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We study the spreading of a film from ethanol–water droplets of radii 0.9 mm< rd <
1.1 mm on the surface of a deep water layer for various concentrations of ethanol
in the drop. Since the drop is lighter (ξ = ρl/ρd > 1.03), it stays at the surface of
the water layer during the spreading of the film from the drop; the film is more
viscous than the underlying water layer since χ =µl/µd > 0.38. Inertial forces are not
dominant in the spreading since the Reynolds numbers based on the film thickness hf
are in the range 0.02 < Ref < 1.4. The spreading is surface-tension-driven since the
film capillary numbers are in the range 0.0005 < Caf < 0.0069 and the drop Bond
numbers are in the range 0.19 < Bod < 0.56. We observe that, when the drop is
brought in contact with the water surface, capillary waves propagate from the point of
contact, followed by a radially expanding, thin circular film of ethanol–water mixture.
The film develops instabilities at some radius to form outward-moving fingers at its
periphery while it is still expanding, till the expansion stops at a larger radius. The
film then retracts, during which time the remaining major part of the drop, which
stays at the centre of the expanding film, thins and develops holes and eventually
mixes completely with water. The radius of the expanding front of the film scales as
rf ∼ t1/4 and shows a dependence on the concentration of ethanol in the drop as well
as on rd, and is independent of the layer height hl. Using a balance of surface tension
and viscous forces within the film, along with a model for the fraction of the drop
that forms the thin film, we obtain an expression for the dimensionless film radius
r∗f = rf /rd, in the form fr∗f = t∗µd

1/4, where t∗µd= t/tµd, with the time scale tµd=µdrd/1σ
and f is a function of Bod. Similarly, we show that the dimensionless velocity of film
spreading, Cad = ufµd/1σ , scales as 4f 4Cad = r∗f

−3.

Key words: drops, interfacial flows (free surface), thin films

1. Introduction
A lighter, miscible drop of lower surface tension on the surface of a deep

horizontal fluid layer of higher surface tension shows a fascinating interplay of
surface-tension-driven film spreading, instability of the spreading film, followed by its
retraction and the eventual dissolution of the drop. In addition to the unclear physical
processes behind these phenomena, these are also important in many applications like
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drug delivery (Grotberg 1994), coating processes (La Due, Muller & Swangler 1996),
ink-jet printing (Le 1998) and the removal of oil spills (Fay 1969). The present study
presents the various phenomena that occur in such a case and then proposes a scaling
theory for the spreading of a film from a buoyant, miscible drop of lower surface
tension but higher viscosity on a deep layer of higher-surface-tension liquid of lower
viscosity. The observed scaling and its proposed explanation are different from the
previous studies with very viscous drops (Bacri, Debregeas & Brochard-Wyart 1996)
or with soluble or insoluble surfactant drops (Halpern & Grotberg 1992; Jensen &
Grotberg 1993).

When an insoluble drop comes in contact with the horizontal surface of a liquid
layer, when the surface tension of the liquid layer is larger than that of the drop
(1σ = σl − σd > 0), often due to the drop being a surfactant drop, an outward
horizontal force acts on the drop which spreads it. The spreading is found to occur in
the form of a film (Joos & Pintens 1977), the film being assumed to be a monolayer
for the spreading of surfactant drops. Here, as well as in all later notation, we use
the subscript f to denote the spreading film, d to denote the drop and l to denote
the liquid layer beneath the film that spreads from the drop. In such a situation, the
monolayer is assumed to have no viscous dissipation in it and is expected to spread
as a rigid sheet (Jensen & Grotberg 1993). The increase of film radius (rf ) with time
is then determined by the nature of viscous dissipation in the underlying liquid layer,
which differs for thin (ε = hl/rd� 1) and deep (ε� 1) layers, where hl is the liquid
layer thickness and rd the initial drop radius. We focus on the previous deep-layer
results below, since the present study is for deep layers; the reader is referred to the
review of Grotberg & Gaver III (1996) and the papers by Jensen & Halpern (1998)
and Dussaud, Matar & Troian (2005) for the thin-layer results.

For the spreading of a low-viscosity insoluble surfactant drop on a deep liquid layer,
Landt & Volmer (1926), Fay (1969), Joos & Pintens (1977) and Joos & Van Hunsel
(1985) proposed that the balance of the viscous resistance in a boundary layer below
the spreading surfactant monolayer with the driving interfacial tension force results
in the dimensionless film radius, r∗f = rf (t)/rd = (2/

√
3)t∗µl

3/4. Here t∗µl = t/tµl, with
tµl = (ρlµlr4

d/1σ
2)1/3 being the visco-capillary time scale for deep layers; and 1σ

has to be replaced by the spreading parameter if the interfacial tension between the
spreading and the underlying liquid is also important. The same scaling was written
by Jensen (1995) as rf (t) ∼ (A2M2t3/µσd)

1/8 for the mass M of the surfactant drop
and A= dσ/dΓ , with Γ being the local surfactant concentration; the latter expression
reduces to the 3/4 power law when Γ ∼M/r2

f and A∼1σ/Γ . The similarity solution
for the spreading of a strip of viscous oil over water also shows the 3/4 power law
when the underlying boundary layers dominate (Foda & Cox 1980). The experimental
evidence for this 3/4 power law is not conclusive. For the spreading of surfactants,
the 3/4 power law has been observed for low-viscosity FC-129 (a fluorochemical
surfactant) on CCl4, but not for the low-viscosity CTAB/PFAC (cetyl trimethyl
ammonium bromide/perfluoroalkyl carboxylate) mixture on benzene, which showed
an exponent of 0.575 (Joos & Van Hunsel 1985). Further, even when high-viscosity
silicone oil (965 cP) spreading on water obeyed this law (Dussaud & Troian 1998),
20 cP PDMS (polydimethylsiloxane) on 100 cP glycerine–water solution showed
rf ∼ t0.4 while spreading of 1000 cP PDMS on the same substrate showed rf ∼ t0.5

(Fraaije & Cazabat 1989).
When the spreading drop is very viscous, Bacri et al. (1996), not considering the

film around the drop, proposed that the dimensionless drop diameter, r∗d = rd(t)/rd ∼

t∗µd
1/4, where t∗µd = t/tµd, with tµd = µdrd/σe being the visco-capillary time scale for
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the drop and σe is the effective surface tension, defined as the harmonic mean of
the interfacial tensions on drop–air and drop–liquid layer interfaces. This scaling was
proposed to occur when the dominant viscous dissipation inside the spreading drop
balanced the surface tension force at the triple line. The t1/4 scaling was observed
by Bacri et al. (1996) in extremely viscous PDMS (29 310–97 700 cP) spreading over
glycerol–water mixture (5.97–934 cP) till rd(t)/lc < 1, where the capillary length lc=√
σe/ρeg with ρe= ρd(1− ρd/ρl) as the effective density. The dependence of rd(t) on

other fluid properties and the initial drop diameter rd however was not verified.
If the spreading drop is also soluble in the underlying liquid layer, the geometry

of spreading depends on the rate of adsorption of the drop fluid into the liquid layer;
however, the spreading rate still remains largely unaffected, as was proposed by Jensen
& Grotberg (1992, 1993) and experimentally verified by Afsar-Siddiqui, Luckham &
Matar (2003) for very thin liquid layers. In the case of volatile, less viscous drops of
various fluids, which spread on a more viscous, deep water layer, in which they are
insoluble, Dussaud & Troian (1998) found that the radius of the film increases for
all cases as t1/2. The difference from the expected 3/4 power law was hypothesised
to be due to the cooling of the film by evaporation, which would change the nature
of the boundary layer below the film from a Blasius type. However, other reasons
also give a t1/2 power law, as was found by Bacri et al. (1996) for the spreading of
viscous drops when the spreading drop radius becomes larger than lc, in which case
the viscous dissipation inside the drop balances the work done by gravitational forces.

As the above discussion has shown, the spreading of drops on deep fluid layers is
complex and inadequately understood, with different scaling laws being proposed in
different parameter regimes. These scalings also do not seem to be fully verified since
most verification experiments study only the time dependence of the spreading radius,
without studying the effect of the property ratios of the drop and the substrate fluid.
Another consideration that has been unexplored is the role of the initial radius of the
drop on its spreading rate, through its ability to influence the initial conditions as well
as through its effect on the flux of drop fluid into the spreading film. A commonly
encountered regime, namely, the film spreading of a slightly more viscous liquid on a
less viscous deep layer, especially when the spreading liquid is not a surfactant so that
significant viscous dissipation could occur in the spreading film, has not been explored.
In such a case, when the drop fluid is also soluble and volatile, the scaling law for
spreading is even less well known. Such a regime is important as it is commonly
encountered in the spreading and eventual mixing of short-chain alcohols on solvents
like water, which have many technological applications.

In this paper we study the film spreading from drops of ethanol–water mixture, of
ethanol concentrations 20 % 6 Ce 6 100 %, and radii 0.9 mm < rd < 1.1 mm, on the
surface of a thick layer (hl = 5 mm) of water. The spreading occurs very fast, and
is over within approximately 0.5 s since it is surface-tension-driven, as shown by the
range of the film capillary numbers, Caf =µf uf /1σ , 0.0005<Caf < 0.0069. However,
since the film Reynolds numbers (Ref = uf hf /νf ) are in the range of 0.02< Ref < 1.4,
viscous forces are greater than inertial effects. Further, owing to high surface
tension forces, the film Weber numbers are also small (Wef = ρf u2

f hf /1σ < 0.005);
inertia in film spreading dynamics is negligible. The drop is also lighter than the
underlying liquid, with the range of density ratios (ξ = ρl/ρd) being 1.27> ξ > 1.03
so that it stays at the free surface while the film spreads; the drop remains an
approximate ellipsoid form since the range of drop Bond numbers (Bod = ρdgr2

d/1σ )
was 0.19 < Bod < 0.56. Surface tension dominates over gravitational forces in the
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spreading process since the Bond number based on film thickness will be even
smaller. Even though the drop is more viscous than the underlying layer, with the
range of viscosity ratios (χ =µl/µd) being 0.81>χ > 0.4, since the film Ohnesorge
number Ohf =µf /

√
1σρf hf ∼ 10−2, surface tension dominates over viscous resistance

in spreading. In such a situation, we show that, different from the earlier suggested
regimes of film spreading, a balance of viscous resistance in the film with the driving
surface tension force gives rise to a rf ∼ t1/4 scaling law. More importantly, by
modelling the initial coalescence of the drop with the liquid layer, we estimate the
initial fraction of the drop that forms the film. By including this fraction in the
scaling analysis, we clarify the dependence of the spreading rate on the initial drop
radius and the property ratios of the drop and the liquid layer. The paper is organised
as follows. We describe the experimental set-up and procedure in § 2, followed by a
qualitative description of the spreading phenomena in § 3. The proposed scaling law
is developed and verified in detail in § 4, before concluding the paper by discussing
the implications of the proposed scaling in § 5.

2. Experiments

The experiments were conducted by adding ethanol–water drops of varying
concentrations of ethanol (Ce) and radii (rd) to the surface of a water layer of
height hl = 5 mm in a Petri dish of 100 mm diameter, as shown in the schematic
of figure 1. Larger height experiments with hl = 75 mm were also conducted in a
85 mm diameter beaker. The drops were produced from capillaries of different sizes
connected to a syringe pump. The flow rate of the syringe pump was fixed low
(2.4 ml h−1) so that the liquid coming out from the capillary was in the dripping
regime (Clanet & Lasheras 1999). The equivalent spherical radius of the drop (rd) was
determined from the number of drops required to fill a specific volume for each of
the capillaries used; the values of rd are shown in table 1. Care was taken to maintain
the flow rate and the orientation of the capillary to be the same in all experiments
with each capillary. The height of the capillary tip was adjusted so that the drops
detached from the capillary very close to the free surface to avoid inertial effects due
to the impingement of the drop on the water surface. The range of concentrations
of the ethanol–water drops, the corresponding densities (ρd), surface tension with air
(σd) and kinematic viscosities (µd) of the drop solutions are shown in table 1.

The top-view visualisation of the spreading dynamics, shown in figure 2, was
done using aluminium particles, which, when mixed with water, form a thin layer
of particles at the free surface. As determined by a particle size analyser (Microtrac
Inc), the aluminium particles had a median diameter of 14.65 µm, mean diameter
of 5.09 µm, with the particle diameters distributed in an asymmetric distribution
between 0.3 µm and 100 µm. At the concentration of the particles used (163 ppm),
the surface tension of water was measured as 54 mN m−1, the details of which are
given in appendix A. The top view of the spreading dynamics was captured by a
high-speed camera (LaVision ProHS) at approximately 800 f.p.s. (frames per second)
with light-emitting diode (LED) backlighting, as shown in figure 1. In some cases,
5 ppm of Rhodamine 5B was added to the drop in these top-view visualisations
so as to distinguish the drop fluid from the underlying water layer. The surface
tension reduction at 5 ppm dye concentration was measured to be 0.14 %, which
has negligible effect on the dynamics. The spreading radius of the film rf (t) was
measured as the radius of the circular region devoid of tracer particles, as seen in
figure 2(c), from such top-view images at increasing times t, the time calculated
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Leveling table

Syringe pump

Water surface

To data aquisition

Glass plate

Backlighting

Traverse

High-speed camera

FIGURE 1. Schematic of the experimental set-up.

from the frame number of the image, knowing the frame rate (f.p.s.). The centre
of measurement was fixed as the tip of the capillary seen in top-view images and
zero time as the time of contact of the drop with the liquid surface. The film radius
in each image was calculated as the mean from three measurements, taken at three
azimuthal locations on the film where a minimum local radius of the film could be
identified; the locations spanned the full circumference of the film. The velocities of
expansion of the film front uf were calculated by taking the time derivative of the
power-law fit through the increasing part of rf versus t. A sample fit for Ce = 60 %
and rd = 0.97 mm is shown in the inset of figure 4. The errors associated with the
measurement of rf , t and uf are discussed in appendix B. In addition, to understand
the coalescence of the drop with the water layer and the subsequent spreading of
the film, high-speed shadowgraph visualisations of the side view were conducted
in a 5 cm × 5 cm cross-section glass tank with hl = 5 cm, using a Photron SA5
camera at 2000 f.p.s. Hollow glass spheres of 10 µm diameter were added in the
water layer and backlighting was used to obtain shadowgraphs combined with particle
visualisation; a typical image sequence obtained is shown in figure 3. Images with
large exposure time, of laser-induced fluorescence of 6 µm fluorescent particles in
the drop and scattering from 55 µm polyamide particles in water by a vertical laser
sheet, was used to observe vortices, as shown in figure 3(i).

3. Description of the phenomena
3.1. Coalescence and spreading dynamics

Figure 2 shows the top views of the sequence of spreading of an ethanol drop of
Ce = 100 % and rd = 0.97 mm. The local depression in surface tension caused at the
point of contact of the drop with water results in radially outward Marangoni forces,
which cause a thin film of ethanol–water mixture to spread. The expanding white
circular region that is free of particles, seen in figure 2(a–c), shows the spreading
film. We also notice the initiation and propagation of capillary waves ahead of the
expanding film in figure 2(a–c). After some time (90 ms), the outer front of the
film develops instabilities resulting in outward-moving fingers or plumes as seen in
figure 2(d–f ). Even though there is an inward flow in between these outward-growing
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

5 mm

27.5 ms

91.25 ms

375 ms

41.25 ms

116.25 ms

425 ms

55 ms

141.25 ms

475 ms

FIGURE 2. (Colour online) Top views of the sequence of spreading and eventual mixing
of a 100 % ethanol drop of radius rd= 0.97 mm on the surface of a water layer of height
hl=5 mm. (a–c) Capillary wave propagation followed by the expanding circular film, seen
as the white circular region. The dark circular region at the centre of the expanding film
is the drop, dyed with Rhodamine 5B. (d–f ) The expanding film becomes unstable at
its outer periphery and then develops outward-propagating fingers. (g–i) The drop at the
centre of the film develops holes and eventually mixes, while the film retracts. The size
of each image is 35 mm× 22.5 mm. See movie 1 available in the supplementary movies
at https://doi.org/10.1017/jfm.2017.562.

fingers, the radius of the continuous film region, as well as the circular region
covering the outer tips of the growing fingers, go on increasing in time, but with
decreasing velocities (see supplementary movie 1). The length of the fingers increase
along with the radius of the continuous film region, until the velocity of expansion of
the continuous film reduces to zero, after which the continuous film region begins to
retract inwards (figure 2g–i) while the outer tips of the fingers remain approximately
stationary in time. The total time of film expansion is approximately 0.4 s. Most of
the drop remains at the centre of the expanding film during the whole time of film
expansion, seen as the dark circular region at the centre of the expanding film in
figure 2(a–f ). This remnant part of the drop also expands, but at a much slower rate
than the film, thins and then develops holes in it. The remnant drop eventually gets
mixed with water by a combination of convection and diffusion, after the continuous
film has started retracting, as seen in figure 2(g–i); the total time from contact to
dissolution being approximately 0.6 s.
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(a) (b)

(c) (d )

(e) ( f )

(g) (h)

(i)

1 mm

1 mm

A

A A

AA

–6 ms 2 ms

4 ms 6.5 ms

10.5 ms 12.5 ms

18 ms 39 ms

FIGURE 3. (a–h) Side views of the sequence of coalescence and film spreading when an
ethanol drop of radius rd = 1.1 mm and 100 % concentration mixes with a water layer
of hl = 5 cm height. The point A shows the fraction of the drop being drawn apart by
coalescence that forms the spreading film. The size of each image is 16.88 mm× 8.4 mm.
(i) Side-view visualisation of film spreading from a drop of rd = 1.1 mm and Ce= 100 %
with 55 µm polyamide particles in the substrate and 6 µm fluorescent particles in the
drop. The dashed circles show the tip vortices at the periphery of the spreading film. The
image shown is the negative of the obtained image for clarity and is of size 22.5 mm×
9.08 mm. See supplementary movie 2.
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10010–1

101

100

100

0.05 0.15
t (s)

t (s)

FIGURE 4. (Colour online) Variation of the film radius with time for different drop radii,
ethanol concentrations and layer height. The hollow symbols represent rd = 0.97 mm
with varying ethanol concentrations in the drop: E, Ce = 100 %; @, Ce = 80 %; 6, Ce =

60 %; I, Ce = 40 %; +, Ce = 20 %. The solid symbols represent experiments with 100 %
concentration with varying rd: c, rd = 0.9 mm; a, rd = 1.1 mm. The experiments with
hollow and solid symbols had the water layer height hl = 5 mm. An experiment with a
larger layer height hl= 75 mm, Ce= 100 % and rd= 0.97 mm is shown by �. The dashed
line shows the 1/4 slope of the data. The inset shows the rf versus t data for Ce = 60 %
and rd = 0.97 mm along with the curve fit rf = 11.89t0.232, from which the velocity is
calculated.

The side views of the film spreading process for a similar concentration drop with
rd = 1.1 mm, shown in figure 3, clarifies the critical role of the initial coalescence
between the drop and the water layer in film formation. Regions marked as A in
figure 3(a–f ) show that a small fraction of the drop, from its bottom, gets pulled apart
by the neck expansion during coalescence and becomes the source of the drop fluid in
the film (see supplementary movie 2). As figure 3(a–f ) shows, the major part of the
drops goes down and then bounces back due to its buoyancy, while the initial bottom
part of the drop gets pulled apart to form the spreading film. It could also be noticed
that there is no substantial motion in the regions below the spreading film, except
for a vertical redistribution of the particles at the interface seen as the dark region
below the film in figure 3(g,h). Such a distribution of particles at the interface occurs
because of the vertical momentum imparted to the interface as a result of the vertical
oscillations of the drop due to the ligament retraction dynamics during pinch-off from
the capillary. We now look at the quantitative variation of the radius of the expanding
continuous circular film (rf ) as a function of time (t), measured as discussed in § 2,
from images similar to that in figure 2.
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10–110–2
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FIGURE 5. (Colour online) Variation of the film expansion velocity with time for different
drop radii, ethanol concentrations and layer height. The symbols are the same as in
figure 4.

3.2. Spreading radius and velocity
Figure 4 shows the measured values of rf (t) as a function of time t for different Ce

(hollow symbols), with different rd (solid symbols) and with different hl (hollow circle
with dot), the zero time being at the instant of contact of the drop with water. The
horizontal error bars show the error in time measurement due to the uncertainty of the
time of contact, discussed in appendix B. As discussed in appendix B, rf is the mean
of three azimuthal measurements; the range of these three measured radii is shown in
figure 4 for Ce= 100 % and rd= 0.97 mm as the vertical bars. This range increases in
the later measurements since the film develops azimuthal instabilities after expanding
for some time to form fingers in its outer periphery, as we saw in figure 2(d). After
this instability occurs, rf (t) is measured as the radius of the continuous film, not
including the region with fingers. The plot includes measurements after the instability
at the edge of the film occurs; no change in the rate of expansion of rf is seen after
the instability occurs.

The radius rf increases as the continuous film region expands with time (figure 2a–g)
and then starts to decrease with time once the film front starts to retract (figure 2g–i).
The inset in figure 4 shows the curve fit that is used to calculate the film expansion
velocity (uf ) for one experiment, as discussed in § 2. The film expansion velocities (uf )
decrease with time, as shown in figure 5. The initial (t≈ 0.03 s) expansion velocities
of the film are high (>10 cm s−1), which reduces to zero, beyond which the velocities
reverse their direction due to film retraction. Retraction occurs over a shorter time than
expansion; for example, for rd = 0.97 mm and Ce= 100 %, shown withE in figure 4,
film expansion occurs over 0.4 s while retraction occurs over 0.2 s.

Figure 4 shows that, at any time, a larger Ce in the drop results in a larger
radius of the film. The slopes of rf versus t for different ethanol concentrations are
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approximately the same, indicating the same power-law dependence of rf on t for
different ethanol concentrations; this power law is approximately t1/4 as shown by
the dashed line in figure 4. For the same rd, the higher the concentration of ethanol
in the drop, the larger is the maximum rf and the larger is the time of spreading. It
could also be noticed that, at any specific time, rf has a non-monotonic dependence
on the initial radius of the drop rd. The hollow circles and the hollow circles with a
centre dot in figure 4 are identical experiments except that the water layer height (hl)
was 15 times larger in the latter. These two datasets fall on each other, implying that
the radius rf at any time, the exponent of the power law of rf versus t, as well as
the velocity of spreading are all independent of the height of the underlying liquid
layer; this independence of hl paves the way to our scaling analysis in § 4. We now
proceed to find scaling relations for these dependences of rf on time, rd and the fluid
properties. The scaling analysis presented in this paper is limited to the expanding
radius of the spreading film, and does not include the retraction of the film.

4. Scaling analysis

As we saw in § 3.2, the spreading radius rf and velocities uf are independent of hl,
the underlying liquid layer height. Such would be the case if viscous dissipation in a
boundary layer below the film was the dominant resistance for the spreading film, as
discussed in § 1; this would however give rf ∼ t3/4, quite different from the observed
time dependence in figure 4. The ratio of viscous stress due to a Blasius boundary
layer below the spreading film, τbl = µluf /δbl, to the viscous stress in the film,
τf =µf uf /hf , is

τf

τbl
=
µf

µl

δbl

hf
, (4.1)

where δbl is the Blasius boundary layer thickness. When t= 0.2 s and rf = 10 mm at
the end of the expansion of the film for Ce= 100 % and rd= 0.97 mm, we have δbl∼√
νlt≈ 400 µm and hf = 4r3

dG/3r2
f ≈ 5.33 µm (see (4.2) and (4.21) later), resulting in

τf /τbl ≈ 75. The film viscous stress is approximately two orders of magnitude higher
than the stress due to a possible Blasius boundary layer in the present case. Similarly,
the viscous extensional stress in the film is τe∼µf uf /rf . The ratio τf /τe∼ rf /hf ∼1876,
using the above values of rf and hf ; the viscous shear stress in the film is hence three
orders of magnitude higher than the viscous extensional stress in the film.

We hence consider the situation where the spreading dynamics is likely to be
determined by the balance of viscous shear stresses within the film with the driving
surface tension force; a similar assumption has been made by Hernández-Sánchez,
Eddi & Snoeijer (2015) for spreading due to a continuous supply of IPA (isopropyl
alcohol). We also saw in § 3.1 that, during the period of spreading of the film, only
a fraction of the volume of the drop is pulled apart by the neck expansion, which
then spreads as the film. Based on these observations and on the assumption that the
initial fraction of the drop mass remains well mixed while spreading as the film, we
now develop a scaling analysis below. The analysis uses the balance of forces within
the spreading film and an estimate of the initial fraction obtained from coalescence
dynamics. The resultant scaling law captures the dependence of rf and uf on time, on
the initial radius of the drop and on the initial concentration of ethanol in the drop,
which as we saw in § 3.2 are the prime variables on which the spreading depends.
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FIGURE 6. Schematic of film spreading from a lighter miscible drop on a deep liquid
layer showing the symbols used.

4.1. Mass and momentum balance
We assume the spreading to be as shown in figure 6. As we saw in § 3.2, the film
spreading is rapid, with the spreading being over in 0.4 s for the 100 % ethanol drop.
Further, as could be seen from figure 2, only a small fraction of the drop spreads as
the film during the time of film spreading. Owing to the small characteristic time of
spreading (tµf ∼ rf /uf ), we assume that the film is well mixed during its spreading
so that the density of the film remains a constant over the short time of spreading.
This assumption implies that the loss of ethanol from the film during spreading due
to evaporation and mixing with the underlying water layer is small. As shown in
appendix C, the evaporation velocities are of the order of 10−5 m s−1 while uf ∼ 5×
10−2 m s−1; evaporative flux in tµf will be negligible compared to the longitudinal flux
in the film. Since convective mixing is absent (see figure 3), the downward mixing
velocities, of the order of diffusive velocities D/hf ∼ 10−4 m s−1, are also negligible
in time tµf . When fraction G of the volume of the drop spreads as a film of constant
density ρf , with a time-dependent film height hf (t), mass balance of the drop and the
film implies that

G 4
3πr3

dρd =πr2
f hfρf . (4.2)

The change in the radius of the drop fluid reservoir, seen as the dark centre region in
figure 2(a–f ), is small while the film spreads. Further, the value of tµf is small. For
these reasons, we assume the change in volume of the drop during tµf to be negligible;
the change in density of the drop is also then negligible in tµf (dρd/dt≈ 0 when t<
tµf ). Since the mass and momentum changes of the drop reservoir over tµf are then
negligible, as shown in appendix D, the mass balance of the drop and the film reduces
to

2πrf uf hfρf +πr2
f ρf

dhf

dt
= 0. (4.3)

Similarly, as shown in appendix D, using (4.3) in the momentum balance for the drop
and the film and neglecting terms involving change in mass and momentum of the
drop reservoir implies that

2πrf (σl − σf )−µf
uf

hf
πr2

f =πr2
f hfρf

duf

dt
. (4.4)

4.2. Scaling of spreading radius and velocity
We now estimate the range of dimensionless numbers of the film during its spreading
so as to simplify (4.4). We assume that the spreading occurs fast enough to neglect
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FIGURE 7. (Colour online) Variation of the dimensionless numbers of the film with time
for an experiment with Ce = 100 % and rd = 0.97 mm:E, Ref ;@, Wef ;6, Ohf ; +, Caf .

the mixing of the film with the underlying water layer, so that the film properties are
the same as the drop properties, implying ρf = ρd, σf = σd and µf = µd. Figure 7
shows the variation of the dimensionless numbers of the film as a function of time
in a typical experiment of 100 % ethanol drop of rd = 0.97 mm. The Weber numbers
based on film thickness (Wef = ρf u2

f hf /1σ ) are much less than one (0<Wef < 0.005),
implying that the surface tension effects are much more than the inertia effects in
film spreading. Similarly, since the Reynolds numbers based on film thickness (Ref =

ρf uf hf /µf ) are in the range 0.06< Ref < 1.4, viscous effects are greater than inertia
effects, except at the beginning of the film spreading when Ref is of order one. The
capillary numbers (Caf = µf uf /1σ ) are very small (0.0006< Caf < 0.0035); surface
tension forces dominate over viscous resistance. The values of Ohnesorge numbers
(Ohf =µf /

√
ρf hf1σ ) are in the range of 0.049<Ohf < 0.099; surface tension is more

predominant than viscous effects.
Based on the order of these dimensionless numbers, the momentum equation (4.4)

can be simplified as follows. Since duf /dt ∼ uf /tµf with tµf ∼ rf /uf , the ratio of the
term on the right-hand side of (4.4) to the first term on the left-hand side is Wef ; as
seen in figure 7, Wef � 1. Similarly, the ratio of the term on the right-hand side of
(4.4) to the second term on the left-hand side of (4.4) is Ref (hf /rf ). Since Ref < 1,
as shown in figure 7, and hf /rf � 1, since the film thickness is much smaller than
its radius, we have Ref (hf /rf )� 1. At the same time, the ratio of the terms on the
left-hand side of (4.4) is hf /Caf rf , which is of order one, since Caf � 1 (figure 7)
and hf /rf � 1. Hence, to leading order, the term on the right-hand side of (4.4) can
be neglected. Further, assuming the film properties are the same as the drop properties,
the momentum balance reduces to

2πrf1σ =µd
uf

hf
πr2

f . (4.5)
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w

FIGURE 8. Schematic of the initial stages of coalescence of a drop with a liquid layer.

Eliminating hf from (4.2) and (4.5) gives

r3
f ṙf =

8
3

Gr3
d
1σ

µd
. (4.6)

On integrating (4.6), we get
r∗f = c1(Gt∗µd)

1/4 (4.7)

as the scaling of the dimensionless film radius r∗f = rf /rd on the dimensionless time
t∗µd = t/tµd, with the characteristic time of spreading,

tµd =
µdrd

1σ
, (4.8)

and the constant of integration c1= (32/3)1/4. Since, ṙf = uf , the radial velocity of film
spreading, equation (4.6) can also be rewritten in dimensionless form as

Cad = c2Gr∗f
−3
, (4.9)

where the capillary number Cad = ufµd/1σ is the dimensionless spreading velocity
and c2= 8/3. In the scaling laws (4.7) and (4.9), G is the initial fraction of the drop
that mixes to form the film, which is still unknown. We now obtain an expression for
G based on the coalescence dynamics of the drop and the liquid layer.

4.3. Estimation of the initial spreading fraction G
Figure 8 shows the schematic of the initial stage of coalescence of the drop with
the liquid layer, which is a schematic of the zoomed view close to the interface in
figure 3(b). The fraction of the volume of the drop G that is pulled apart by the neck
expansion in the coalescence time tco is

G=
2πrnδurtco

4
3πrd

3
, (4.10)
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where, as shown in figure 8, δ is the thickness of the neck region, rn is the neck
radius and ur is the neck retraction velocity.

The coalescence time tco in (4.10) depends on the Bond number of the drop, Bod=

ρdgr2
d/1σ . For low Bod, the coalescence is purely capillary-driven with tco equal to

the capillary time scale tc=
√
ρdr3

d/1σ , while for large Bod, tco is equal to the gravity
time scale tg=

√
rd/g (Chen, Mandre & Feng 2006). As shown in table 1, the range of

values of Bod for the present experiments is 0.12<Bod<0.26; the present experiments
fall in an intermediate Bod range. Chen et al. (2006) have shown that, for such a
capillary–gravity regime of drop coalescence,

tco = 0.77

√
ρdr3

d

1σ(1+ Bod)
, (4.11)

which tends to tc as Bod→ 0 and to tg as Bod becomes large.
The thickness of the neck δ in (4.10) can be estimated in the following way. From

the geometry of figure 8,
w= rd(1− cos θ), (4.12)

which, on substitution of cos θ ≈ 1− θ 2/2 for small θ , becomes equal to

w=
rdθ

2

2
. (4.13)

Since θ ≈ rn/rd for small θ from figure 8, (4.13) becomes

w=
r2

n

2rd
. (4.14)

Mass balance of the retracting rim resulting in a bulge of diameter δ at the tip of the
rim would imply ∫ rn

0
2πrnw drn =π

(
δ

2

)2

2πrn. (4.15)

Evaluating the integral in (4.15), after substituting for w from (4.14), and simplifying,
we get

δ =

√
r3

n

2πrd
. (4.16)

From scaling arguments, Eggers, Lister & Stone (1999) obtained the same relation,
without the prefactor, for drop coalescence.

The neck retraction velocity ur in (4.10) is a resultant of the balance of inertia
ρdu2

r/2 and surface tension force 1σ/rn to give

ur = c3

√
21σ
ρdrn

, (4.17)

where c3 is a constant prefactor, whose value is chosen later to obtain the limiting
value of G as Bod→ 0. Substituting (4.11), (4.16) and (4.17) into (4.10) and noting
that rn/rd ≈ θ for small θ in figure 8, we get

G≈ c4

√
θ 4

1+ Bod
, (4.18)
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where c4 = 0.65c3. To eliminate θ from (4.18), we need one more relation of G in
terms of θ , which can be obtained as follows. From the geometry of figure 8,

G≈ 1
2πδr

2
n/

4
3πr3

d. (4.19)

Replacing δ in (4.19) from (4.16) and noting that rn/rd ≈ θ for small θ , we get

G≈ 3
20θ

7/2. (4.20)

Replacing θ in (4.18) in terms of G from (4.20) results in

G≈
1

2(1+ Bod)7/6
, (4.21)

where we have chosen the prefactor c3= 0.39 so as to get G= 0.5 when Bod→ 0, as
found by Chen et al. (2006).

4.4. Bod dependence and validation
The scaling of the dimensionless film radius (4.7) and the dimensionless film
velocity (4.9) can now be expressed in terms of the drop Bond number (Bod)
by writing G in these equations in terms of Bod using (4.21). By doing such a
substitution, we obtain

fr∗f = t∗µd
1/4 (4.22)

and
4f 4Cad = r∗f

−3
, (4.23)

where the function

f (Bod)=
31/4

2
(1+ Bod)

7/24. (4.24)

Since r∗f in (4.23) is given by (4.22), (4.23) can also be rewritten in terms of t∗µd,
so as to obtain a decreasing dependence of dimensionless film velocity on time in the
form 4fCad = t∗µd

−3/4. Equations (4.22) and (4.23) are the proposed scalings that are
expected to capture the dependence of spreading radii and velocities on time, property
ratios between the drop and the liquid layer, and the initial drop radius; we now verify
these relations with our experimental data shown in figure 4.

Figure 9 shows the variation of the dimensionless spreading radius r∗f , scaled by the
function f , with the dimensionless time t∗µd, plotted using the data shown in figure 4
for different Ce, rd and hl. The part of the data that shows an increasing film radius
collapses fairly well onto

fr∗f = 0.83t∗µd
1/4
, (4.25)

shown by the dashed line in figure 9, the prefactor being close to the expected value
of 1 from (4.22). The variation of the dimensionless film expansion velocity Cad,
scaled by 4f 4, with the dimensionless spreading radius r∗f is shown in figure 10.
Similar to that in figure 9, the data collapse fairly well onto

4f 4Cad = 0.5r∗f
−3
. (4.26)

The data show a −3 power-law exponent except for a slight deviation at small r∗f . This
deviation is expected to be due to the non-negligible inertial effects in film spreading
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101

100

104103

FIGURE 9. (Colour online) Variation of the dimensionless film radius with the
dimensionless time. The symbols are as in figure 4.

10–2

10–3

4 6 8 10

FIGURE 10. (Colour online) Variation of the dimensionless film velocity with
dimensionless film radius. The symbols are as in figure 4.

for small rf when the film spreads very fast (see figure 5) so that Wef becomes close
to one, as seen in figure 7. The present analysis neglected the inertial effects in film
spreading and is only valid when Wef < 1. Further, the present analysis assumed that
rd� rf ; this assumption also breaks down at small rf when the film radius is of the
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same size as the drop radius. The reason for the prefactors in (4.25) and (4.26) to be
slightly less than 1 could be the slight inaccuracy of the prefactors assumed in the
scaling relationships used in the derivation of (4.22) and (4.23).

5. Conclusions and discussion
The primary result of this paper is the scaling law developed for the spreading

radius rf of a film, spreading from a buoyant, miscible drop, when the viscous
dissipation in the spreading film is the dominant resistance to surface-tension-driven
spreading. The proposed scaling law is

rf ∼

(
t1σ
µd

r3
d

)1/4 1
f
, (5.1)

a function of two length scales t1σ/µd and the initial drop radius rd modified by a
dimensionless function f (Bod), given by (4.24). The above scaling has the correct t1/4

time dependence shown by experiments in figure 4. The scaling law (5.1) also captures
the dependence of rf on drop properties as well as that on rd since it collapses all
the data with different ethanol concentrations in the drop (Ce) and rd onto a single
dimensionless curve fr∗f =0.83 t∗µd

1/4 (4.25), where the dimensionless time is t∗µd= t/tµd,
with the characteristic time of spreading tµd = µdrd/1σ , and the dimensionless film
radius is r∗f = rf /rd.

The dependence of rf on drop properties and rd is complex since f is a function
of the drop Bond number Bod; however, the effects of property variations on rf
could be qualitatively understood by examining (5.1) and (4.24). As was shown in
figure 4, rf increases at any time t with increasing concentration of ethanol in the
drop. Such an increase is captured by the positive power-law dependence of rf on
1σ in (5.1); increase in 1σ increases the spreading force, resulting in larger rf at
any time. Increasing the concentration of ethanol in the drop shows a non-monotonic
variation in the viscosity of the drop, with µd increasing till 40 % concentration and
then decreasing with further increase of concentration (see table 1). A decrease in
the viscosity of the drop µd, and hence that of the spreading film, should speed up
the spreading since µd appears with a negative power in (5.1); such an outcome is
expected due to the reduced viscous dissipation in the film with reduced µd. The
novelty of (5.1) is that, by explicitly considering the coalescence dynamics, the
dependence of rf on rd was included in the scaling law. This dependence of rf on rd
is non-monotonic, as seen in figure 4. The scaling (5.1) captures this non-monotonic
variation since the functional dependence of rf on rd shown by (5.1) is non-monotonic,
thereby bringing all the different rd data onto the line (4.25) in figure 9.

The velocity of the film spreading scaled as

uf ∼
1σ

µd

(
rd

rf

)3 1
4f 4
, (5.2)

showing that the characteristic velocity of spreading is 1σ/µd, with the spreading
velocity decreasing with increasing spreading radius as r−3

f . This scaling also collapsed
all the velocity data obtained with different drop concentrations and rd onto a single
line 4f 4Cad = 0.5r∗f

−3 (4.26), as shown in figure 10, implying that the dependence of
uf on drop properties and rd was adequately captured by the scaling law (5.2). Owing
to (5.2) and (5.1) it is also obvious that the spreading velocity showed a decrease with
time as t−3/4, before the film starts to retract at a specific value of rf .
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These conclusions were verified with measurements of spreading radii obtained
by the top-view visualisations of ethanol–water drops spreading over a water layer,
whose height was much larger than the drop radii. The visualisations showed that
the spreading and eventual dissolution of the drop has many distinct stages. In the
first stage, a capillary wave propagates from the point of contact of the drop with
the water layer followed by an expanding circular film of ethanol–water mixture
(figure 2a–c). At some specific radius of spreading, the expanding, continuous film
becomes unstable at its periphery, resulting in outward-propagating fingers, while the
film continues its expansion (figure 2d). The major part of the drop remains at the
centre of the film, which expands with decreasing velocity. The film starts to retract
after some time, the drop thins and develops holes in it and eventually mixes with
water and disappears (figure 2g–i). From the side-view visualisations, it became clear
that the film originates from an initial fraction of the drop that is pulled apart in the
neck expansion during coalescence of the drop with the water layer.

Based on these observations, the scaling law (5.1) was developed by combining the
mass and momentum balance of the spreading film with the mass balance between the
drop and the film, in which the initial fraction of the drop G appears. By calculating
the flux of drop mass during the time of coalescence when the neck region retracts
with capillary velocity, along with geometrical constraints, G≈ 1/(2(1+ Bod)

7/6) was
obtained as a function of the drop Bond number (4.21). The dependence of rf on rd,
which, as we saw, had a non-monotonic dependence, was thus explicitly brought into
the scaling law of rf ; the resulting scaling law (5.1) then captured the non-monotonic
dependence of rf on rd. These results were obtained for the case of film Weber number
less than one, so that inertial effects were neglected in the spreading of the film. The
analysis was also restricted to the values of viscosity ratios χ = µl/µd < 1 so that
viscous dissipation inside the film dominates over that in the underlying liquid layer.
Further, the value of density ratio ξ = ρl/ρd > 1 was also needed so that the drop
remains at the free surface while the film spreads.

Even though the developed scaling law satisfactorily describes the dependence
of film expansion on time, drop radius and drop properties, there are still many
unresolved issues in the phenomena shown by the spreading and eventual mixing of
a drop on a liquid surface. The physics behind the retraction process of the film is
still not clear. The same is the case about the point of transition from spreading to
retraction, which in the present scaling occurs at different values of t∗µd (see figure 9).
An effort to collapse the expansion, transition from expansion to retraction, and the
retraction onto a single curve, even though difficult, needs to be attempted. The
physics behind the instability and the development of fingers at the periphery of
a surface-tension-driven expanding film over a deep liquid layer is not clear; the
corresponding thin-layer case has been explored by many researchers (see Warner,
Craster & Matar 2004, and references therein), without yet achieving a complete
understanding. The scaling in the large-Weber-number situation of the present case,
which would presumably occur when the film viscosity is smaller than the liquid
layer viscosity, with both the viscosities being low, is also still unexplored.
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FIGURE 11. Variation of surface tension of water with surface density of aluminium
particles:E, by Wilhelmy plate;@, by Du Nouy ring.

Supplementary movies
Supplementary movies are available at https://doi.org/10.1017/jfm.2017.562.

Appendix A. Effect of particle concentration on surface tension
Aluminium particles are surface-active and hence they change the surface tension of

water. The surface tension of water laden with aluminium particles was measured for
different particle concentrations. The measurements were performed using a Sigma
700/701 force tensiometer (Biolin Scientific) using Wilhelmy plate and Du Nouy ring
probes. We used particle surface densities from 0 to 78 µg cm−2 (i.e. 0–100 ppm)
spanning the surface density of 77 µg cm−2 (i.e. 163 ppm) of particles used in
the experiments. The relations between surface densities and ppm are different
in visualisations and surface tension measurements since the volume-to-area ratio
of the containers were different. Figure 11 shows that the mean surface tension,
calculated from 10 repeated measurements, varies nonlinearly, with a decrease till
15 µg cm−2 followed by an increase till 30 µg cm−2. The values again drop between
30 and 45 µg cm−2 and then stay approximately in the range 50–55 mN m−1 for
45–80 µg cm−2. Similar decreasing and increasing values of surface tension with
increasing particle concentrations of titanium oxide particles have been observed
earlier by Dong & Johnson (2003). The initial decrease is expected to be due to
decrease in free energy and the later increase to be due to capillary forces between
particles (Dong & Johnson 2003). Owing to this non-monotonic variation, we then
measured the surface tension of water with Al particles at the concentration used in
visualisations many times and have now used the measured mean value of 54 mN m−1

in all our calculations.

Appendix B. Error in rf , t and uf

An estimate of the error in the measurement of rf , based on the number of pixels
needed to cover the interface between the particle and the particle-free regions, was
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4 pixels. This number of pixels occupy a region of 0.3 mm at the resolution of our
imaging. Hence the maximum error possible, corresponding to our lowest rf , is 7 %.

In addition to these measurement errors of rf , there is also the variation of rf
azimuthally due to the deviation of the film periphery from a circle. The range
of this deviation increases as the film expands with time since instabilities start to
develop at the periphery as the film expands. The range of this variation of rf is now
shown in figure 4 by showing the maximum and minimum values of rf from the
three measurements at the three azimuthal locations on the film. This range is less
than the vertical shift in rf due to the change in Ce and rd.

The error in time measurements is due to (i) the error in frame rate as well as
(ii) the error in the initial time of contact of the drop with the water surface. The error
in the time of each image due to the error in f.p.s. is negligible compared to the error
in the initial time estimation. The actual instance of initial contact of the drop with the
substrate could be just after the previous frame or just before the subsequent frame,
from the frame that we identify as the frame at which contact occurs. Therefore, the
error in the initial time of contact is of the order of ±1/f.p.s. = ±0.025 s. This
error in the initial time implies that the rf versus t curves could shift by 2/f.p.s.
horizontally; we show this error in the initial time as the horizontal error bars in
figure 4.

Since uf is calculated from
uf = ABtB−1, (B 1)

as the derivative of the power-law fit

rf = AtB, (B 2)

δuf , the error in uf , is due to the error in the curve fit and that in t. The error in the
curve fit is estimated by calculating the maximum and minimum values of A and B
that will fit rf ± δrf , where δrf is the known error of 0.3 mm in rf . From (B 1),

|δuf | =

∣∣∣∣duf

dA
δA
∣∣∣∣+ ∣∣∣∣duf

dB
δB
∣∣∣∣+ ∣∣∣∣duf

dt
δt
∣∣∣∣ , (B 3)

where δA, δB and δt are the errors in A,B and t. By evaluating the derivatives in (B 3)
from (B 1) and rewriting in terms of uf , we get∣∣∣∣δuf

uf

∣∣∣∣= ∣∣∣∣δAA
∣∣∣∣+ ∣∣∣∣δBB

∣∣∣∣+ ∣∣∣∣(B− 1)
δt
t

∣∣∣∣+ |δB ln t|. (B 4)

For the case of Ce = 100 % and rd = 0.97 mm, we have A = 15.09, B = 0.27, δA =
0.09, δB= 0.005 and δt= 0.025 s. Using these values in (B 4) at t= 0.01 s and uf =

100 mm s−1, we obtain 12 % error in uf . This value and the error values at two other
later times are shown in figure 5.

Appendix C. Evaporation velocity
The horizontal velocity of evaporation from a horizontal film, as given by Lock

(1996), is
Ue =

αv

L
(Ra2Ja3)1/5, (C 1)

where the Jacob number, Ja = cpv1T/λv, is the ratio of sensible heat to latent heat,
the Rayleigh number, Ra= g(1ρ/ρv)L3/νvαv, is the ratio of buoyancy to dissipative
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effects, with the subscript v denoting property values of the vapour, L is the length
of the film, λ is the latent heat of vaporisation, 1T and 1ρ are the temperature and
density differences between the liquid surface and the ambient, cp is the specific heat
at constant pressure, α is the thermal diffusivity, ν is the kinematic viscosity and ρ

is the density. By continuity, the vertical evaporation velocity is then

Ve =Ue

(
Ja
Ra

)1/4

=
αv

L
(Ra3Ja17)1/20. (C 2)

Using the following properties of ethanol vapour, cpv= 1400 J kg−1 K−1, νv= 0.835×
10−5 N s m−2, ρv = 0.085 kg m−3, λv = 1025 × 103 J kg−1, β = 750 × 10−6 K−1,
1T≈1 K, αv=0.00011 m2 s−1 and the mean length of the film L=5 mm, we obtain

Ve ∼ 4× 10−5 m s−1, (C 3)

which is three orders smaller than uf .

Appendix D. Mass and momentum balance
Consider a control volume, enclosing the drop and the expanding film shown in

figure 6, which deforms and expands with the film. Mass balance implies that

d
dt
(π(r2

f − r2
d)hfρf )+

d
dt

(
4
3
πr3

dρd

)
= 0. (D 1)

Expanding the derivative, we obtain

πr2
f hf

dρf

dt
−πr2

dhf
dρf

dt
+ 2πrf hfρf uf +πr2

f ρf
dhf

dt
− 2πrdhfρf

drd

dt

−πr2
dρf

dhf

dt
+

4
3
πr3

d
dρd

dt
+ 4πr2

dρd
drd

dt
= 0. (D 2)

When

dρ f /dt' 0, dρd/dt' 0, drd/dt' 0 and rd� rf , (D 3a−d)

equation (D 2) reduces to

2πrf hfρf uf +πr2
f ρf

dhf

dt
= 0. (D 4)

Similarly, momentum balance over the same control volume implies that

d
dt
(πr2

f hfρf uf )+
d
dt

(
4
3
πr3

dρdud

)
= 2πrf (σl − σf )−µf

uf

hf
πr2

f , (D 5)

where ud is the velocity inside the drop. Expanding the derivatives in (D 5) and
applying (D 3), along with dud/dt' 0, we get

2πrf hf u2
f +πr2

f hfρf
duf

dt
+πr2

f ufρf
dhf

dt
= 2πrf (σl − σf )−µf

uf

hf
πr2

f . (D 6)
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From (D 4), the sum of the first and third terms in (D 6) is zero, resulting in

2πrf (σl − σf )−µf
uf

hf
πr2

f =πr2
f hfρf

duf

dt
. (D 7)
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