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Miscible liquids often come into contact with one another in natural and technological
situations, commonly as a drop of one liquid present in a second, miscible liquid. The
shape of a liquid droplet present in a miscible environment evolves spontaneously in
time, in a distinctly different fashion than drops present in immiscible environments,
which have been reported previously. We consider drops of two classical types,
pendant and sessile, in building upon our prior work with miscible systems. Here
we present experimental findings of the shape evolution of pendant drops along
with an expanded study of the spreading of sessile drops in miscible environments.
We develop scalings considering the diffusion of mass to group volumetric data of
the evolving pendant drops and the diffusion of momentum to group leading-edge
radial data of the spreading sessile drops. These treatments are effective in obtaining
single responses for the measurements of each type of droplet, where the volume
of a pendant drop diminishes exponentially in time and the leading-edge radius of
a sessile drop grows following a power law of t1/2 at long times. A complementary
numerical approach to compute the concentration and velocity fields of these systems
using a simplified set of governing equations is paired with our experimental findings.

Key words: buoyant boundary layers, drops, Stokesian dynamics

1. Introduction
We previously reported (Walls et al. 2016) on an experimental study of the

spreading of sessile drops along with initial observations of the shape evolution of
pendant drops when immersed within a second, miscible liquid. Through a series of
experiments involving several pairs of miscible liquids and various imaging techniques,
including particle tracking velocimetry (PTV) and confocal microscopy, we found
that the shape evolution and power-law dynamics of sessile drops spreading in a
miscible environment are distinctly different from those of sessile drops spreading in
immiscible environments, which have been reported elsewhere (Huh & Scriven 1971;
Voinov 1976; Tanner 1979; Didden & Maxworthy 1982; Huppert 1982; Cox 1986a,b;
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Cazabat 1987; Joanny & Andelman 1987; Pismen & Eggers 2008; Eddi, Winkels &
Snoeijer 2013). We found that two characteristic radii develop during the spreading
of a sessile drop in a miscible environment: the radius of the three-phase contact line,
and the radius of an elevated portion of the drop that leads its advancement across
the surface. A diffusive flux arises across the miscible liquid–liquid interface due
to the chemical potential difference between the two initially distinct, homogeneous
liquids. This material flux imparts a time dependence to the properties of the liquids
in the diffusive region – notably the interfacial tension, density and viscosity – that
can influence the shape evolution. The diffuse layer drains downward along the
liquid–liquid interface at the upper surface of the sessile drop and into an elevated
leading edge of the drop, which grows radially as t1/2 at long times. The contact
line moves more slowly, never exceeding the t1/8 power law that is found when
a sessile drop spreads due to gravity in an immiscible environment across a solid
substrate on which it has an equilibrium contact angle of zero. It was concluded that
gravitational forces were the primary contributor to fluid motion. Capillary forces
and Marangoni stresses were found to be of secondary importance due to the very
small interfacial tensions that exist between miscible liquids (Smith, Van De Ven
& Mason 1981; Kojima, Hinch & Acrivos 1984; Joseph & Hu 1991; Pojman et al.
2006; Zoltowski et al. 2007; Lacaze et al. 2010). Measuring the interfacial tension
between miscible liquids is inherently challenging due to the very small values and
difficulty in establishing a distinct, stationary liquid–liquid interface in the absence
of perturbations. Using sessile and pendant drops for measuring interfacial tension
between immiscible liquids requires equilibrium or quasi-equilibrium shapes, which
contrasts with the dynamic character of our experiments. Truzzolillo & Cipelletti
(2017) review a range of attempts to measure interfacial tension between miscible
liquids, reviewing the limitations of traditional techniques developed for immiscible
liquids. Although the interfacial tension between the two miscible liquids was found
to be of lesser importance to the shape evolution of these droplets, the dynamics of
the three-phase contact line of a sessile drop is influenced by the relative magnitudes
of the two surface energies arising between (i) the solid substrate–spreading liquid
and (ii) solid substrate–ambient liquid phases, as the two liquids compete to wet the
solid surface in order to minimize the total energy of the system.

This paper is concerned with extending our previous initial observations of pendant
drops in miscible environments into a systematic experimental study. In addition,
due to the complexity of the spatio-temporal variation in fluid composition and
composition-dependent fluid properties, a complementary numerical approach for
resolving the composition and velocity fields is undertaken. Matching numerical
simulations to experimental observations ensures that the observed phenomena of the
experiments are not due to any physical mechanisms excluded from the numerical
simulations. Numerical techniques also allow for independent and systematic control
of fluid properties such as density differences and the dependence of viscosity on
concentration, which is limited in physical experiments due to inherent material
properties. This independent control of material parameters can provide additional
insights into the independent and collective influence of these parameters on the
observed phenomena. We also revisit our study of sessile drops reported previously
(Walls et al. 2016), reporting additional experiments and leveraging insights gained
from numerical calculations. Further, through considering pendant and sessile
configurations together, the adequacy of the numerical procedure can be evaluated
for multiple configurations. Additionally, the effect of density differences and the
direction of gravity relative to the drop and the diffuse layer can be clarified with
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424 D. J. Walls, E. Meiburg and G. G. Fuller

regard to the shape evolution of miscible drops: gravity points away from the centre
of mass of a pendant drop, pulling it away from the supporting needle, whereas
gravity points towards the centre of mass of a sessile drop, pressing it against the
solid substrate.

The gravitational, or buoyancy, forces that dominate the shape evolution of droplets
in miscible environments arise through differences in density, and lead to so-called
free convection. Variations in temperature, pressure and concentration can all influence
the density of a fluid; here, concentration is the primary conduit in producing gradients
in density, not only due to the different densities of the two homogeneous, miscible
liquids, but the diffusion and mixing that occurs across the liquid–liquid interface over
time as well. These buoyancy-driven flows are often modest, due to the small changes
in density caused through variations in concentration, temperature and pressure. As
a result, density is often adequately represented as a linear function of temperature
or concentration using a Boussinesq approximation. However, even with such an
approximation, the spatial variation of these properties, and possible time dependence,
greatly complicates analytical treatments of the problem. Analytical solutions have
been found for cases of simplified geometries and time-independent flows, such as
Rayleigh–Taylor instabilities, Rayleigh–Bénard films and plate tectonics (Bejan 2013).
In scenarios where other sources of convection are present, i.e. forced convection,
free convection often can be ignored, depending on their relative magnitudes,
which can make finding an analytical solution tractable, as in Whitehead’s paradox
(Leal 2007) and the work of Acrivos & Goddard (1965). These studies of forced
convection provide a reasonable basis for building intuition and scaling analyses of
our experimental observations of free convection.

Two careful studies of miscible liquids by Chen & Meiburg (1996) and Petitjeans
& Maxworthy (1996) examined the forced displacement of a viscous liquid from a
capillary tube with a second, less viscous miscible liquid. Petitjeans & Maxworthy
(1996) performed experiments, while Chen & Meiburg (1996) conducted numerical
simulations to replicate the experimental observations in order to gain insight into the
physical mechanisms present. These two studies provide a basis for the formulation
of our numerical analysis and comparison to our experimental results. Petitjeans &
Maxworthy (1996) found varying degrees of effectiveness of displacing the more
viscous fluid depending on several dimensionless parameters, namely the Péclet
number, Pe, and a viscosity ratio in the form of an Atwood number, At, which are
defined as

Pe=
uclc

DLA
, At=

µL −µA

µL +µA
, (1.1a,b)

where uc and lc are the characteristic velocity and length, respectively; DLA is the
diffusion coefficient between the two liquids; and µL and µA are the dynamic
viscosities of the displaced and displacing liquids, respectively. For large Pe and
At → 1, a regime similar to that of the findings reported here, they observed a
narrow diffuse layer between the two miscible fluids throughout the experiment. The
complementary numerical study of Chen & Meiburg (1996) utilized a simplified
set of governing equations, discarding terms related to interfacial tension, Korteweg
stresses, and other stresses due to dissolution that can arise in a time-dependent
fashion within a miscible system, as described by previous authors (Korteweg 1901;
Davis 1988; Joseph 1990; Joseph & Hu 1991; Joseph, Huang & Hu 1996; Joseph
& Renardy 2013). Yet Chen & Meiburg (1996) justified their approximations with
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The shape evolution of liquid droplets in miscible environments 425

scaling analyses of these discarded stresses to viscous ones when Pe is large and
At → 1, showing close agreement between their simulations and the experiments
of Petitjeans & Maxworthy (1996). This limit represents the experiments and pairs
of miscible liquids of our study. However, the concerns outlined in Joseph & Hu
(1991) proved in certain parameter regimes explored by Petitjeans & Maxworthy
(1996) and Chen & Meiburg (1996) to be consequential. Thus, subsequent studies by
Chen & Meiburg (2002), Kuang, Maxworthy & Petitjeans (2003), Kuang, Petitjeans
& Maxworthy (2004), Balasubramaniam et al. (2005) and Vanaparthy & Meiburg
(2008) were conducted to expand the initial studies, exploring additional experimental
materials and numerical details.

Another set of careful studies concerning miscible liquids were carried out by
Didden & Maxworthy (1982) and Huppert (1982) in order to determine how a liquid
spreads across a solid substrate when present in a miscible environment. Didden
& Maxworthy (1982) observed salt solutions spreading across a solid surface while
submerged below a body of fresh water. These flows, known as viscous gravity
currents, were fed at a constant rate and, in the case of axisymmetric spreading, the
radius of the spreading liquid was observed to grow following a power law in time
of t1/2. Huppert (1982) uses a lubrication analysis balancing viscous and buoyancy
forces to develop the theoretical spreading relationship

rN(t)= 0.715
(
1ρgQ3

3µL

)1/8

t1/2, (1.2)

where rN is the radius of the gravity current that spreads axisymmetrically from a
central source at a constant volumetric flow rate, Q, and µL is the dynamic viscosity
of the gravity current. These analyses form the basis of our scaling developments
for sessile drops spreading in miscible environments. Notably, however, their analyses
assume that mixing between the two liquids does not occur, as the time scales of
their experiments were short, differing from the observations in our experiments with
sessile drops.

From this foundation of prior work and our experimental and numerical studies
presented here, we hereafter aim to describe the fluid-mechanical mode of the
shape evolution of pendant and sessile drops in miscible environments and its time
dependence.

2. Experimental
The apparatus used to perform these experiments was developed and described

previously (Walls et al. 2016). It allows for the observation of the evolution of both
sessile and pendant drops in miscible environments with bright field and particle
tracking velocimetry (PTV) imaging techniques.

Pendant drops were formed using liquids such as silicone oils (Clearco Products;
10 000, 60 000 and 100 000 cSt pure silicone fluids) and corn syrup (Karo; light corn
syrup). Pendant drops of silicone oils were paired with an ambient liquid of a lower-
viscosity silicone oil (1 cSt), and those of corn syrup were paired with deionized water
(Milli-Q Academic A10). The density and viscosity of these liquids are displayed
in table 1.

The initial volume of pendant drops was varied between 1 nl and 1 µl. Stainless
steel and polytetrafluoroethylene (PTFE)-coated stainless steel needles of the diameters
0.159, 0.362, 0.474 and 0.718 mm were used to suspend pendant drops of corn syrup.
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Liquid Pendant or ambient Density (g ml−1) Viscosity (mPa s)

1 cSt silicone oil ambient 0.818 0.818
10 000 cSt silicone oil pendant 0.975 9750
60 000 cSt silicone oil pendant 0.976 58 560
100 000 cSt silicone oil pendant 0.977 97 970
Water ambient 0.997 0.890
Corn syrup pendant 1.386 7000

TABLE 1. Properties of the experimental pendant liquids.

PTFE-coated stainless steel needles of the diameters 0.474 and 0.718 mm were used
to suspend pendant drops of silicone oils.

Liquids used as sessile drops were silicone oils (Clearco Products; 5, 10, 20, 50,
100, 200, 500, 1000, 5000 and 10 000 cSt pure silicone fluids), corn syrup (Karo;
light corn syrup), glycerol (Alfa Aesar; ultrapure HPLC), and tricresyl phosphate
(Aldrich; 90 % grade). Sessile drops of silicone oils were paired with ambient liquids
of lower-viscosity silicone oils (1, 5, 10 cSt). Corn syrup and glycerol were paired
with deionized water (Milli-Q Academic A10). Glycerol and tricresyl phosphate
sessile drops were paired with ethanol (Fisher; anhydrous) and isopropanol (Fisher;
HPLC). Experiments on hydrophilic and hydrophobic glass surfaces were performed
previously (Walls et al. 2016), and we have expanded the study with the addition of
two new surfaces, one an oleophobic film (Green Onions Supply; Oleophobic Screen
Protector) and the other a Teflon surface. The density, viscosity, contact angles on
hydrophilic, hydrophobic, oleophobic and Teflon surfaces in air and surface tension
for these liquids are displayed in table 2.

The volumes of sessile drops were varied between 1 and 20 µl without observing
a change in the spreading behaviour. Results presented here were gathered from
experiments where the target volume of the sessile drops was 5 µl.

Volatility of the ambient liquids is not influential to the experiments, as the air–
ambient liquid interface is sufficiently far from the spreading liquid–ambient liquid
interface.

3. Numerical
3.1. Governing equations

The problem to be analysed numerically is that of a liquid drop with a density of ρL

and a dynamic viscosity of µL immersed in a second, miscible fluid with a density
of ρA and a viscosity of µA. The liquid drop is either suspended within the ambient
environment as a pendant drop, or rests atop a solid substrate, enveloped within the
ambient environment as a sessile drop. The numerical simulations are a complement
to, and will be discussed alongside, the experiments outlined in § 2. Throughout our
derivation, dimensional variables are indicated with a prime, ′, whereas the absence
of a prime indicates a dimensionless variable.

The Reynolds numbers, Re, of the experiments are O(0.1) or less, so we neglect
the nonlinear inertial terms within the conservation equations of momentum and start
from the equations that govern incompressible Stokes flow. Since there are two liquids
upon which to account, an additional equation is required for the conservation of the
species mass, for which we use a convection–diffusion equation. This set of equations
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is commonly used to characterize incompressible, miscible two-component flows:

∇
′
· u′ = 0, (3.1)

∇
′p′ =∇′ · τ ′ + ρ ′gêg, (3.2)

∂c
∂t′
+ u′ · ∇′c=∇′ · (D′∇′c). (3.3)

Here u′ = (u′1, u′2, u′3) denotes the fluid velocity vector, p′ pressure, τ ′ the deviatoric
stress tensor (which for an incompressible, Newtonian fluid is µ′[∇′u′ +∇′u′T], with
µ′ the dynamic viscosity), ρ ′ density, g the acceleration due to gravity pointing in the
direction of the unit vector êg, c the concentration of the liquid that forms the drop,
t′ time and D′ the diffusion coefficient. The concentration c is dimensionless and is
defined relative to the densities of the pure liquids as (ρ ′− ρA)/(ρL− ρA). Conversely,
the concentration of the ambient liquid can be written as 1− c. The axisymmetry of
the problem allows us to adopt a cylindrical coordinate system, with the z-axis either
aligned with the central axis of the needle suspending a pendant drop, or orthogonal
to the surface upon which a sessile drop rests. This selection simplifies the velocity
vector to u′ = (u′r, u′θ , u′z) = (u

′

r, 0, u′z), and thus we have a two-dimensional flow
field. The density, viscosity and diffusion coefficient are assumed to be functions of
concentration only,

ρ ′ = ρ ′(c), µ′ =µ′(c), D′ =D′(c), (3.4a−c)

and their specific forms are presented below.
As noted in Chen & Meiburg (1996), researchers such as Joseph and coworkers

have raised concerns in using the approximate forms listed above for miscible flows.
Joseph (1990) calls out two potentially relevant effects, further elaborated within
Joseph & Renardy (2013). The first point, that if the density of the mixture of
miscible liquids is dependent on the concentration, indicates that the velocity field
is not divergence-free, even for an incompressible fluid, which can be seen directly
from the full continuity equation,

∂ρ ′

∂t′
+ u′ · ∇′ρ ′ =−ρ ′(∇′ · u′). (3.5)

Spatial changes in the density of the fluid due to diffusion prevent the divergence
of the velocity field from vanishing, which produces additional stresses within the
conservation of momentum equations. As noted by Chen & Meiburg (2002), it is
difficult to provide an exact value for these stresses, as they depend upon unknown
material properties of the mixtures. Joseph & Hu (1991), as well as Davis (1988),
attend to a second set of additional stresses that can arise between miscible fluids due
to differences in chemical potential, which would give rise to a pressure difference
across the miscible liquid–liquid interface. Chen & Meiburg (2002) use scaling
arguments to show that these two types of stresses are substantially smaller than
viscous stresses when Pe is large and At approaches unity. This parameter space
corresponds to our experimental regime of interest, and following the scaling approach
of Chen & Meiburg (2002) leads us to proceed without including these stresses in
the set of governing equations. Comparisons between our experimental and numerical
results will provide an additional metric for the validity of the governing equations.

To arrive at a dimensionless form for the governing equations, we choose a
characteristic velocity, uc, and length, lc. As the problem is one of free convection,
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no velocity is specified at the boundary of the domain and we calculate a characteristic
velocity from a balance of viscous and buoyancy forces:

uc =
g(ρL − ρA)l2

c

µA
. (3.6)

The characteristic length is assigned as the diameter of the needle supporting a
pendant drop, d, or the initial radius of a sessile drop, Ro. These selections are
expected to be upper bounds in both cases, as density and viscosity vary across
the domain, taking on intermediate values between those of the pure components. A
characteristic pressure is constructed from µLuc/lc; the density of the fluid is rendered
dimensionless with the difference between the densities of the liquid constituting the
drop and the ambient liquid, 1ρ = ρL − ρA; viscosity with respect to the viscosity of
the liquid forming the drop, µL; and the diffusion coefficient with respect to Dmax,
the maximum value of the diffusion coefficient, occurring when c= 0. This leads to
the dimensionless forms of the governing equations:

∇ · u= 0, (3.7)
∇p=∇ · τ + Fρêg, (3.8)

∂c
∂t
+ u · ∇c=

1
Pe
∇ · (D∇c). (3.9)

The governing dimensionless parameters are the Péclet number, Pe, as before and a
gravity number, F:

Pe=
uclc

Dmax
, F=

gl2
c

νLuc

ρL − ρA

ρL
=
µA

µL
, (3.10a,b)

where νL is the kinematic viscosity of the liquid forming the drop. Values of Pe
are between O(103) and O(104) for our liquid pairings. Based on our choice of the
characteristic velocity in (3.6), the gravity number, F, simplifies to the ratio between
the dynamic viscosities of the ambient liquid and the liquid forming the drop,
respectively. Thus, the gravity number is an alternate construction to the Atwood
number, At, for representing the viscosity ratio in the governing equations.

Within the problem, both momentum and mass diffuse. Their relative importance is
captured in the Schmidt number,

Sc=
νL

Dmax
, (3.11)

which tends to be large for liquids. In the case of our study, Sc is O(104) or larger,
indicating that convective effects are influential in the species conservation of mass,
but not in the conservation of momentum, as can be seen in the governing equations
(3.7)–(3.9).

This leaves us with needing to specify the functional form of the density, viscosity
and diffusion coefficient with respect to concentration. A linear relationship between
density and concentration is a common and often reasonable approximation, and we
write it in dimensionless form here:

ρ =
ρA

ρL − ρA
+ c. (3.12)

The dependence of viscosity on concentration, however, often deviates appreciably
from a linear relationship, particularly when the difference in viscosity between the
two pure liquids is large. Previous researchers have used a number of mathematical
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1.0
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c

FIGURE 1. Dimensionless viscosity, µ, as a function of concentration, c, for several liquid
pairs. Symbols signify experimental measurements and corresponding dashed lines fit the
data. Symbol and line colours are coded by liquid pair. Colours black, light blue, dark
blue, purple, pink and yellow indicate the liquid pair as corn syrup–water, glycerol–water,
glycerol–ethanol, 10 000 cSt–1 cSt, 60 000 cSt–1 cSt and 100 000 cSt–1 cSt silicone oils,
respectively. The pairs of silicone oils are fit as fifth-order polynomials; the pairing of
glycerol–ethanol is fit as a single exponential; and glycerol–water and corn syrup–water
are fit as triple exponentials. Glycerol data are taken from Glycerine Producers’
Association (1963).

relationships, including linear, exponential and polynomial (Manickam & Homsy
1993; Chen & Meiburg 1996; Petitjeans & Maxworthy 1996; Yang & Yortsos 1997;
Vanaparthy & Meiburg 2008), to represent viscosity as a function of concentration.
In order to represent our experiments accurately, we measured the viscosity of blends
of our liquid pairs to determine its behaviour with respect to concentration. The
dependence of dimensionless viscosity on concentration varied amongst our liquid
pairs, taking one of the following forms:

µ=


eR(c−1) single exponential,
eR((eec

−ee)/(ee
−e)) triple exponential,

1
µL
[µA + (µL −µA)c5

] fifth-degree polynomial,
(3.13)

where R= ln(µL/µA). The experimental measurements along with the corresponding
mathematical representations are displayed in figure 1.

Mass diffusion coefficients have been measured to vary with concentration
(Petitjeans & Maxworthy 1996; Rashidnia & Balasubramaniam 2002, 2004), and
Vanaparthy & Meiburg (2008) used a generalized form of the Stokes–Einstein relation
in their computations. For our numerical simulations, we adopt a similar form with
the restriction that where the viscosity between our liquid pairs varies by as much as
four orders of magnitude, the diffusion coefficient is specified to vary by one order
of magnitude or less, following the results of Petitjeans & Maxworthy (1996) and
Rashidnia & Balasubramaniam (2004). Thus, we define

D=


e−Rc single exponential,
e−R((eec

−e)/(ee
−e)) triple exponential,

[1+ (eR − 1)c5
]
−1 fifth-degree polynomial,

(3.14)
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r

r

z

z

(a) (b)

FIGURE 2. Schematics of the (a) pendant and (b) sessile drops. The coordinate system
and characteristic length scale of each system are identified. At the solid surfaces
(needle suspending the pendant drop, surface supporting the sessile drop), no-slip and
no-penetration boundary conditions are imposed. At t = 0, the system is quiescent
everywhere and the transition in concentration between the two liquids is represented as
an error function with respect to

√
r2 + z2/δo, where δo is a length scale to define the

transition thickness, or initial thickness of the diffusive layer, which is set equal to the
grid spacing.

and 06R6 ln(10), depending on the liquid pair. This restriction is supported by the
measurements of Petitjeans & Maxworthy (1996), who found the diffusion coefficient
between water and glycerol to vary by an order of magnitude whereas the viscosity
varies by three orders. We discuss the outcomes of this choice alongside the results.

3.2. Boundary conditions
3.2.1. Miscible pendant drop

A pendant drop is suspended from above by a syringe needle, as can be seen in
figure 2(a). We define z= 0 at the bottom of the needle with diameter d. Numerically,
we represent this needle as a no-slip, no-penetration surface. At r = 0, the axial
velocity is at a maximum and the radial velocity is zero. Far from the drop and into
the ambient liquid, the concentration c and velocities ur and uz approach zero. We
utilize the diameter of the needle, d, as the characteristic length scale to find the
dimensionless boundary conditions:

r= 0:
∂uz

∂r
= 0, ur = 0,

∂c
∂r
= 0; (3.15a−c)

r→+∞: uz→ 0, ur→ 0, c→ 0; (3.16a−c)

z→−∞: uz→ 0, ur→ 0, c→ 0; (3.17a−c)

z→+∞: uz→ 0, ur→ 0, c→ 0; (3.18a−c)

z= 0 and r< 0.5: uz = 0, ur = 0,
∂c
∂z
= 0; (3.19a−c)

z> 0 and r= 0.5: uz = 0, ur = 0,
∂c
∂r
= 0. (3.20a−c)

3.2.2. Miscible sessile drop
A sessile drop is supported from below by a solid surface, as seen in figure 2(b).

We define z = 0 at the vertical position of the solid–liquid interface. At the solid

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

53
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.535


432 D. J. Walls, E. Meiburg and G. G. Fuller

surface, no-slip and no-penetration boundary conditions are applied. In our numerical
description, the surface energies existing between each liquid and the solid surface are
not explicitly considered. At r= 0, the axial velocity is at a maximum and the radial
velocity is zero. Far from the drop and into the ambient liquid, the concentration c and
velocities ur and uz approach zero. Thus we have the following boundary conditions
for a sessile drop:

r= 0:
∂uz

∂r
= 0, ur = 0,

∂c
∂r
= 0; (3.21a−c)

r→+∞: uz→ 0, ur→ 0, c→ 0; (3.22a−c)

z= 0: uz = 0, ur = 0,
∂c
∂z
= 0; (3.23a−c)

z→+∞: uz→ 0, ur→ 0, c→ 0. (3.24a−c)

The size of the computational domain for both types of droplets was always at least
five times the radius of the droplet in the direction of propagation: for the descending
strand of a pendant drop, the z-direction, and for the leading edge of a sessile drop,
the r-direction. In the direction of the other coordinate, the size of the computational
domain was at least three times the radius of the droplet. In this way, the boundaries
of the domain were sufficiently far such that the dynamics of the droplet remained
unaffected by the computational boundary conditions.

3.3. Computational approach
The symmetry of our problem allows us to construct a two-dimensional set of
equations, which we solve using streamfunctions in a straightforward fashion. The
set of partial differential equations (3.7)–(3.9), subject to the boundary conditions
(3.15)–(3.20), or (3.21)–(3.24), depending on the type of drop, is recast in terms of
streamfunctions and solved numerically with a finite central differencing scheme. An
alternating direction implicit (ADI) scheme (Fletcher 1988) is applied for solving
the concentration equation. At time t = 0, the droplet is a spherical cap and the
concentration profile between the drop and its ambient environment is defined in the
form of an error function with respect to

√
r2 + z2/δo, where δo is a length scale

to define the transition thickness, or initial thickness of the diffusive layer, which
is set equal to the grid spacing. The fluid is initially quiescent at all points. The
simulation is advanced in time by solving the concentration equation with an ADI
scheme at discrete time steps. At each half and full time step in the ADI scheme,
the streamfunction equation is solved to update the velocity field in the next iteration
of solving for concentration.

To incorporate the concentration-dependent, dimensionless diffusion coefficient, D,
into this scheme, we construct it in two parts:

D= 1− (1−D). (3.25)

The first term, 1, is a constant term and the second term, (1−D), is a variable term
that corrects the value of the diffusion coefficient based on the local concentration
c. After separating the diffusion coefficient into constant and variable components,
we treat constant diffusive terms implicitly and variable diffusive terms explicitly.
Operating as such allows us to take significantly larger time steps without negatively
influencing the stability of the numerical analysis.
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(a) (b)

0.5 mm
0.5 mm

0.67 s 1.00 s 1.33 s 1.67 s 4.00 s 8.00 s 12.00 s 15.00 s 15.67 s

FIGURE 3. (a) Image sequence taken in time of a pendant drop of corn syrup immersed
in water. A strand emanates from the underside of the drop and continues to flow as the
drop as a whole descends and elongates. (b) Image from a PTV experiment of a pendant
drop of corn syrup immersed in water. The corn syrup contains 6 µm microspheres
at a concentration of 10−3 g ml−1, which scatter the incident laser light. The arrows
indicate velocity vectors obtained from particle movement. Motion was found to be largely
restricted to the corn syrup–water interface. Particles within the pendant drop and away
from the liquid–liquid interface move with the drop as it descends and elongates; within
the reference frame of the pendant drop, these interior particles do not move significantly.
Refer to the supplemental material for full movies (Movie 1, Movie 2) available at
https://doi.org/10.1017/jfm.2018.535 from which these frames were taken.

A test case for the two-dimensional diffusion equation in the absence of convection
was conducted and compared to the analytical solution provided by Crank (1975) for
an isolated spherical droplet. Spatial discretization was selected based upon physical
evidence from the experiments of the thickness of the diffusive draining layer. This
grid spacing was varied over two orders of magnitude to ensure that its magnitude did
not alter the thickness of the diffusive draining layer of the numerical calculations and
that consistent results overall were achieved. The temporal discretization was selected
with reference to the gravity number, which is indicative of the velocities that arise
due to free convection. Identical physical scenarios were simulated using the various
grid spacings, time steps and spatial domain sizes, obtaining consistent results. The
comparison to experimental data serves as an additional check of the numerical results.

4. Results and discussion
4.1. Miscible pendant drop

Figure 3 summarizes the initial observations that were made of pendant drops
in miscible environments at the conclusion of our prior study (Walls et al. 2016);
figure 3(a) shows a series of images taken of a pendant drop of corn syrup suspended
in water, and figure 3(b) shows an image from a PTV experiment of the same
liquids. From figure 3(a), one can see that at some time after immersion, a thin
strand emanates from the underside of the drop and continues to flow downward.
Concurrently, the drop as a whole descends and elongates, albeit more slowly. In
figure 3(b), the arrows indicate velocity vectors obtained from individual particle
movement. Motion was found to be largely restricted to the liquid–liquid interface
on the main body of the drop and to a thin liquid jet descending from its underside.
Particles within the main body of the drop move only due to the descent of the drop
itself as it elongates. Particles descending along the liquid–liquid interface reach the
bottom of the pendant drop and continue to flow downward in a thin strand.

Due to the high viscosity of the pendant liquid, it does not rapidly deform under
the action of gravity as a body despite the difference in density between the pendant
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and ambient liquids. Instead, the pendant liquid at the surface of the drop is able to
diffuse on a shorter time scale, creating a diffuse layer at the liquid–liquid interface of
the pendant drop and ambient environment. Across this diffuse layer, the concentration
transitions from the pure pendant liquid to the pure ambient liquid; thus, the density
and viscosity correspondingly transition between the properties of the pure liquids
across this layer. Whereas the densities of the pendant liquids diminish approximately
linearly with dilution, the viscosities decrease much more sharply. As a result, the
pendant liquid diffuses and forms a diffuse layer that subsequently drains, all more
rapidly than the drop deforms as a single body. The boundary between the pendant
drop and its ambient surroundings can be identified due to the sharp change in the
concentration, and hence the refractive index of the fluid, as seen in figure 3(a).
We define the volume of the pendant drop, V , to be the liquid contained within its
boundary, but excluding the thin draining strand. Throughout an experiment, we track
the boundary of the body of the pendant drop to calculate its volume as a function
of time.

Figure 4(a) shows a plot of the volumetric measurements as a function of time
for pendant drops of corn syrup suspended in water for a range of initial volumes
supported by syringe needles of several diameters. Volume and time are plotted
on logarithmic and linear scales, respectively. Initially, the volumes of the pendant
drops increase to a maximum, Vmax, before ultimately diminishing in time. These
increases correspond to the formation of the diffuse layer at the liquid–liquid interface
between the pendant and ambient liquids; diffusion causes the initially distinct and
infinitesimally thin interface to blur and grow in thickness, resulting in the swelling of
the drop and the observation of its boundary moving radially outward. After reaching
a maximum value, the volume of a pendant drop begins to diminish, corresponding
to the draining of the diffuse layer. Additionally, the linear response of volume after
attaining its maximum value when expressed in this semilogarithmic form reveals
that the volume of the pendant drop diminishes exponentially in time as exp(−t/τd),
where τd is the measured exponential decay time constant of a particular experiment.

If we scale the data of volume and time presented in figure 4(a) by the maximum
volume, Vmax, and a characteristic diffusion time, tc,pendant, respectively, the plot shown
in figure 4(b) is obtained. Scaling the volume by the maximum volume of each
pendant drop collapses the vertical axis (V̄ = V/Vmax). When the horizontal axis
is scaled by a characteristic diffusion time and shifted by the time at which the
maximum volume is reached (t̄ = (t − tmax)/tc,pendant), the data also largely collapse
to reveal an exponential decay of the volume, V̄ ∼ exp(−t̄/T), with a dimensionless
exponential decay time constant, T , of unity. The shift in time accounts for the
time necessary for the diffuse layer to form and the draining flow to establish itself
through free convection. The characteristic diffusion time, tc,pendant, is calculated as
follows:

tc,pendant =
L2

4DLA
, (4.1)

where L is a characteristic length and DLA is the diffusion coefficient between the
pendant and ambient liquids. We obtain L by taking the ratio of the maximum
volume of the pendant drop, Vmax, and the surface area of the pendant drop at its
maximum volume, Amax. A diffusion coefficient between corn syrup and water of
1.30 × 10−4 mm2 s−1 is used to scale the data in figure 4(b), which was obtained
from the literature (Ray et al. 2007).
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FIGURE 4. Plots of volumetric measurements as functions of time for pendant drops
of corn syrup immersed in water. Volume and time are plotted on logarithmic and
linear scales, respectively. (a) Unscaled data. (b) The volumetric data are scaled by the
maximum volume of each pendant drop, Vmax, and time is shifted by the time at which
the maximum volume occurs, tmax, and scaled by a characteristic diffusion time, tc,pendant=

(Vmax/Amax)
2/4DLA, where Amax is the surface area of the pendant drop at its maximum

volume and DLA is the diffusion coefficient between the pendant and ambient liquids. A
value of 1.30× 10−4 mm2 s−1 was obtained from the literature for the mutual diffusion
coefficient of corn syrup and water (Ray, Bunton & Pojman 2007). Varying symbol
shapes represent discrete experiments for a particular needle. Symbol colours purple, dark
blue, green, red and black indicate the diameters of the supporting needle as 0.159,
0.362, 0.474*, 0.718* and 0.718 mm, respectively. Non-asterisked and asterisked values
indicate that the needle is stainless steel and PTFE-coated stainless steel, respectively. The
solid-black, dashed-white line in (b) represents an exponential decay, exp(−t̄/T), with an
exponential decay constant, T , of unity.

This time scale emerges from the appropriate scaling of the convection–diffusion
equation to describe the time-dependent, free-convection mass transfer of a pendant
drop in a miscible environment. To obtain this time scale, we first begin from an
analysis of time-independent, forced-convection heat transfer by Acrivos & Goddard
(1965) to identify an appropriate length scale for our analysis. Acrivos & Goddard
(1965) studied the time-independent case of the transfer of heat for a uniformly
heated, solid sphere in a uniform flow in the limit in which Re � 1 and Pe � 1,
matching the limiting behaviour of the parameters in our study. They found that
even as Pe→∞, there exists an inner region near the surface of the sphere where
diffusion cannot be neglected at leading order. Acrivos & Goddard (1965) determined
that this inner region extended a distance O(aPe−1/3) from the surface of a sphere
of radius a. Since the pendant liquid in each of our experiments is several orders
of magnitude more viscous than its ambient counterpart, the liquid–liquid interface
can be treated as a no-slip boundary, with diffusion being non-negligible within a
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distance O(aPe−1/3) from this interface. Second, considering Stokes’ law, the velocity
within this inner region scales as Pe−2/3. Then, using these length and velocity scales
in the time-dependent convection–diffusion equation retains both the convective and
diffusive terms, while yielding the time scale (aPe−1/3)2/Dmax, of the form of (4.1)
with L∼aPe−1/3. Comparing aPe−1/3 to L, with a as Rmax, the radius of a pendant drop
at its maximum volume, estimates aPe−1/3

∼Rmax/10, of a similar order to L=Rmax/3.
Additionally, for a given Pe, one could expect the inner region of our experiments, a
free-convection problem where the fluid motion arises from buoyancy effects near the
surface and decays as r→∞, to be thicker than that of a forced-convection problem,
where the fluid motion is imposed from the far field and is only disturbed locally
near the sphere.

We have not been able to rigorously develop an exponential relationship between
pendant volume and time mathematically. However, two observations indicate its
plausibility. First, the size of the pendant drop is linked to the total diffusive flux
that arises across the pendant liquid–ambient liquid interface through its surface area,
A. As pendant liquid diffuses across the liquid–liquid interface and free convection
carries it away, the volume of the pendant drop decreases as does its surface area.
The draining flow from the diffuse layer acts to largely maintain the thickness of the
diffuse layer throughout the experiment, indicating that the material flux per unit area,
proportional to DLA∇c, remains constant while the total diffusive flux, proportional
to A ·DLA∇c, diminishes solely due to diminishing surface area. This process fits the
characteristics of an exponential decay, which arises when a decrease in a quantity
is proportionate to its current value. Second, the scaled volumetric data for pendant
drops of corn syrup in water in figure 4(b) fall along a single exponential curve,
exp(−t̄/T), with a dimensionless decay time constant, T , of unity.

Lastly, as expected for a pendant drop, the material of the suspending needle, either
stainless steel or PTFE-coated stainless steel, was inconsequential to the behaviour
of the experiment, as seen from the universal behaviour of the scaled data without
accounting for this aspect.

Diffusion coefficients for the pairs of silicone oils listed in table 1 are not readily
available in the literature to repeat the scaling analysis in figure 4 for these pairs
directly. However, the scaling relationship of (4.1) suggests that diffusion coefficients
for each liquid pair could be estimated from its corresponding set of experiments. For
the set of experiments with pendant drops of corn syrup immersed in water, the overall
dimensionless exponential decay time constant, T , is unity, which indicates that the
calculated characteristic diffusion time, tc,pendant, and measured exponential decay time
constant, τd, are approximately equal for a given experiment. Thus, equation (4.1) can
be rewritten as L2

=DLA · 4τd, and plotting L2 against 4τd for each experiment within
the corn syrup–water pairing should yield its diffusion coefficient as the slope of best
fit. Indeed, when following this procedure for the set of experiments using corn syrup
and water, the resultant slope is 1.34× 10−4

± 1.6× 10−5 mm2 s−1, comparing closely
to the independently measured diffusion coefficient between corn syrup and water of
1.30× 10−4 mm2 s−1 by Ray et al. (2007), used above to scale the data presented in
figure 4(b).

Using this method to estimate the diffusion coefficients of the pairs of silicone oils
gives values of 9.9×10−5

±2.5×10−5, 3.6×10−5
±9.0×10−6 and 4.7×10−5

±1.2×
10−5 mm2 s−1 as the diffusion coefficients between 1 cSt silicone oil and 10 000 cSt,
60 000 cSt and 100 000 cSt silicone oils, respectively. Further, the reliability of these
estimates can be assessed. Prior researchers (Pollack & Enyeart 1985; Zwanzig &
Harrison 1985; Balasubramaniam et al. 2005) have developed empirical power-law
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10–3

10–4

10–5

104103 105

FIGURE 5. Logarithmic plot of the diffusion coefficients between 1 cSt silicone oil and
several silicone oils of higher viscosity versus the viscosity of the more viscous silicone
oil. Filled and hollow symbols indicate values estimated from our experiments and those
from literature, respectively. Error bars are indicated for estimates from our experiments. A
best-fit power-law relationship constructed from the three estimated diffusion coefficients
predicts the independently measured quantity of Rashidnia & Balasubramaniam (2002),
which indicates their reliability.

relationships between diffusion coefficients and viscosity through the Stokes–Einstein
relation, or modifications of it. They do so by keeping the viscosity of one of the
liquids in the pair constant as the other is varied. Similarly, we construct such a
relationship for pairs of silicone oils, where the viscosity of one silicone oil remains
constant; by compiling a combined set of independent literature values (Rashidnia
& Balasubramaniam 2002; Balasubramaniam et al. 2005) (1 cSt–1000 cSt: 2.81 ×
10−4 mm2 s−1) and values determined from our experiments with pendant drops, we
can verify whether a power law determined from our estimated values predicts the
literature values. Figure 5 shows a plot of these values against the viscosity of the
more viscous silicone oil. Indeed, the power-law relationship constructed from the
three estimated diffusion coefficients predicts the independently measured quantity of
Rashidnia & Balasubramaniam (2002), which further indicates their reliability for use
in our scaling analyses of pendant drops of silicone oils immersed in silicone oils.

The estimated diffusion coefficients between silicone oils presented in figure 5 were
obtained from the experimental data of the time-dependent, volumetric diminution of
pendant drops of silicone oils shown in figure 6. Specifically, figure 6(a) shows the
volume of pendant drops for experiments conducted with three viscous silicone oils
(10 000 cSt, 60 000 cSt and 100 000 cSt) suspended in 1 cSt silicone oil. Volume
and time are plotted on logarithmic and linear scales, respectively. Experiments
with silicone oils were restricted to the use of PTFE-coated stainless steel needles to
discourage silicone oils from wicking up the needle prior to initiating the experiments.
However, in the course of an experiment, the coating does not influence the results,
as seen earlier with the experiments using corn syrup and water. The volume behaves
similarly in time to the data gathered for corn syrup and water, where an initial
swelling is followed by an exponential decay. The data for volume and time in
figure 6(a) can be scaled by the maximum volume and the characteristic diffusion
time presented in (4.1), respectively, and combined with data from figure 4(b) to
obtain the plot shown in figure 6(b). Again, values of the diffusion coefficients for
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FIGURE 6. Plots of volumetric measurements as functions of time for pendant drops.
Volume and time are plotted on logarithmic and linear scales, respectively. (a) Unscaled
data of silicone oils immersed in 1 cSt silicone oil. (b) The data of (a) are scaled in the
same manner as, and presented alongside, the data from figure 4(b) for pendant drops
of corn syrup immersed in water. Diffusion coefficients for the pairs of silicone oils
were obtained from the method described in figure 5 (9.9× 10−5, 3.6× 10−5 and 4.7×
10−5 mm2 s−1 for the diffusion coefficients between 1 cSt silicone oil and 10 000, 60 000
and 100 000 cSt silicone oils, respectively). Varying symbol shapes represent discrete
experiments for a particular pendant liquid. Symbol colours purple, pink, yellow and black
indicate the pendant liquid as 10 000 cSt, 60 000 cSt, 100 000 cSt silicone oils, and corn
syrup, respectively. Pendant drops of silicone oils were supported by PTFE-coated stainless
steel needles with diameters of 0.474 and 0.718 mm. The solid-black, dashed-white line
in (b) represents an exponential decay, exp(−t̄/T), with an exponential decay constant, T ,
of unity.

pairs of silicone oils used in this scaling were obtained as described above in figure 5.
The collapse of the draining behaviour is universal for the various liquid pairings
studied, with all experimental volumes decreasing exponentially, V̄ ∼ exp(−t̄/T), with
a dimensionless decay constant, T , of unity.

To complement our experiments and understand more fully these miscible pendant
systems, we have performed a set of numerical simulations. In matching numerical
simulations to the experimental observations, the negligible influence of the physical
mechanisms excluded from the calculations on the observed phenomena can be
confirmed. For example, surface tension and its associated effects were disregarded
from our formulation of the governing equations. Figure 7(a) shows an image
sequence taken during an experiment with a pendant drop of corn syrup suspended in
water; in figure 7(b), the images are displayed with increased contrast to accentuate
the diffuse regions near the body of the pendant drop. In figure 7(c), a reproduction of
this experiment by a numerical simulation is depicted. In the images of the numerical
simulation, contours in the concentration of the pendant liquid are plotted over top
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0.5 mm
1.50 s 1.75 s 2.00 s 2.25 s 2.50 s 5.00 s 10.00 s 14.00 s 16.00 s

(a)

(b)

(c)

FIGURE 7. Sequences of images taken over time of a pendant drop of corn syrup
suspended in water. The images in (a) were captured during an experiment and displayed
in (b) with increased contrast to accentuate the diffuse regions near the body of the
pendant drop. These experimental images are reproduced by a numerical simulation in
(c). In the images of the numerical simulation, contour lines in concentration are plotted
over top of a coarse grid of the velocity vectors in the fluid. Contours are marked at
concentrations of the pendant liquid of 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95 and
99 %, and range from blue to red over this span. Thin strands emanate from the undersides
of the drops and continue to flow as the drops descend and elongate as single bodies.
Refer to the supplemental material for the full movies (Movie 3, Movie 4, Movie 5) from
which these sets of frames were taken.

of a coarse grid of the velocity vectors in the fluid. Qualitatively, we see that the
numerical simulation reproduces key features such as the initial swelling of the drop
and the subsequent draining and emergence of a thin strand from the underside of the
drop. Quantitatively, regarding the thicknesses of the diffuse layer along the pendant
liquid–ambient liquid interface and the thin strand that emanates from the underside
of the pendant drop, comparisons between the experimental images with increased
contrast and those of the simulation indicate close agreement. Here, the thickness
of the diffuse layer measures approximately 65 µm, draining into a thin strand
approximately 110 µm in diameter. These thicknesses were consistently measured
across all experiments with variously sized pendant drops of corn syrup immersed
in water. Further, the simulated velocity field largely reproduces the experimental
observations when compared to the PTV experiments, such as shown in figure 3(b). In
both experiment and simulation, motion within the viscous pendant drop is effectively
zero, with all motion generated at the pendant liquid–ambient liquid interface by
buoyancy forces. For pendant drops of corn syrup immersed in water, the simulated
velocities along the liquid–liquid interface compare closely with the observations
of particle motion within PTV experiments of approximately 0.4 mm s−1. However,
the body of the simulated pendant drop descends more slowly than its experimental
counterpart. In the physical experiment, the syringe needle is hollow and filled with
the pendant liquid, whereas the numerical representation is a no-slip, no-penetration
boundary. Thus, the experimental pendant drop can deform and elongate more readily.
Numerical simulations of the other liquid pairings were conducted across the range
of experimental volumes, which showed similar qualitative and quantitative matching
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FIGURE 8. Plots of volume as a function of time for simulated and experimental
pendant drops. Volume and time are plotted on logarithmic and linear scales, respectively.
(a) Unscaled data obtained from simulations of the physical experiments presented in
figures 4 and 6. (b) The data of (a) are scaled in the same manner as, and presented
alongside, the data from figure 6(b) for pendant drops of corn syrup and silicone oils
immersed in water and 1 cSt silicone oil, respectively. The diffusion coefficients used
in scaling the simulated data correspond to those used in scaling the experimental data
in figures 4(b) and 6(b). Varying symbol shapes represent discrete experiments for a
particular pendant liquid. Different lines represent discrete simulations for a particular
pendant liquid. Symbol and line colours purple, pink, yellow and black indicate the
pendant liquid as 10 000 cSt, 60 000 cSt, 100 000 cSt silicone oils and corn syrup,
respectively. Simulated pendant drops were suspended by numerical representations of
needles to match the diameters of the experiments. The solid-black, dashed-white line in
(b) represents an exponential decay, exp(−t̄/T), with an exponential decay constant, T , of
unity.

between experiment and simulation. Movies of the experimental and numerical pairs
for pendant drops of corn syrup and silicone oils suspended in water and silicone
oils, respectively, are included in the supplemental material (Movie 6, Movie 7).

Additionally, we have calculated the volume of the simulated pendant drops in
time. To do so, we have defined the boundary of the drop along a contour line of
concentration at 1 % of the pendant liquid, while excluding the thin, draining strand.
In figure 8(a), the volumes of pendant drops from simulations of corn syrup in water
and silicone oil in silicone oil are plotted against time on a semilogarithmic scale.
Volume and time are plotted on logarithmic and linear scales, respectively. The data
obtained from the simulations show qualitatively similar behaviour to the experiments,
where volume initially increases and passes through a maximum before beginning to
diminish exponentially in time. Figure 8(b) shows the scaled experimental data of
figure 6(b) along with the simulated data when the scalings of Vmax and (4.1) are
applied to volume and time, respectively. The diffusion coefficients used in scaling
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the simulated data correspond to those used in scaling the experimental data in
figures 4(b) and 6(b). Strong agreement in behaviour of the draining phenomena is
seen between the experiments and simulations.

Varying the magnitude of the diffusion coefficient in the simulations does not
alter their qualitative character; however, as expected, it does influence the time to
reach the maximum volume and the rate of exponential decay. Varying the magnitude
of the diffusion coefficient within its uncertainty has a marginal influence on the
thicknesses of the diffuse layer and thin strand for given densities, viscosities and
their dependence on concentration. This finding is supported by the characteristic
length for the inner region near the pendant liquid–ambient liquid developed above,
which scales with Pe−1/3

∼ (DmaxµA/1ρ)
1/3. Varying the dependence of the diffusion

coefficient on concentration through R as described in (3.14) did not substantially
alter the calculated volumes of the simulations, as the value of the diffusion coefficient
at a concentration of 1 %, the numerical boundary of the pendant drop, is not
substantially altered by changes in R over the prescribed range. Small changes to
the motion of the contour lines representing higher concentrations and the steepness
of the concentration gradients were observed as expected, but the qualitative nature
of the simulations was not altered.

4.2. Miscible sessile drop
We previously observed (Walls et al. 2016) that a sessile drop spreading in a miscible
environment progresses through distinctly different shape evolution and power-law
dynamics as compared to those present in an immiscible environment, such as air.
Here, we revisit these sessile drops in conjunction with the pendant drops discussed
in the prior section. We do so in order to further demonstrate the capability of our
numerical procedure and to provide additional insights to the experiments of Walls
et al. (2016) arising from this numerical analysis.

Figure 9 summarizes the primary observations of sessile drops in miscible
environments through snapshots of a sessile drop of corn syrup spreading across
a hydrophobic glass surface while immersed in water, captured using a variety of
imaging techniques. Brightfield imaging was used to capture the spreading drop from
below (figure 9a) and the side (figure 9b). From these two vantages, two radial
features are readily apparent. First, the portion of the drop that leads its advancement
is elevated above the liquid–solid interface, indicated by black arrows in both panels,
and second, a trailing portion that is the three-phase contact line, indicated by white
arrows in both panels. We refer to the most radially advanced and elevated portion
of the drop as the leading edge, and the portion of the drop that remains in contact
with the solid substrate as the contact line.

Figure 9(c) shows an image from a PTV experiment of a sessile drop of corn syrup
containing 6 µm diameter polystyrene microspheres at a concentration of 10−3 g ml−1

in order to visualize the flow pattern that develops within the drop. The white arrows
are velocity vectors obtained from the movement of particles, indicating that motion
is largely restricted to the liquid–liquid interface and particles away from the interface
do not move significantly. This draining phenomenon is similar to that of a pendant
drop present in a miscible environment, except that the draining material flows into
an elevated leading edge rather than a thin, descending strand. This behaviour was
observed for other liquid pairs as well, however, it is most pronounced with viscous
spreading liquids; drops formed from lower viscosity liquids are able to deform as a
single body more readily, approaching a comparable time scale to that of a diffuse
layer forming and draining.
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0.25 mm

1 mm1 mm

(a) (b)

(c)

(d )

FIGURE 9. Snapshots of a sessile drop of corn syrup spreading across a hydrophobic
glass surface while immersed in water. (a,b) The drop captured with brightfield imaging
from the bottom and the side, respectively. The black arrows indicate the most radially
advanced portion of the drop, which is elevated above the solid surface, and we refer to
it as the leading edge. The white arrows indicate the most radially advanced portion of the
drop that remains in contact with the solid surface, and we refer to it as the contact line.
(c) An image taken from a PTV experiment. The corn syrup contains 6 µm microspheres
at a concentration of 10−3 g ml−1, which scatter incident laser light. The arrows indicate
velocity vectors obtained from individual particle movement. Motion was largely restricted
to the corn syrup–water interface and particles within the drop and away from the liquid–
liquid interface remain stationary. (d) A reconstructed side-view image from a confocal
microscopy experiment. A frustum of the sessile drop, its base coinciding with the glass
surface, was scanned along a radial slice, as indicated by the inset in (c). The corn syrup
contains 0.2 µm fluorescent polystyrene microspheres at a concentration of 10−3 g ml−1,
while the water contains no fluorescent material, revealing the elevated character of the
leading edge. Refer to the supplemental material for the full movies (Movie 8, Movie 9,
Movie 10, Movie 11) from which these frames were taken.

Figure 9(d) shows a reconstructed side-view image from a confocal microscopy
experiment to observe the leading-edge radius more closely and confirm its elevated
character. The drop of corn syrup contains 0.2 µm diameter fluorescent polystyrene
microspheres at a concentration of 10−3 g ml−1, while the water contains no
fluorescent material. A frustum of the sessile drop, its base coinciding with the glass
surface, was scanned along a radial slice, as indicated by the inset into figure 9(c).
The elevated character of the leading edge is clearly evident from the fluorescing
microspheres, embedded in the corn syrup, propagating radially outward, and coasting
above a thin film of water and the solid substrate. Confocal microscopy experiments
using other liquid pairs showed similar behaviour in the development and propagation
of an elevated leading edge.

The leading-edge radius was previously found (Walls et al. 2016) to follow a power
law of t1/2 at long times for all miscible liquid pairs studied, regardless of the initial
volumes, viscosities or densities considered. We will show that a collective response
can be obtained for these data of the leading-edge radius with a single scaling
treatment and that the shape evolution of sessile drops in miscible environments can
be reproduced numerically. After addressing the leading-edge radius, we will return
to a discussion of the contact-line radius.
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2 mm
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20 s

30 s

55 s

120 s

160 s

FIGURE 10. Two sequences of images taken over time of a sessile drop of 10 000 cSt
silicone oil immersed in 1 cSt silicone oil and spreading across a solid substrate. The
images on the left were captured during an experiment and are reproduced by a numerical
simulation on the right. In the experiment, the solid substrate is hydrophobic glass, and
in each frame, the upper, light region is the ambient liquid and the lower, dark region is
the substrate. In the images of the numerical simulation, contour lines in concentration are
plotted over top of a coarse grid of the velocity vectors in the fluid. Contours are marked
at concentrations of the spreading liquid of 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95
and 99 %, and range from blue to red over this span. The sessile drop begins to spread
by developing an elevated leading edge that leads the advancement of the drop across
the surface. Refer to the supplemental material for the full movies (Movie 12, Movie 13)
from which these sets of frames were taken.

In figure 10, we show two sequences of images of a sessile drop of 10 000 cSt
silicone oil immersed in 1 cSt silicone oil, viewed from the side while spreading
across a solid substrate. The first set of images, presented on the left, was captured
during an experiment, and the second, on the right, is a reproduction of that
experiment by a numerical simulation. In the images of the numerical simulation,
contours in the concentration of the spreading liquid are plotted over the top of
a coarse grid of velocity vectors in the fluid. In the experimental sequence, the
drop develops an elevated leading edge, which then leads the spreading process as
it propagates radially outward. When looking at the numerical representation, one
sees an elevated leading edge develop and propagate, but at later times, it does
not appear as pronounced as in the experiment. The numerical boundary condition
at the solid surface that prescribes a no-flux condition consequently imposes that
all contours in concentration be orthogonal to the surface at the surface, which
may contribute to this effect. To allow a more direct comparison with regard to the
elevated leading edge, we performed numerical particle tracking in our simulations. In
a flow-tracing experiment, the size of the particles is carefully chosen small enough
to avoid disrupting the flow field, yet large enough to dampen Brownian motion.
In our numerical calculations with particles, we likewise construct the particles to
strictly follow the velocity field without undergoing Brownian motion. Figure 11
shows an image from such a simulation for a sessile drop of corn syrup immersed
in water. The development of a prominent elevated leading edge is observed, similar
to our present experimental observations and previous confocal studies (Walls et al.
2016). This image is a numerical reproduction of the experimental confocal image
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FIGURE 11. (Colour online) Numerical particle tracking of a sessile drop of corn syrup
immersed in water spreading across a solid substrate. The black circles indicate particles
that travel along fluid streamlines without diffusing. Blue arrows are aligned on a coarse
grid that indicate the local velocity vectors. The grey line at the bottom of the image
indicates the solid substrate. Comparison of the numerical result to that of the confocal
experiment displayed in figure 9(d) shows agreement.

presented in figure 9(d). The tips of the leading edges, both experimental and
numerical, are elevated approximately 30 µm above the solid substrate. Performing
numerical particle tracking with simulations for other pairs of liquids shows similar
correspondence to their experimental counterparts.

Further, the numerical simulations enabled us to vary independently and systemat-
ically several parameters – viscosity, density, diffusion coefficient and their dependence
on concentration as well as the initial macroscopic contact angle – which was limited
in our physical experiments due to inherent material properties. First, we consider two
spreading liquids, differing only in viscosity, immersed in the same ambient liquid.
The calculated leading-edge radii for the spreading liquids asymptote to the same
t1/2 power law, at long times and at the same time. The two calculated leading-edge
radii deviate only at short times, as the lower-viscosity spreading liquid deforms
initially as a whole to increase its radius. However, at long times, the leading-edge
radii overlap without any applied scaling. Second, we compare two calculations
where only the initial macroscopic contact angle of the sessile drop differs. The drop
with the relatively higher contact angle has a smaller initial radius, but in time its
leading-edge radius grows to match the behaviour of the drop with a relatively lower
contact angle without any need for additional scaling. Third, we take two sessile
drops, differing only in their initial volume. Only the leading-edge radii, and not
time, needs to be scaled; by using the cube root of each initial volume to scale
the data, the leading-edge radii collapse onto one another. The relationship between
viscosity and concentration also influences the growth of the leading-edge radius in
time, notably in the transition to following a power law of t1/2. The leading-edge
radius of a spreading fluid that more drastically reduces in viscosity upon dilution
will asymptote to the power law of t1/2 more rapidly, as a fluid of lower viscosity
flows more readily than one of comparably higher viscosity. Each of these numerical
outcomes is supported by our experimental findings.

Figure 12(a) shows a plot of the leading-edge radius, rLE, determined both
experimentally and numerically, as a function of time for several liquid pairs on
the four solid substrates. The experimental results are indicated with symbols and
numerical results are indicated with solid lines. The variation in the initial radii of the
sessile drops is largely dependent upon the contact angle that each spreading liquid
forms on the substrates in air; a less significant influence on the initial radius is the
slight variation in volume between experiments. As noted in our prior study, each
liquid pairing approaches a similar power law in time at some point in the spreading
process. A dashed black reference line is plotted alongside the data representing a
power law of t1/2, which is indicative of a diffusive process. Within a particular liquid
pair, the modification of the substrate is inconsequential to the onset of the power-law
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FIGURE 12. Plots of the leading-edge radius, determined both experimentally and
numerically, as a function of time for a selection of the experimental liquid pairs on the
four solid substrates. (a) Unscaled measurements and calculations. (b) The leading-edge
radial data are scaled by the prefactor in (4.3), (1ρgQ3

d/3µA)
1/8, with time left unscaled,

where 1ρ is the difference in density between the spreading and ambient liquids, g
is acceleration due to gravity, Qd is the constant flow rate generated by diffusion of
the spreading liquid and µA is the viscosity of the ambient liquid. Individual symbols
are experimental measurements; solid lines are numerical calculations; the dashed black
line in each plot represents a square root power law, which is a time dependence
indicative of a diffusive process. Symbol colour and shape are coded for the liquid pair
and solid substrate, respectively. Symbol and dashed line colours light blue, black, light
green, mid green, dark green, light purple, mid purple, dark purple indicate the liquid
pairs are glycerol–water, corn syrup–water, and 1000–1 cSt, 1000–5 cSt, 1000–10 cSt,
10 000–1 cSt, 10 000–5 cSt and 10 000–10 cSt silicone oils, respectively. Symbol shapes
u,f,q andp indicate the surfaces are hydrophilic, hydrophobic, oleophobic and Teflon,
respectively.

growth of the leading-edge radius. Yet, across the different liquid pairs on the same
substrate, the time to achieve this power-law growth varies significantly, even between
liquid pairs that have ambient and spreading liquids of similar viscosity, and similar
mutual diffusion coefficients, such as corn syrup in water and 10 000 cSt silicone
oil in 1 cSt silicone oil. Here, the relationship between viscosity and concentration
within the miscible pair is critical. The viscosity of glycerol and corn syrup diminishes
exponentially when diluted with water, whereas the viscosities of silicone oils diluted
in silicone oils of lower viscosity decrease more modestly, following a fifth-order
polynomial, as shown in figure 1. A spreading silicone oil must dilute itself to a
greater extent than glycerol or corn syrup within the diffuse layer in order to attain a
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viscosity conducive to flow due to the action of buoyancy forces. Thus, the thickness
of the diffuse layer and the time required to reach it increase, which delays the
development and propagation of the elevated leading edge for a spreading silicone
oil. Examining the behaviour of the leading-edge radius of liquid pairs grouped by
the functional form of viscosity, it is evident that increasing the viscosity of either
the spreading or ambient liquid delays the onset of the power-law growth of the
leading-edge radius. Numerical calculations closely follow the experimental behaviour
for each liquid pair throughout the spreading process, from the time to develop the
elevated leading edge to its propagation following a square root power law.

If we scale the data for the leading-edge radii presented in figure 12(a) by a
prefactor of the form of that developed by Huppert (1982), shown in (1.2), the plot
presented in figure 12(b) is obtained. When scaling the vertical axis accordingly, the
experimental data and numerical calculations largely overlap to reveal a power-law
response of the leading-edge radius at long times. This grouping indicates that the
leading edge propagates by the diffusion of momentum radially outward from the
draining boundary layer as it reaches the base of the drop. The deviation from a single
response at shorter times is not unanticipated, as several factors collude to prevent
universal behaviour across all time. At time zero, the radius of the leading edge is
defined by the contact angle of the sessile droplet. As the drop proceeds to spread,
it does so by deforming as a whole, or diffusing across the liquid–liquid interface to
form a diffuse layer that can then drain. The leading edge grows as momentum from
the draining of the materially diffuse layer along the liquid–liquid interface begins
to diffuse radially outward; thus, the leading-edge radii grow following a square
root power law in time. Through this progression, the leading-edge radius does not
retain the memory of the droplet’s initial state, as evidenced by the grouping of
measurements from experiments where the sole difference is initial contact angle
without requiring any scaling operation. Additionally, this transition is influenced by
the intrinsic difference in the functional form of viscosity with respect to concentration
for the various liquid pairs. As seen in figure 1, these various forms cannot be
grouped to a single response by a scaling analysis, which is evident at short times in
figure 12(b).

The scaling used in figure 12(b) is of the same form as Huppert (1982), however,
the constant flux Q is an independent parameter prescribed in the experiments of
Huppert (1982) as well as Didden & Maxworthy (1982). The material flux into the
elevated leading edge of our experiments arises from mass diffusion and subsequent
drainage of material from the sessile drop, effectively producing a constant flux from
a fixed volume. Thus, the elevated leading edge of our experiments is a gravity current
by different means in the sense of Didden & Maxworthy (1982) and Huppert (1982).
In the context of our experiments, the constant flux is determined by the interfacial
area, mutual diffusivity and thickness of the diffuse layer between the two miscible
liquids. This flow rate, Qd, can be determined through the diffusive flux that emerges
between the sessile drop and its miscible surrounding like

Qd =
1
ρA
· As ·DLA∇c∼

R2
oDLA

ρAhLE
, (4.2)

where As is the interfacial area between the sessile and ambient liquids, Ro is the
initial radius of the sessile drop and hLE is the thickness of the elevated leading edge.
We approximate the interfacial area by squaring the initial radius of the sessile drop.
The gradient in concentration is approximated with the inverse of the thickness of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

53
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.535


The shape evolution of liquid droplets in miscible environments 447

the leading edge, as the difference in concentration between the two pure liquids is
unity and the thickness of the leading edge is indicative of the thickness of the diffuse
layer, as this layer drains along the sessile liquid–ambient liquid interface to form the
leading edge. Thus, combining the estimation of Qd with the prior analysis of Huppert
(1982), the analogous relationship between the leading-edge radius of a sessile drop
in a miscible environment and time is

rLE ∼

(
1ρgQ3

d

3µA

)1/8

t1/2. (4.3)

This prefactor is used to scale the radial data in figure 12(b). Here, note that we use
the viscosity of the ambient liquid to represent the viscosity of the material in the
leading edge, as it contains liquid from the sessile drop that is significantly diluted in
the ambient liquid.

The diffusion coefficients between glycerol and water, corn syrup and water,
1 cSt and 1000 cSt silicone oil, 5 cSt and 1000 cSt silicone oil and 10 cSt and
1000 cSt used to scale the respective data were taken from the literature (Glycerine
Producers’ Association 1963; Rashidnia & Balasubramaniam 2002; Ray et al. 2007).
The diffusion coefficient between 1 cSt and 10 000 cSt silicone oil employed was
determined from our pendant drop experiments as previously described in § 4.1.
Diffusion coefficients between 5 cSt and 10 000 cSt silicone oils, and 10 cSt and
10 000 cSt silicone oils were not immediately available in the literature. However,
the measurements conducted by Rashidnia & Balasubramaniam (2002) for the series
of silicone oil pairs of 1 cSt, 5 cSt or 10 cSt silicone oil with 1000 cSt silicone
oil show a linear proportionality between the measured diffusion coefficient and the
lesser viscosity in the pair. Using this proportionality along with the knowledge of the
diffusion coefficient between 1 cSt and 10 000 cSt silicone oils provides an estimate
for the two remaining silicone oil pairs. The observed collapse of the leading-edge
radii between the different ambient silicone oils further supports the relationship.

We are restricted from carrying this scaling analysis further for the remaining
experimental liquid pairs, as their mutual diffusion coefficients, or points of reference,
are not reported in the literature. However, we expect the proposed scaling to hold for
all of our experimental findings, as the trends described above were evident across
all experiments.

The dynamics of the contact line is highly dependent on the relative values of the
two surface energies existing between (i) the solid substrate–spreading liquid and (ii)
solid substrate–ambient liquid phases, as the two liquids compete to wet the solid
substrate in order to minimize the total energy of the system, as we stated in our prior
work (Walls et al. 2016). In that study, the contact line could not be located with
sufficient precision after a short time for experiments with silicone oils due to very
small differences in refractive indices of the liquid pairs. However, for other liquid
pairs, the contact line never spread exceeding a power law of t1/8, which represents
the growth in the radius of a sessile drop with a finite initial contact angle, spreading
due to gravity in air across a surface on which it has an equilibrium contact angle of
zero. Limited information regarding surface energies arising at liquid–solid interfaces
is available in the literature for materials that are not in phase equilibrium, and our
numerical calculations do not explicitly consider these surface energies. However,
a comparison between the experimental observations and numerical calculations is
possible for two of the liquid pairs (corn syrup in water and glycerol in water) on a
hydrophobic substrate, which most closely resembles the condition of a sessile liquid

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

53
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.535


448 D. J. Walls, E. Meiburg and G. G. Fuller
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FIGURE 13. Plots of the contact-line radius, determined both experimentally and
numerically, as a function of time for sessile droplets immersed in water and spreading
across a hydrophobic glass surface. The contact-line radial data are scaled by the initial
radius of the droplet and time is left unscaled. Individual symbols are experimental
measurements; solid lines are numerical calculations; the dashed black line represents a
power law of t1/8. The numerical results are obtained from the motion of a contour in
concentration of the spreading liquid of 40 %. Colour indicates the spreading liquid, with
light blue as glycerol and black as corn syrup.

immersed in water and spreading to an infinitesimally thin film. Figure 13 shows a
plot of the contact-line radius, rCL, determined both experimentally and numerically,
as a function of time for these two liquid pairs. The experimental and numerical
results are indicated with symbols and solid lines, respectively. The radial data are
scaled by the initial radii of the sessile drops and time is left unscaled. A dashed
black reference line is plotted alongside the data representing the power law of t1/8.
The numerical contact-line radius is obtained by tracking the motion of the contour
in concentration of the spreading liquid of 40 % at the solid surface. The close
correspondence of the experimental data and numerical calculations for these liquid
pairs indicates that our numerical description is also able to capture the dynamics of
the contact line for certain surfaces.

5. Conclusions
Pendant and sessile drops in miscible environments lead to distinctly different

outcomes than those present in immiscible environments. The interfacial tension
between the two initially distinct, miscible liquids is very small, and diminishes in
time as the two liquids diffuse across their mutual boundary. Gravitational forces
tend to be much larger, which then dominate the shape evolution of the droplets in
conjunction with mass diffusion. As diffusion proceeds, a materially diffuse layer
evolves at the liquid–liquid interface, across which the density and viscosity vary
between those of the pure liquids. Whereas density responds approximately linearly
with respect to concentration, the relationship between viscosity and concentration is
typically nonlinear. As a result, the diffuse layer largely retains the density of the
pendant or sessile liquid while greatly reducing in viscosity and, therefore, decreasing
its resistance to flow. At some critical thickness of the diffuse layer, buoyancy forces
lead to free convection that causes the diffuse layer to drain along the liquid–liquid
interface, and into the thin strand of a pendant drop or elevated leading edge of a
sessile drop. This draining flow along the liquid–liquid interface is clearly observed
in the PTV experiments for both types of drops. As the viscosity of the liquid
comprising the drop decreases, the resistance of the liquid to deforming as a single
body decreases, with this deformation occurring on a time scale approaching that of
the draining diffuse layer. However, it was found that within each type of drop, a
single approach yields a universal response for our experimental measurements and
numerical calculations irrespective of viscosity. The procedure for establishing the
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initial conditions and the liquids studied were chosen in order to establish an initial
condition with as little induced convection and deformation of the drops as possible.

As the draining flow in the experiments with pendant drops proceeds, the body
of the drop descends and elongates more slowly. The growth of the diffuse layer
and its subsequent draining is seen in the measurements of volume of the pendant
drops in time, as they initially swell to a maximum volume before decreasing. We
found that the volume decays in time exponentially after reaching a maximum,
following a single response obtained by scaling the volume by its maximum, Vmax,
and time by the characteristic diffusion time tc,pendant = (Vmax/Amax)

2/4DLA. Plotting
measured exponential decay times, τd, against (Vmax/Amax)

2 of experiments within a
particular liquid pair yields a straight line with the mutual diffusion coefficient DLA
as its slope, offering further support for the appropriateness of this scaling and the
exponential character of the volume. Numerical simulations, based on a simplified
set of governing equations that assumed a divergence-free velocity field, Stokes flow
and captured the concentration field using a convection–diffusion equation, showed
qualitative and quantitative agreement with our experiments. The assumptions in
deriving the governing equations were utilized by previous researchers and were
determined to be acceptable both by comparison to experiments, and in a scaling
analysis between the magnitudes of viscous stresses present to other unaccounted
stresses that could arise due to the non-zero divergence or differences in chemical
potential.

The range of viscosities studied was broader for sessile liquids, which allowed some
spreading liquids to deform as a whole on time scales comparable to the draining of
a diffuse boundary layer. However, as we found previously, the leading-edge radius
grows following a power law of t1/2 at long times, suggesting that a single effect
dominates the propagation of the leading edge eventually, regardless of viscosity,
density or initial volume. Adapting the numerical analysis developed for pendant
drops to our continuing study of sessile drops in miscible environments allowed us
to change several parameters of the miscible system independently and systematically,
which was limited experimentally due to inherent material properties. Namely, by
varying the initial contact angle and the viscosity, as well as its dependence on
concentration, we gained insight into the physical mechanisms driving spreading,
enabling us to interpret our experimental results more deftly. Scaling the data of
the leading-edge radii by the prefactor in (4.3), (1ρgQ3

d/3µA)
1/8, and leaving time

unscaled, following the treatment of Huppert (1982), was effective in obtaining a
single response at long times from the experimental results and numerical calculations
for which diffusion coefficients are available in the literature or through this study.
Further, the universal collapse of the data following this analysis indicates that the
diffusive nature of the spreading of the elevated leading edge is due to the diffusion
of momentum. At short times, the leading-edge radius deviates from a single response,
as its growth transitions from its initial value, defined by the initial contact angle of
the sessile drop, and progresses towards its growth as a diffusive power law. In the
transition, the leading-edge radius does not retain the memory of the droplet’s initial
state, as evidenced by the grouping of experimental measurements and numerical
calculations without any scaling operation where the sole difference is the initial
contact angle. This transition is influenced by the intrinsic difference in the functional
form of viscosity with respect to concentration for the various liquid pairs as well.
Additionally, the numerical model is able to capture the dynamics of the contact line
for certain surfaces.

Combining the experimental and numerical analyses with pendant and sessile drops
present in miscible systems into a single study allowed for the inquiry into the effect
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of directionality of buoyancy forces relative to the drop on the behaviour of these
two configurations. Additionally, the robustness of our numerical procedure could
be tested on multiple configurations. We reiterate, however, that the formulation of
the governing equations does not consider surface tension, Korteweg stresses and
other stresses arising in miscible systems noted by Joseph (1990) and Joseph &
Renardy (2013). As reported by Chen & Meiburg (1996), when Pe� 1 and At→ 1,
the viscous stresses dominate, which matches the regime of our experiments here.
Although surface tension is not a dominant factor in the observations and calculations
presented here for pendant and sessile drops in miscible liquids, we do not impugn its
importance across all miscible configurations. Chen & Meiburg (1996) and Petitjeans
& Maxworthy (1996) note that these other stresses become influential as Pe decreases
and At increases. For example, Kojima et al. (1984) report in their experimental study
with miscible liquids that a non-zero surface tension was necessary to match their
analytical calculations and experimental observations.
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