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Abstract
Rapid advances in artificial intelligence (AI) and machine learning are creating products and services with
the potential not only to change the environment in which actuaries operate but also to provide new oppor-
tunities within actuarial science. These advances are based on a modern approach to designing, fitting and
applying neural networks, generally referred to as “Deep Learning.” This paper investigates how actuarial
sciencemay adapt and evolve in the coming years to incorporate these new techniques andmethodologies.
Part 1 of this paper provides background onmachine learning and deep learning, as well as an heuristic for
where actuaries might benefit from applying these techniques. Part 2 of the paper then surveys emerging
applications of AI in actuarial science, with examples from mortality modelling, claims reserving, non-life
pricing and telematics. For some of the examples, code has been provided on GitHub so that the inter-
ested reader can experiment with these techniques for themselves. Part 2 concludes with an outlook on the
potential for actuaries to integrate deep learning into their activities. Finally, a supplementary appendix
discusses further resources providing more in-depth background on machine learning and deep learning.
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1. Introduction

“The next insurance leaders will use bots, not brokers, and AI, not actuaries”
-Schreiber (2017)

Rapid advances in artificial intelligence (AI) and machine learning are creating products and ser-
vices with the potential to change the environment in which actuaries operate. Notable among
these advances are self-driving cars, which are due to launch in 2018 (drive.ai, 2018), and sys-
tems for the automatic diagnosis of disease from images, which gained approval for the automatic
diagnosis of diabetic retinopathy in April 2018 (Federal DrugAdministration, 2018). Both of these
examples rely on deep learning, which is a collection of techniques for the automatic discovery of
meaningful features within datasets, through the use of neural networks designed in a hierarchal
fashion (LeCun et al., 2015). In this paper, the phrase “Deep Learning” will be taken to mean this
modern approach to the application of neural networks that has emerged since ground-breaking
publications in 2006 (Hinton et al., 2006; Hinton & Salakhutdinov, 2006). These products, and
similar innovations, will change the insurance landscape by shifting insurance premiums and
creating new classes of risks to insure (see, e.g., Albright et al., 2017, who discuss the impact of
autonomous vehicles on the motor insurance market), potentially creating disruption in one of
the main areas in which actuaries currently operate.
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As well as the potential disruption in insurance markets, the rapid advances in deep learn-
ing have led some to predict that actuaries will no longer be relevant in the insurance industry
(Schreiber, 2017). The point of view advanced by this paper is that, contrary to this prediction,
the discipline of actuarial science will adapt and evolve to incorporate the new techniques of
deep learning and seeks to substantiate this by surveying emerging applications of AI in actu-
arial science, with examples from mortality modelling, claims reserving, life insurance valuation,
telematics analysis and non-life pricing. We thus prefer the view of Wüthrich & Buser (2018)
who aim to assist actuaries in addressing the new paradigm of the “high-tech business world”
(Wüthrich & Buser, 2018: 11). Therefore, the paper has three main goals: firstly, to provide back-
ground regarding deep learning and how it relates to the more general areas of machine learning
and AI; secondly, to survey recent applications of deep learning within actuarial science; and
lastly, to provide practical implementations of deep learningmethodology using open source soft-
ware. Thus, code in the R language to implement some of the examples is provided in a GitHub
repository available at https://github.com/RonRichman/AI_in_Actuarial_Science/.

This paper is organised and published in two main parts. The aim of the first part is to provide
background and introductions for actuaries to the fields of machine learning and deep learning.
Section 2 defines the notation used throughout the paper. Section 3 introduces the main concepts
of machine learning, which apply equally to deep learning, discusses how the class of problems
addressed by actuaries can often be expressed as regression problems and provides an heuristic as
to which of these can be solved using deep learning techniques. Section 4 presents an introduction
to deep learning and discusses some of the key recent advances in this field. Throughout this part,
emphasis is placed on introducing the techniques as they may be used by those solving traditional
actuarial problems. The first part concludes with a supplementary appendix that discusses further
resources providing more in-depth background on these areas.

The second part of the paper (published separately) provides a survey of recent applications of
deep learning to actuarial problems in mortality forecasting, life insurance valuation, analysis of
telematics data and pricing and claims reserving in short-term insurance (also known as property
and casualty insurance in the United States and general insurance in the United Kingdom). This
second part concludes by discussing how the actuarial profession can adopt the ideas presented in
the paper as standard methods.

Those readers who are familiar with the application of machine learning and deep learning to
actuarial problems may skip the first part of the paper. Readers who are familiar with “classical”
machine learning, as described in, for example, Friedman et al. (2009), but are not familiar with
deep learning, may prefer to skip Section 2 of the paper and rather focus on Section 3. Since those
actuaries working in life insurance often do not have an interest in short-term insurance, and
vice versa, readers interested only in particular problems will benefit from focusing on particular
sections in Part 2, whereas readers with a more general interest in the application of deep learning
to actuarial problems might benefit from reading all the sections in Part 2.

2. Definitions and Notation
In this paper, we are generally concerned with predictive models which we define as models that
attempt to predict values of variables that are currently unknown on the basis of other known
variables which are inputs into the predictive model (see Thomson, 2006 for a classification which
distinguishes between different types of actuarial models). For example, the output of a predictive
model might be the expected frequency of a motor claim, which would be predicted based on
variables such as the age of the policyholder or the maker of the motor vehicle.

Formally, we define the vector of variables we wish to predict as y, and the predicted vector of
values of this variable as ŷ. The predictions are made based on a matrix of known variables, which
we denote as X. X is referred to in themachine learning literature as the feature matrix. Keeping in
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mind that predictivemodels are usually built based onmany examples of the known and unknown
variables, we denote the ith example of these variables with the subscript i, for example, the ith row
of the matrix X of known variables is denoted as Xi and the prediction made using these known
variables is denoted as ŷi. Finally, the jth column of the matrix X is the jth known variable, thus,
known variable j relating to example i will be represented as Xi,j.

Although we have provided definitions that relate to the usual problem of analysing structured
(or tabular) data, modern machine learning is also concerned with so-called unstructured data,
such as images or text. The definitions presented in this section can be modified to accommo-
date these types of data. In the following section, we build on these definitions, by reviewing the
terminology used within the machine learning literature and extending the definitions wherever
necessary.

3. Introduction to Machine Learning and Deep Learning
Many of the terms used in the machine and deep learning literature may be unfamiliar to actu-
aries, and therefore, this section begins by providing a brief introduction to key ideas in machine
learning, before discussing the applicability of machine learning to problems in actuarial science.

Machine learning is an approach taken within the field of AI whereby AI systems are allowed to
build knowledge by extracting patterns from data (Goodfellow et al., 2016) and has been defined
as the field concerned with “the study of algorithms that allow computer programmes to auto-
matically improve through experience” (Mitchell, 1997). Machine learning can be divided broadly
into three main areas – supervised learning, unsupervised learning and reinforcement learning.
Supervised learning is the application of machine learning to datasets that contain both features
and outputs of interest, with the goal of predicting the outputs from the features as accurately as
possible (Friedman et al., 2009). Defining Xi as the vector of features for the ith example and yi as
the ith output of interest, then supervised learning has as its goal to learn the function f (Xi) = yi
in order to make predictions at new vectors that have not yet been seen. Models for supervised
learning range from simple linear regression models to complex ensembles (meta-models) com-
prised of decisions trees and other functions, fit through techniques such as boosting (Freund &
Schapire, 1997; Friedman, 2001).

Unsupervised learning is the application of machine learning to datasets containing only fea-
tures to find structure within these datasets (Sutton & Barto, 2018). In other words, the feature
matrix X is available, but there are no corresponding outputs y. The task of unsupervised learn-
ing is to find meaningful patterns using only X, which can then be used to further understand
the data, or, in some cases, model it. An example of unsupervised learning is principle com-
ponent analysis (PCA), often applied by actuaries to derive interest rate risk scenarios in the
context of Solvency II, see, for example, Boonen (2017). Other methods for unsupervised learning
are k-means (and, more generally, other clustering algorithms), self-organising maps (Kohonen,
1990) and t-distributed stochastic neighbour embedding (t-SNE) (Maaten & Hinton, 2008) (for
an overview of unsupervised learning techniques, see Chapter 14 in Friedman et al. (2009), and
for a recent tutorial in an actuarial context, see Rentzmann &Wüthrich, 2019).

Reinforcement learning is concerned with learning the action to take in situations in order
for an agent to maximise a reward signal (Sutton & Barto, 2018). No examples of reinforcement
learning applied to actuarial problems are known to the author (although a suggestion for its
application in the insurance context was made by Parodi (2016)), and therefore, reinforcement
learning is not discussed further in this paper.

3.1. Supervised learning
Of the three areas of machine learning discussed above, by far the most familiar to actuaries
is supervised learning, which, as noted above, is concerned with the task of making accurate
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predictions from data. Some examples of supervised learning in common actuarial practice are
the fitting of generalised linear models (GLMs)1 to claims datasets to predict the frequency and
severity of claims, or to policyholder datasets to predict lapse rates (for an overview of the use
of GLMs for modelling claims, see De Jong & Heller, 2008 or Ohlsson & Johansson, 2010). Since
supervised learning may rely on classical statistical models such as GLMs, one might question
what the distinction is between statistical modelling (which is concerned with inference and is
probably more familiar to actuaries) and supervised learning. An insightful discussion of these
two related but different disciplines is in Shmueli (2010), who distinguishes between these tasks
based on the goal of the analysis, with the goal of supervised learning being predicting and the
goal of statistical modelling being explaining (i.e. conducting inference). Some of the key ways in
which supervised learning is different from statistical modelling are that the supervised learning
approach favours:
• Building algorithms to predict responses without necessarily specifying a stochastic data

generating model or process (Breiman, 2001), leading to models with good predictive
performance that are often more difficult to interpret than statistical models2.

• Accepting some bias in models if this is expected to reduce the overall prediction error. For
example, Shmueli (2010) shows that, in some cases, the “true” data generating model might
not be the best choice if prediction is the goal. This is due to the bias–variance3 trade-off,
discussed in detail Chapter 7 in Friedman et al. (2009). Bias is often introduced (and vari-
ance reduced) by adding penalties to regression models, such as in ridge regression (Hoerl &
Kennard, 1970), least absolute shrinkage and selection operator regression (Tibshirani, 1996)
or elastic-net regression (Zou &Hastie, 2005) (for an overview of these techniques, see Hastie
et al., 2015), or, in the case of mortality graduation, the Whittaker–Henderson smoothing4
method.

• Quantifying predictive error (i.e. out-of-sample error) by splitting data into training, valida-
tion and testing sets, or using by cross-validation, as opposed to fitting models on all available
data. The complexity of the fitted model is controlled based on the impact of model complex-
ity on the predictive error, in order to find a model that generalises well to new data, instead
of (over-)fitting to the noise in the training dataset.

Taking the latter points into account, Mullainathan & Spiess (2017) summarise the approach to
supervised machine learning in a single expression:

minimize
n∑

i=1
L

(
f (Xi) , yi

)
for all f ∈ F subject to R

(
f
)
< c

which states that the goal of supervised learning is to minimise the in-sample error of the model,
measured using a loss function L() (e.g. the mean squared error (MSE)) applied over the n obser-
vations in the data, by searching over functions f in a set of functions F. The function f is subject

1 A list of all abbreviations/acronyms can be found in Appendix B.
2 The chain-ladder method was seen as an algorithm until the work of Mack (1993) and Renshaw & Verrall (1998), who

provided statistical models underlying the chain ladder.
3 Variance refers to the variability of the estimated model arising from the fitting of a model to a limited dataset.

Actuaries have long known about the dangers of fitting models to, and drawing conclusions, from limited datasets, and
often refer to these types of data and models as lacking “credibility.” McGrayne (2011), in describing Arthur Bailey who was
an actuary who came to embrace credibility methods in the early part of the 20th century, writes that “He (i.e. Bailey) wanted
to give more weight to a large volume of data than to the frequentists’ small sample; doing so felt surprisingly ‘logical and
reasonable.’ He concluded that only a ‘suicidal’ actuary would use Fisher’s method of maximum likelihood, which assigned a
zero probability to non-events.”

4 As another example in an actuarial context, Mack (1993), after providing bias-free estimators for the loss development
factors of the chain-ladder model, is concerned with the variability of the chain-ladder estimators and provides his famous
formula for its estimation.
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Figure 1. Schematic classification ofmachine learningmethods. The branch leading to regression is in bold sincemany prob-
lems in actuarial science can be expressed as regression problems, as discussed in the next section. Because deep learning
models can be used for each of the main branches of machine learning, it spans across the schema.

to a complexity restriction, which is calculated using the function R() which is limited to a level of
complexity, c. The acceptable level of complexity of the model is a so-called hyperparameter that
is not estimated from the training data but is based on the predictive performance of the model
on unseen data, usually estimated from the validation dataset or inferred using a method such as
cross-validation.

Although the concepts of supervised learningmay appear foreign to actuaries trained primarily
in statistical modelling and inference, the machine learning approach is currently appearing in
recent actuarial research (Noll et al., 2018; Parodi, 2014; Wüthrich & Buser, 2018) and has been
endorsed at a prominent actuarial convention (Parodi, 2016).

Within supervised learning, a common grouping of problems is into the categories of classifica-
tion and regression. Classification problems are those in which the output of interest is qualitative,
such as whether a claim is fraudulent (Friedman et al., 2009). Regression problems are those in
which the output is numerical, such as the frequency of claim of a policyholder. Sometimes, the
distinction between classification and regression problems is blurred, for example, De Brébisson
et al. (2015) use a neural network to predict taxi destinations, as measured by longitude and lati-
tude, which is a regression problem.However, instead of directly predicting longitude and latitude,
they approximate this using a set of categories representing areas on a map and predict these using
a classification model.

Figure 1 represents schematically the different types of machine learning discussed in this sec-
tion. Although deep learning has not yet been discussed in detail, to complete this introductory
discussion, deep learning is a collection of techniques comprising a modern approach to design-
ing and fitting neural networks that learn a hierarchal, optimised representation of the features,
and can be used for supervised (classification and regression), unsupervised and reinforcement
learning (i.e. all the categories of machine learning that have been discussed to this point).

3.2. Actuarial modelling andmachine learning
Actuarial models can often be expressed as regression problems, even if the original problems, at
first glance, do not appear to be related to regression. Several obvious and less obvious examples
of this are provided in the following points (and in more detail in Table 1):

1. Short-term insurance policies are usually priced with GLMmodels of frequency (Poisson rate
regression) and severity (Gamma regression).

2. The chain-ladder model can be described as a cross-classified log-linear regression according
to the GLM formulation of Renshaw & Verrall (1998).

3. The software implementation of the distribution-free chain-ladder model ofMack (1993) in R
(Gesmann et al., 2017) uses several linear regression models to estimate the coefficients, but,
notably, the entire set of chain-ladder factors can be estimated using a single weighted linear
regression.
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Table 1. Featurematrices X and outputs y for several regression problems in actuarial science

Number Description Featurematrix, X Output vector, y

1 Short-term pricing Policyholder details, such as age,
gender, marital status, credit
score, postal code of residence,
and details of the insured item,
for example, on a motor policy,
brand, age, power of the engine,
overnight parking

Frequency/Severity of Claim, or
Pure Premium (Tweedie GLM)



2 Over-dispersed Poisson IBNR
model

Accident year, reporting year Incremental claim amount



3 Mack chain-ladder model Cumulative claims amount at
time t-1

Cumulative claims amount
at time t



4 Hierarchal IBNRmodels Refer to 2 and 3 Cumulative claims amount
at time t



5 AvE analysis of mortality Expected number of deaths Coefficient of the regression
model



6 Portfolio-specificmortality
model

Age, gender, portfolio
characteristics

Mortality rate



7 Mortality forecasting Year, age Mortality rate


8 Old-age mortality estimation Year of birth, age at deaths Number of deaths


9 Life valuation approximation Age, gender, portfolio
characteristics

Reserve value



10 Life valuation approximation Value of assets (bonds, equities,
options, swaptions) in scenario i

Reserve value

4. Advanced incurred but not reported (IBNR) models have been fit using generalised linear
mixed models (GLMMs) and Bayesian hierarchal models.

5. The comparison of actual mortality to expected experience (AvE) is often performedmanually
by life actuaries, but this can be expressed as a Poisson regression model where the output is
the number of deaths and the input is the expected mortality rate, with an offset taken as the
central exposed to risk.

6. The process of determining a life table based on the mortality experience of a company
or portfolio is similarly a regression problem, where the outputs are the number of deaths
and the inputs are the genders, ages and other characteristics of the portfolio (the estimated
coefficients of the model can then be used to derive the mortality rates). An example of a
methodology is given in Tomas & Planchet (2014).

7. Currie (2016) showed that many common mortality forecasting models (the Lee-Carter (Lee
& Carter, 1992) and CBD (Cairns et al., 2006) models among them) can be formulated as
regression problems and estimated using GLM and generalised non-linear models.

8. Richman (2017) showed that the demographic techniques known as the near extinct gener-
ations methods (Thatcher et al., 2002), which are used to derive mortality rates at the older
ages from death counts, can be expressed as a regression model within the GLM framework.

9. Life insurance valuation models perform cash-flow projections for life policies (or groups of
policies, called model points), to allow the present value of future cash flows to be calculated
for the purpose of calculating reserves or embedded value. Since running these models can
take a long time, so-called “lite” valuation models can be calibrated using regressionmethods.

10. Another regression problem in life valuations concerns attempts to avoid nested stochastic
simulations when calculating risk-based capital, such as in Solvency II or the Swiss Solvency
Test. One option is to calibrate, using regression, a reference set of assets, called the replicat-
ing portfolio, to the liability cash flows, and perform the required stresses on the replicating
portfolio.
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Once an actuarial model is expressed as a regression problem, then solutions to the problem are
available in the context of machine and deep learning. Thus, taking the above points into con-
sideration, the following (non-exhaustive) heuristic is offered for determining if deep learning
solutions (and more broadly, machine learning solutions) are applicable to problems in actuarial
science:

If an actuarial problem can be expressed as a regression, then machine and deep
learning techniques can be applied.

This heuristic is non-exhaustive, since, as will be shown later, some problems in actuarial science
have recently benefitted from the application of unsupervised learning, and, therefore, actuaries
faced with a novel problem should also consider unsupervised learning techniques.

The reader is referred to the supplementary appendix for more resources discussing machine
learning.

4. An Introduction to Deep Learning
Deep learning is the modern approach to designing and fitting neural networks that relies on
innovations in neural network methodology, very large datasets and the dramatically increased
computing power available via graphics processing units (GPUs). Although currently experi-
encing a resurgence in popularity, neural networks are not a new concept, with some of the
earliest work on neural networks by Rosenblatt (1958). Goodfellow et al. (2016) categorise the
development of neural networks into three phases:

• the early models, inspired by theories of biological learning in the period 1940–1960;
• themiddle period of 1980–1995, during which the key idea of backpropagation to train neural

networks was discovered by Rumelhart et al. (1986); and
• the current resurgent interest in deep neural networks that began in 2006, as documented in

LeCun et al. (2015).

Interest in neural networks declined after the middle period of development for two reasons:
firstly, overly ambitious claims5 about neural networks had been made, leading to disappoint-
ments from investors in this technology and, secondly, other machine learning techniques began
to achieve good results on various tasks (Goodfellow et al., 2016). The recent wave of research into
neural networks began with a paper by Hinton et al. (2006) who provided an unsupervisedmethod
of training deep networks that outperformed shallow machine learning approaches (in particular,
a radial basis function support vector machine; see Chapter 12 in Friedman et al. (2009) for more
on this approach) on a digit classification benchmark (Goodfellow et al., 2016). Other successes of
the deep learning approach soon followed in speech recognition and pedestrian detection (LeCun
et al., 2015). A breakthrough in computer vision was due to the AlexNet architecture of Krizhevsky
et al. (2012) who used a combination of improved computing technology (GPUs), recently devel-
oped techniques (rectified linear units (Nair & Hinton, 2010) and dropout (Hinton et al., 2012),
which are now used as standard techniques in deep learning) and data augmentation to achieve
much improved performance on the ImageNet benchmark using a convolutional neural network
(or CNN, the architecture of which is described later). Other successes of deep networks are in
the field of natural language processing (NLP), an example of which is Google’s neural translation
machine (Wu et al., 2016) and in speech recognition (Hannun et al., 2014). Amore recent example
is the winning method in the 2018 M4 time series forecasting competition, which used a combi-
nation of a deep neural network (a long short-term network or LSTMHochreiter & Schmidhuber,
1997) with an exponentially weighted forecasting model (Makridakis et al., 2018). Importantly,

5 The cynical reader may, at this point, draw a parallel to the present situation.
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although the initial breakthroughs that sparked the recent interest in deep learning were on train-
ing neural networks using unsupervised learning, the focus of research and applications more
recently is on supervised learning models trained by backpropagation (Goodfellow et al., 2016).

This paper asserts that “this time is different” and that the current deep learning research
deserves the attention of the actuarial community, not only in order to understand the technolo-
gies underlying recent advances in AI but also to expand the capabilities of actuaries and scope
of actuarial science. Although actuaries may have heard references to neural networks over the
years and may perhaps have even experimented with these models, the assertion of this paper
is that the current period of development of neural networks has produced efficient, practical
methods of fitting neural networks, which have emerged as highly flexible models capable of
incorporating diverse types of data, structured and unstructured, into the actuarial modelling pro-
cess. Furthermore, deep learning software packages, such as Keras (Chollet, 2015), make the use
of these models practical. This assertion will be expanded upon and discussed in this and the
following section.

4.1. Connection to AI
Deep learning is a part of themachine learning approach to AI, where systems are trained to recog-
nise patterns within data to acquire knowledge (Goodfellow et al., 2016). In this way, machine
learning represents a different paradigm from earlier attempts to build AI systems, which relied
on hard coding knowledge into knowledge bases, in that the system learns the required knowledge
directly from data. Before the advent of deep learning, AI systems had been shown easily to solve
problems in formal domains defined by mathematical rules that are difficult for humans, such
as the Deep Blue system playing chess. However, highly complex tasks that humans solve intu-
itively (i.e. without formal rules-based reasoning), such as image recognition, scene understanding
and inferring semantic concepts (Bengio, 2009), have been more difficult to solve for AI systems
(Goodfellow et al., 2016). In the insurance domain, for example, consider the prior knowledge
gained by an actuary from discussions with underwriters and claims handlers conducted before a
reserving exercise. The experienced actuary is able to use this information to modify her approach
to reserving, perhaps by choosing one of several reserving methods, or by modifying the appli-
cation of the chosen method, perhaps by increasing loss ratios or decreasing claims development
assumptions. However, automating the process of decoding the knowledge contained within these
discussions, into a suitable format for a reserving model, appears to be a formidable task, mainly
because it is often not obvious how to design a suitable representation of this prior knowledge.

In many domains, the traditional approach to designing machine learning systems to tackle
these sorts of complex tasks relies on humans to design the feature matrix X, or, as to use the
terminology of the deep learning literature (Goodfellow et al., 2016), the representation of the
data. This feature matrix is then fed to a “shallow” machine learning algorithm, such as a boosted
classifier, to learn from the data. For example, a classical approach to the problem of object locali-
sation in computer vision is given in Viola & Jones (2001), who design a process, called a cascade
of classifiers, for extracting rectangular features from images which are then fed into an Adaboost
classifier (Freund & Schapire, 1997) (for a general introduction to boosting, of which the Adaboost
classifier is an example, see Chapter 10 in Friedman et al., 2009). An example closer to insurance
is within the field of telematics analysis, where Dong et al. (2016) compare and contrast the tradi-
tional feature engineering approach with the automated deep learning approach discussed next.
Within actuarial science, another example is the hand-engineered features6 often used by actuaries
for IBNR reserving. During the reserving process, an array of loss development factors (LDFs) is
calculated and combinations of these factors, calculated according to various statistical measures
and heuristics, are “selected” using the actuary’s expert knowledge. Also, loss ratios are set based

6 See Section 3 where IBNR reserving is cast as a regression problem.
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on different sources of information available to the actuary, some of which are less dependent on
the claims data, such as the insurance company business plan, and some of which are calculated
directly from the data, as in the Cape Cod (Bühlmann & Straub, 1983) and generalised Cape Cod
methods (Gluck, 1997). These features are then used within a regression model to calculate the
IBNR reserves (more discussion of this topic appears in the description of CNNs below).

Designing features is a time-consuming and tedious task and relies on expert knowledge that
may not be transferable to a new domain, making it difficult for computers to learn complex tasks
without major human intervention, effort and prior knowledge (Bengio & LeCun, 2007). In con-
trast to manual feature design, representation learning, which is thoroughly reviewed in Bengio
et al. (2013), is a machine learning approach that allows algorithms automatically to design a set
of features that are optimal for a particular task. Representation learning can be applied in both
an unsupervised and supervised context. Unsupervised representation learning algorithms seek
automatically to discover the factors of variation underlying the feature matrix X. A commonly
used unsupervised representation learning algorithm is PCA which learns a linear decomposition
of data into the factors that explain the greatest amount of variance in the feature matrix. An early
example of supervised representation learning is the partial least squares (PLS) method, described
in Geladi & Kowalski (1986). After receiving a feature matrix and an output vector, the PLS
method calculates a set of new features that maximise the covariance with the response variable
using the nonlinear iterative partial least squares (NIPALS) algorithm (Kuhn & Johnson, 2013)7,
in the hope that these new features will be more predictive of the output than the unsupervised
features learned using PCA.

The PCA and PLS methods just described rely on relatively simple linear combinations of the
input data. These and similar simpler representation learning methods applied to highly complex
tasks, such as speech or image recognition, may often fail to learn an optimal set of features due to
the high complexity of the data that the algorithms are analysing, implying that a different set of
representation learning techniques are required for these tasks. Deep learning is a representation
learning technique that attempts to solve the problem just described by constructing hierarchies
of complex features that are composed of simpler representations learned at a shallow level of
the model. Returning to the example from computer vision, instead of hand designing features,
a more modern approach is to fit a neural network composed of a hierarchy of feature layers to
the image dataset. The shallow layers of the network learn to detect simple features of the input
data, such as edges or regions of pixel intensity, while the deeper layers of the network learn more
complicated combinations of these features, such as a detector for car wheels or eyes. If performed
in an unsupervised context, then the network learns a representation explaining the factors of
variation of the input data, while if in a supervised context, the learned representation of the
images is optimised for the supervised task at hand, for example, a computer vision task such as
image classification.

The usefulness of learned representations often extends beyond the original task that the repre-
sentations were optimised on. For example, a common approach to image classification problems
when only small datasets are available is so-called “transfer learning” which feeds the dataset
through a neural network that has been pre-trained on a much larger dataset, thus deriving a
feature matrix that can then be fed into a second neural network or other classification algorithm,
see, for example, Girshick (2015). A structured data example closer to the problems often solved
by actuaries is Guo & Berkhahn (2016) who tried to predict sales volumes based on tabular data
containing a categorical feature with high cardinality (i.e. the feature contained entries for each
of many different stores, a problem classically solved by actuaries using credibility theory). After
training a representation of the categorical data using neural networks, the learned representa-
tion was fed into several shallow classifiers, greatly enhancing their performance. This approach
to representation learning represents a step towards general AI, in which machines exhibit the
ability to learn intelligent behaviours without much human intervention.

7 The reader may draw an interesting parallel to neural networks from Figure 6.9 of Kuhn & Johnson (2013).
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Figure 2. Graph of regression model with three input features and a single output.

4.2. Definitions and notation
This section now provides somemathematical definition of the concepts just discussed. The famil-
iar starting point, in this paper, for defining and explaining neural networks is a simple linear
regression model, expressed in matrix form:

ŷ= f (X) = a+ BtX

where the predictions ŷ are formed via a linear combination of the feature matrix X, which is
derived using a vector of regression coefficients B and an intercept term, a. An example of this
simple model is shown in Figure 2 in graphical form, which illustrates a regression model with
three features (in this case, the intercept term a is illustrated as one of the features, which corre-
sponds to a column set equal to unity in the feature matrix X). Here, it is helpful to introduce the
terminology which is used in the neural network literature: instead of referring to B as a vector
of regression coefficients, in the neural network literature, B is referred to as the weights, and the
intercept term a is referred to as the bias.

In this simple model, the features are used without modification directly to calculate the pre-
diction, although, of course, the feature matrixXmight have benefitted from data transformations
or other so-called feature engineering to exploit the data available for the prediction, for example,
the addition of interaction effects between some of the variables. An example of an interaction
term which might be added to the features in a motor pricing model is the interaction between
power-to-weight ratio and gender, which might be predictive of claims. Feature engineering is
often performed manually in actuarial modelling and requires an element of judgement, leading
to the potential that useful combinations of features within the data are mistakenly ignored.

Neural networks seek to solve the problem of manual feature engineering by allowing the
model itself to design features that are useful in the context of the problem at hand. This is per-
formed by constructing a more complex model that includes non-linear transformations of the
features. For example, a simple extension of the linear regression model discussed above can be
written as:

Z1 = σ0
(
a0 + Bt0X

)

ŷ= σ1
(
a0 + Bt1Z

1)

which states that an intermediate matrix of variables, Z1, is computed from the (input) feature
matrix X, by applying a non-linear activation function, σ0 to a linear combination of the features,
which is itself formed by applying a matrix of weights B0 and a vector of biases a0 to the input fea-
ture matrix X. A list of popular activation functions appears in Table 28 (the activation functions
σ0 are also called ridge functions in mathematics). The intermediate variables Z1 are referred to
as the hidden layer of the network.

8 Readers familiar with GLM modelling will recognize that the sigmoid function is in fact the same link function used
in logistic regression.
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Table 2. Popular activation functions

Function name Definition Range

Sigmoid σ (x)= 1
1+ e−x (0, 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hyperbolic tangent σ (x)= ex − e−x

ex + e−x (−1, 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rectified linear unit (ReLu) σ (x)=max(0, x) [0,∞)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Softmax σ (xi)= exi∑
∀i exi

(0, 1)

Figure 3. Graph of neural network with a single hidden layer. In this example, there are three input features, a hidden layer
consisting of four neurons plus a bias term, and a single output variable.

Following this first set of transformations of the variables by the non-linear activation function,
the predictions of themodel are computed as the output of another non-linear function σ1 applied
to a linear combination of the intermediate variables Z1. The only specifications of the intermedi-
ate variables are the number of intermediate variables to calculate and the non-linear function –
the data are used to learn a new set of features that is optimally predictive for the problem at hand.
An example of this model is shown in graphical form in Figure 3, where a model with three input
features, four intermediate variables and a bias term, and a single output variable is illustrated
(since there are multiple intermediate variables, we refer to B0 as a matrix and not a vector).

The last layer of the network is equipped with an activation function designed to reproduce the
output of interest; for example, in a regression model, the activation is often the identity function,
whereas in a classificationmodel with two classes, the sigmoid activation is used since this provides
an output which can be interpreted as a probability (i.e. lies in (0,1)). For multi-class classification,
a so-called softmax layer is used, which derives a probability for each class under consideration by
converting a vector of real-valued outputs output by a neural network to probabilities.

The model just discussed is a so-called shallow network, since it contains only a single hidden
layer (of intermediate variables). Networks that contain two or more hidden layers are referred to
as deep networks.

To fit the neural network, a loss or objective function,
n∑
i=1

L
(
yi, ŷi

)
, is specified, measuring the

quality of (or distance between) the predictions of the model compared to the observations, where
the function L() can be chosen flexibly based on the problem at hand. For regression, common
examples are the MSE or the mean absolute error, while for classification the cross-entropy loss is
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Figure 4. Graph of an auto-encoder network.

often used. Themodel is then fit by backpropagation (Rumelhart et al., 1986) and gradient descent,
which are algorithms that adjust the parameters of the model by calculating a gradient vector (i.e.
the derivative of the loss with respect to the model parameters, calculated using the chain rule
from calculus) and adjusting the parameters in the direction of the gradient (LeCun et al., 2015:
Figure 1). In common with other machine learningmethods, such as boosting, only a small “step”
in the direction of the gradient is taken in parameter space for each round of gradient descent,
to help ensure that a robust minimum of the loss function is found. The extent of the “step” is
defined by a learning rate chosen by the user. Since the difficulties of performing backpropagation
have largely been solved by modern deep learning software, such as the TensorFlow (Abadi et al.,
2016) or PyTorch (Paszke et al., 2017) projects, the details are not given but the interested reader
can refer to Goodfellow et al. (2016) for a general introduction and to Ruder (2016) for a review
of gradient descent algorithms for neural networks.

The simplemodel just defined can easily be extended to othermore useful models. For example,
by replacing the loss function with the Poisson deviance (Wüthrich & Buser, 2018), a Poisson
GLM can be fit. More layers can be added to this model to produce a deep network capable of
learning complicated and intricate features from the data. Lastly, specialised network layers have
been developed to process specific types of data, and these are described later in this section.

Unsupervised learning is also possible, by using a network structure referred to as an auto-
encoder (Hinton & Salakhutdinov, 2006). An auto-encoder is a type of non-linear PCA where a
(high dimensional) input vector Xi is fed into a neural network, called the encoder, which ends
in a layer with only a few neurons. The encoded vector, consisting of these few neurons, is then
fed back into a decoding network which ends on a layer with the same dimension as the original
vector Xi. The loss function that is optimised is L(Xi, X̂i), where Xi represents the output of the
network that is trained to be similar to the original vector, Xi. The structure of this model is shown
in Figure 4, where a ten dimensional input is reduced to a single “code” in the middle of the graph.

Deep auto-encoders are often trained using a process called greedy unsupervised learning
(Goodfellow et al., 2016). In this process, a shallow auto-encoder is first trained, and then, the
encoded output of the auto-encoder is used as the input into a second shallow auto-encoder net-
work. This process is continued until the required number of layers has been calibrated. A deep
auto-encoder is then constructed, with the weights of these layers initialised at the values found for
the corresponding shallow auto-encoders. The deep network is then fine-tuned for the application
required.
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With these examples in hand, some definitions of common terms in deep learning are now
given. The idea of learning new features from the data is called representation learning and is
perhaps the key strength of neural networks. Neural networks are often viewed as being composed
of layers, with the first layer referred to as input layer, the intermediate layers in which new features
are computed being referred to as hidden layers, and the last calculation based on the learned
features referred to as the output layer.Within each layer, the regression coefficients forming the
linear combination of the features are called weights, and the additional intercept terms are called
the biases. The learned features (i.e. the nodes) in the hidden layers are referred to as neurons.

An important intuition regarding deep neural network models is that multiple hidden layers
(containing variable numbers of neurons) can be stacked to learn hierarchal representations of the
data, with each new hidden layer allowing for more complicated features to be learned from the
data (Goodfellow et al., 2016).

4.3. Advanced neural network architectures
Several specialised layers (convolutional, recurrent and embedding layers) have been introduced
allowing for representation learning tailored specifically to unstructured data (images and text,
as well as time series), or categorical data with a very high cardinality (i.e. with a large number
of categories). Deep networks equipped with these specialised layers have been shown to excel
at the tasks of image recognition and NLP, but also, in some instances, in structured data tasks
(De Brébisson et al., 2015; Guo & Berkhahn, 2016). These specialised layers are described in the
rest of this section. A principle to consider when reading the following section is that these layers
have been designed with certain priors, in the Bayesian sense, or beliefs, in mind. For example,
the recurrent layers express the belief that, for the type of data to which they are applied, the
information contained in previous data entries has bearing on the current data entry. However,
the parameters of these layers are not hand-designed, but learned during the process of fitting the
neural network, allowing for optimised representations to be learned from the data.

Note that some advances in neural architectures have not been discussed, mainly because their
application is more difficult or less obvious in the domain of actuarial science. For example, gen-
erative adversarial nets (Goodfellow et al., 2014), which have been used to generate realistic image,
video and text, are not reviewed. Also not discussed are the energy-basedmodels, such as restricted
Boltzmann machines which helped to revitalise neural network research since 2006 (Goodfellow
et al., 2016), but which do not appear to be used much in current practice.

4.3.1. Convolutional neural networks
A convolution is a mathematical operation that blends one function with another (Weisstein,
2003). In neural networks, convolutions are operations performed on data matrices (most often
representing images, but also time series or numerical representations of text) by multiplying ele-
mentwise part of the data matrix by another matrix, called the filter (or the convolutional kernel)
and then adding each element in the resulting matrix. Convolutional operations are performed
to derive features from the data, which are then stored as a so-called feature map. Figure 5 is an
illustration of convolution applied to a very simple grey-scale image of a digit. To derive the first
digit of the feature map shown in Figure 5, the elementwise product of the first 3× 3 slice of the
data matrix is formed with the filter and the elements are then added.

Many traditional computer vision applications use hand-designed convolutional filters to
detect edges. Simple vertical and horizontal edges can be detected with filters comprised of
1, −1 and 0, for example, the filter shown in Figure 5 is a horizontal edge detector. More com-
plicated edge detectors have appeared in the literature, see, for example, Canny (1987). In deep
learning, however, the weights of the convolutional filters are free parameters, with values learned
by the network and thus avoiding the tedious process of manually designing feature detectors.
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0 0 0 0 0 0 0 0 0 0
0 0 0 3 4 4 4 1 0 0
0 0 1 3 0 0 1 4 0 0
0 0 3 0 0 3 4 1 0 0
0 1 0 0 1 4 2 1 0 0 1 1 1

= 0 0 0 1 4 2 1 0 0 0 0 0 0

0 0 4 4 4 4 4 4 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0*1 0*1 0*1 0 0 0

0*0 0*0 0*0 = 0 0 0 = –1
0*–1 0*–11*–1 0 0 –1

0 0 1 4 1 1 0 0 0 0 –1 –1 –1

–1 –4 –4 –3 –1 –5 –5 –4
–3 0 4 8 5 1 0 0

0 3 3 –2 –6 –2 2 3
3 2 –2 –4 0 5 4 1
0 –4 –5 –1 5 6 3 1

–4 –7 –7 –5 –5 –9 –7 –4
1 5 6 6 2 1 0 0
4 8 12 12 12 12 8 4

Filter
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Figure 5. Illustration of a convolution applied to a simple grey-scale image of a “2”. The 10× 10 image is represented in the
datamatrix, which consists of numbers representing the pixel intensity of the image. The filter is a 3× 3matrix, which, in this
case, has beendesigned by hand as a horizontal edge detector. The resulting 8× 8 featuremap is shown as anothermatrix of
numbers. The−1 in the top-left corner of the featuremap, in grey, is derived by applying the 3× 3 filter to the 3× 3 region of
the datamatrix also coloured in grey. The value is negative one, since the only non-zero entry in this part of the datamatrix is
1, which is multiplied by the−1 in the bottom right of the filter. These calculations are shown on the right side of the figure.
The same filter is applied in a sliding window over the entire datamatrix to derive the featuremap.

Goodfellow et al. (2016) provide the following intuition for understanding CNNs: suppose that
one placed an infinitely strong prior (in the Bayesian sense) on the weights of a neuron, that dic-
tated, firstly, that the weights were zero except in a small area and secondly, that the weights of
the neuron were the same as the weights of its neighbour, but that its inputs were shifted in space.
This would imply that the learned function should only learn local features from the data matrix
and that the features detected in an object should be detected regardless of their position within
the image. This prior is ideal for detecting features in an image, where specific components will
vary in space and the components do not occupy the entire image.

The modern application of CNNs to image data generally involves the repeated application
of convolutional layers followed by pooling layers, which replace the feature map produced by
the convolutional layer with a series of summary statistics (Goodfellow et al., 2016). This induces
translation invariance into the learned features, since a small modification of the image will gener-
ally not affect the output of the pooling layer. The multiple layers of convolution and pooling are
generally followed by several fully connected layers, which are responsible for using the features
calculated earlier in the network to classify images or perform other tasks. Figure 6 shows a simple
CNN applied to a tensor (matrix with multiple dimensions) of 3× 128× 128, in which the first
dimension is typical of RGB images which have three channels.

As documented in LeCun et al. (2015), CNNs are not new concepts, with an early example
being LeCun et al. (1998). CNNs fell out of favour until the success achieved by the relatively sim-
ple modern architecture in Krizhevsky et al. (2012) on the ImageNet challenge. Better performing
architectures with exotic designs and idiosyncratic names have been developed more recently; an
early example of these exotic architectures is the “Inception” model of Szegedy et al. (2015).

Although this discussion and the illustration in Figure 5 relates to the analysis of images, which
is not a common task for actuaries, it is notable that convolutional networks have been applied
successfully in several domains that actuaries may be interested in. For example, Gao &Wüthrich
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Figure 6. A simple convolutional network applied to a 3× 128× 128 tensor, the first dimension of which is characteristic of
images where the pixels are defined on the RGB scale.

Table 3. Claims triangle fromMack (1993) and the chain-ladder calculations

1 2 3 4 5 6 7 8 9 10

1 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463


2 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085


3 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315


4 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268


5 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 396,132 1,333,217 2,180,715 2,985,752 3,691,712


7 440,832 1,288,463 2,419,861 3,483,130


8 359,480 1,421,128 2,864,498


9 376,686 1,363,294
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 344,014

Accident Earned Percentage
year premium Latest developed Ultimate IBNR ULR

1 6,002,251 3,901,463 100% 3,901,463 – 65%


2 8,359,568 5,339,085 98% 5,433,719 94,634 65%


3 8,275,117 4,909,315 91% 5,378,826 469,511 65%


4 8,150,625 4,588,268 87% 5,297,906 709,638 65%


5 7,474,154 3,873,311 80% 4,858,200 984,889 65%


6 7,863,340 3,691,712 72% 5,111,171 1,419,459 65%


7 8,708,878 3,483,130 62% 5,660,771 2,177,641 65%


8 10,438,152 2,864,498 42% 6,784,799 3,920,301 65%


9 8,680,409 1,363,294 24% 5,642,266 4,278,972 65%


10 7,645,885 344,014 7% 4,969,825 4,625,811 65%

(2019) use a CNN to identify drivers from telematics information, and more generally, convolu-
tional networks have been used for time series forecasting, see Borovykh et al. (2017). We discuss
a potential application of these networks for IBNR reserving in the next section.

4.3.2. Parallel to IBNR reserving
An interesting parallel between CNNs and the derivation of features for input into IBNR reserving
methods (algorithms) can be drawn. The famous triangle of claims appearing in Mack (1993) and
shown, together with the chain-ladder calculations, performed using the ChainLadder package
(Gesmann et al., 2017) in R, as well as earned premium estimated to provide a long-run ultimate
loss ratio (ULR) in each year of 65%, appears in Table 3.
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Table 4. Featurematrices derived by applying a 1× 2 convolution filter to the triangle shown
in Table 3, adjusted as described in the text. The first matrix shows the (natural) log LDFs, and
the second shows the incremental loss ratios

Log chain-ladder LDFs

1 2 3 4 5 6 7 8 9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1.15 0.43 0.25 0.21 0.19 0.04 0.04 0.06 0.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 1.26 0.56 0.44 0.12 0.08 0.12 0.06 0.08
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 1.49 0.54 0.38 0.21 0.04 0.11 0.06
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 1.52 0.44 0.54 0.07 0.08 0.05
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.94 0.63 0.31 0.16 0.13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 1.21 0.49 0.31 0.21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 1.07 0.63 0.36
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 1.37 0.70
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 1.29

Incremental loss ratios

1 2 3 4 5 6 7 8 9 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 6% 13% 10% 8% 9% 10% 2% 2% 4% 1%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 4% 11% 11% 14% 5% 4% 6% 3% 5%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 4% 12% 11% 12% 9% 2% 6% 3%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 4% 14% 10% 19% 3% 4% 3%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 6% 9% 13% 10% 7% 6%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 5% 12% 11% 10% 9%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 5% 10% 13% 12%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 3% 10% 14%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 4% 11%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 4%

Consider applying a simple 1× 2 convolutional filter, consisting of the matrix [−1 1], to the
triangle, after undergoing one of two transformations. In the first, the (natural) logarithm of the
entries in the triangle not equal to zero is taken and, in the second, the entries are divided by
the earned premium, relating to each accident year, to derive the cumulative loss ratios, and then
the convolution is applied. The resulting feature matrices are shown in Table 4. The first matrix
consists of the logarithm of the individual (i.e. relating to a single accident year) LDFs from the
chain-ladder method, and the second shows the incremental loss ratios used in the additive loss
ratio method described in Mack (2002). That the features underlying some of the most popular
algorithms for reserving are relatively simple is not surprising, since these methods are engineered
to produce forecasts using weighted averages of the features. However, the possibility exists that a
deep neural network might find more predictive features if trained on enough data.

4.3.3. Recurrent neural networks
The architectures discussed to this point have been so-called feed-forward networks, in which the
various hidden layers of the network are recalculated for each data point and the hidden “state”
of the network is not shared for different data points (i.e. there are no connections between hid-
den layers computed on different data points). Many data types, though, form sequences and a
full understanding of the individual entries of the sequences is only possible within the context
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yi yi,1 yi,2 yi,3

X i  = Input vector

S = hidden state (layers)
O = output
Arrows indicate the direc�on
in which data flows.

XX i,1i Xi,2 Xi,3

dedlofnUdedloF

S S1 S2 S3

Figure 7. Common graphical representations of a recurrent neural network, which is being applied to process an input vec-
tor xi, that has multiple observations over time. This diagram is different from the networks illustrated previously, in that
values input to the network appear at the bottom of the diagram. The narrow vertical arrows show the input vector xi being
processed by the network, which then returns an output,O. The wide arrow shows that the hidden layers of the network are
connected to each other. The graph on the left shows a folded form of the RNN, and the graph on the right shows the same
RNN unfolded over time, with the observation at time t is denoted as xt . At each step, the parameter values are shared. Note
that the inputs to the RNN can be multi-dimensional, the actual RNN can have many layers, and the outputs can be fed into
other types of network architectures.

provided by the other entries. Examples of these types of data are time series, natural language
and video data. The problem of maintaining the information gained about the context from pre-
vious data points is addressed by recurrent neural networks (RNNs), which can be imagined as
feed-forward networks that share the state of the hidden variables from one data point to another.
Whereas feed-forward networks map each input to a single output, RNNs map the entire history
of inputs to a single output (Graves, 2012) and thus can build a so-called “memory” of the data
points that have been seen.

A common simplifying assumption of actuarial and statistical models is the Markov assump-
tion, which can be stated simply as saying that once the most recent time step of the data or
parameters is known, the previous data points and parameters have no further bearing on the
model. RNNs allow this assumption to be relaxed (Goldberg, 2017) by storing the parts of the
history, shown to be relevant, within the network’s internal memory.

Since RNNs are designed for the processing of observations that occur over time, we use a
somewhat different notation in this section than previously. Here, we consider that the columns of
the feature matrix X consist of observations of the same variable at different times, t ∈ [1, ..., T].
Thus, we represent the ith example of the time series with observation at time t as Xi,t and the
output at each time step that the network is trained to reproduce is yi,t. Similarly, since RNNs
process observations over time, a somewhat different way of representing these graphically net-
works is required. The two common forms of representing an RNN are shown in Figure 7, with
the so-called “folded” representation on the left of the figure, and the “unfolded” (over time) rep-
resentation on the right. The diagram shows that RNNs contain a feedback loop that allows the
value of the hidden layer of the network at one point in time to be fed to the network at the next
point in time. The figure shows a simple RNN that was proposed by Elman (1990). It should be
noted that this figure is a simplification and multi-dimensional inputs into and out of the network
are possible, as well as multiple RNN layers stacked on top of each other. Also, nothing precludes
using the output of another neural network as the input into an RNN or vice versa, for example,
LeCun et al. (2015: Figure 3) provide an example of an image captioning network which takes,
as an input to the RNN, the output of a CNN and produces, as an output of the RNN, image
captions.

When one views RNNs in the “unfolded” representation, it can be seen that RNNs are a form
of deep neural network. Whereas the deep networks discussed to this point use multiple hidden
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layers to process a single observation, here multiple hidden layers are used to process a sequence
of observations, in other words, these networks are deep when the time dimension of the net-
work is considered (which is different from the other networks discussed above) (Goldberg, 2017).
For more discussion of the concept of depth in RNNs, see Pascanu et al. (2013). To train
RNNs, a modified version of the backpropagation algorithm is used. Recalling the discussion in
Section 4.2, gradient descent is usually applied to train neural networks, with the gradients
calculated using the backpropagation algorithm. In the case of RNNs, the gradients are estimated
over the time steps of the network using the so-called backpropagation over time (Werbos, 1988).

Although RNNs are conceptually attractive, they proved difficult to train in practice due to the
problem of either vanishing, or exploding, gradients (i.e. when applying backpropagation to derive
the adjustments to the parameters of the network, the numerical values that are calculated do not
provide a suitable basis for training the model) (LeCun et al., 2015). Intuitively, backpropagation
is similar to the chain rule in calculus, and by the time the chain rule calculations reach the earliest
(in time) nodes of the RNN, the weight matrix that defines the feedback loop shown in Figure 7
has been multiplied together so many times that the gradients are no longer accurate.

Other, more complicated, architectures that do not suffer from the vanishing or exploding gra-
dient problem are the LSTM (Hochreiter & Schmidhuber, 1997) and gated recurrent unit (GRU)
(Chung et al., 2015) designs. An intuitive explanation of these so-called “gated” designs is that,
instead of allowing the hidden state automatically to be updated at each time step, updates of the
hidden state should occur only when required (as learned by the gating mechanism of the net-
works from the data), creating a more stable feedback loop in the hidden state cells than a simple
RNN. The influence of earlier inputs to the network is therefore maintained over time, thus miti-
gating the training issues encountered with simple RNNs (Goodfellow et al., 2016; Graves, 2012).
For more mathematical details of LSTMs and GRUs and explanation of how these architectures
solve the vanishing/exploding gradient problem, the reader is referred to Goodfellow et al. (2016:
Section 10.10). These details may appear complicated, and perhaps even somewhat fanciful on a
first reading, however, key is that LSTM and GRU cells, which are useful for capturing long-range
dependencies in data, can easily be incorporated into a network design using modern software,
such as Keras.

RNNs have achieved impressive success in many specialised tasks in NLP (Goldberg, 2017),
machine translation (Sutskever et al., 2014; Wu et al., 2016), speech recognition (Graves et al.,
2013) and, perhaps most interestingly for actuaries, time series forecasting (Makridakis et al.,
2018), in combination with exponential smoothing.

4.3.4. Embeddings
Machine learning algorithms generally rely on the one-hot encoding procedure, which is often
called dummy coding by statisticians, when dealingwith categorical data. In this encoding scheme,
vectors of categorical features are expanded into a set of indicator variables, all of which are set
to zero, except for the one indicator variable relating to the category appearing in each row of the
feature matrix. When applied to many categories, one-hot encoding produces a high-dimensional
feature matrix that is sparse (i.e. many of the entries are zero), leading to potential difficul-
ties in fitting a model as there might not be enough data to derive credible estimates for each
category. Modelling categorical data with high cardinality (i.e. when the number of possible cat-
egories is very large) is a task that has been addressed in detail in actuarial science within the
framework of credibility theory; see, for example, Bühlmann & Gisler (2006) for a detailed discus-
sion of the Bühlmann–Straub credibility model. Credibility models do not rely exclusively on the
observations available for each category, but rather produce pooled estimates that lie between the
overall mean and the observation for each category, thus sharing information across categories.
In statistics, GLMMs are an extension of standard GLMs to include variables that are not mod-
elled solely on the basis of the observed data, but rather using distributional assumptions that
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lead to similar formulae as credibility theory (for the interested reader, Gelman & Hill (2007) is
an easy introduction to GLMMs and Chapter 12 of this book contains discussions that are highly
reminiscent of credibility theory).

The problem of modelling high-dimensional and sparse data is particularly acute in NLP
(Bengio et al., 2003), where words in a corpus of text are often represented by sparse integer-valued
features (i.e. one-hot encoding) or more complicated features called n-grams which are essentially
small phrases of n words that are grouped together (e.g. in the sentence “The quick brown fox
jumps over the lazy dog,” the first 3-gram is the phrase “The quick brown”). N-grams use the con-
text of words appearing together in sentences to help reduce the dimensionality of the language
modelling problem but suffer from two main problems. Firstly, the contexts used are often short
(i.e. 1-gram, i.e. one-hot encoding, or 2-gram schemes are often used), and the similarity between
words is not accounted for (i.e. the feature vectors used in the models are orthogonal to each
other by design). The insight of Bengio et al. (2003) to solve these problems is that language data
can successfully be encoded into low-dimensional, dense numerical vectors which can be trained
using neural networks. These vectors are trained to be close to each other (in the vector space) if
the words are similar and distant if they are not, thus, the model of the language data learns to
associate correlated words and “gains statistical strength by sharing parameters” (Goldberg, 2016:
351) which is accomplished by allowing the model to treat words with similar features in a com-
mon way (Goodfellow et al., 2016). These concepts, on which many NLP applications are based,
are similar to the idea of actuarial credibility methods that share information across similar cat-
egories, as mentioned above. In NLP, embeddings are often pre-trained on a large corpus of text
and then applied to specific tasks, and many researchers have made pre-trained embeddings freely
available in the Internet.

Embeddings have been used in wider contexts than NLP, two examples of which are De
Brébisson et al. (2015) and Guo & Berkhahn (2016). In the context of predicting taxi destina-
tions based on a number of categorical variables and global positioning system data, De Brébisson
et al. (2015) build a network with separate embeddings for each categorical variable, which was
the winning solution in the Kaggle Taxi Service Prediction problem. Guo & Berkhahn (2016) dis-
cuss embeddings in the context of the Kaggle Rossmann Sale Prediction competition. Their model
consists of several embeddings of categorical variables concatenated together into a single layer,
on top of which were placed two fully connected layers. The model was trained to predict daily
sales for each Rossmann store, and the model was tested on two versions of the dataset – one shuf-
fled, and one unshuffled, so that more recent entries appeared towards the end of the dataset. On
the shuffled dataset, using embedding layers did not boost the performance of the neural network
significantly compared to using one-hot encoding, whereas on the unshuffled dataset, the embed-
dings provided a relatively small boost in performance. The trained embeddings were then used in
other shallow classifiers, and, compared to the one-hot encoded features, provided a major boost
in performance, that is, the out-performance of the deep networks was due to the learned feature
representation for the categorical data.

Goldberg (2016: Section 4.6) provides some intuition why an embedding layer might not result
in better performance in a neural network. When categorical features have been one-hot encoded,
the first layer of the neural network will learn a representation of all of the features together that
is comparable to an embedding layer, thus, the differences between the approaches are potentially
more subtle than would initially appear. The key difference seems to be that embedding layers
allow a dense representation to be learned separately for each feature before being combined in
the neural network, and, along these lines, Guo & Berkhahn (2016) note that embedding layers
allow the network to learn the intrinsic properties of each feature as well as learning about the
output distribution.

Embeddings are often visualised using dimensionality reduction algorithms such as PCA or
t-SNE (Maaten & Hinton, 2008) and often reveal surprisingly intuitive properties of the learned
embeddings. Interesting examples of such a visualisation is Figure 2 inMikolov et al. (2013), which
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shows that the embedding layers have learned a semantic relationship relating capital cities to the
countries in which they are found and Figure 3 in Guo & Berkhahn (2016) which shows that the
embedding of store locations has learned a representation suggestive of the map of Germany (in
which the Rossmann stores are located).

5. Conclusions
This section has provided a summarised review of representation learning, deep neural networks
and their connection to AI, and specialised architectures for dealing with image, text and cat-
egorical data. At this point, we refer the reader back to Table 1, to consider what an enhanced
feature matrix for common actuarial problems, expressed as regression models, could potentially
comprise. Some examples of enhanced feature matrix are as follows.

• Using CNNs, image data can be easily incorporated into the actuarial modelling process if this
was considered to be predictive.

• Textual data, for example, description of risks or claims handlers’ notes, could be incorporated
into the pricing and reserving process using RNNs and word embeddings.

• Categorical data in actuarial models (e.g. brands of cars and product types) can be modelled
with embeddings, potentially enhancing predictive power.

Having introduced the key concepts of machine and deep learning in this paper, we refer the
reader to Part 2 in the companion paper which explores recent attempts to incorporate neural
networks into actuarial models.

Supplementary materials. To view supplementary material for this article, please visit https://doi.org/10.1017/
S1748499520000238
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