + 95

24
αβ + 37

18
β2
)

+
$3~2

γ6

(
35
108
α2 + 37

72
αβ + 41

216
β2
)
,

respectively. Our calculations indicate that σm contains the term (γ+$)(1+~)m. Thus,
~ must belong to a subset of the region

|1 + ~| 6 1. (3.12)

Notice that we define ~ 6= 0 in (2.1) and (2.2). Therefore, we are sure that both of the
infinite series (2.42) and (3.10) diverge when ~ > 0 or ~ < −2.

Let

fm(η) =

m∑
k=0

φk(η) (3.13)

denote the mth-order of approximation of f(η) and

Em(~, γ, ω̃) =

∫ +∞

0

[f′′′m (η) + αf′′m(η)fm(η) + β(1− f′2m )]2dη (3.14)

its corresponding residual error. Obviously, if the series (2.42) converges, it must hold
that

lim
m→+∞Em(~, γ, $) = 0. (3.15)

Also, in order to ensure the series (2.42) converges sufficiently fast, it should hold that

Em(~, γ, $) 6 Em−1(~, γ, $). (3.16)
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Two-dimensional viscous flow over a semi-infinite flat plate 113

Noticing that Em(~, γ, $) is dependent upon ~, γ, $ , we define the set

Sm = {(~, γ, $) : Em(~, γ, $) 6 Em−1(~, γ, $)} . (3.17)

Then, if ~, γ, $ belong to the set

S =

{
(~, γ, $) : (~, γ, ω̃) ∈

+∞⋂
m=1

Sm, lim
m→+∞Em(~, γ, $) = 0

}
, (3.18)

the series (2.42) converges sufficiently fast to the solution of (1.1) and (1.2). Notice
that such a set might have infinite elements, but for a definite solution only one
among them is enough.

We consider here two different cases. The first is Blasius flow which corresponds
to α = 1/2, β = 0. The second is Falkner–Skan flow, corresponding to α = 1. Our
calculations indicate that, for Blasius flow, the series (2.42) is convergent at least in
the region

−1 6 ~ < 0, γ > 4, $ = 0. (3.19)

And for Falkner–Skan flow (α = 1), the series (2.42) is convergent at least in the
region

−1 6 ~ < 0, γ > 5, $ = 0,

but only of the parameter β in the restricted region 2 > β > β0 = −0.1988.
Also, all of our calculations indicate that the series (2.42) is convergent in the whole

region η ∈ [0,+∞) to the solution f(η) of (2.1) and (2.2), as long as the series (3.10)
converges. Moreover, when the series (3.10) converges faster, the corresponding series
(2.42) also converges faster.

4. The velocity profile
4.1. Blasius flow

As mentioned above, when α = 1/2, β = 0, the series (2.42) is convergent at least in
the region −1 6 ~ < 0, γ > 4 when $ = 0. For example, selecting $ = 0, ~ = −1
and γ = 4, we get the 55th-order of approximation which agrees well with Howarth’s
(1938) numerical result, as shown in tables 1 and 2. Notice that, as shown in table 1, all
of our analytic approximations at over 45th-order give f′′(0) = 0.332057 which agrees
well with Howarth’s (1938) numerical value f′′(0) = 0.33206. Here, we emphasize two
points. First, different from Blasius’ (1908), Bairstow’s (1925) and Goldstein’s (1930)
series solutions, the series (2.42) converges now in the whole region 0 6 η < +∞.
Second, to our knowledge, it is the first time that a uniformly valid, purely analytic
solution f(η) and also an analytic value of f′′(0) has been given for the Blasius flow.
Thus, even better than Liao’s (1997a) power series, (2.42) can give a totally (or purely)
analytic solution of the Blasius flow which is uniformly valid in the whole region
0 6 η < +∞. This verifies well the validity and potential of the homotopy analysis
method as an analytic tool for non–linear problems.

4.2. Falkner–Skan flow

When α = 1, the series (2.42) describes the Falkner–Skan viscous flow. As proved by
Hartree (1937) and Stewartson (1954), when 0 6 β 6 2, the Falkner–Skan equation
(1.6) has a unique solution whose first-order derivative tends to 1 exponentially.
Setting $ = 0 for the sake of simplicity, we find that (2.42) is convergent at least
in the region −1 6 ~ < 0, γ > 5 for any values 0 6 β 6 2. For example, when
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114 S.-J. Liao

Order of
approximations f′′(0)

5th 0.256390
10th 0.327756
15th 0.331256
20th 0.331851
25th 0.332004
30th 0.332040
35th 0.332052
40th 0.332055
45th 0.332057
50th 0.332057
55th 0.332057

Table 1. Analytic approximations of f′′(0) for Blasius flow (α = 1/2, β = 0) when
$ = 0, γ = 4, ~ = −1.

10th- 20th- 30th- 40th- 50th- 55th- Numerical
η order order order order order order results

0.4 0.128944 0.132650 0.132756 0.132763 0.132764 0.132764 0.1328
0.8 0.249855 0.264412 0.264288 0.264707 0.264709 0.264709 0.2647
1.2 0.369985 0.393075 0.393755 0.393772 0.393776 0.393776 0.3938
1.6 0.511611 0.514758 0.516680 0.516750 0.516756 0.516756 0.5168
2.0 0.667300 0.626372 0.629553 0.629754 0.629764 0.629764 0.6298
2.4 0.803701 0.727156 0.728494 0.728950 0.728980 0.728980 0.7290
2.8 0.898980 0.814839 0.810980 0.811429 0.811503 0.811503 0.8115
3.2 0.954007 0.885026 0.876124 0.875982 0.876066 0.876066 0.8761
3.6 0.981197 0.935172 0.924321 0.923315 0.923312 0.923312 0.9233
4.0 0.993004 0.966854 0.957245 0.955665 0.955518 0.955518 0.9555
4.4 0.997605 0.984622 0.977780 0.976154 0.975900 0.975900 0.9759
5.0 0.999581 0.995914 0.992920 0.991856 0.991599 0.991599 0.9916
6.0 0.999983 0.999708 0.999317 0.999092 0.999006 0.999006 0.9990
7.0 1.000000 0.999987 0.999961 0.999939 0.999926 0.999926 1.0000
8.0 1.000000 1.000000 0.999999 0.999998 0.999997 0.999997 1.0000

Table 2. Comparison of the analytic approximations of f′(η) for Blasius flow (α = 1/2, β = 0)
given by $ = 0, γ = 4 and ~ = −1 with Howarth’s (1938) numerical results.

~ = −1, γ = 5, $ = 0, the series (2.42) converges sufficiently fast and the 20th-order
approximation agrees very well with numerical results, as shown in figures 1, 2 and
3. In fact, when 1 6 β 6 2, the 10th-order approximation can give quite accurate
velocity profiles, as shown in figures 2 and 3. The corresponding values of f′′(0) of the
20th-order analytic approximation also agree well with Howarth’s (1938) numerical
results, as shown in table 3. Because we obtain in this paper a purely analytic
solution, we can give the analytic formula for the value f′′(0) for different β in the
region 0 6 β 6 2

f′′(0) = κ0 +

20∑
m=1

κmβ
m, (4.1)

where the coefficients κm are given in table 4.
Using this analytic formula, it is easy for us to calculate f′′(0) for any values of
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0.5
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15th-order approx.f ′(η)

η
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20th-order approx.
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1.0
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0 1 2 3 4 5 6

10th-order approx.

Figure 1. Comparisons of numerical results with analytic approximations upto 20th order
($ = 0, γ = 5, ~ = −1) of the Falkner–Skan equation when β = 0: symbol; analytic approxi-
mations; solid line, numerical solutions given by Runge–Kutta’s method (f′′(0) = 0.469601).

0.5

1.0

0 1 2 3 4 5 6

15th-order approx.f ′(η)

η

0.5

1.0

0 1 2 3 4 5 6

20th-order approx.

η

0.5

1.0

0 1 2 3 4 5 6

5th-order approx.f ′(η) 0.5

1.0

0 1 2 3 4 5 6

10th-order approx.

Figure 2. As figure 1 but for β = 1 (f′′(0) = 1.232588).
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Figure 3. As figure 1 but for β = 2 (f′′(0) = 1.687218).
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Numerical
β 10th-order 15th-order 20th-order results

2.0 1.6865 1.6871 1.6872 1.6872
1.6 1.5171 1.5214 1.5215 1.5215
1.2 1.3315 1.3357 1.3358 1.3357
1.0 1.2308 1.2324 1.2327 1.2326
0.8 1.1221 1.1200 1.1203 1.1203
0.6 1.0011 0.9958 0.9957 0.9958
0.5 0.9338 0.9280 0.9276 0.9277
0.4 0.8604 0.8553 0.8544 0.8544
0.3 0.7792 0.7755 0.7748 0.7748
0.2 0.6883 0.6872 0.6869 0.6867
0.1 0.5852 0.5867 0.5871 0.5870
0.05 0.5282 0.5303 0.5310 0.5311
0.0 0.4669 0.4688 0.4695 0.4696

Table 3. Comparisons of analytic approximations f′′(0) for Falkner–Skan flow given by
γ = 5, ~ = −1, $ = 0 with numerical results (White 1991).

κ0 = 0.469471, κ11 = 2.50815× 10−2,
κ1 = 1.29517, κ12 = −4.97913× 10−3,
κ2 = −1.37974, κ13 = 7.87925× 10−4,
κ3 = 2.19113, κ14 = −9.87276× 10−5,
κ4 = −3.01070, κ15 = 9.67527× 10−6,
κ5 = 3.21760, κ16 = −7.26543× 10−7,
κ6 = −2.63773, κ17 = 4.04235× 10−8,
κ7 = 1.67209, κ18 = −1.57303× 10−9,
κ8 = −0.828893, κ19 = 3.83118× 10−11,
κ9 = 0.324432, κ20 = −4.40979× 10−13.
κ10 = −0.100961.

Table 4. Coefficients of equation (4.1).

0 6 β 6 2. Thus, we do not need to interpolate the discrete values of f′′(0) given by
Hartree (1937).

When 0 > β > β0 = −0.19884, the series (2.42) converges at least in the region

−1 6 ~ < 0, γ > 5, $ = 0 (4.2)

but only to the family of solutions having the property f′′(0) > 0, i.e. the family given
by Hartree (1937). In general, when 0 > β > β0 = −0.19884, the series (2.42) converges
slower than that when 0 6 β 6 2, as shown in figures 4 and 5 (~ = −1, γ = 5, $ = 0),
so that the 20th-order approximation formula (4.1) cannot give sufficiently accurate
result for f′′(0) when 0 > β > β0 = −0.19884.

When 0 > β > β0 = −0.19884, Stewartson (1954) reported another family of
solutions showing reversed flow. However, as mentioned above, when setting $ = 0,
the series (2.42) converges only to Hartree’s (1937) family of solutions for values
of ~ and γ in the region −1 6 ~ < 0, γ 6 5. Notice that, from (2.3), we have
f′′0 (0) = γ + $ . Thus, we can select negative values $ < −γ to ensure that the initial
guess approximation f0(η) has the property f′′0 (0) < 0. We find that, in general, for
a fixed value of γ, the larger the value of |$ | ($ < 0) is, the smaller the value of
|~| (−2 < ~ < 0) should be so as to ensure the series (2.42) convergent. We attempted
hundreds of combinations of different values of γ, $, ~ and found, to some surprise,
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Figure 4. Comparisons of numerical result with analytic approximations of the Falkner–Skan
equation when β = −0.05 at different orders given by $ = 0, γ = 5, ~ = −1: symbol, analytic
approximations; solid line, numerical solutions.
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20th-order approx.

Figure 5. As figure 4 but for β = −0.16.

that, as long as the series (2.42) is convergent, it always converges to Hartree’s
(1937) family of solutions having the property f′′(0) > 0. However, we cannot give
a rigorous logical proof of it. In some cases such as h = −1, γ = 4, $ = −5, or
~ = −3/4, γ = 5, $ = −8, the series (4.24) converges sufficiently fast to the Hartree’s
(1937) family of solutions. In other cases such as γ = 3, $ = −12, ~ = −1/10 or
γ = 4, $ = −13, ~ = −1/12, the series (2.42) first even seems to approach to a kind
of reversed flow but finally still converges, although rather slowly, to Hartree’s (1937)
family of solutions.
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When β < β0 = −0.19884, Stewartson (1954) proved that all solutions of the
Falkner–Skan equation (1.6) have the property f′ > 1 in some regions, showing
velocity overshoot, and further Libby & Liu (1967) gave some families of this kind of
solution. However, all of our calculations indicate that the series (2.42) would seem
to be divergent when β < β0 = −0.19884, although we cannot logically prove it.
Therefore, the series (2.42) would seem to be valid only in the region 2 > β > β0

and to converge only to Hartree’s (1937) family of solutions having the property
f′′(0) > 0.

If above result were indeed true, it might lead to two contrary conclusions. The first
would be that the solutions, showing either reversed flow given by Stewartson (1954)
or velocity overshoot given by Libby & Liu (1967), would not possess the property
that f′ → 1 exponentially as η → +∞, because their asymptotic expressions for the
term 1−f′(η) would contain an algebraic term with a rather small coefficient B relative
to A in (1.7). In this case, no numerical methods could examine this small algebraic
term. If so, these solutions certainly could not be expressed by the base functions (3.8)
so that the series (2.42) naturally could not converge to them. Notice that, as pointed
out by Stewartson (1954), when 0 > β > β0, the width of the region of the reversed
flow is ‘∝ (−β)−1/2 and so tends to infinity as the main-stream velocity tends to
become constant’ (β = 0); and also, ‘as β → 0- the fluid in the region of reversed flow
comes to rest’. However, it would seem hard for the author to image a kind of laminar
viscous flow over a semi-infinite flat plate which contains a layer of fluid at rest with
infinite width but whose velocity exponentially increases to 1. Moreover, if this kind
of solution were indeed to exist, there would exist two solutions to the Falker–Skan
equation (1.6) in the case β = 0 (another form of Blasius equation). However, this
would seem to be contrary to Hartree’s (1937) and especially Weyl’s (1942a, b) logic
proof that there exists a unique solution when β = 0. The second conclusion is that
the Stewartson’s (1954) reversed flow solution and Libby & Liu’s (1967) velocity
overshoot solutions would have indeed the property that f′ → 1 exponentially as
η → +∞ but our current approach would fail to give them. Notice that the homotopy
analysis method provides us with rather great freedom to select the initial guess
approximation f0(η), auxiliary linear operator L and the auxiliary parameter ~. We
emphasize that it is just due to this kind of great freedom that the homotopy analysis
method can overcome the restrictions of the perturbation techniques. However, on
the other side, this kind of freedom might become a disadvantage of the homotopy
analysis method, especially when there exist multiple solutions. One of the reasons is
that there might exist a lot (probably an infinite number) of appropriate initial guess
approximations and auxiliary linear operators L for a given problem, and the fact
that a group of initial guess approximations and auxiliary linear operators L fail to
give a series convergent to a definite solution does not mean that other will also fail
to do so. For example, even using the new kind of auxiliary linear operator

L =
∂3

∂η3
+ 2γ

∂2

∂η2
+ γ2 ∂

∂η
(4.3)

and the same initial guess approximation as (2.3), we still fail to find a series
convergent for β < β0 = −0.19884. However, we cannot logically prove that all
possible initial guess approximations and auxiliary linear operators L fail to do so.
What we are sure of is that Hartree’s (1937) family of solutions showing neither
reversed flow nor velocity overshoot has the property that f′ → 1 exponentially as
η → +∞. We are also sure that using the initial guess approximation (2.3) and the
auxiliary linear operator (1.12) we can apply the homotopy analysis method to give
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a uniformly valid, totally analytic solution of the Falkner–Skan equation (1.6) in the
region 2 > β > β0 = −0.19884, which has the property f′′(0) > 0. However, we
are still not sure whether the solution showing reversed flow or velocity overshoot
indeed possesses the property f′ → 1 exponentially as η → +∞, unless we can find an
analytic series convergent to it by means of the homotopy analysis method or some
other analytic techniques.

5. Conclusions and discussion
In this paper, we apply the homotopy analysis method (HAM) to obtain an explicit,

totally analytic, uniformly valid solution (2.42) of a class of two-dimensional laminar
viscous flow over a semi-infinite flat plate governed by the Falkner–Skan equation
(1.6) or Blasius equation (1.3) under the boundary condition (1.2). We prove that,
as long as the series (2.42) is convergent, it must converge to one of (1.1) and
(1.2). Also, different from Blasius’ (1908), Bairstow’s (1925) and Goldstein’s (1930)
series solution for Blasius flow, this analytic solution is valid in the whole region
0 6 η 6 +∞. We show that, for the Blasius flow (α = 1/2, β = 0), the series
(2.42) is convergent at least when $ = 0,−1 6 ~ < 0, γ > 4, and the 55th-order
approximation given by $ = 0, ~ = −1, γ = 4 agrees very well with Howarth’s (1938)
numerical results. For Falkner–Skan flow (α = 1), the series (2.42) is convergent when
2 > β > β0 = −0.19884 at least in the region $ = 0,−1 6 ~ < 0, γ > 5, but only
to the Hartree’s (1937) family of solutions having the property f′′(0) > 0. Although
the series (2.42) is invalid for β < β0; and also, cannot give families of solutions
showing either reversed flow or velocity overshoot, to our knowledge thus it is the
first time that such an explicit, uniformly valid, totally analytic solution to Falkner–
Skan equation (1.6) when 2 > β > β0 = −0.19884 has been given. This verifies the
validity and the potential of the homotopy analysis method as a new kind of analytic
tool for nonlinear problems in fluid mechanics.

Notice that, using only the first four known coefficients

b0
0,0 =

$

γ2
− 1

γ
, b1

0,0 = 1, b0
0,1 = −$

γ2
+

1

γ
, b1

0,1 = −$
γ
,

we can apply the recurrence formulae (2.20)–(2.27) and some other related expressions
to calculate all coefficients bkm,n of the solution (2.42). Although these recurrence
formulae appear more complex than the recurrence formula (1.5) given by Blasius,
it is now easy for us to calculate the coefficients bkm,n by computers and symbolic
calculation software such as MATHEMATICA, MAPLE and so on. Notice that
Blasius flow is a special case of the equations (1.1) and (1.2). However, our analytic
solution (2.42) is different from Blasius’ power series solution (1.4) in two points.
First, Blasius’ power series solution (1.4) is a semi-numerical and semi-analytic ones
because σ = f′′(0) in the formula (1.4) must be given by numerical approaches, but
our solution (2.42) is a totally analytic solution and no coefficients bkm,n need be
given by numerical techniques. Secondly, Blasius’ power series solution is valid in a
restricted region but (2.42) is valid in the whole region η ∈ [0,+∞).

Compared with perturbation techniques, the homotopy analysis method has the
following advantages. First, it does not depend on small parameters. Secondly, it
provides us with great freedom and flexibility to select appropriate initial guess
approximations, auxiliary linear operators and the auxiliary non-zero parameter ~.
This kind of freedom and flexibility not only implies great potential for us to further
improve the homotopy analysis method itself, but also provides us with a greater
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possibility to ensure that the related infinite sequence of approximations converge, and
also to select ‘better’ ones from the family of approximations in more general forms.
We believe that larger freedom and being more general means better. Independent
of small parameters, the homotopy analysis method might become a new analytic
tool for nonlinear problems in science and engineering, although it needs further
improvements.

When β > 0, the Falkner–Skan equation (1.6) has a unique solution. In this simple
case, we only need select appropriate combinations of $, ~, γ to ensure the series
(2.42) convergent, because we have proved in § 3 that a convergent series of (2.42)
must converge to one of its solutions. Our calculations indicate that at least when

−1 6 ~ < 0, γ > 5, $ = 0,

the series (2.42) indeed converges to the unique solution of the Falkner–Skan equa-
tion (β > 0). In case $ = 0, different values of γ corresponds to different initial
guess approximations f0(η) and different ‘auxiliary’ linear operators L, and more-
over, different values of ~ give different ‘deformations’ governed by the zeroth-order
deformation equations (2.1) and (2.2). This means that a lot of pairs of γ(γ > 5)
and ~(−1 6 ~ < 0), or in other words, a lot of initial guess approximations f0(η)
and auxiliary linear operators L and also many kind of related deformations, can
make the series (2.42) convergent to the unique solution when β > 0. How should we
understand this? What we should emphasize here is that the solution (2.42) is given
in the form of a kind of limit and the values of $, γ and ~ determine the approach of
tending to the limit. In essence, this is similar to the limit of a real function having
two variables

Π = lim
(x,y)→(0,0)

sin (x+ y)

x
. (5.1)

It is well-known that the result Π of the above limit is strongly dependent upon
the way or the approach to how the point (x, y) tends to (0,0). Assume that the point
(x, y) tends to (0,0) along a path defined by

y = xε, ε > 0, (5.2)

we have

Π =


1, ε > 1

2, ε = 1

+∞, 0 < ε < 1.

(5.3)

Here, we emphasize two points. First, the limit (5.1) is strongly dependent upon the
path leading to the unique point (0,0). Secondly, there exist an infinite number of
paths corresponding to ε > 1, which give the same result Π = 1. In other words, there
exist an infinite number of paths along which we get the same result Π = 1. It means
that in case of ε > 1 the limit (5.1) is independent of the path y = xε. Similarly,
although at p = 1 the zeroth-order deformation equations (2.1) and (2.2) have a
unique solution when β > 0, there exist, however, an infinite number of different
approaches to tend to this unique solution. Some among these approaches make the
series (4.24) convergent faster and therefore are better than others, but some of them
(for example, those in the case |1+~| > 1) are so bad that the corresponding sequence
is divergent. And correspondingly, there should exist some better values of γ and ~.
In other words, there should exist some better auxiliary linear operators, better initial
guess approximations and better zeroth-order deformation equations which make the
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related approximation sequence converge fast enough to the unique solution. We
emphasize that it is the proposed homotopy analysis method (HAM) which provides
us with such a possibility and the freedom to select the operator (1.12), which is more
general than (1.11) used by Liao (1997a), as our auxiliary linear operator, that we
can get the uniformly valid, totally analytic solution (2.42).

However, when β < 0, the Falkner–Skan equation has multiple solutions. In this
case, the series (2.42) would seem to converge only to Hartree’s (1937) family of
solutions having the property f′′(0) > 0. This result might lead to two contrary
conclusions. The first would be that Stewartson’s (1954) family of solutions, showing
reversed flow, and Libby & Liu’s (1967) family of solutions, showing velocity over-
shoot, would not possess the property f′ → 1 exponentially as η → +∞, because such
an asymptotic property cannot be rigorously examined by numerical techniques and
the series (2.42) can express only the solution having such a property. The contrary
conclusion would be that Stewartson’s (1954) and Libby & Liu’s (1967) families of
solutions would indeed possess the property f′ → 1 exponentially as η → +∞, but by
selecting the initial guess approximation (2.3) and the form of auxiliary linear oper-
ator (1.12), our current approach could not apply the homotopy analysis method to
express them, because in theory there would exist an infinite number of combinations
of initial guess approximations and auxiliary linear operators. If the second conclusion
were right, we should find other suitable auxiliary linear operators and initial guess
approximations to give the solutions showing reversed flow or velocity overshoot.

This also demonstrates the restrictions of the homotopy analysis method. In general,
when a nonlinear equation has a unique solution, it seems easy to apply the homotopy
analysis method, because it can be generally proved that as long as the approximation
sequence given by the homotopy analysis method is convergent, it must converge to
a solution of the equation under consideration. In this case, although in general there
exist an infinite number of possible combinations of initial guess approximations,
auxiliary linear operators and the auxiliary parameter ~, only one among them is
enough for us. However, if there exist multiple solutions, it seems hard to determine
which combinations of initial guess approximations and auxiliary linear operators
might give a definite solutions. This situation would become more serious when the
considered problem has infinite number of solutions. Thus, the homotopy analysis
method would be incomplete, unless we could improve it and give a more definite
way to select the initial guess approximations and auxiliary linear operators. This also
shows the negative side of the freedom in selecting initial guess approximations and
auxiliary linear operators, although it is just by this kind of freedom the homotopy
analysis method can overcome the restrictions of perturbation techniques.

Although the proposed homotopy analysis method approach does not give solutions
showing either reversed flow or velocity overshoot, it successfully gives, for the first
time (to our knowledge), Hartree’s (1937) family of uniformly valid, totally analytic
solutions of the Falkner–Skan equation. Also, we obtain corresponding analytic
formula (4.1) for f′′(0) for β > 0 so that no interpolation is needed. Furthermore, we
are quite sure that when β < 0 at least Hartree’s (1937) family of solutions indeed
possesses the property that f′ → 1 exponentially as η → +∞. Notice that, as pointed
out by White (1991), perturbation techniques have not been successful in giving a
sufficiently accurate analytic approximation of the viscous flow past a sphere valid
in a large Reynolds number region. Notice also that in essence the viscous flow
over a semi-infinite plate governed by (1.1) and (1.2) has many of the same physical
properties as the viscous flow past a sphere. Thus, the success of the homotopy
analysis method in solving Blasius flow (α = 1/2, β = 0) and Falkner–Skan flow
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(α = 1, β0 6 β 6 2) problems might suggest the possibility of applying it to some
other unsolved problems in fluid mechanics, such as the viscous flow past a sphere
(in this case there exists a unique solution for steady flow) and so on.

Sincere thanks to Professor Ronald J. Adrian (University of Illinois at Urbana-
Champaign, Department of Theoretical and Applied Mechanics, USA) and the re-
viewers for their very valuable suggestions and discussion, especially on the multiple
solutions of the Falkner–Skan equation and the restrictions and incompleteness on
the use of the homotopy analysis method. This work is partly supported by the NSFC
(Natural Science Foundation of China), Approved No. 19702014.

Appendix. Derivation of coefficients appearing in (2.15)
(i) The initial approximation φ0(η) = f0(η) defined by (2.3) has the same structure

as (2.15), where the real function Ψm,k(η) is defined by (2.16)–(2.19).
(ii) If we assume that the first (m− 1) solutions φk(η)(k = 0, 1, 2, 3, . . . , m− 1) have

the same structure as (2.15), then we can prove that φm(η) has the same structure as
(2.15).

To prove this, we define for simplicity

λki,j =


0, i = j = 0, k > 2,
0, i > 0, j = 0, k > 1,
0, j > i+ 1,
0, k > 2(i+ 1)− j,
1, otherwise.

(A 1)

Then, Ψm,k(η) can be simply rewritten as

Ψm,k(η) =

2(m+1)−k∑
i=0

λim,kb
i
m,kη

i, 0 6 k 6 m+ 1 (A 2)

for both k = 0 and k 6= 0. Thus, we have for 0 6 k 6 m+ 1 that

Ψ ′m,k(η) =

2(m+1)−k∑
i=1

iλim,k b
i
m,k η

i−1

=

2m+1−k∑
i=0

(i+ 1)λi+1
m,k b

i+1
m,k η

i =

2(m+1)−k∑
i=0

(i+ 1)λi+1
m,k b

i+1
m,k η

i, (A 3)

Ψ ′′m,k(η) =

2(m+1)−k∑
i=2

i(i− 1) λim,k b
i
m,k η

i−2

=

2m−k∑
i=0

(i+ 2)(i+ 1)λi+2
m,k b

i+2
m,k η

i =

2(m+1)−k∑
i=0

(i+ 2)(i+ 1)λi+2
m,k b

i+2
m,k η

i. (A 4)

According to (2.15), we have

φ′m(η) =

m+1∑
k=0

[
Ψ ′m,k − kγΨm,k

]
exp (−kγη), (A 5)

and

φ′′m(η) =

m+1∑
k=1

[
Ψ ′′m,k − 2kγΨ ′m,k + (kγ)2Ψm,k

]
exp (−kγη). (A 6)
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By (A 3) and (A 4), we get

Ψ ′m,k − (kγ)Ψm,k =

2(m+1)−k∑
i=0

aim,kη
i, 0 6 k 6 m+ 1, (A 7)

and

Ψ ′′m,k − 2kγΨ ′m,k + (kγ)2Ψm,k =

2(m+1)−k∑
i=0

cim,k η
i, 1 6 k 6 m+ 1, (A 8)

respectively, where

aim,k = (i+ 1)λi+1
m,k b

i+1
m,k − (kγ)λim,k b

i
m,k, (A 9)

and

cim,k = (i+ 1)(i+ 2)bi+2
m,k λ

i+2
m,k − 2(kγ)(i+ 1) bi+1

m,k λ
i+1
m,k + (kγ)2 bim,k λ

i
m,k. (A 10)

Thus, by (A 6) and (A 8), it holds that

φ′′m(η) =

m+1∑
k=1

exp (−kγη)

(
2(m+1)−k∑

i=0

cim,k η
i

)
, m > 1. (A 11)

Differentiating the above expression with respect to η, we obtain

φ′′′m (η) =

m+1∑
k=1

exp (−kγη)

(
2(m+1)−k∑

i=0

dim,kη
i

)
, m > 1, (A 12)

where

dim,k = (i+ 1)λi+1
m,k c

i+1
m,k − (kγ) λim,k c

i
m,k. (A 13)

When 0 6 k 6 m− 1, we get by (2.15), (A 2) and (A 11)

φm−1−k(η)
d2φk(η)

dη2
=

m−k∑
r=0

exp (−rγη)

(
2(m−k)−r∑

s=0

λsm−1−k,r b
s
m−1−k,r η

s

)

×
k+1∑
j=1

exp (−jγη)

(
2(k+1)−j∑
i=0

cik,jη
i

)
=

k+1∑
j=1

m−k∑
r=0

exp [−(j + r)γη]

×
(

2(k+1)−j∑
i=0

2(m−k)−r∑
s=0

cik,j b
s
m−1−k,r λ

s
m−1−k,r η

s+i

)
=

m+1∑
n=1

exp (−nγη)

min{n,k+1}∑
j=max{1,n+k−m}

×
(

2(k+1)−j∑
i=0

2(m−k)−n+j∑
s=0

cik,j b
s
m−1−k,n−j λ

s
m−1−k,n−j η

s+i

)
=

m+1∑
n=1

exp (−nγη)

min{n,k+1}∑
j=max{1,n+k−m}

×
(

2(m+1)−n∑
q=0

ηq
min{q,2(k+1)−j}∑

i=max{0,q−2(m−k)+n−j}
cik,j b

q−i
m−1−k,n−j λ

q−i
m−1−k,n−j

)
=

m+1∑
n=1

exp (−nγη)

×
2(m+1)−n∑
q=0

ηq

(
min{n,k+1}∑

j=max{1,n+k−m}

min{q,2(k+1)−j}∑
i=max{0,q−2(m−k)+n−j}

cik,j b
q−i
m−1−k,n−j λ

q−i
m−1−k,n−j

)
(A 14)
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which further gives

α

m−1∑
k=0

φm−1−k(η)
d2φk(η)

dη2

= exp (−γη)

2m+1∑
q=0

δ
q
m,1η

q +

m+1∑
n=2

exp (−nγη)

(
2(m+1)−n∑
q=0

δqm,nη
q

)
, (A 15)

where

δqm,n = α

m−1∑
k=0

min{n,k+1}∑
j=max{1,n+k−m}

min{q,2(k+1)−j}∑
i=max{0,q−2(m−k)+n−j}

cik,j b
q−i
m−1−k,n−j λ

q−i
m−1−k,n−j , (A 16)

for 1 6 n 6 m+ 1, 0 6 q 6 2(m+ 1)− n. By a straightforward calculation, we obtain
δ2m+1
m,1 = 0 for m > 1. Thus, (A 15) becomes

α

m−1∑
k=0

φm−1−k(η)
d2φk(η)

dη2
= exp (−γη)

2m∑
q=0

δ
q
m,1η

q +

m+1∑
n=2

exp (−nγη)

(
2(m+1)−n∑
q=0

δqm,nη
q

)
.

(A 17)

Similarly, we have by (A 5) and (A 7)

dφm−1−k(η)

dη

dφk(η)

dη

=

m−k∑
r=0

exp (−rγη)

(
2(m−k)−r∑

s=0

asm−1−k,rη
s

)
k+1∑
j=0

exp (−jγη)

(
2(k+1)−j∑
i=0

aik,j η
i

)

=

k+1∑
j=0

m−k∑
r=0

exp [−(j + r)γη]

(
2(k+1)−j∑
i=0

2(m−k)−r∑
s=0

aik,j a
s
m−1−k,r η

s+i

)

=

m+1∑
n=0

exp (−nγη)

min{n,k+1}∑
j=max{0,n+k−m}

(
2(k+1)−j∑
i=0

2(m−k)−n+j∑
s=0

aik,ja
s
m−1−k,n−jη

s+i

)

=

m+1∑
n=0

exp (−nγη)

min{n,k+1}∑
j=max{0,n+k−m}

2(m+1)−n∑
q=0

ηq
min{q,2(k+1)−j}∑

i=max{0,q−2(m−k)+n−j}
aik,j a

q−i
m−1−k,n−j


=

m+1∑
n=0

exp (−nγη)

2(m+1)−n∑
q=0

ηq

(
min{n,k+1}∑

j=max{0,n+k−m}

min{q,2(k+1)−j}∑
i=max{0,q−2(m−k)+n−j}

aik,ja
q−i
m−1−k,n−j

)
. (A 18)

From (A 18) we get

β(1− χm)− β
m−1∑
k=0

dφm−1−k(η)

dη

dφk(η)

dη
= β(1− χm) +

m+1∑
n=0

exp (−nγη)

2(m+1)−n∑
q=0

∆q
m,nη

q

=

[
β(1− χm) +

2(m+1)∑
q=0

∆q
m,0 η

q

]
+

m+1∑
n=1

exp (−nγη)

2(m+1)−n∑
q=0

∆q
m,nη

q, (A 19)
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where

∆q
m,n = −β

m−1∑
k=0

min{n,k+1}∑
j=max{0,n+k−m}

min{q,2(k+1)−j}∑
i=max{0,q−2(m−k)+n−j}

aik,j a
q−i
m−1−k,n−j . (A 20)

From (A 1), (A 9), (2.12) and (A 20), straightforward calculations show that

β(1− χm) +

2(m+1)∑
q=0

∆q
m,0 η

q = 0, ∆2m+1
m,1 = 0, (A 21)

so that we have

β

[
(1− χm)−

m−1∑
k=0

dφm−1−k(η)

dη

dφk(η)

dη

]

= exp (−γη)

2m∑
q=0

∆q
m,1 η

q +

m+1∑
n=2

exp (−nγη)

2(m+1)−n∑
q=0

∆q
m,n η

q. (A 22)

Owing to (2.13), (2.14) and (2.12), we have for m > 1

Gm(η) = ~

{
d3φm−1(η)

dη3
+ α

m−1∑
k=0

φm−1−k(η)
d2φk(η)

dη2

+ β

[
(1− χm)−

m−1∑
k=0

dφm−1−k(η)

dη

dφk(η)

dη

]}
. (A 23)

Substituting (A 15) and (A 22) into (A 23), we have

Gm(η) = exp (−γη)

2m∑
q=0

Γ
q
m,1 η

q +

m+1∑
n=2

exp (−nγη)

(
2(m+1)−n∑
q=0

Γq
m,nη

q

)
, (A 24)

where for m > 1,

Γ
q
m,1 = ~(dqm−1,1 + δ

q
m,1 + ∆q

m,1), 0 6 q 6 2m− 1, (A 25)

Γ 2m
m,1 = ~(δ2m

m,1 + ∆2m
m,1), (A 26)

Γ
q
m,m+1 = ~(δqm,m+1 + ∆q

m,m+1), 0 6 q 6 m+ 1, (A 27)

and for 2 6 n 6 m,

Γq
m,n =


~(dqm−1,n + δqm,n + ∆q

m,n), 0 6 q 6 2m− n
~(δqm,n + ∆q

m,n), 2m− n+ 1 6 q 6 2m− n+ 2

0, otherwise.

(A 28)

Thus, substituting (A 24) into (2.10), we get the mth-order deformation equation

L(φm − χmφm−1) = exp (−γη)

2m∑
q=0

Γ
q
m,1η

q +

m+1∑
n=2

exp (−nγη)

(
2(m+1)−n∑
q=0

Γq
m,nη

q

)
. (A 29)

In order to solve the above equation, we should first give solutions of the equation

Y ′′′(η) + γY ′′(η) = ηq exp (−nγη), (A 30)
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where n > 1 and q > 0 are integers. Here, we mention such a formula, say, for integers
q > 0 and n > 1:∫

ηq exp (−nγη)dη = − exp (−nγη)

q∑
j=0

(
q!

j!

)
ηj

(nγ)q−j+1
. (A 31)

We solve the differential equation (A 30) for two different cases, say, n = 1 and n > 2,
respectively.
(a) When n = 1, (A 30) becomes

Y ′′(η) = exp (−γη)

∫
exp (γη)ηq exp (−γη)dη =

1

q + 1
ηq+1 exp (−γη), (A 32)

which further gives by (A 31) that

Y (η) = exp (−γη)

q+1∑
k=0

µ
q
1,k η

k, (A 33)

where

µ
q
1,k =

q!

k!

(q − k + 2)

γq−k+3
, 0 6 k 6 q + 1, q > 0. (A 34)

(b) When n > 2, (A 30) becomes by (A 31),

Y ′′(η) = exp (−γη)

∫
exp (γη)ηq exp (−nγη)dη

= − exp (−nγη)

q∑
j=0

q!

j!

ηj

[(n− 1)γ]q−j+1
(A 35)

which further gives by (A 31) that

Y (η) = − exp (−nγη)

q∑
k=0

µ
q
n,kη

k, (A 36)

where

µ
q
n,k =

q!

k!

1

(n− 1)q−k+1γq−k+3

×
{

1−
(

1− 1

n

)q−k+1 [
(q − k + 2)− (q − k + 1)

(
1− 1

n

)]}
(A 37)

for 0 6 k 6 q, n > 2, q > 0.
Thus, by (A 33) and (A 36), we obtain the following general solution of (A 29):

(φm − χmφm−1) = exp (−γη)

[
2m∑
q=0

Γ
q
m,1µ

q
1,0 +

2m+1∑
k=1

ηk

(
2m∑

q=k−1

Γ
q
m,1µ

q
1,k

)]

−
m+1∑
n=2

exp (−nγη)

[
2(m+1)−n∑
k=0

ηk

(
2(m+1)−n∑
q=k

Γ q
m,nµ

q
n,k

)]

+Cm
1 exp (−γη) + Cm

2 η + Cm
3 , (A 38)

where Cm
1 , C

m
2 and Cm

3 are integral constants. Using the boundary conditions (2.11),
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Two-dimensional viscous flow over a semi-infinite flat plate 127

we have

Cm
1 =

2m∑
q=0

Γ
q
m,1(γ

−1µ
q
1,1 − µq1,0) +

m+1∑
n=2

[
nΓ 0

m,nµ
0
n,0 +

2(m+1)−n∑
q=1

Γq
m,n(nµ

q
n,0 − γ−1µ

q
n,1)

]
, (A 39)

Cm
2 = 0, (A 40)

Cm
3 = −Cm

1 −
2m∑
q=0

Γ
q
m,1µ

q
1,0 +

m+1∑
n=2

2(m+1)−n∑
q=0

Γq
m,nµ

q
n,0 = −

2m∑
q=0

γ−1Γ
q
m,1µ

q
1,1

−
m+1∑
n=2

[
(n− 1)Γ 0

m,nµ
0
n,0 +

2(m+1)−n∑
q=1

Γq
m,n(nµ

q
n,0 − µqn,0 − γ−1µ

q
n,1)

]
. (A 41)

Therefore, φm(η) has the same structure as (2.15) and the related coefficients bkm,n can
be calculated by the following recurrence formulae:

b0
m,0 = χmb

0
m−1,0 − γ−1

2m∑
q=0

Γ
q
m,1µ

q
1,1

−
m+1∑
n=2

[
(n− 1)Γ 0

m,nµ
0
n,0 +

2(m+1)−n∑
q=1

Γq
m,n(nµ

q
n,0 − µqn,0 − γ−1µ

q
n,1)

]
, (A 42)

b1
m,0 = 0, (A 43)

b0
m,1 = χmb

0
m−1,1 + γ−1

2m∑
q=0

Γ
q
m,1 µ

q
1,1 +

m+1∑
n=2

[
nΓ 0

m,nµ
0
n,0

+

2(m+1)−n∑
q=1

Γq
m,n(nµ

q
n,0 − γ−1µ

q
n,1)

]
, (A 44)

bkm,1 = χm b
k
m−1,1 +

2m∑
q=k−1

Γ
q
m,1 µ

q
1,k , 1 6 k 6 2m− 1, (A 45)

bkm,1 =

2m∑
q=k−1

Γ
q
m,1 µ

q
1,k , 2m 6 k 6 2m+ 1, (A 46)

bkm,n = χmb
k
m−1,n −

2(m+1)−n∑
q=k

Γ q
m,n µ

q
n,k, 0 6 k 6 2m− n, 2 6 n 6 m, (A 47)

bkm,n = −
2(m+1)−n∑
q=k

Γ q
m,n µ

q
n,k, 2m− n+ 1 6 k 6 2m− n+ 2, 2 6 n 6 m,

(A 48)

bkm,m+1 = −
m+1∑
q=k

Γ
q
m,m+1 µ

q
m+1,k , 0 6 k 6 m+ 1, (A 49)

where m > 1, 0 6 n 6 m+ 1 and 0 6 k 6 2(m+ 1)− n.
(iii) In (i), we pointed out that the initial approximation φ0(η) = f0(η) has the same

structure as (2.15). In (ii), we not only deduce the recurrence formulas (A 42)–(A 49)
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but also rigorously prove that, if the first (m−1) solutions φk(η)(k = 0, 1, 2, 3, . . . , m−1)
have the structure (2.15), then the mth solution φm(η)(m > 1) must have the same
structure as (2.15), too. Therefore, due to (i) and (ii), all φk(η)(k > 0) have the same
sturcture as (2.15). Thus, using the first four coefficients

b0
0,0 =

$

γ2
− 1

γ
, b1

0,0 = 1, b0
0,1 = −$

γ2
+

1

γ
, b1

0,1 = −$
γ2
, (A 50)

which are determined by the initial guess approximation f0(η) defined by (2.3), we can
calculate all coefficients bkm,n, where m > 1, 0 6 n 6 m+ 1 and 0 6 k 6 2(m+ 1)− n.
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