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Abstract. In this paper we show that the quotient Aubry set, associated to a sufficiently
smooth mechanical or symmetrical Lagrangian, is totally disconnected (i.e. every
connected component consists of a single point). This result is optimal, in the sense of
the regularity of the Lagrangian, as Mather’s counterexamples (J. N. Mather. Examples
of Aubry sets. Ergod. Th. & Dynam. Sys. 24(5) (2004), 1667–1723) show. Moreover,
we discuss the relation between this problem and a Morse–Sard-type property for (the
difference of) critical subsolutions of Hamilton–Jacobi equations.

1. Introduction
In Mather’s studies of the dynamics of Lagrangian systems and the existence of Arnold
diffusion, it turns out that understanding certain aspects of the Aubry set and, in particular,
what is called the quotient Aubry set, may help in the construction of orbits with interesting
behavior.

While in the case of twist maps (see, for instance, [2, 11] and references therein) there
is a detailed structure theory for these sets, in more degrees of freedom only a few results
are known. In particular, it seems to be useful to know whether the quotient Aubry set is
‘small’ in some sense of dimension (e.g., vanishing topological or box dimension).

In [16] Mather showed that if the state space has dimension ≤ 2 (in the non-autonomous
case) or the Lagrangian is the kinetic energy associated to a Riemannian metric and the
state space has dimension ≤ 3, then the quotient Aubry set is totally disconnected, i.e.
every connected component consists of a single point (in a compact metric space this is
equivalent to vanishing topological dimension). In the autonomous case, with dim M ≤ 3,
the same argument shows that this quotient is totally disconnected as long as the Aubry set
does not intersect the zero section of TM (this is the case when the cohomology class is
large enough in norm).

What happens in higher dimensions? Unfortunately, this is generally not true. In fact,
Burago et al in [5] provided an example that does not satisfy this property (they did
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268 A. Sorrentino

not discuss it in their work, but it follows from the results therein). More strikingly,
Mather provided in [17] several examples of quotient Aubry sets that are not only non-
totally-disconnected, but even isometric to closed intervals. All these examples come from
mechanical Lagrangians on TTd (i.e. the sum of the kinetic energy and a potential) with
d ≥ 3. In particular, for every ε > 0, he provided a potential U ∈ C2d−3,1−ε(Td), whose
associated quotient Aubry set is isometric to an interval. As the author himself noticed, it
is not possible to improve the differentiability of these examples, due to the construction
carried out.

The main aim of this article is to show that the counterexamples provided by Mather are
optimal, in the sense that for more regular mechanical Lagrangians the associated quotient
Aubry sets—corresponding to the zero cohomology class—are totally disconnected.

In particular, our result will also apply to slightly more general Lagrangians, satisfying
certain conditions on the zero section; in this case, we shall be able to show that the quotient
Aubry set, corresponding to a well-specified cohomology class, is totally disconnected.

We shall also outline a possible approach to generalize this result, pointing out how it is
related to a Morse–Sard-type problem; from this and Sard’s lemma, one can easily recover
Mather’s result in dimension d = 2 (autonomous case).

It is important to point out that most of this approach has been inspired by Albert
Fathi’s talk [8], in which he used this relation with Sard’s lemma to show a simpler way
to construct mechanical Lagrangians on TTN , whose quotient Aubry sets are Lipschitz
equivalent to any given doubling metric space or, equivalently, to any space with finite
Assouad dimension (see [12] for a similar construction). In this case we do not get a neat
relation between their regularity and N , as in Mather’s work, but we can only observe that
N goes to infinity as r increases. It would be interesting to study in depth the relation
between the dimension of the quotient Aubry set, the regularity of the Lagrangian and the
dimension of the state space. Our result may be seen as a first step in this direction.

Post Scriptum. Just before submitting this paper, we learnt that analogous results had been
proven independently by Albert Fathi, Alessio Figalli and Ludovic Rifford, using a similar
approach (to be published).

Moreover, in ‘A generic property of families of Lagrangian systems’ (to appear in
Annals of Mathematics), Patrick Bernard and Gonzalo Contreras managed to show that
generically, in Mañé’s sense, there are at most 1 + dim H1(M; R) ergodic minimizing
measures, for each cohomology class c ∈ H1(M; R). As a corollary of this striking result,
one gets that generically the quotient Aubry set is finite for each cohomology class and it
consists of at most 1 + dim H1(M; R) elements.

2. The Aubry set and the quotient Aubry set
Let M be a compact and connected smooth manifold without boundary. Denote by TM
its tangent bundle and T∗M the cotangent one. A point of TM will be denoted by (x, v),
where x ∈ M and v ∈ Tx M , and a point of T∗M by (x, p), where p ∈ T∗

x M is a linear form
on the vector space Tx M . Let us fix a Riemannian metric g on it and denote with d the
induced metric on M ; let ‖ · ‖x be the norm induced by g on Tx M ; we shall use the same
notation for the norm induced on T∗

x M .

https://doi.org/10.1017/S0143385707000351 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707000351


On the total disconnectedness of the quotient Aubry set 269

Definition. A function L : TM −→ R is called a Tonelli Lagrangian if:
(i) L ∈ C2(TM);
(ii) L is strictly convex in the fibers, i.e. the second partial vertical derivative

∂2L(x, v)/∂v2 is positive definite, as a quadratic form, for any (x, v) ∈ TM ;
(iii) L is superlinear in each fiber, i.e.

lim
‖v‖x →+∞

L(x, v)

‖v‖x
= +∞

(this condition is independent of the choice of the Riemannian metric).

Given a Lagrangian, we can define the associated Hamiltonian as a function on the
cotangent bundle:

H : T∗M −→ R
(x, p) 7−→ sup

v∈Tx M
{〈p, v〉x − L(x, v)}

where 〈 ·, · 〉x represents the canonical pairing between the tangent and cotangent space.
If L is a Tonelli Lagrangian, one can easily prove that H is finite everywhere, C2,

superlinear and strictly convex in the fibers. Moreover, under the above assumptions, one
can define a diffeomorphism between TM and T∗M , called the Legendre transform:

L : TM −→ T∗M

(x, v) 7−→

(
x,

∂L

∂v
(x, v)

)
.

In particular, L is a conjugation between the two flows (namely the Euler–Lagrange and
Hamiltonian flows) and

H ◦ L(x, v) =

〈
∂L

∂v
(x, v), v

〉
x

− L(x, v).

Observe that if η is a 1-form on M , then we can define a function on the tangent space

η̂ : TM −→ R
(x, v) 7−→ 〈η(x), v〉x

and consider a new Tonelli Lagrangian Lη = L − η̂. The associated Hamiltonian will be
Hη(x, p) = H(x, p + η). Moreover, if η is closed, then

∫
L dt and

∫
Lη dt have the same

extremals and therefore the Euler–Lagrange flows on TM associated to L and Lη are the
same.

Although the extremals are the same, this is not generally true for the minimizers.
What one can say is that they stay the same when we change the Lagrangian by an exact
1-form. Thus, for fixed L , the minimizers depend only on the de Rham cohomology class
c = [η] ∈ H1(M; R). From here comes the interest in considering modified Lagrangians,
corresponding to different cohomology classes.

Let us fix η, a smooth (C2 is enough for what follows) 1-form on M , and let c = [η] ∈

H1(M; R) be its cohomology class.
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270 A. Sorrentino

As done by Mather in [15], it is convenient to introduce, for t > 0 and x, y ∈ M , the
following quantity:

hη,t (x, y) = inf
∫ t

0
Lη(γ (s), γ̇ (s)) ds,

where the infimum is taken over all piecewise C1 paths γ : [0, t] −→ M , such that
γ (0) = x and γ (t) = y. We define the Peierls barrier as

hη(x, y) = lim inf
t→+∞

(hη,t (x, y) + α(c)t),

where α : H1(M; R) −→ R is Mather’s α function (see [14]). It can be shown that this
function is convex and that (only for the autonomous case) the lim inf can be replaced by
lim.

Observe that hη does not depend only on the cohomology class c, but also on the choice
of the representant; namely, if η′

= η + d f , then hη′(x, y) = hη(x, y) + f (y) − f (x).

PROPOSITION 1. The values of the map hη are finite. Moreover, the following properties
hold:
(i) hη is Lipschitz;
(ii) for each x ∈ M, hη(x, x) ≥ 0;
(iii) for each x, y, z ∈ M, hη(x, y) ≤ hη(x, z) + hη(z, y);
(iv) for each x, y ∈ M, hη(x, y) + hη(y, x) ≥ 0.

For a proof of the above claims and more, see [7, 9, 15]. Inspired by these properties,
we can define

δc : M × M −→ R
(x, y) 7−→ hη(x, y) + hη(y, x)

(observe that this function does actually depend only on the cohomology class).
This function is positive, symmetric and satisfies the triangle inequality; therefore, it is

a pseudometric on
AL ,c = {x ∈ M : δc(x, x) = 0}.

AL ,c is called the Aubry set (or projected Aubry set) associated to L and c, and δc is
Mather’s pseudometric. In [15], Mather has showed that this is a non-empty compact
subset of M that can be Lipschitzly lifted to a compact invariant subset of TM .

Definition. The quotient Aubry set (ĀL ,c, δ̄c) is the metric space obtained by identifying
two points in AL ,c, if their δc-pseudodistance is zero.

We shall denote an element of this quotient by x̄ = {y ∈AL ,c : δc(x, y) = 0}. These
elements (that are also called c-static classes, see [7]) provide a partition of AL ,c into
compact subsets that can be lifted to invariant subsets of TM . They are really interesting
from a dynamical systems point of view, since they contain the α and ω limit sets of c-
minimizing orbits (see [7, 15] for more details).

For the sake of our proof, it is convenient to adopt Fathi’s weak KAM theory point of
view (we point the reader to [9] for a self-contained presentation).
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Definition. A locally Lipschitz function u : M −→ R is a subsolution of Hη(x, dx u) = k,
with k ∈ R, if Hη(x, dx u) ≤ k for almost every x ∈ M .

This definition makes sense, because, by Rademacher’s theorem, we know that dx u
exists almost everywhere.

It is possible to show that there exists c[Hη] ∈ R, such that Hη(x, dx u) = k admits no
subsolutions for k < c[Hη] and has subsolutions for k ≥ c[Hη]. The constant c[Hη] is
called Mañé’s critical value and coincides with α(c), where c = [η] (see [7]).

Definition. u : M −→ R is a η-critical subsolution, if Hη(x, dx u) ≤ α(c) for almost every
x ∈ M .

Denote by Sη the set of critical subsolutions. This set Sη is non-empty. In fact, Fathi
showed (see [9]) the following proposition.

PROPOSITION 2. If u : M −→ R is a η-critical subsolution, then for every x, y ∈ M,

u(y) − u(x) ≤ hη(x, y).

Moreover, for any x ∈ M, the function hη,x (·) := hη(x, ·) is a η-critical subsolution.

Using this result, he provided a nice representation of hη, in terms of the η-critical
subsolutions.

COROLLARY 1. If x ∈AL ,c and y ∈ M,

hη(x, y) = sup
u∈Sη

(u(y) − u(x)).

This supremum is actually attained.

Proof. It is clear, from the proposition above, that

hη(x, y) ≥ sup
u∈Sη

(u(y) − u(x)).

Let us show the other inequality. In fact, since hη,x is a η-critical subsolution and x ∈AL ,c

(i.e. hη(x, x) = 0), then

hη(x, y) = hη,x (y) − hη,x (x) ≤ sup
u∈Sη

(u(y) − u(x)).

This shows that the supremum is attained. 2

This result can be still improved. Fathi and Siconolfi proved the following in [10].

THEOREM. (Fathi and Siconolfi) For any η-critical subsolution u : M −→ R and for each
ε > 0, there exists a C1 function ũ : M −→ R such that:
(i) ũ(x) = u(x) and Hη(x, dx ũ) = α(c) on AL ,c;
(ii) |ũ(x) − u(x)| < ε and Hη(x, dx ũ) < α(c) on M \AL ,c.
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In particular, this implies that C1 η-critical subsolutions are dense in Sη with the
uniform topology. This result has been recently improved by Bernard (see [4]), showing
that every η-critical subsolution coincides, on the Aubry set, with a C1,1 η-critical
subsolution.

Denote the set of C1 η-critical subsolutions by S1
η and the set of C1,1 η-critical

subsolutions by S1,1
η .

COROLLARY 2. For x, y ∈AL ,c, the following representation holds:

hη(x, y) = sup
u∈S1

η

(u(y) − u(x)) = sup
u∈S1,1

η

(u(y) − u(x)).

Moreover, these suprema are attained.

It turns out to be convenient to characterize the elements of ĀL ,c (i.e. the c-quotient
classes) in terms of η-critical subsolutions.

Let us consider the following set:

Dc = {u − v : u, v ∈ Sη}

(it depends only on the cohomology class c and not on η) and denote by D1
c and D1,1

c the
sets corresponding, respectively, to C1 and C1,1 η-critical subsolutions.

PROPOSITION 3. For x, y ∈AL ,c,

δc(x, y) = sup
w∈Dc

(w(y) − w(x)) = sup
w∈D1

c

(w(y) − w(x))

= sup
w∈D1,1

c

(w(y) − w(x))

and these suprema are attained.

Proof. From the definition of δc(x, y), we immediately get

δc(x, y) = hη(x, y) + hη(y, x)

= sup
u∈Sη

(u(y) − u(x)) + sup
v∈Sη

(v(x) − v(y))

= sup
u,v∈Sη

[(u(y) − v(y)) − (u(x) − v(x))]

= sup
w∈Dc

(w(y) − w(x)).

The other equalities follow from the density results we mentioned above. 2

PROPOSITION 4. If w ∈Dc, then dxw = 0 on AL ,c. Therefore, AL ,c ⊆
⋂

w∈D1,1
c

Crit(w),

where Crit(w) is the set of critical points of w.

Proof. This is an immediate consequence of a result by Fathi (see [9]); namely, if
u, v ∈ Sη, then they are differentiable on AL ,c and dx u = dxv. 2

PROPOSITION 5. If w ∈Dc, then it is constant on any quotient class of ĀL ,c; namely, if
x, y ∈AL ,c and δc(x, y) = 0, then w(x) = w(y).

https://doi.org/10.1017/S0143385707000351 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707000351
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Proof. From the representation formula above, it follows that

0 = δc(x, y) = sup
w̃∈Dc

(w̃(y) − w̃(x)) ≥ w(y) − w(x),

0 = δc(y, x) = sup
w̃∈Dc

(w̃(x) − w̃(y)) ≥ w(x) − w(y). 2

For any w ∈D1
c , let us define the following evaluation function:

ϕw : (ĀL ,c, δ̄c) −→ (R, | · |)

x̄ 7−→ w(x).

• ϕw is well defined, i.e. it does not depend on the element of the class at which w is
evaluated;

• ϕw(ĀL ,c) = w(AL ,c) ⊆ w(Crit(w));
• ϕw is Lipschitz, with Lipschitz constant 1. In fact,

ϕw(x̄) − ϕw(ȳ) = w(x) − w(y) ≤ δc(x, y) = δ̄c(x̄, ȳ),

ϕw(ȳ) − ϕw(x̄) = w(y) − w(x) ≤ δc(y, x) = δ̄c(ȳ, x̄).

Therefore,

|ϕw(x̄) − ϕw(ȳ)| ≤ δ̄c(x̄, ȳ).

As we shall see, these functions play a key role in the proof of our result.

3. The main result
Our main goal is to show that, under suitable hypotheses on L , there is a well-specified
cohomology class cL , for which (ĀL ,cL , δ̄cL ) is totally disconnected, i.e. every connected
component consists of a single point.

Consider L : T M −→ R a Tonelli Lagrangian and the associated Legendre transform

L : TM −→ T∗M

(x, v) 7−→

(
x,

∂L

∂v
(x, v)

)
.

Remember that T∗M , as a cotangent bundle, may be equipped with a canonical
symplectic structure. Namely, if (U, x1, . . . , xd) is a local coordinate chart for M and
(T∗U, x1, . . . , xd , p1, . . . , pd) are the associated cotangent coordinates, one can define
the 2-form

ω =

d∑
i=1

dxi ∧ dpi .

It is easy to show that ω is a symplectic form (i.e. it is non-degenerate and closed). In
particular, one can check that ω is intrinsically defined, by considering the 1-form on T∗U ,

λ =

d∑
i=1

pi dxi ,
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which satisfies ω = −dλ and is coordinate independent; in fact, in terms of the natural
projection

π : T∗M −→ M

(x, p) 7−→ x

the form λ may be equivalently defined pointwise without coordinates by

λ(x,p) = (dπ(x,p))
∗ p ∈ T∗

(x,p)T
∗M.

The 1-form λ is called the Liouville form (or the tautological form).
Consider now the section of T∗M given by

3L = L(M × {0}) =

{(
x,

∂L

∂v
(x, 0)

)
: x ∈ M

}
,

corresponding to the 1-form

ηL(x) =
∂L

∂v
(x, 0) · dx =

d∑
i=1

∂L

∂vi
(x, 0) dxi .

We would like this 1-form to be closed, which is equivalent to asking that 3L

is a Lagrangian submanifold, in order to consider its cohomology class cL = [ηL ] ∈

H1(M; R). Observe that this cohomology class can be defined in a more intrinsic way; in
fact, consider the projection

π|3L : 3L ⊂ T∗M −→ M;

this induces an isomorphism between the cohomology groups H1(M; R) and H1(3L ; R).
The preimage of [λ|3L ] under this isomorphism is called the Liouville class of 3L and one
can easily show that it coincides with cL .

We can define the set

L(M) = {L : TM −→ R : L is a Tonelli Lagrangian and 3L is Lagrangian}.

This set is non-empty and consists of Lagrangians of the form

L(x, v) = f (x) + 〈η(x), v〉x + O(‖v‖
2),

with f ∈ C2(M) and η a C2 closed 1-form on M . In particular, it includes the mechanical
Lagrangians, i.e. Lagrangians of the form

L(x, v) =
1
2‖v‖

2
x + U (x),

namely, the sum of the kinetic energy and a potential U : M −→ R. More generally, it
contains the symmetrical (or reversible) Lagrangians, i.e. Lagrangians L : TM −→ R
such that

L(x, v) = L(x, −v),

for every (x, v) ∈ TM .
In fact, in the above cases, ∂L(x, 0)/∂v ≡ 0; therefore, 3L = M × {0} (the zero section

of the cotangent space), which is clearly Lagrangian, and cL = 0.
We can now state our main result.
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MAIN THEOREM. Let M be a compact connected manifold of dimension d ≥ 1 and let L ∈

L(M) be a Lagrangian such that L(x, 0) ∈ Cr (M), with r ≥ 2d − 2 and ∂L(x, 0)/∂v ∈

C2(M). Then, the quotient Aubry set (ĀL ,cL , δ̄cL ), corresponding to the Liouville class of
3L , is totally disconnected, i.e. every connected component consists of a single point.

This result immediately implies the following corollary.

COROLLARY 3. (Symmetrical Lagrangians) Let M be a compact connected manifold of
dimension d ≥ 1 and let L(x, v) be a symmetrical Tonelli Lagrangian on TM, such that
L(x, 0) ∈ Cr (M), with r ≥ 2d − 2. Then, the quotient Aubry set (ĀL ,0, δ̄0) is totally
disconnected.

More specifically, we have the following.

COROLLARY 4. (Mechanical Lagrangians) Let M be a compact connected manifold of
dimension d ≥ 1 and let L(x, v) =

1
2‖v‖

2
x + U (x) be a mechanical Lagrangian on TM,

such that the potential U ∈ Cr (M), with r ≥ 2d − 2. Then, the quotient Aubry set
(ĀL ,0, δ̄0) is totally disconnected.

Remark. This result is optimal, in the sense of the regularity asked of the potential
U , for ĀL ,0 to be totally disconnected. In fact, Mather provided in [17] examples of
quotient Aubry sets isometric to the unit interval, corresponding to mechanical Lagrangians
L ∈ C2d−3,1−ε(TTd), for any 0 < ε < 1.

Before proving the main theorem, it will be beneficial to show some useful results.

LEMMA 1. Let us consider L ∈ L(M), such that ∂L(x, 0)/∂v ∈ C2(M), and let H be the
associated Hamiltonian.
(1) Every constant function u ≡ constant is a ηL -critical subsolution. In particular, all

ηL -critical subsolutions are such that dx u ≡ 0 on AL ,cL .
(2) For every x ∈ M,

∂ HηL

∂p
(x, 0) =

∂ H

∂p
(x, ηL(x)) = 0.

Proof. (1) The second part follows immediately from the fact that, if u, v ∈ SηL , then they
are differentiable on AL ,cL and dx u = dxv (see [9]).

Let us show that u ≡ constant is a ηL -critical subsolution; namely, that

HηL (x, 0) ≤ α(cL)

for every x ∈ M . It is sufficient to observe the following.
• HηL (x, 0) = −L(x, 0); in fact,

HηL (x, 0) = H(x, ηL(x)) = H

(
x,

∂L

∂v
(x, 0)

)
=

〈
∂L

∂v
(x, 0), 0

〉
x

− L(x, 0)

= −L(x, 0).
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• Let v be dominated by LηL + α(cL) (see [9], for the existence of such functions),
i.e. for each continuous piecewise C1 curve γ : [a, b] −→ M we have

v(γ (b)) − v(γ (a)) ≤

∫ b

a
LηL (γ (t), γ̇ (t)) dt + α(cL)(b − a).

Then, considering the constant path γ (t) ≡ x , one can easily deduce that

α(cL) ≥ sup
x∈M

(−LηL (x, 0)) = − inf
x∈M

LηL (x, 0);

therefore,
α(cL) ≥ −LηL (x, 0) = −L(x, 0) = HηL (x, 0)

for every x ∈ M .
(2) The inverse of the Legendre transform can be written in coordinates,

L−1
: T∗M −→ TM

(x, p) 7−→

(
x,

∂ H

∂p
(x, p)

)
.

Therefore,

(x, 0) = L−1
(
L(x, 0)

)
= L−1

(
x,

∂L

∂v
(x, 0)

)
= L−1((x, ηL(x))) =

(
x,

∂ H

∂p
(x, ηL(x)

)
. 2

In particular, observing that for any ηL -critical subsolution u, HηL (x, dx u) = α(cL) on
AL ,cL , we can easily deduce from the above that

AL ,cL ⊆ {L(x, 0) = −α(cL)} = {H(x, ηL(x)) = α(cL)}

and
α(cL) = sup

x∈M
(−L(x, 0)) = − inf

x∈M
L(x, 0) =: e0,

as denoted in [6, 13].
Let us observe that in general

e0 ≤ min
c∈H1(M;R)

α(c) = −β(0),

where β : H1(M; R) −→ R is Mather’s β-function, i.e. the convex conjugate of α (in
[6, 13], the right-hand-side quantity is referred to as strict critical value). Therefore, we are
considering an extremal case in which e0 = α(cL) = min α(c); it follows also quite easily
that cL ∈ ∂β(0), namely, it is a subgradient of β at zero.

A crucial step in the proof of our result will be the following lemma, which can be read
as a sort of relaxed version of Sard’s lemma (the proof will be mainly based on the one
in [1]).

MAIN LEMMA. Let U ∈ Cr (M), with r ≥ 2d − 2, be a non-negative function, vanishing
somewhere, and denote A= {U (x) = 0}. If u : M −→ R is C1 and satisfies ‖dx u‖

2
x ≤

U (x) in an open neighborhood of A, then |u(A)| = 0 (where | · | denotes the Lebesgue
measure in R).
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See §4 for its proof.
In particular, it implies this essential property.

COROLLARY 5. Under the hypotheses of the main theorem, if u ∈ SηL , then

|u(AL ,cL )| = 0

(where | · | denotes the Lebesgue measure in R).

Proof of Corollary 5. First of all, we can assume that u ∈ S1
ηL

, because of Fathi and
Siconolfi’s theorem. By Taylor’s formula, it follows that there exists an open neighborhood
W of AL ,cL , such that for all x ∈ W ,

α(cL) ≥ HηL (x, dx u) = HηL (x, 0) +
∂ HηL

∂p
(x, 0) · dx u

+

∫ 1

0
(1 − t)

∂2 HηL

∂p2 (x, t dx u)(dx u)2 dt.

Let us observe the following.
• From the previous lemma, one has that

∂ HηL

∂p
(x, 0) = 0,

for every x ∈ M .
• From the strict convexity hypothesis, it follows that there exists γ > 0 such that

∂2 H

∂p2 (x, t dx u)(dx u)2
≥ γ ‖dx u‖

2
x

for all x ∈ M and 0 ≤ t ≤ 1.
Therefore, for x ∈ W ,

α(cL) ≥ HηL (x, dx u) ≥ HηL (x, 0) +
γ

2
‖dx u‖

2
x

= −L(x, 0) +
γ

2
‖dx u‖

2
x .

The assertion will follow from the previous lemma, choosing

U (x) =
2
γ

(α(cL) + L(x, 0)).

In fact, U ∈ Cr , with r ≥ 2d − 2, by hypothesis; moreover, it satisfies all other conditions,
because

α(cL) = − inf
x∈M

L(x, 0)

and
AL ,cL ⊆ {x ∈ W : L(x, 0) = −α(cL)} = {x ∈ W : U (x) = 0} =:A.

So, the previous lemma allows us to conclude that

|u(AL ,cL )| = 0. 2
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Proof of Main theorem. Suppose by contradiction that ĀL ,cL is not totally disconnected;
therefore, it must contain a connected component 0 with at least two points x̄ and ȳ.
In particular,

δ̄c(x̄, ȳ) = hηL (x, y) + hηL (y, x) > 0,

for some x ∈ x̄ and y ∈ ȳ; therefore, we have hηL (x, y) > 0 or hηL (y, x) > 0. From
the representation formula for hηL , it follows that there exists u ∈ S1,1

ηL
⊆D1,1

cL (since
u = u − 0, and v = 0 is a ηL -critical subsolution), such that |u(y) − u(x)| > 0.

This implies that the set ϕu(0) is a connected set in R with at least two different points,
and hence it is a non-degenerate interval and its Lebesgue measure is positive. But

ϕu(0) ⊆ ϕu(ĀL ,cL ) = u(AL ,cL )

and consequently
0 < |ϕu(0)| ≤ |u(AL ,cL )|.

This contradicts the previous corollary. 2

In particular, this proof suggests a possible approach to generalize the above result to
more general Lagrangians and other cohomology classes.

Definition. A C1 function f : M −→ R is of Morse–Sard type if | f (Crit( f ))| = 0, where
Crit( f ) is the set of critical points of f and | · | denotes the Lebesgue measure in R.

PROPOSITION 6. Let M be a compact connected manifold of dimension d ≥ 1, L a Tonelli
Lagrangian and c ∈ H1(M; R). If each w ∈D1,1

c is of Morse–Sard type, then the quotient
Aubry set (ĀL ,c, δ̄c) is totally disconnected.

This proposition and Sard’s lemma (see [3]) easily imply Mather’s result in dimension
d ≤ 2 (autonomous case); it suffices to note that Sard’s lemma (in dimension d) holds for
Cd−1,1 functions.

COROLLARY 6. Let M be a compact connected manifold of dimension d ≤ 2. For any
L Tonelli Lagrangian and c ∈ H1(M; R), the quotient Aubry set (ĀL ,c, δ̄c) is totally
disconnected.

Remark. The main problem becomes now to understand under which conditions on L and
c these differences of subsolutions are of Morse–Sard type. Unfortunately, one cannot use
the classical Sard’s lemma, due to a lack of regularity of critical subsolutions: in general,
they will be at most C1,1. In fact, although it is always possible to smooth them up out
of the Aubry set and obtain functions in C∞(M \AL ,c) ∩ C1,1(M), the presence of the
Aubry set (where the value of their differential is prescribed) represents an obstacle that
it is impossible to overcome. It is quite easy to construct examples that do not admit C2

critical subsolutions: just consider a case in whichAL ,c is all the manifold and it is not a C1

graph. For instance, this is the case if M = T and H(x, p) =
1
2 (p + (2/π))2

− sin2(πx);
in fact, there is only one critical subsolution (up to constants) that turns out to be a solution
(AL ,2/π = T), and it is given by a primitive of sin(πx) − (2/π); this is clearly C1,1 but
not C2.
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On the other hand, the above results suggest that, in order to prove the Morse–Sard
property, one could try to control the complexity of these functions (à la Yomdin), using
the rigid structure provided by the Hamilton–Jacobi equation and the smoothness of the
Hamiltonian, rather than the regularity of the subsolutions. There are several difficulties in
pursuing this approach in the general case, mostly related to the nature of the Aubry set.
We hope to understand these ‘speculations’ in more depth in the future.

4. Proof of the Main Lemma

Definition. Consider a function f ∈ Cr (Rd). We say that f is s-flat at x0 ∈ Rd (with
s ≤ r ), if all its derivatives, up to the order s, vanish at x0.

The proof of the Main Lemma is based on the following version of Kneser–Glaeser’s
Rough composition theorem (see [1, 18]).

PROPOSITION 7. Let V, W ⊂ Rd be open sets and A ⊂ V , A∗
⊂ W closed sets. Consider

U ∈ Cr (V ), with r ≥ 2, a non-negative function that is s-flat on A ⊂ {U (x) = 0}, with
s ≤ r − 1, and g : W −→ V a Cr−s function, with g(A∗) ⊂ A.

Then, for every open pre-compact set W1 ⊃ A∗ properly contained in W , there exists

F : Rd
−→ R

satisfying the following properties:
(i) F ∈ Cr−1(Rd);
(ii) F ≥ 0;
(iii) F(x) = U (g(x)) = 0 on A∗;
(iv) F is s-flat on A∗;
(v) {F(x) = 0} ∩ W1 = A∗;
(vi) there exists a constant K > 0, such that U (g(x)) ≤ K F(x) on W1.

See §5 for its proof.
To prove the Main Lemma, it will be enough to show that, for every x0 ∈ M , there

exists a neighborhood � such that it holds. For such a local result, we can assume that
M = U is an open subset of Rd , with x0 ∈ U . In the following, we shall identify T∗U with
U × Rd and, for x ∈ U , we identify T∗

xU = {x} × Rd . We equip U × Rd with the natural
coordinates (x1, . . . , xd , p1, . . . , pd).

Before proceeding with the proof, let us point out that it is locally possible to replace
the norm obtained by the Riemannian metric by a constant norm on Rd .

LEMMA 2. For each 0 < α < 1 and x0 ∈ M, there exists an open neighborhood � of x0,
with � ⊂ U and such that

(1 − α)‖p‖x0 ≤ ‖p‖x ≤ (1 + α)‖p‖x0 ,

for every p ∈ T∗
xU ∼= Rd and each x ∈ �.

Proof. By continuity of the Riemannian metric, the norm ‖p‖x tends uniformly to 1 on
{p : ‖p‖x0 = 1}, as x tends to x0. Therefore, for x near to x0 and every p ∈ Rd

\ {0},

https://doi.org/10.1017/S0143385707000351 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707000351


280 A. Sorrentino

we have

(1 − α) ≤

∥∥∥∥ p

‖p‖x0

∥∥∥∥
x

≤ (1 + α). 2

We can now prove the main result of this section.

Proof of the Main Lemma. By choosing local charts and by Lemma 2, we can assume that
U ∈ Cr (�), with � an open set in Rd ,A= {x ∈ � : U (x) = 0} and u : � −→ R such that
‖dx u‖

2
≤ βU (x) in �, where β is a positive constant.

Define, for 1 ≤ s ≤ r ,

Bs = {x ∈A : U is s-flat at x}

and observe that

A= B1 := {x ∈A : DU (x) = 0}.

We shall prove the lemma by induction on the dimension d. Let us start with the
following claim.

CLAIM. If s ≥ 2d − 2, then |u(Bs)| = 0.

Proof. Let C ⊂ � be a closed cube with edges parallel to the coordinate axes. We shall
show that |u(Bs ∩ C)| = 0. Since Bs can be covered by countably many such cubes, this
will prove that |u(Bs)| = 0.

Let us start observing that, by Taylor’s theorem, for any x ∈ Bs ∩ C and y ∈ C we have

U (y) = Rs(x; y),

where Rs(x; y) is Taylor’s remainder. Therefore, for any y ∈ C ,

U (y) = o(‖y − x‖
s).

Let λ be the length of the edge of C . Choose an integer N > 0 and subdivide C into
N d cubes Ci with edges λ/N , and order them so that, for 1 ≤ i ≤ N0 ≤ N d , one has
Ci ∩ Bs 6= ∅. Hence,

Bs ∩ C =

N0⋃
i=1

Bs ∩ Ci .

Observe that, for every ε > 0, there exists ν0 = ν0(ε) such that, if N ≥ ν0, x ∈ Bs ∩ Ci and
y ∈ Ci , for some 0 ≤ i ≤ N0, then

U (y) ≤
ε2

4β(dλ2)d
‖y − x‖

s .

Fix ε > 0. Choose xi ∈ Bs ∩ Ci and call yi = u(xi ). Define, for N ≥ ν0, the following
intervals in R:

Ei =

[
yi −

ε

2N d , yi +
ε

2N d

]
.

Let us show that, if N is sufficiently large, then u(Bs ∩ C) ⊂
⋃N0

i=1 Ei .
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In fact, if x ∈ Bs ∩ C , then there exists 1 ≤ i ≤ N0, such that x ∈ Bs ∩ Ci . Therefore,

|u(x) − yi | = |u(x) − u(xi )|

= ‖dx u(x̃)‖ · ‖x − xi‖

≤

√
βU (x̃)‖x − xi‖

≤

√
β

ε2

4β(dλ2)d
‖x̃ − xi‖

s/2
‖x − xi‖

≤
ε

2(dλ2)d/2 ‖x − xi‖
(s+2)/2

≤
ε

2(dλ2)d/2

(
√

d
λ

N

)(s+2)/2

,

where x̃ is a point in the segment joining x and xi . Since by hypothesis s ≥ 2d − 2, then
(s + 2)/2 ≥ d . Hence, assuming that N > max{λ

√
d, ν0}, one gets

|u(x) − yi | ≤
ε

2N d

and one can deduce the inclusion above.
To prove the claim, it is now enough to observe that

|u(Bs ∩ C)| ≤

∣∣∣∣ N0⋃
i=1

Ei

∣∣∣∣ ≤

N0∑
i=1

|Ei |

≤ εN0
1

N d

≤ εN d 1
N d

= ε.

From the arbitrariness of ε, the assertion follows easily. 2

This claim immediately implies that u(B2d−2) has measure zero.
In particular, this proves the case d = 1 (since in this case 2d − 2 = 0) and it allows us

to start the induction.
Suppose that we have proven the result for d − 1 and we want to show it for d. Since

A= (B1 \ B2) ∪ (B2 \ B3) ∪ · · · ∪ (B2d−3 \ B2d−2) ∪ B2d−2,

it remains to show that |u(Bs \ Bs+1)| = 0 for 1 ≤ s ≤ 2d − 3 ≤ r − 1.

CLAIM. Every x̃ ∈ Bs \ Bs+1 has a neighborhood Ṽ , such that

|u((Bs \ Bs+1) ∩ Ṽ )| = 0.

Since Bs \ Bs+1 can be covered by countably many such neighborhoods, this implies
that u(Bs \ Bs+1) has measure zero.

Proof. Choose x̃ ∈ Bs \ Bs+1. By definition of these sets, all partial derivatives of order s
of U vanish at this point, but there is one of order s + 1 that does not. Assume (without
any loss of generality) that there exists a function

w(x) = ∂i1∂i2 · · · ∂is U (x)
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such that
w(x̃) = 0 but ∂1w(x̃) 6= 0.

Define

h : � −→ Rd

x 7−→ (w(x), x2, . . . , xd),

where x = (x1, x2, . . . , xd). Clearly, h ∈ Cr−s(�) and Dh(x̃) is non-singular; hence,
there is an open neighborhood V of x̃ such that

h : V −→ W

is a Cr−s isomorphism (with W = h(V )).
Let V1 be an open precompact set, containing x̃ and properly contained in V , and define

A = Bs ∩ V1, A∗
= h(A) and g = h−1. If we consider W1, any open set containing A∗

and properly contained in W , we can apply Proposition 7 and deduce the existence of
F : Rd

−→ R satisfying properties (i)–(vi).
Define

Ŵ = {(x2, . . . , xd) ∈ Rd−1
: (0, x2, . . . , xd) ∈ W1}

and
Û (x2, . . . , xd) = C F(0, x2, . . . , xd),

where C is a positive constant to be chosen sufficiently large. Observe that
Û ∈ Cr−1(Rd−1).

Moreover, property (v) of F and the fact that A∗
= h(A) ⊆ {0} × Ŵ imply that

A∗
= {0} × B̂1,

where B̂1 = {(x2, . . . , xd) ∈ Ŵ : F(0, x2, . . . , xd) = 0}. Denote

Â := {(x2, . . . , xd) ∈ Ŵ : Û = 0} = B̂1

and define the following function on Ŵ :

û(x2, . . . , xd) = u(g(0, x2, . . . , xd)).

We want to show that these functions satisfy the hypotheses for the (d − 1)-dimensional
case. In fact:
• Û ∈ Cr−1(Rd−1), with r − 1 ≥ 2d − 3 > 2(d − 1) − 2;
• û ∈ C1(Ŵ ) (since g is in Cr−s(W ), where 1 ≤ s ≤ r − 1);
• if we denote µ = supW1

‖dx g‖ < +∞ (since g is C1 on W1), then we have that for

every point in Ŵ ,

‖dû(x2, . . . , xd)‖2
≤ ‖dx u(g(0, x2, . . . , xd))‖2

‖dx g(0, x2, . . . , xd)‖2

≤ µ2
‖dx u(g(0, x2, . . . , xd))‖2

≤ βµ2U (g(0, x2, . . . , xd))

≤ βµ2 K F(0, x2, . . . , xd)

≤ Û (x2, . . . , xd),

if we choose C > βµ2 K , where K is the positive constant appearing in
Proposition 7, property (vi).
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Therefore, it follows from the inductive hypothesis, that

|û(Â)| = 0.

Since,

u(Bs ∩ V1) ⊆ u(A) = u(g(A∗)) = u(g({0} × B̂1))

= û(B̂1) = û(Â),

defining Ṽ = V1, we may conclude that

|u(Bs ∩ Ṽ )| ≤ |û(Â)| = 0. 2

This completes the proof of the Main Lemma. 2

5. Proof of a modified version of Kneser–Glaeser’s rough composition theorem
Now, let us prove Proposition 7. We shall mainly follow the presentation in [1], adapted to
our needs.

Proof of Proposition 7. Let us start by defining a family of polynomials. Supposing that g
is Cr and using the s-flatness hypothesis, we have, for x ∈ A∗ and k = 0, 1, . . . , r ,

fk(x) = Dk(U ◦ g)(x) =

∑
s<q≤k

∑
σk DqU (g(x))Di1 g(x) · · · Diq g(x), (1)

where the second sum is over all the q-tuples of integers i1, . . . , iq ≥ 1 such that
i1 + · · · + iq = k, and σk = σk(i1, . . . , iq).

The crucial observation is that (1) makes sense on A∗, even when g is Cr−s smooth
(in fact, i j ≤ k − q + 1 ≤ r − s).

We would like to proceed in the fashion of Whitney’s extension theorem, in order to find
a smooth function F such that Dk F = fk on A∗, and satisfying the stated conditions.

Remark. Note that, without any loss of generality, we can assume that W is contained in
an open ball of diameter one. The general case will then follow from this special one, by a
straightforward partition of unity argument.

Let us start with some technical lemmata.

LEMMA 3. For x, x ′, x0 ∈ A∗ and k = 0, . . . , r , we have

fk(x ′) =

∑
i≤r−k

fk+i (x)

i !
(x ′

− x)i
+ Rk(x, x ′),

with
|Rk(x, x ′)|

‖x ′ − x‖r−k −→ 0

as x, x ′
−→ x0 in A∗.
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The proof of this lemma appears without any major modification in [1, pp. 36–37].
Define, for x ∈ A∗ and y ∈ Rd ,

P(x, y) =

r∑
i=s+1

fi (x)

i !
(y − x)i

and its kth derivative

Pk(x, y) =

∑
i≤r−k

fi+k(x)

i !
(y − x)i .

LEMMA 4. For x ∈ A∗ and y ∈ W1,

U (g(y)) = P(x, y) + R(x, y),

where |R(x, y)| ≤ C‖y − x‖
r .

Proof. The proof follows the same idea of Lemma 3. By Taylor’s formula for U ,

U (g(y)) =

r∑
q=s+1

DqU (g(x))

q!
(g(y) − g(x))q

+ I (g(x), g(y))(g(x) − g(y))r .

Obviously,

|I (g(x), g(y))(g(x) − g(y))r
| ≤ C1‖y − x‖

r ,

so therefore it is sufficient to estimate the first term.
Observe that

g(y) = g(x) +

r−s∑
i=1

Di g(x)(y − x)i
+ J (x, y)(y − x)r−s .

Hence, the first term in the sum above becomes

r∑
q=s+1

DqU (g(x))

q!

[r−s∑
i=1

Di g(x)(y − x)i
+ J (x, y)(y − x)r−s

]q

=

r∑
k=s+1

ak(y − x)k
+ R̂(x, y)

= P(x, y) + R̂(x, y),

since

ak =

∑
s+1≤q≤k

∑
DqU (g(x))Di1 g(x) · · · Diq g(x) =

fk(x)

k!
.

The remainder of the terms consist of:
• terms containing (y − x)k , with k > r ;
• terms of the binomial product, containing J (x, y)(y − x)r−s . They are of the form

. . . (y − x)(r−s) j+
∑r−s

i=1 iαi
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where αi ≥ 0 and
∑

αi = q − j . Since q ≥ s + 1 and s ≤ r − 1, then

(r − s) j +

r−s∑
i=1

iαi ≥ (r − s) j +

r−s∑
i=1

αi

= (r − s) j + q − j

= r j − s j + q − j

≥ r j − (s + 1) j + s + 1

= r + r( j − 1) − (s + 1)( j − 1)

= r + (r − s − 1)( j − 1) ≥ r.

Therefore, for x ∈ A∗ and y ∈ W1,

|R̂(x, y)| ≤ C2‖y − x‖
r ,

and the lemma follows taking C = C1 + C2. 2

The next step will consist of creating a Whitney’s partition. We will start by covering
W1 \ A∗ with an infinite collection of cubes K j , such that the size of each K j is roughly
proportional to its distance from A∗.

First, let us fix some notation. We shall write a ≺ b instead of ‘there exists a positive
real constant M , such that a ≤ Mb’ and a ≈ b as short for a ≺ b and b ≺ a.

Let λ = 1/(4
√

d); this choice will come in handy later. For any closed cube K (with
edges parallel to the coordinate axes), K λ will denote the (1 + λ)-dilation of K about its
center.

Let ‖ · ‖ be the euclidean metric on Rd and

d(y) = d(y, A∗) = inf{‖y − x‖ : x ∈ A∗
}.

If {K j } j is the sequence of closed cubes defined below, with edges of length e j , let d j be
its distance from A∗, i.e.

d j = d(A∗, K j ) = inf{‖y − x‖ : x ∈ A∗, y ∈ K j }.

One can show the following classical lemma (see, for instance, [1] for a proof).

LEMMA 5. There exists a sequence of closed cubes {K j } j with edges parallel to the
coordinate axes that satisfies the following properties:
(i) the interiors of the K j are disjoint;
(ii) W1 \ A∗

⊂
⋃

j K j ;
(iii) e j ≈ d j ;
(iv) e j ≈ d(y) for all y ∈ K λ

j ;

(v) e j ≈ d(z) for all z ∈ W1 \ A∗, such that the ball with center z and radius 1
8 d(z)

intersects K λ
j ;

(vi) each point of W1 \ A∗ has a neighborhood intersecting at most N of the K λ
j , where

N is an integer depending only on d.
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Now, let us construct a partition of unity on W1 \ A∗. Let Q be the unit cube centered
at the origin. Let η be a C∞ bump function defined on Rd such that

η(y) =

{
1 for y ∈ Q,

0 for y 6∈ Qλ,

and 0 ≤ η ≤ 1. Define

η j (y) = η

(
y − c j

e j

)
,

where c j is the center of K j and e j is the length of its edge, and consider

σ(y) =

∑
j

η j (y).

Then, 1 ≤ σ(y) ≤ N for all y ∈ W1 \ A∗. Clearly, for each k = 0, 1, 2, . . . we have that
Dkη j (y) ≺ e−k

j , for all y ∈ W1 \ A∗. Hence, by properties (iv) and (vi) of Lemma 5, we
have that, for each k = 0, 1, . . . , r ,

Dkη j (y) ≺ d(y)−k for all y ∈ W1 \ A∗

and
Dkσ(y) ≺ d(y)−k for all y ∈ W1 \ A∗.

Define

ϕ j (y) =
η j (y)

σ (y)
.

These functions satisfy the following properties:
(i) each ϕ j is C∞ and supported on K λ

j ;
(ii) 0 ≤ ϕ j (y) ≤ 1 and

∑
j ϕ j (y) = 1, for all y ∈ W1 \ A∗;

(iii) every point of W1 \ A∗ has a neighborhood on which all but at most N of the ϕ j

vanish identically;
(iv) for each k = 0, 1, . . . , r , Dkϕ j (y) ≺ d(y)−k for all y ∈ W1 \ A∗; namely, there are

constants Mk such that Dkϕ j (y) ≤ Mkd(y)−k ;
(v) there is a constant α and points x j ∈ A∗, such that

‖x j − y‖ ≤ αd(y) whenever ϕ j (y) 6= 0.

This follows from properties (iii) and (iv) of Lemma 5.
We can now construct our function F . Observe that, from Lemma 4,

0 ≤ U (g(y)) = P(x j , y) + R(x j , y) ≤ P(x j , y) + C‖y − x j‖
r
;

therefore, P(x j , y) ≥ −C‖y − x j‖
r .

First, define
P̂j (y) = P(x j , y) + 2C‖y − x j‖

r

where C is the same constant as in Lemma 4; from what is said above,

P̂j (y) ≥ C‖y − x j‖
r > 0 in W1 \ {x j }. (2)
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Hence, construct F in the following way:

F(y) =

{
0, y ∈ A∗,∑

j ϕ j (y)P̂j (y), y ∈ Rd
\ A∗.

We claim that this satisfies all the stated properties (i)–(vi). In particular, properties (ii), (iii)
and (v) follow immediately from the definition of F and (2). Moreover, F ∈ C∞(Rd

\ A∗).
We need to show that Dk F = fk (for k = 0, 1, . . . , r − 1) on ∂ A∗ (namely, the boundary
of A∗) and that Dr−1 F is continuous on it. The main difficult in the proof is that Dk F is
expressed as a sum containing terms

Dk−mϕ j (y)Pm(x j , y),

where ϕ j (y) 6= 0. Even if y is close to some x0 ∈ A∗, it could be closer to A∗ and hence the
bound given by property (iv) of ϕ j might become large. One can overcome this problem
by choosing a point x∗

∈ A∗, so that ‖x∗
− y‖ is roughly the same as d(y) and hence x j is

close to x∗.

LEMMA 6. For every η > 0, there exists δ > 0 such that, for all y ∈ W1 \ A∗, x, x∗
∈ A∗

and x0 ∈ ∂ A∗, we have

‖Pk(x, y) − Pk(x∗, y)‖ ≤ η d(y)r−k
≤ η‖y − x0‖

r−k,

whenever k ≤ r and 
‖y − x‖ < α d(y)

‖y − x∗
‖ < α d(y)

‖y − x0‖ < δ,

where α is the same constant as in (v) above.

See [1, p. 126] for its proof.

LEMMA 7. For every η > 0, there exist 0 < δ < 1 and a constant E such that, for all
y ∈ W1 \ A∗, x∗

∈ A∗ and x0 ∈ ∂ A∗, we have

‖Dk F(y) − Pk(x∗, y)‖ ≤ E d(y)r−k
≤ η d(y)r−k−1,

whenever k ≤ r − 1 and {
‖y − x∗

‖ < α d(y)

‖y − x0‖ < δ.

Proof. Let
S j,k(x∗, y) = ∂k P̂j (y) − Pk(x∗, y).

From Lemma 6 (with η = ε, to be defined later) and the definition of P̂j , we get

‖S j,k(x∗, y)‖ ≤ ‖∂k P̂j (y) − Pk(x j , y)‖ + ‖Pk(x j , y) − Pk(x∗, y)‖

≤ Ckd(y)r−k
+ ε d(y)r−k

= (Ck + ε) d(y)r−k .

Then,
F(y) − P(x∗, y) =

∑
j

ϕ j (y)S j,0(x∗, y)
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and hence

Dk F(y) − Pk(x∗, y) =

∑
j

∑
i≤k

(
k
i

)
Dk−iϕ j (y)S j,i (x∗, y).

Therefore, choosing ε sufficiently small,

‖Dk F(y) − Pk(x∗, y)‖ ≤

∑
j

∑
i≤k

(
k
i

)
‖Dk−iϕ j (y)‖ · ‖S j,i (x∗, y)‖

≤

∑
j

∑
i≤k

(
k
i

)
Mk−i d(y)−k+i (Ck + ε) d(y)r−i

≤ E d(y)r−k
≤ η d(y)r−k−1. 2

2

LEMMA 8. For every η > 0, there exists 0 < δ < 1 such that, for all y ∈ W1 \ A∗, x∗
∈ A∗

and x0 ∈ ∂ A∗, we have

‖Pk(x∗, y) − Pk(x0, y)‖ ≤ η‖y − x0‖
r−k,

whenever k ≤ r and {
‖y − x∗

‖ < α d(y)

‖y − x0‖ < δ.

Proof. The proof goes as in the proof of Lemma 6, observing that ‖x∗
− x0‖ ≤ (1 +

α)‖y − x0‖ and

Pk(x0, y) − Pk(x∗, y) =

∑
q≤r−k

Rk+q(x∗, x0)

q!
(y − x)q . 2

CLAIM. For every x0 ∈ ∂ A∗ and k = 0, 1, . . . , r − 1,

Dk F(x0) = fk(x0).

Moreover, Dr−1 F is continuous at x0 ∈ ∂ A∗.

This claim follows easily from the lemmata above (see [1, p. 128] for more details).
This proves that F ∈ Cr−1(Rd) and completes the proof of (i) and (iv).
It remains to show that property (vi) holds, namely, that there exists a constant K > 0,

such that U (g(x)) ≤ K F(x) on W1. Obviously, this holds at every point in A∗, for every
choice of K (since both functions vanish there).

CLAIM. There exists a constant K > 0, such that (U ◦ g)/F ≤ K on W1 \ A∗.

Proof. Since F > 0 on W1 \ A∗, it is sufficient to show that (U ◦ g)/F is uniformly
bounded by a constant, as d(y) goes to zero.

Let us start by observing that, for y ∈ K λ
j ,

P̂j (y) ≥ C‖y − x j‖
r
≥ C d(y)r

;
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therefore,

F(y) =

∑
j

ϕ j (y)P̂j (y)

≥

∑
j

ϕ j (y)C d(y)r

= C d(y)r .

Moreover, if x∗
∈ A∗ such that d(y) = ‖y − x∗

‖, Lemmas 4 and 7 imply that

|U (g(y)) − F(y)| ≤ |U (g(y)) − P(x∗, y)| + |P(x∗, y) − F(y)|

≤ C d(y)r
+ E d(y)r

= (C + E) d(y)r .

Hence,

U (g(y))

F(y)
=

U (g(y)) − F(y) + F(y)

F(y)

≤ 1 +
|U (g(y)) − F(y)|

F(y)

≤ 1 +
(C + E) d(y)r

C d(y)r

≤ 2 +
E

C
=: K̃ . 2

This proves property (vi) and concludes the proof of the proposition. 2
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