
Original Article

A methodological comparison of risk scores versus decision
trees for predicting drug-resistant infections: A case study using
extended-spectrum beta-lactamase (ESBL) bacteremia

Katherine E. Goodman1 , Justin Lessler1, Anthony D. Harris2, Aaron M. Milstone1,3 and Pranita D. Tamma3
1Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 2Department of Epidemiology and Public Health,
University of Maryland School of Medicine, Baltimore, Maryland and 3Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School
of Medicine, Baltimore, Maryland

Abstract

Background: Timely identification of multidrug-resistant gram-negative infections remains an epidemiological challenge. Statistical models
for predicting drug resistance can offer utility where rapid diagnostics are unavailable or resource-impractical. Logistic regression–derived risk
scores are common in the healthcare epidemiology literature. Machine learning–derived decision trees are an alternative approach for
developing decision support tools. Our group previously reported on a decision tree for predicting ESBL bloodstream infections. Our objective
in the current study was to develop a risk score from the same ESBL dataset to compare these 2methods and to offer general guiding principles
for using each approach.

Methods: Using a dataset of 1,288 patients with Escherichia coli orKlebsiella spp bacteremia, we generated a risk score to predict the likelihood
that a bacteremic patient was infected with an ESBL-producer. We evaluated discrimination (original and cross-validated models) using
receiver operating characteristic curves and C statistics. We compared risk score and decision tree performance, and we reviewed their prac-
tical and methodological attributes.

Results: In total, 194 patients (15%) were infected with ESBL-producing bacteremia. The clinical risk score included 14 variables, compared
to the 5 decision-tree variables. The positive and negative predictive values of the risk score and decision tree were similar (>90%), but the
C statistic of the risk score (0.87) was 10% higher.

Conclusions: A decision tree and risk score performed similarly for predicting ESBL infection. The decision tree was more user-friendly, with
fewer variables for the end user, whereas the risk score offered higher discrimination and greater flexibility for adjusting sensitivity and specificity.

(Received 14 October 2018; accepted 13 January 2019)

Multidrug-resistant gram-negative (MDRGN) organisms re-
present a growing clinical threat. These bacteria can spread rapidly
among vulnerable hospitalized populations, and MDRGN infec-
tions are associated with significant morbidity and mortality.1,2

Timely identification can limit nosocomial transmission and
improve patient outcomes by facilitating prompt initiation of
appropriate treatment.3,4 However, rapid diagnostics that can be
readily incorporated into routine laboratory workflows are limited
or lacking for manyMDRGNs, posing clinical and epidemiological
challenges Extended-spectrum β-lactamase (ESBL)–producing
bacteria, which can hydrolyze most β-lactam antibiotics other than
carbapenems, are a representative example of these MDRGNs.

Currently, no phenotypic method has been endorsed by the
Clinical and Laboratory Standards Institute (CLSI) for ESBL detec-
tion.5 Although molecular methods for identifying ESBL genes are

commercially available, these assays do not include a comprehen-
sive list of known ESBL genes and would require frequent panel
updates to detect emerging ESBLs.6,7 Molecular diagnostics
can also be resource-intensive and are often not cost-effective
for laboratories in regions where ESBL prevalence is low, and they
are cost-prohibitive for developing areas of the world where ESBL
prevalence is high.

Statistical models for identifying MDRGN infections can provide
important information in settingswhere rapid diagnostics are unavail-
able or are resource-impractical. One particular approach, generating
a logistic regression–derived risk score, is common in the healthcare
epidemiology literature. However, classification and regression tree
(CART) analysis or “recursive partitioning,” a form of machine
learning, is an alternative approach for developing this type of decision
support tool. Our group previously developed a CART decision tree
for predicting ESBL bloodstream infections.8 Since publication, there
has been interest in whether a risk score derived from the same
population could achieve greater predictive accuracy while remaining
sufficiently simple to incorporate into practice.

We performed a case study of the development of a risk score
from the same ESBL dataset as our original decision tree to
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compare the predictive accuracy of these 2 methods and to illus-
trate the advantages and disadvantages of logistic regression risk
scores versus CART decision trees. Our objective is to offer general
guiding principles for epidemiologists and researchers for when
they might consider one prediction approach versus the other.

Methods

Cohort

The full description of the cohort has been previously reported.8

Briefly, the study included adults hospitalized at the Johns Hopkins
Hospital with bacteremia due to Escherichia coli or Klebsiella spp,
from 2008 to 2015. Only the first episode of bacteremia per patient
was included. Escherichia coli or Klebsiella spp with ceftriaxone mini-
mum inhibitory concentrations (MICs) ≥2 μg/mL underwent testing
for ESBL production. A decrease of≥3 doubling dilutions in theMIC
for a third-generation cephalosporin tested in combination with 4 μg/
mL of clavulanic acid, versus its MIC when tested alone, was used to
confirm ESBL status.

Patient data were collected via manual chart review from all
available inpatient and outpatient medical records from facilities
within the Johns Hopkins Health System, as well as from medical
records for patients who previously received medical care at institu-
tions in the Epic Care Everywhere Network (www.epic.com/
CareEverywhere/). Patient data collected, which was based on the
time period prior to day 1 of bacteremia (defined as the date the
initial blood culture was collected), included the following: (1) dem-
ographic data; (2) preexisting medical conditions; (3) presumptive
source of bacteremia (eg, catheter, pneumonia); (4) indwelling hard-
ware; (5) multidrug-resistant organism (MDRO) colonization or
infection (MDR Pseudomonas aeruginosa, MDR Acinetobacter bau-
mannii, ESBL-producing Enterobacteriaceae, carbapenem-resistant

Enterobacteriaceae, vancomycin-resistant Enterococcus species, and
methicillin-resistant Staphylococcus aureus)9 in the prior 6 months;
(6) days of antibiotic therapy with gram-negative activity in the prior
6 months; (7) length of stay in any healthcare facility in the prior 6
months; (8) post-acute care facility stay in the prior 6 months; and
(9) hospitalization in another country in the prior 6 months (assessed
by standard nursing intake questionnaire upon Johns Hopkins
Hospital admission). International hospitalizations in the following
regions were classified as ESBL “high-burden”: Latin America
(excluding the Caribbean), the Middle East (including Egypt),
South Asia, China, and the Mediterranean.10,11

Statistical methods

Descriptive statistics, univariable analyses, and decision tree deri-
vation and validation have been described previously.8 Briefly, a
tree was derived using the following process: (1) identification
of the single variable that, when used to split the dataset into 2
groups (“nodes”), best separated ESBL-positive from ESBL-
negative patients, according to the Gini impurity criterion12,13;
(2) repetition of this partitioning process in each daughter node
and subsequent generations of nodes (“branching”); and (3) termi-
nation at “terminal” nodes (“leaves”) when no additional variables
in the data sufficiently distinguished patients by their ESBL status.
Terminal nodes in binary recursive partitioning trees predict ESBL
status categorically, but by evaluating the node impurity (eg, the
mixture of ESBL-positive and ESBL-negative patients), they also
offer associated probabilities.

We internally validated the performance of our tree using the
leave-one-out cross-validation method,12 in which a single obser-
vation is held out and a new model is derived from a dataset con-
taining the remaining n − 1 observations. The resulting model is

Table 1. Regression Model and Corresponding Points Scoring Systema for Predicting Extended-Spectrum β-Lactamase (ESBL) Status in a Cohort of Adult Patients with
Escherichia coli and Klebsiella spp Bacteremia

Variable β Coefficient Odds Ratio (95% CI) Points

Intercept −3.81 : : :

Orthopedic hardware (day of culture) 1.30 3.68 (1.21–11.17) 2

Chronic indwelling vascular hardware (day of culture) 0.60 1.82 (1.13–2.94) 1

Nephrostomy tube or Foley catheter (day of culture) 1.17 3.22 (1.87–5.57) 2

Gastrointestinal feeding tube (day of culture) 0.97 2.65 (1.35–5.18) 2

Presumptive infection source: central venous catheter 0.98 2.68 (1.56–4.60) 2

Presumptive infection source: pneumonia 1.12 2.98 (1.37–6.49) 2

Structural lung diseaseb 1.15 3.17 (1.43–7.00) 2

Self-identifies as Asian race 1.07 2.93 (1.23–6.94) 2

Post-acute care facility stay (prior 6 mo) 1.04 2.84 (1.12–7.27) 2

≥1 night of hospitalization in an international ESBL high-burden regionc (prior 6 mo) 3.21 24.86 (10.99–56.24) 5

ESBL colonization or infection (prior 6 mo) 3.92 50.68 (25.97–98.92) 6

Carbapenem-resistant Enterobacteriaceae colonization or infection (prior 6 mo) 3.45 31.47 (2.52–393.30) 6

Multidrug-resistant Pseudomonas spp (prior 6 mo) −2.42 0.09 (0.01–0.83) −4

Weeks of active gram-negative therapy (per week, up to a maximum of 4, in prior 6 mo) 0.15 1.17 (1.02–1.34) 0.25/week; max of 1 pt

aTo create points, the smallest model coefficient (0.15, per week of antibiotic therapy) was identified. To simplify end-user calculations, antibiotic therapy was scaled to receive 0.25 points per
week, up to a maximum of 1 point or ≥4 weeks, by dividing by 0.60 (0.15/0.60 = 0.25). All other coefficients were also divided by 0.60 and rounded to the nearest whole integer. Patient scores
were calculated by summing their respective points (risk score model).
bChronic obstructive pulmonary disease, emphysema, or chronic ventilator dependency.
cLatin America (excluding the Caribbean), the Middle East (including Egypt), South Asia, China, and the Mediterranean.
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used to predict the value of the held-out observation. This process
is repeated for all observations in the dataset, and performance
metrics (eg, error) can be averaged across the n fitted models
(in this case, decision trees) to produce a single estimate. We evalu-
ated the discrimination of the original and cross-validated models
through the generation of receiver operating characteristic (ROC)
curves and calculation of C statistics. Decision tree analyses were
performed using the RPART (Recursive Partitioning and
Regression Trees) package in R Studio version 4.1–90.99.902 soft-
ware (R Foundation for Statistical Computing, Vienna, Austria).

To develop a risk score, continuous variables (eg, age and anti-
biotic days) were first converted into ordinal categories to reduce

complexity, given the score’s anticipated manual application.
A multivariable logistic regression model was derived using step-
wise variable selection with backward elimination at an α level of
0.05. To create points, regression coefficients were rescaled by
dividing by the smallest final model coefficient and rounding to
the nearest integer (with the exception of antibiotic therapy, which
received 0.25 points per week (up to a maximum of 1 point or ≥4
weeks), to simplify end-user calculations). Patient scores were
calculated by summing their respective points (risk score model).

For both the multivariable regression model and the risk score
model, discrimination was assessed with ROC curves and accompa-
nying C statistics (ie, area under the curve). Risk score model

Fig. 1. A printable clinical risk score for bed-
side use to predict a bacteremic patient’s
likelihood of infection with an extended-
spectrum β-lactamase (ESBL)–producing
organism at the time of organism genus
and species identification. Risk-factor points
are noted in parentheses and summed
among the 14 variables to produce a
patient’s risk score. Possible score cutoffs
for ESBL-positive bacteremia, andassociated
sensitivities and specificities, are reflected in
Table 2. aChronic obstructive pulmonary
disease, emphysema, or chronic ventilator-
dependency. bLatin America (excluding
the Caribbean), the Middle East (including
Egypt), South Asia, China, and the
Mediterranean.
*This statement reflects the positive predic-
tive value of the score at a cutoff point of
7.25 and should be modified by the facility
to account for local prevalence of ESBL bac-
teremia. Note. MDRGN, multidrug-resistant
gram-negative organism; CRE, carbapenem-
resistant Enterobacteriaceae. Drug-resistant
organisms were defined in accordance with
the Centers for Disease Control and
Prevention guidelines.9
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calibration was evaluated using Hosmer-Lemeshow (HL) goodness-
of-fit tests and graphical plots of observed proportion versus model-
predicted ESBL probabilities by decile groups. Discrimination was
internally validated with leave-one-out cross-validation. Risk score
analyses were performed in Stata version 13.0 software (StataCorp,
College Station, TX) and R Studio.

Results

Spanning the 2008 to 2015 time period, a total of 1,288 bacteremic
patients met inclusion criteria, of whom 194 (15%) were ESBL
positive. Patient and microbial characteristics have been reported
previously.8

Risk score

Themultivariablemodel and resulting risk score included 14 variables
(Table 1), which were broadly categorizable into 6 groups (Fig. 1):

1. Indwelling hardware on day of culture. Orthopedic hardware
(2 points); chronic indwelling vascular hardware (1 point);
nephrostomy tube or Foley catheter (2 points); gastrointesti-
nal feeding tube (2 points).

2. Presumptive source of bloodstream infection. central vascular
catheter (2 points); pneumonia (2 points).

3. Patient characteristics. Structural lung disease (chronic
obstructive pulmonary disease, emphysema, or tracheostomy

dependency) (2 points); self-identification as Asian race
(2 points).

4. Healthcare exposure within the previous 6 months. Post-acute
care facility (2 points); ≥1 night of international hospitali-
zation in an ESBL high-burden region (5 points).

5. MDRGN colonization or infection within the previous
6 months. ESBL (6 points); carbapenem-resistant Entero-
bacteriaceae (CRE) (6 points); MDR Pseudomonas spp
(−4 points).

6. Antibiotic exposure within the previous 6 months. Weeks of
therapy with gram-negative activity (0.25 points per week,
up to a maximum of 1 point).

Patient scores ranged from−3 to 18.75, with amedian score of 2
points (interquartile range: 0–3.25). The C statistic for the clinical
risk score was 0.87 and 0.89 following cross-validation. The C
statistic for the multivariable logistic regression model was also
0.87 (Fig. 2). The multivariable logistic regression model provided
evidence of acceptable calibration (HL goodness-of-fit test
P = .13). Following point conversion, however, the risk score
model over- or underestimated the probability of ESBL infection
at different points along the risk continuum, with the exception
of very high-risk deciles (HL goodness-of-fit test P < .001)
(Fig. 2). An ESBL-positive cutoff point of ≥7.25 maximized overall
ESBL classification accuracy (92%). At this cutoff point, the risk
score had a sensitivity of 49.5% and a specificity of 99.5%, and
its positive and negative predictive values were 94.6% and
91.8%, respectively. Table 2 provides the risk score’s sensitivity
and specificity at each possible ESBL-positive cutoff point.

Decision tree

The final decision tree8 included 5 predictors: central vascular
catheter, age ≥43 years, and in the prior 6 months: history of
ESBL colonization/infection, ≥1 night hospitalization in an
ESBL high-burden region, and/or ≥1 week of gram-negative active
antibiotic therapy (Fig. 3). The C statistic of the decision tree was
0.77 (unchanged in cross-validation); the sensitivity and specificity
were 51.0% and 99.1%, and the positive and negative predictive val-
ues were 90.8% and 91.9%, respectively. Table 3 presents a com-
parison of the performance metrics of the risk score versus the
decision tree.

Discussion

Despite advances in rapid diagnostics, timely identification of
MDRGNs remains a clinical and epidemiological challenge.
Diagnostic delays can prolong the period of ineffective antibiotic
therapy and can increase the risk of nosocomial transmissions.3,4

Statistical models for predicting drug resistance can play an impor-
tant role in settings where rapid diagnostic tests are unavailable or
are resource-impractical. This case study of ESBL bloodstream
infections explores 2 approaches for developing predictive models:
traditional logistic regression-derived risk scores and machine
learning-derived decision trees.

The risk score included 14 independent predictors, broadly
classifiable into 6 categories: indwelling hardware, bloodstream
infection source, patient characteristics, recent gram-negative
antibiotic exposure, healthcare exposure, and MDRO history.
Many of these variables (eg, antibiotic use, prior ESBL colonization
or infection) were retained in the decision tree. They are also
consistent with other studies examining risk factors for MDRGN
bloodstream infections14 and recent scores for identifying

Fig. 2. Discrimination and calibration metrics for the multivariable logistic regres-
sion model and resulting risk score model. (A) Receiver operating characteristic
(ROC) curve for the logistic regression model, prior to risk score transformation.
The area under the curve (AUC) was 0.87 which, after rounding, was unchanged fol-
lowing conversion to a point-based risk-score model. See Table 2 for exact sensi-
tivity and specificity values at different score cutoff points. (B) Calibration plot
of observed proportion versus ESBL probabilities predicted by the risk score model,
by decile groups.

Infection Control & Hospital Epidemiology 403

https://doi.org/10.1017/ice.2019.17 Published online by Cambridge University Press

https://doi.org/10.1017/ice.2019.17


community- and hospital-onset ESBL or third-generation cepha-
losporin-resistant bacteremia in other populations.15,16 Taken
together with the risk score’s similar C statistic following

cross-validation (0.89), this evidence suggests that despite the
inclusion of a large number of variables, the risk score was not
overfit.

Given that risk scores for binary predictions are dichotomized
at a cutoff point, in practice the risk score and the decision tree
performed similarly: sensitivities 49.5% and 51.0% and specificities
99.5% and 99.1%, respectively. However, the risk score had a ~10%
higher area-under-the-curve (risk score and decision tree C statis-
tics: 0.87 vs 0.77). This higher AUC offers users more latitude to
prioritize sensitivity over specificity, or vice versa, by changing
the cutoff point (as discussed in more detail below). In theory, a
decision tree could also be developed to optimize a different bal-
ance of sensitivity and specificity, but this would require deriving
an entirely new tree. The risk score’s greater flexibility, however,
came at a cost of low user-friendliness for manual application.
Studies consistently demonstrate that incorporating decision sup-
port tools at the point of care is important to their success,17 but
manual tabulation of 14 variables would encounter significant bed-
side utilization barriers. In contrast, decision-tree branching logic
does not require end-user calculations and, at least in this ESBL
case study, the final decision tree included far fewer (ie, 5)
predictors.

The potential tradeoff between flexibility and user friendliness
is an important consideration when evaluating whether risk scores
or decision trees are a more suitable decision support tool for a
given application. Additional considerations, however, may also
help to guide researchers in selecting one option versus the other.
Below, we summarize the relative strengths of risk scores and deci-
sion trees for model development and fitting, implementation, and
adaptability. Of note, the CART analysis is the tree-fitting process
(approach), and a decision tree is the result (output), just as logistic
regression is a common (but by no means the only or necessarily
even the preferred) approach for developing a risk score. Approach
and output can differ in their strengths and limitations, and we dis-
tinguish these concepts in our discussion.

Methodological differences between logistic regression and
CART influence the data assumptions and exploratory analyses
required for model development and fitting. In general, the more
complex or challenging the underlying data, the more utility a
machine learning approach can provide. Specifically, logistic
regression imposes important data requirements, including mini-
mal collinearity (ie, correlation) among independent variables and
a sufficient ratio of cases to predictors (ie, sufficient sample size; a
general, although debatable, guideline is 10 expected cases per

Table 2. Risk Score Sensitivity, Specificity, and Overall Classification Accuracy at
Select Cutoff Points for Predicting Extended-Spectrum β-Lactamase (ESBL)
Status in a Cohort of Adult Patients with Escherichia coli and Klebsiella
Species Bacteremiaa

Risk Score Cutoff
Point

Sensitivity,
%

Specificity,
%

Observations Correctly
Classified, %

≥0 100.0 0.7 15.7

≥.25 95.4 31.5 41.2

≥.5 94.9 35.7 44.6

≥.75 93.8 37.0 45.6

≥1 93.3 38.8 47.0

≥1.25 90.7 51.3 57.2

≥1.5 89.7 54.1 59.5

≥1.75 89.2 55.6 60.6

≥2 88.7 56.7 61.5

≥2.25 85.6 70.2 72.5

≥2.5 84.0 71.6 73.5

≥2.75 83.5 72.5 74.2

≥3 83.5 73.1 74.7

≥3.25 77.8 83.4 82.5

≥3.5 74.2 86.8 84.9

≥3.75 71.7 87.7 85.3

≥4 70.6 88.3 85.6

≥4.25 65.5 92.6 88.5

≥4.5 64.4 92.8 88.5

≥4.75 63.9 93.2 88.8

≥5 63.9 93.4 89.0

≥5.25 61.9 95.7 90.6

≥5.5 61.3 96.2 90.9

≥5.75 60.8 96.6 91.2

≥6 60.8 97.0 91.5

≥6.25 55.2 98.2 91.7

≥6.5 54.6 98.4 91.8

≥6.75 54.6 98.5 91.9

≥7 54.1 98.5 91.9

≥7.25 49.5 99.5 91.9

≥7.5 46.9 99.5 91.5

≥7.75 46.4 99.5 91.5

≥8 45.9 99.5 91.4

≥8.25 40.2 99.5 90.6

≥8.5 38.7 99.7 90.5

≥8.75 38.1 99.8 90.5

≥9 37.6 99.8 90.5

≥9.25 31.4 100.0 89.7

Note. CI, confidence interval.aCutoff points<0 and≥9.5 were excluded because, respectively,
they yielded equal sensitivity (100%) but inferior specificity, or inferior sensitivity but equal
specificity (100%). Dark gray shading indicates the cutoff point that maximized overall
classification accuracy (≥7.25 points).

Table 3. Comparative Performance Metrics of a Logistic Regression-Derived
Clinical Risk Score and a Machine Learning-Derived Decision Tree to Predict
Extended-Spectrum β-Lactamase (ESBL) Status

Variable Risk Score Decision Tree

No. of included variables 14 5

Sensitivity, %a 49.5 51.0

Specificity, %a 99.5 99.1

Positive predictive value (PPV), %a 94.6 90.8

Negative predictive value (NPV), %a 91.8 91.9

Naïve C statistic 0.87 0.77

Cross-validated C statistic 0.89 0.77

aRisk score values vary depending upon the selected cutoff point for dichotomization. Values
reflected for the risk score are for the cutoff point of ≥7.25 points, which optimized overall
classification accuracy.
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predictor evaluated).18,19 In contrast, CART is nonparametric and
makes fewer data assumptions,13 and it can accommodate collinear
independent variables. It is also less sensitive to outliers and more
robust to high-dimensional data, which possess many independent
variables relative to outcomes. These features are appealing in
MDRGN research, given the abundance of predictors in patient
medical records but the relative rarity of clinical outcomes.
Moreover, logistic regression requires a priori specification and
evaluation of variable interactions, whereas CART identifies inter-
actions without user input,13 a potentially helpful feature when the
understanding of variable relationships is generally limited.

The benefits of CART, however, can come with a steep learning
curve for researchers without prior experience with these methods.
In particular, decision trees are prone to overfitting, in which they
fit the data “too well” (including its idiosyncrasies and noise) and
may consequently perform poorly on new data.20 Sufficient exper-
tise in pruning and/or stopping criteria during the tree-branching
process is therefore critical to the utility and generalizability of
the resulting tree, as is the use of internal validation methods
(eg, cross-validation) when external testing datasets are unavail-
able. Although ensemble tree methods such as random forests
analysis can address many of these challenges, these methods do
not produce a single decision tree that can be used as a decision
support tool (without automation).21,22

Decision tree branching logic does not require calculations, and
decision trees are generally intuitive and user-friendly. When
manual bedside use is anticipated, these features are especially ben-
eficial. As facilities incorporate automated decision support tools
and algorithms into electronic health records (EHRs), these bene-
fits attenuate. In this ESBL case study, because important variables

required clinical judgment (eg, source of infection) or were not
hard-coded in the EHR (eg, foreign country of recent hospitali-
zation was only entered as natural language), automating the deci-
sion support tool would have been challenging. As a result, the
decision tree’s simplicity for manual bedside use was highly valu-
able for this research application.

Finally, for applications in which decision support tool flexibil-
ity is paramount, risk scores are attractive because their cutoff
points are modifiable by end users. Risk scores provide a range
of score cutoffs, each with an associated sensitivity and specificity,
which allow individual users to toggle the cutoff point to minimize
the false-positive or false-negative rate (eg, depending upon infec-
tion severity or the clinical appearance of the patient). Using the
current risk score, for example, a user seeking to increase sensitivity
could choose a lower cutoff point of ≥3 points and reduce the
risk of incorrectly classifying an ESBL infection as ESBL negative
to<1 in 5 (sensitivity 83.5%, specificity 73.1%) (Table 1). This flex-
ibility allows clinicians and hospital epidemiologists to maximize
detection of cases (ie, ESBL-positive patients), though at the cost
of attendant reductions in specificity and overall classification
accuracy.

We caution, however, that although enhanced flexibility is gen-
erally beneficial, a risk score’s utility depends upon users under-
standing the score and the implications of adjusting the cutoff
point. Large score differences between patients may translate to
minimal differences in risk, and vice versa. Moreover, cutoff-point
positive and negative predictive values (ie, the probability that a
patient does or does not have an ESBL-producing infection given
a score that is respectively above or below the selected cutoff point)
will vary by ESBL prevalence in the target population. It is

Fig. 3. A clinical decision tree to predict a bacteremic
patient’s likelihood of infection with an extended-spectrum
β-lactamase (ESBL)–producing organism at the time of
organism genus and species identification, adapted from
Goodman et al (2016).8 Gray-shaded terminal nodes indicate
that the tree would classify patients as ESBL positive, and
accompanying percentages (derived from terminal-node
impurities) reflect the probability that patients assigned to
a given terminal node are ESBL-positive. Terminal node
numbering (1–6) is included in parentheses. *Latin
America (excluding the Caribbean), the Middle East (includ-
ing Egypt), South Asia, China, and the Mediterranean.
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imperative that the table of cutoff-point sensitivities and specific-
ities, and an understanding that an institution’s disease prevalence
will affect the positive and negative predictive values, guides deci-
sions about score thresholds for ESBL infection.

In contrast to risk scores, classification trees provide binary pre-
dictions (eg, “ESBL” or “not ESBL”), with a single sensitivity and
specificity value for the tree as a whole. Terminal node percentages
(eg, “37% probability of being ESBL positive”) can quantify these
predictions but do not provide a formalmechanism for prioritizing
sensitivity versus specificity. For research applications in which
sensitivity is the priority, methods are available to impose a greater
“cost” for case misclassification during the tree-fitting process.23

The limitation, however, is that these mechanisms are not adjust-
able by end users after a tree is built. In other words, whereas the
CART approach provides flexibility to optimize sensitivity or
specificity, once a single, final tree (output) is developed and pro-
vided to clinicians, the ability to adjust sensitivity and specificity is
limited.

Although these considerations can help researchers to evaluate
whether a risk score or a decision tree is preferable for a given
research question (Table 4), a decision is rarely clear cut. In cases
in which each model would at least partially meet stated goals, we

encourage investigators to develop both support tools in parallel to
compare their performance metrics. In particular, although model
performance was comparable in this case study, other applications
with more challenging data (eg, high-dimensionality, higher-order
variable interactions) might more clearly favor a machine learning
approach such as CART.

Our study has several limitations. This study was conducted in a
single center, and although we internally validated our models, it
lacked an external validation cohort. In addition, datamay have been
missing for patients treated outside of the Epic Care Everywhere net-
work, althoughwedonot expect suchoccurrences tohave differedby
ESBL status. As such, any resulting exposuremisclassification would
likely reduce predictive performance, and yet risk score discrimina-
tion remained robust, including in cross-validation. Nevertheless,
we encourage others to evaluate and validate the risk score in their
own patient populations, particularly for settings that differ from
our academic, tertiary-care hospital cohort. Importantly, however,
because study characteristics were constant across analyses, we
expect decision tree and risk score comparisons to be unbiased.
Finally, this case study intended to offer a practical, high-level
introduction to a relatively simple machine learning approach, but
we note that many machine learning methodologies (eg, random

Table 4. Comparative Strengths and Limitations of Logistic Regression-Derived Risk Scores and Classification and Regression Tree (CART) Analysis-Derived Decision
Trees for Predicting Drug-Resistant Infections in Clinical Settings

Risk Scores Decision Trees Notes

Data Characteristics

High dimensionality − þþþ Decision trees are well suited to high-dimensional data, which possess high predictor-to-
outcome ratios. Logistic regression-derived risk scores impose more stringent sample size
requirements (a general requirement is 10 expected cases per predictor).

Collinearity − þþþ Logistic regression-derived risk scores require minimal collinearity among independent
variables, unlike decision trees.

Interaction effects þ þþþ Logistic regression can accommodate interaction effects, but it requires moderately large
sample sizes and a priori evaluation. CART decision trees can detect simple and higher-
level interaction effects without user specification.

Rare outcome(s) þ þ Rare outcomes pose challenges for both models. In logistic regression, rare outcomes limit the
number of evaluable predictors. CART analysis may require parameter adjustment and/or case
oversampling before model fitting and validation to improve sensitivity if outcomes are rare.

Model development

Ease of development þþ þ Decision trees for standard applications are relatively straightforward to develop, but logistic
regression-derived risk-score methodology is more well known in the infectious disease
literature and more widely available on all common statistical computing platforms.

Robustness to overfitting þþ − Both methods require validation, but decision trees are particularly prone to overfitting, in
which they fit the data “too well” and may consequently perform poorly on new data.
Methods to combat overfitting include imposing branching-stop criteria and “pruning”
back terminal branches.

Implementation and usage

Intuitiveness þ þþþ Decision-tree branching logic is highly intuitive.

Ease-of-use þ þþþ Decision trees generally do not require calculations, making them user-friendly for bedside
application.

Adaptability

End-user adjustment of
sensitivity and specificity

þþþ − By changing the score cutoff point, individual users can tailor risk scores’ sensitivity and
specificity. A decision tree possesses a fixed sensitivity and specificity that, following model
development, cannot be modified.

Addition of new variables
over time

þþ þ New variable(s) can be evaluated for risk score inclusion (eg, by comparing Akaike’s
information criterion (AIC) values of the original and expanded models).27 Variable addition
may change coefficient values and, accordingly, risk score points but will leave original
score variables intact. Because decision trees are built “top-down,” new variables require
tree refitting and may substantially alter nodes and branching patterns.
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forests, Super Learner) offer potential healthcare epidemiology util-
ity. We refer interested readers to additional resources that address
these approaches and the underlying algorithms in greater technical
detail.22,24,26

Overall, timely identification of MDRGN infections remains a
clinical and epidemiological challenge. Rapid detection enables
isolation of infected patients and prompt initiation of appropriate
antibiotic treatment. Statistical models for predicting drug resis-
tance can provide important information in settings when labora-
tory diagnostics are challenging to implement. This examination
explored 2 alternative decision support tools, logistic regression–
derived risk scores and machine learning–derived decision trees,
in an inpatient cohort of bacteremic patients to predict ESBL infec-
tion. Thesemethodologies offer different strengths and limitations,
and we hope that their continued utilization in infectious disease
research will assist with improving patient outcomes.
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