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Abstract

The Harihada–Chegendalai ophiolitic mélange, which is located between the Bainaimiao arc
and the North China Craton, holds significant clues regarding the tectonic setting of the
southern margin of the Central Asian Orogenic Belt. The ophiolitic mélange is mainly
composed of gabbroic and serpentinized ultramafic rocks. Here, zircon U–Pb dating, in situ
zircon Hf isotopic, whole-rock geochemical and in situmineral chemical data from the ophio-
litic mélange are reported. The zircons in the gabbroic rocks yielded concordia U–Pb ages
of 450–448Ma and exhibited slightly positive ϵHf(t) values (0.87–4.34). The geochemical char-
acteristics of the gabbroic rocks indicate that they were generated from a mantle wedge meta-
somatized by subduction-derived melts from sediments with continental crust contamination,
in a fore-arc tectonic setting. These rocks also experienced the accumulation of plagioclase. The
geochemical characteristics of the ultramafic rocks and their Cr-spinels indicate that they may
constitute part of residual mantle that has experienced a high degree of partial melting and has
interacted with fluids/melts released from the subducted slab in the same fore-arc tectonic set-
ting. The ophiolitic mélange may therefore have formed in this fore-arc tectonic setting, result-
ing from the northward subduction of the South Bainaimiao Ocean beneath the Bainaimiao arc
during Late Ordovician time, prior to the collision between the Bainaimiao arc and the North
China Craton during the Silurian to Carboniferous periods.

1. Introduction

The Central Asian Orogenic Belt (CAOB), located between the Siberian Craton to the north and
the North China and Tarim cratons to the south, is one of the largest accretionary orogenic belts
on Earth. It is thought to have evolved through the accretion of microcontinents, island arcs,
fore-arc and back-arc basins, ophiolites, oceanic seamounts and accretionary wedges (Fig. 1a;
Xiao et al. 2003, 2009; Windley et al. 2007; Kröner et al. 2010, 2014; Safonova, 2017; Safonova
et al. 2017; Furnes & Safonova, 2019). The Inner Mongolia–Daxinganling Orogenic Belt
(IMDOB) is the eastern extension of the CAOB within China; it is a key to understanding
the tectonic evolution of the northern margin of the North China Craton (NCC) (Miao
et al. 2008; Xu et al. 2015).

The Bainaimiao arc belt is located in the southern IMDOB; its tectonic affinity and early
Palaeozoic tectonic evolution remain controversial (Xiao et al. 2003; Jian et al. 2008; Xu
et al. 2013; Zhang et al. 2014). Some researchers regard the Bainaimiao arc as an active
continental margin formed by the southward subduction of the Palaeo-Asian Ocean beneath
the NCC during early Palaeozoic time (Xiao et al. 2003; Xu et al. 2013; Li et al. 2016; Wu
et al. 2016). Some researchers consider the Bainaimiao arc to be a Japan-style island arc (Hu
et al. 1990; Jia et al. 2003). Recently, some researchers argued that the Bainaimiao arc is an exotic
terrane that collided with the NCC after the northward subduction of the southern Bainaimiao
Ocean (Zhang et al. 2014; Eizenhöfer & Zhao, 2018; Zhou et al. 2018a; Ma et al. 2019; Liu
et al. 2020).

Situated between the Bainaimiao arc and the NCC, the Harihada–Chegendalai area is impor-
tant for understanding the relationship between the Bainaimiao arc and the NCC. Here, this
study integrates geochronological, petrological and geochemical analyses of the gabbroic and
ultramafic rocks from the Harihada–Chegendalai area in order to (1) constrain the age of
the gabbroic rocks, (2) deduce the magma source and magmatic evolution of the gabbroic
and ultramafic rocks, and (3) reveal the tectonic setting and the implications for the relationship
between the Bainaimiao arc and the NCC.

https://doi.org/10.1017/S0016756821000662 Published online by Cambridge University Press

https://www.cambridge.org/geo
https://doi.org/10.1017/S0016756821000662
https://doi.org/10.1017/S0016756821000662
mailto:zczhang@pku.edu.cn
https://orcid.org/0000-0002-3679-4020
https://doi.org/10.1017/S0016756821000662


2. Geological background and sample descriptions

The IMDOB can be divided into the Uliastai continental margin, the
Erenhot–Hegenshan ophiolite accretionary belt, the Northern
Orogenic Belt, the Solonker Suture Zone and the Southern
Orogenic Belt from north to south (Fig. 1b; Xiao et al. 2003; Xu et al.
2013; Zhang, Z. C. et al. 2015, 2017; Ji et al. 2018). The Southern

Orogenic Belt is mainly composed of the Ondor Sum subduction–
accretion complex and the Bainaimiao arc belt from north to south
(Xiao et al. 2003; Jian et al. 2008; Xu et al. 2013).

The early to middle Palaeozoic Ondor Sum subduction–
accretion complex is mainly composed of turbidites, ophiolitic
mélanges, blueschists, plutons, metavolcanics, metasandstones
and limestones; it is characterized by S-dipping foliations (Shao,

(b)(a)

(c)

Fig. 1. (Colour online) (a) Simplified tectonic framework of the central-eastern CAOB (modified after Jahn, 2004; Zhang et al. 2015). (b) Sketch geological map of the Inner
Mongolia – Northern China tract (modified after Chen et al. 2015). Abbreviations: SOB – Southern Orogenic Belt; SSZ – Solonker Suture Zone; HB – Hunshandake block;
NOB – Northern Orogenic Belt; EHOB – Erenhot–Hegenshan ophiolite belt; UCM – Uliastai continental margin. (c) Geological map of the Damaoqi area (modified after
Zhang et al. 2014) and geological section of the studied Harihada–Chegendalai ophiolitic mélange.
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1989, 1991; Hu et al. 1990; Tang, 1992; Jian et al. 2008; Xu et al.
2013; Li et al. 2016; Wu et al. 2016; Zhang et al. 2018). The
Ondor Sum subduction–accretion complex is unconformably
overlain by Carboniferous limestones and Permian volcanic-sedi-
mentary rocks (BGMRIM, 1991; Zhou et al. 2018b). It has been
suggested that theOndor SumGroupwas formed by the southward
subduction of the Palaeo-Asian Ocean during early Palaeozoic
time (Zhou et al. 2018b). Blueschist-facies quartzite mylonites have
exhibited phengite 40Ar–39Ar plateau ages of 453.2 ± 1.8Ma and
449.4± 1.8Ma (De Jong et al. 2006), and glaucophanes from a blues-
chist have yielded 39Ar–40Ar ages of 446 ± 15Ma and 426 ± 15Ma
(Tang & Zhang, 1991). The plutons consist of minor Cambrian–
Ordovician granitoids and Permian diorites, quartz diorites
and granodiorites (BGMRIM, 1991; Xiao et al. 2003; Zhou
et al. 2018b).

The Bainaimiao arc belt is bounded by the Ondor Sum
subduction–accretion complex to the north, where the boundary
comprises the Xar Moron fault, and is separated from the
NCC by the E–W-trending Chifeng–Bayan Obo fault (Xiao
et al. 2003; Jian et al. 2008). The arc belt mainly consists of
greenschist-facies–low-amphibolite-facies metasedimentary
rocks, volcanic rocks and intermediate-acid intrusive rocks.
These arc-related rocks are unconformably overlain by
Silurian flysch deposits (Xuniwusu Formation) and Devonian
continental molasse or quasi-molasse deposits (Xibiehe
Formation; BGMRIM, 1991; Zhang et al. 2010; Zhang et al.
2014; Zhang, Z. C. et al. 2017; Zhou et al. 2018b; Fig. 1c).

The basement of the NCC is unconformably overlain by
Mesoproterozoic rift-related volcanic rocks and lower Palaeozoic
passive margin sediments. It consists of highly metamorphosed
Archaean and Palaeoproterozoic rocks, including tonalite–trondh-
jemite–granodiorite rocks, high-K granite and diorite; it is intruded
by late Palaeozoic plutons (Xiao et al. 2003; Zhao et al. 2003; Zhang
et al. 2004, 2007, 2009, 2014; Zhai & Santosh, 2011; Ma et al. 2013,
2014; Wu et al. 2016).

The studied area is located at Harihada–Chegendalai in
northeastern Damaoqi, north of the Chifeng–Bayan Obo fault.
It lies between the NCC and the Bainaimiao arc belt (Fig. 1c).
The Harihada–Chegendalai ophiolitic mélange is 15 km long
and is composed of ophiolitic peridotites, pyroxene peridotites,
gabbros, deep-water cherts and Ordovician–Silurian muscovite
leptynites, marbles, quartzites, mica schists and plagioclase
amphibole schists (Shao, 1989, 1991; Tang, 1992; Zhang et al.
2014).

Six gabbroic samples (NM18-21, NM18-40, NM18-41, NM18-
44, NM18-45 and NM18-46) and nine ultramafic samples
(NM18-20, NM18-32, NM18-33, NM18-34, NM18-35, NM18-
36, NM18-38, NM18-43 and NM18-47) were collected from the
Harihada–Chegendalai ophiolitic mélange (Fig. 1c). These
gabbroic and ultramafic rocks were in fault contact with each
other, and were also in fault contact with mica-quartz schists
(Fig. 2a). The gabbroic samples consist of altered plagioclase
(30–45 %), hornblende (25–55%), epidote (5–10%), chlorite
(3–8 %), quartz (2–4 %) and opaque minerals (5–10%; Fig. 2b).
Sample NM18-20 is a harzburgite and contains orthopyroxene
(35–40 %), serpentine (55–65 %) and chromite (5–10 %;
Fig. 2c). The other ultramafic samples contain serpentine
(85–90 %), carbonate minerals (1–10 %), chromite (3–7 %)
and spinel (1–3 %; Fig. 2d). Although the degree of serpentini-
zation is high, bastites with orthopyroxene pseudomorphs can
be found, and the ultramafic protoliths were deduced to be
harzburgites (Fig. 2d).

3. Analytical methods

3.a. Zircon U–Pb dating

Zircon grains were separated from gabbroic rock samples using
conventional heavy liquid and magnetic separation techniques.
They were manually picked under a binocular microscope.
Randomly selected grains were mounted using epoxy resin and
polished to expose their interiors. Cathodoluminescence (CL)
images were obtained using a FEI Quanta 200F scanning electron
microscope (SEM) at the Electron Microscopy Laboratory of
Peking University. This permitted observation of the internal
structures of the zircon grains. The U–Th–Pb isotope analyses
were guided by reflected and transmitted light micrographs and
CL images.

Samples NM18-21, NM18-40 and NM18-46 were chosen for
zircon U–Pb dating. U–Pb dating and trace-element analyses of
zircons were performed synchronously using a laser ablation
inductively coupled plasma mass spectrometer (LA-ICP-MS) at
the Key Laboratory of Orogenic Belts and Crustal Evolution,
Peking University. Zircon 91500 was used as the external standard
for age calibration, and the NIST 610 silicate glass was applied as an
external standard to calculate concentrations. 29Si was the internal
standard. Isotopic ratios, apparent ages and concentrations were
calculated using GLITTER software (ver. 4.4.2, Macquarie
University). The reported ages were calculated and concordia dia-
grams were made using Isoplot (version 4.15; Ludwig, 2003).
Details of the analytical methods can be found in Tang et al. (2014).

3.b. In situ zircon Hf isotope analyses

Samples NM18-21, NM18-40 and NM18-46 were chosen for in
situ zircon Hf isotopic analyses. Zircon Hf isotopic analyses were
carried out on a Coherent Geolas HD laser-ablation system,
attached to a Nu Plasma II multi-collector inductively coupled
plasma mass spectrometer (MC-ICP-MS) at the Key Laboratory
of Orogenic Belts and Crustal Evolution, Peking University.
Readings were taken from the same zircons used in U–Pb dating,
but different sites were used. A beam diameter of 60 μmand a pulse
rate of 4 Hz were used during laser ablation with a laser beam
energy of 10 J cm−2. Standards 91500, Penglai and Plešovice were
used to calibrate the results.

The decay constant of 176Lu is 1.867 × 10−11 year−1 (Söderlund
et al. 2004). The present-day 176Hf/177Hf and 176Lu/177Hf ratios of
chondrite are 0.282785 and 0.0336, respectively (Bouvier et al.
2008). Depleted mantle reservoir has a present-day 176Lu/177Hf
ratio of 0.0384 and a 176Hf/177Hf ratio of 0.28325 (Griffin et al.
2004). The Hf depleted mantle model ages (TDM-Hf) were calcu-
lated by using the measured 176Lu/177Hf and 176Hf/177Hf ratios
of the samples and the present-day 176Lu/177Hf and 176Hf/177Hf
ratios for the depleted mantle.

3.c. Whole-rock geochemical analyses

Whole-rock samples were crushed and milled to ~200 mesh.
Major- and trace-element compositions of the samples were
obtained from the Key Laboratory of Orogenic Belts and Crustal
Evolution, Peking University, Beijing. The range of analytical
uncertainty was monitored by analyses of Chinese national stan-
dard samples GSR-2 and GSR-3. Major oxides were analysed
through X-ray fluorescence using a Jarrell-AshICAP 9000SP spec-
trometer on fused-glass discs. Loss on ignition (LOI) was deter-
mined using the gravimetric method. After acid digestion of
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whole-rock powders (50 mg) in Teflon bombs, trace elements were
analysed by VGAXIOM MC-ICP-MS.

3.d. Mineral chemical analyses

Photos were taken using an environmental SEM under backscat-
tered electron mode; the compositions of minerals were analysed
using a JXA-8230 electron microprobe at Peking University. The
operating conditions were a 15 kV accelerating voltage and a 10 nA
beam current. The beam diameter was set to 1–2 μm. The PRZ cor-
rection method was used for standardization. The detailed analyti-
cal method can be found in Li et al. (2018).

4. Analytical results

4.a. Zircon U–Pb dating

Gabbroic samples (NM18-21, NM18-40 and NM18-46) were
dated in this study. The results of LA-ICP-MS zircon U–Pb dating
are listed in Table 1. Zircon grains from the three samples were
colourless, stubby to elongate, euhedral to subhedral, and 160–
320 μm in length with aspect ratios of 1.2–4. CL imaging revealed
that they have straight and wide oscillatory growth bands (Fig. 3).

Zircons from sample NM18-21 exhibited varying U (76–218
ppm) and Th (35–113 ppm) concentrations with Th/U ratios of
0.39–0.85. All 30 zircons were concordant or nearly concordant,
yielding apparent 206Pb–238U ages of 439–459Ma, except one spot
that exhibited an apparent 206Pb–238U age of 476 Ma; they formed a
concordia age of 450 ± 2Ma (Fig. 4a).

Zircons from sample NM18-40 showed U concentrations from
86 to 276 ppm, Th concentrations from 42 to 213 ppm and Th/U
ratios from 0.44 to 0.89. All 30 zircons were concordant or nearly
concordant, with apparent ages ranging from 437 to 460Ma. They
yielded a concordia age of 449 ± 1Ma (Fig. 4b).

Zircons from sample NM18-46 displayed Th contents,
U contents and Th/U ratios of 27–136 ppm, 62–293 ppm and
0.34–0.75, respectively. All 30 zircons were concordant or nearly
concordant. Their apparent 206Pb–238U ages ranged from 436 to
462Ma, forming a concordia age of 448 ± 1Ma (Fig. 4c).

4.b. Zircon Lu–Hf isotopic data

Lu–Hf isotopic data of 30 zircons from samples NM18-21, NM18-
40 and NM18-46 are listed in Table 2.

Ten zircon grains from sample NM18-21 yielded 176Hf/177Hf
ratios of 0.282540–0.282601, 176Lu/177Hf ratios of 0.000459–
0.001069 and ϵHf(t) values of 1.15–3.27, corresponding to TDM-Hf

ages of 915 to 1002Ma. Ten zircon grains from sample NM18-40
exhibited 176Hf/177Hf ratios of 0.282533–0.282608 and 176Lu/177Hf
ratios of 0.000482–0.001444. The ϵHf(t) values are positive, ranging
from 1.01 to 3.49, corresponding to a TDM-Hf range of from 901 to
1009Ma. Ten zircons from sample NM18-46 showed 176Hf/177Hf
ratios of 0.282531–0.282631 and 176Lu/177Hf ratios of 0.000295–
0.001076. The ϵHf(t) values for these zircons are 0.87–4.34, corre-
sponding to TDM-Hf ages of 872 to 1005Ma. The correlations
between the ϵHf(t) values and ages of these zircon grains are pre-
sented in Figure 4d.

(a)

Ultramafic rock Gabbroic rock

300μm

Opx

Serp

(c)

500μm

500μm

Hb

Pl

(b)

(d)

Bas

Fig. 2. (Colour online) (a) Contact relationship between gabbroic rocks and ultramafic rocks. (b) Gabbroic rock. (c) Serpentinized harzburgite. (d) Bastites with orthopyroxene
pseudomorphs in a serpentinized peridotite. Abbreviations: Pl – plagioclase; Hb – hornblende; Opx – orthopyroxene; Serp – serpentine; Bas – bastite.
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Table 1. LA-ICP-MS zircon U–Pb data for gabbroic rocks in Harihada–Chegendalai, northeastern Damaoqi

Grain No.

Th U

Th/U

Isotopic ratios Age (Ma)

Disc.a(ppm) (ppm) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb–206Pb 1σ 207Pb–235U 1σ 206Pb–238U 1σ

NM18-21

NM18-21-01 63.83 100.25 0.64 0.0560 0.0016 0.5595 0.0156 0.0724 0.0008 453 64 451 10 451 5 0.09

NM18-21-02 91.57 166.69 0.55 0.0574 0.0013 0.5818 0.0126 0.0736 0.0008 506 50 466 8 458 5 1.77

NM18-21-03 35.28 77.70 0.45 0.0552 0.0019 0.5449 0.0182 0.0716 0.0009 422 75 442 12 446 5 −0.85

NM18-21-04 72.88 121.57 0.60 0.0537 0.0015 0.5335 0.0143 0.0721 0.0008 357 62 434 9 449 5 −3.25

NM18-21-05 77.22 133.88 0.58 0.0564 0.0015 0.5481 0.0139 0.0705 0.0008 466 59 444 9 439 5 1.00

NM18-21-06 88.33 140.35 0.63 0.0562 0.0015 0.5463 0.0137 0.0706 0.0008 458 57 443 9 440 5 0.68

NM18-21-07 72.34 117.08 0.62 0.0579 0.0016 0.5737 0.0153 0.0718 0.0008 527 60 460 10 447 5 2.95

NM18-21-08 106.92 202.60 0.53 0.0552 0.0012 0.5429 0.0113 0.0713 0.0007 421 48 440 7 444 4 −0.83

NM18-21-09 54.49 84.81 0.64 0.0554 0.0018 0.5504 0.0176 0.0720 0.0009 429 72 445 12 448 5 −0.69

NM18-21-10 92.44 184.50 0.50 0.0547 0.0013 0.5366 0.0118 0.0711 0.0007 401 51 436 8 443 4 −1.49

NM18-21-11 48.08 124.25 0.39 0.0549 0.0015 0.5526 0.0143 0.0731 0.0008 407 59 447 9 455 5 −1.72

NM18-21-12 73.77 134.93 0.55 0.0533 0.0014 0.5415 0.0138 0.0737 0.0008 342 59 439 9 458 5 −4.10

NM18-21-13 69.46 118.03 0.59 0.0585 0.0017 0.6170 0.0169 0.0766 0.0009 547 62 488 11 476 5 2.61

NM18-21-14 38.64 82.49 0.47 0.0576 0.0019 0.5757 0.0184 0.0725 0.0009 513 72 462 12 452 5 2.26

NM18-21-15 113.18 211.75 0.53 0.0545 0.0012 0.5436 0.0113 0.0724 0.0007 391 49 441 7 450 4 −2.13

NM18-21-16 102.56 120.60 0.85 0.0550 0.0015 0.5597 0.0149 0.0738 0.0008 413 60 451 10 459 5 −1.66

NM18-21-17 99.72 217.95 0.46 0.0536 0.0012 0.5453 0.0113 0.0737 0.0007 356 49 442 7 459 4 −3.64

NM18-21-18 89.58 149.37 0.60 0.0560 0.0014 0.5588 0.0134 0.0723 0.0008 454 55 451 9 450 5 0.13

NM18-21-19 50.58 76.25 0.66 0.0565 0.0020 0.5584 0.0188 0.0717 0.0009 470 76 451 12 447 5 0.87

NM18-21-20 55.62 91.29 0.61 0.0549 0.0020 0.5420 0.0190 0.0716 0.0009 409 79 440 13 446 6 −1.35

NM18-21-21 83.13 151.90 0.55 0.0570 0.0014 0.5628 0.0130 0.0716 0.0008 491 54 453 8 446 5 1.66

NM18-21-22 70.29 119.10 0.59 0.0548 0.0015 0.5453 0.0147 0.0722 0.0008 404 61 442 10 449 5 −1.65

NM18-21-23 71.62 112.94 0.63 0.0572 0.0016 0.5668 0.0155 0.0718 0.0008 500 63 456 10 447 5 1.95

NM18-21-24 63.42 112.34 0.56 0.0549 0.0016 0.5522 0.0155 0.0730 0.0008 408 64 446 10 454 5 −1.67

NM18-21-25 87.63 139.36 0.63 0.0547 0.0015 0.5457 0.0138 0.0723 0.0008 402 58 442 9 450 5 −1.73

NM18-21-26 51.17 84.84 0.60 0.0565 0.0019 0.5654 0.0179 0.0726 0.0009 470 72 455 12 452 5 0.71

NM18-21-27 63.27 98.61 0.64 0.0558 0.0017 0.5585 0.0165 0.0726 0.0009 446 67 451 11 452 5 −0.20

NM18-21-28 46.4 92.26 0.50 0.0556 0.0018 0.5527 0.0173 0.0721 0.0009 436 71 447 11 449 5 −0.47

NM18-21-29 63.82 104.11 0.61 0.0557 0.0017 0.5538 0.0164 0.0721 0.0008 442 67 448 11 449 5 −0.25

NM18-21-30 81.94 139.84 0.59 0.0558 0.0015 0.5512 0.0137 0.0716 0.0008 445 57 446 9 446 5 0.00

(Continued)
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Table 1. (Continued )

NM18-40

NM18-40-01 69.62 111.86 0.62 0.0550 0.0016 0.5546 0.0152 0.0732 0.0008 411 62 448 10 455 5 −1.60

NM18-40-02 113.95 146.88 0.78 0.0551 0.0014 0.5374 0.0132 0.0707 0.0008 416 56 437 9 441 5 −0.89

NM18-40-03 54.11 86.21 0.63 0.0554 0.0019 0.5412 0.0177 0.0708 0.0009 430 74 439 12 441 5 −0.41

NM18-40-04 140.29 181.18 0.77 0.0555 0.0013 0.5508 0.0123 0.0720 0.0008 431 51 446 8 448 5 −0.62

NM18-40-05 116.31 155.69 0.75 0.0561 0.0014 0.5542 0.0131 0.0717 0.0008 456 54 448 9 446 5 0.36

NM18-40-06 124.63 142.45 0.87 0.0547 0.0015 0.5294 0.0133 0.0702 0.0008 400 59 431 9 437 5 −1.33

NM18-40-07 70.70 131.69 0.54 0.0574 0.0015 0.5787 0.0143 0.0731 0.0008 508 57 464 9 455 5 1.96

NM18-40-08 73.31 117.39 0.62 0.0556 0.0016 0.5491 0.0146 0.0716 0.0008 437 61 444 10 446 5 −0.34

NM18-40-09 133.51 150.28 0.89 0.0562 0.0013 0.5716 0.0127 0.0738 0.0008 459 51 459 8 459 5 −0.02

NM18-40-10 180.16 240.71 0.75 0.0563 0.0012 0.5686 0.0111 0.0732 0.0007 465 46 457 7 456 4 0.35

NM18-40-11 83.07 112.10 0.74 0.0562 0.0017 0.5505 0.0156 0.0711 0.0008 459 65 445 10 443 5 0.63

NM18-40-12 63.47 109.21 0.58 0.0545 0.0016 0.5432 0.0154 0.0723 0.0008 391 65 441 10 450 5 −2.11

NM18-40-13 84.82 146.06 0.58 0.0551 0.0014 0.5553 0.0136 0.0731 0.0008 418 56 448 9 455 5 −1.34

NM18-40-14 86.04 147.74 0.58 0.0565 0.0014 0.5726 0.0138 0.0736 0.0008 470 56 460 9 458 5 0.48

NM18-40-15 161.36 223.24 0.72 0.0569 0.0012 0.5667 0.0114 0.0723 0.0007 486 47 456 7 450 4 1.33

NM18-40-16 108.24 185.00 0.59 0.0557 0.0013 0.5609 0.0120 0.0731 0.0008 439 50 452 8 455 5 −0.59

NM18-40-17 75.58 130.68 0.58 0.0542 0.0015 0.5391 0.0142 0.0722 0.0008 378 61 438 9 449 5 −2.54

NM18-40-18 82.13 137.48 0.60 0.059 0.0015 0.5809 0.0144 0.0715 0.0008 565 56 465 9 445 5 4.49

NM18-40-19 207.30 275.70 0.75 0.0552 0.0011 0.5631 0.0106 0.0740 0.0007 421 44 454 7 460 4 −1.41

NM18-40-20 119.99 149.66 0.80 0.0574 0.0014 0.5762 0.0135 0.0728 0.0008 506 54 462 9 453 5 1.94

NM18-40-21 109.13 201.85 0.54 0.0575 0.0013 0.5749 0.0119 0.0725 0.0008 511 48 461 8 451 4 2.22

NM18-40-22 114.39 135.54 0.84 0.0559 0.0015 0.5526 0.0140 0.0717 0.0008 450 58 447 9 446 5 0.13

NM18-40-23 78.30 153.17 0.51 0.0551 0.0014 0.5495 0.0134 0.0723 0.0008 418 56 445 9 450 5 −1.18

NM18-40-24 41.86 95.15 0.44 0.0576 0.0019 0.5655 0.0177 0.0713 0.0009 513 70 455 11 444 5 2.57

NM18-40-25 144.74 186.79 0.77 0.0554 0.0013 0.5503 0.0120 0.0720 0.0008 429 50 445 8 448 4 −0.69

NM18-40-26 154.69 181.44 0.85 0.0549 0.0013 0.5429 0.0122 0.0717 0.0008 409 52 440 8 446 5 −1.34

NM18-40-27 164.84 220.80 0.75 0.0561 0.0012 0.5583 0.0116 0.0722 0.0007 457 48 450 8 449 4 0.29

NM18-40-28 137.95 170.38 0.81 0.0588 0.0015 0.5828 0.0141 0.0719 0.0008 560 55 466 9 448 5 4.18

NM18-40-29 105.34 141.26 0.75 0.0545 0.0015 0.5356 0.0136 0.0713 0.0008 391 59 436 9 444 5 −1.91

NM18-40-30 212.60 273.39 0.78 0.0561 0.0012 0.5584 0.0109 0.0722 0.0007 456 46 451 7 449 4 0.24

NM18-46

NM18-46-01 63.13 109.28 0.58 0.0562 0.0016 0.5746 0.0158 0.0742 0.0009 458 63 461 10 462 5 −0.13
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Table 1. (Continued )

Grain No.

Th U

Th/U

Isotopic ratios Age (Ma)

Disc.a(ppm) (ppm) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb–206Pb 1σ 207Pb–235U 1σ 206Pb–238U 1σ

NM18-46-02 97.10 212.22 0.46 0.0562 0.0013 0.5653 0.0125 0.0730 0.0008 459 51 455 8 454 5 0.15

NM18-46-03 118.12 292.50 0.40 0.0554 0.0012 0.5470 0.011 0.0716 0.0007 429 47 443 7 446 4 −0.63

NM18-46-04 87.12 130.42 0.67 0.0574 0.0016 0.5595 0.0151 0.0707 0.0008 506 62 451 10 441 5 2.41

NM18-46-05 41.40 71.98 0.58 0.0562 0.0022 0.5456 0.0202 0.0705 0.0009 459 84 442 13 439 6 0.75

NM18-46-06 46.44 111.25 0.42 0.0534 0.0017 0.5258 0.0157 0.0715 0.0009 344 69 429 10 445 5 −3.62

NM18-46-07 56.17 150.57 0.37 0.0572 0.0015 0.5630 0.0142 0.0715 0.0008 497 58 454 9 445 5 1.91

NM18-46-08 60.02 133.13 0.45 0.0557 0.0016 0.5507 0.0148 0.0717 0.0008 442 61 445 10 446 5 −0.18

NM18-46-09 72.70 130.21 0.56 0.0524 0.0015 0.5228 0.0147 0.0724 0.0009 301 66 427 10 451 5 −5.30

NM18-46-10 56.63 107.09 0.53 0.0571 0.0018 0.5712 0.0168 0.0726 0.0009 495 67 459 11 452 5 1.59

NM18-46-11 64.98 150.19 0.43 0.0566 0.0015 0.5597 0.0143 0.0718 0.0008 474 59 451 9 447 5 1.01

NM18-46-12 55.32 94.76 0.58 0.0567 0.0018 0.5704 0.0171 0.0730 0.0009 479 69 458 11 454 5 0.90

NM18-46-13 45.81 84.70 0.54 0.0525 0.0019 0.5203 0.0178 0.0720 0.0009 305 79 425 12 448 6 −5.04

NM18-46-14 71.44 130.69 0.55 0.0556 0.0016 0.5572 0.0151 0.0728 0.0008 435 62 450 10 453 5 −0.68

NM18-46-15 70.47 137.47 0.51 0.0552 0.0016 0.5483 0.0146 0.0721 0.0008 419 61 444 10 449 5 -1.07

NM18-46-16 59.78 174.24 0.34 0.0575 0.0015 0.5584 0.0136 0.0705 0.0008 510 56 451 9 439 5 2.64

NM18-46-17 38.53 73.50 0.52 0.0528 0.0021 0.5184 0.0196 0.0712 0.0010 320 86 424 13 444 6 −4.40

NM18-46-18 74.01 163.10 0.45 0.0539 0.0014 0.5444 0.0136 0.0733 0.0008 367 58 441 9 456 5 −3.18

NM18-46-19 40.14 85.90 0.47 0.0539 0.0019 0.5343 0.0183 0.0720 0.0009 365 78 435 12 448 6 −2.99

NM18-46-20 59.69 127.83 0.47 0.0554 0.0016 0.5347 0.0151 0.0700 0.0008 429 64 435 10 436 5 −0.25

NM18-46-21 33.25 71.85 0.46 0.0548 0.0022 0.5443 0.0207 0.0721 0.0010 402 85 441 14 449 6 −1.72

NM18-46-22 112.07 160.32 0.70 0.0573 0.0015 0.5570 0.0141 0.0706 0.0008 501 58 450 9 440 5 2.27

NM18-46-23 26.86 61.61 0.44 0.0532 0.0023 0.5372 0.0223 0.0733 0.0010 337 94 437 15 456 6 −4.26

NM18-46-24 136.45 186.55 0.73 0.0550 0.0014 0.5413 0.0131 0.0715 0.0008 411 56 439 9 445 5 −1.26

NM18-46-25 83.14 116.70 0.71 0.0540 0.0017 0.5252 0.0156 0.0706 0.0009 371 68 429 10 440 5 −2.48

NM18-46-26 60.15 103.24 0.58 0.0569 0.0018 0.5711 0.0170 0.0728 0.0009 488 68 459 11 453 5 1.28

NM18-46-27 77.41 148.01 0.52 0.0543 0.0015 0.5490 0.0145 0.0734 0.0009 384 61 444 10 456 5 −2.63

NM18-46-28 41.07 75.44 0.54 0.0558 0.0020 0.5626 0.0194 0.0732 0.0010 444 78 453 13 455 6 −0.42

NM18-46-29 89.88 211.02 0.43 0.0564 0.0014 0.5526 0.0132 0.0711 0.0008 469 56 447 9 443 5 0.95

NM18-46-30 67.54 90.08 0.75 0.0590 0.0023 0.5833 0.0222 0.0717 0.0011 568 84 467 14 446 6 4.53

aDisc. = ((207Pb–235U age)/(206Pb–238U age) – 1) × 100.
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Fig. 3. (Colour online) Cathodoluminescence images of representative zir-
con grains from (a) sample NM18-21, (b) sample NM18-40, and (c) sample
NM18-46. Red and blue circles represent U–Pb and Lu–Hf analysed spots,
respectively.
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Fig. 4. (Colour online) LA-ICP-MS zircon U–Pb concordia diagrams and weighted average ages of (a) sample NM18-21, (b) sample NM18-40, and (c) sample NM18-46 (the white
circles represent the concordia ages). (d) Correlations between ϵHf(t) values and ages of zircon grains of samples NM18-21, NM18-40 and NM18-46.
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4.c. Major and trace elements

The analytical results of themajor and trace elements of 15 samples
and standard samples GSR-2 and GSR-3 are listed in Table 3.

4.c.1. Major elements
The gabbroic samples yielded moderate SiO2 (50.36–55.57 wt %)
and K2O (0.93–1.42 wt %); low TiO2 (0.73–1.39 wt %);
and high Na2O (3.01–4.35 wt %), Al2O3 (16.36–21.11 wt %),
CaO (7.69–11.28 wt %), MgO (1.87–5.26 wt %) and total Fe2O3

(6.43–8.60 wt %); Mg no. values ranged from 0.36 to 0.56.

The major elements of the gabbroic rocks were recalculated on
an anhydrous basis before plotting. On the diagram of Zr/TiO2

versus Nb/Y, the gabbroic rocks mainly plotted in the field
of basalt (Fig. 5a). On the K2O (wt %) versus SiO2 (wt %) dia-
gram, six gabbroic samples plotted in the medium-K field
(Fig. 5b).

The compositions of the ultramafic samples showed ranges of
SiO2= 36.37–44.20 wt %, Al2O3= 1.36–3.54 wt %, total Fe2O3=
5.29–13.08 wt%, CaO= 0.03–3.34 wt%, MgO= 29.96–34.69 wt %,
K2O= 0.03 wt %, Na2O = 0.01–0.08 wt % and TiO2= 0.001–0.01
wt %. The major elements are recalculated based on anhydrous

Table 2. Lu–Hf isotopic data for gabbroic rocks in Harihada–Chegendalai, northeastern Damaoqi

Spot No. t (Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σm ϵHf(0) ϵHf(t) 2σ T(DM-Hf) (Ma) fLu/Hf

Sample NM18-21

18-21-01 451 0.025610 0.000678 0.282554 0.000052 −8.17 1.67 1.84 979 −0.98

18-21-04 449 0.030950 0.000740 0.282601 0.000050 −6.51 3.27 1.77 915 −0.98

18-21-07 447 0.046760 0.001069 0.282594 0.000058 −6.75 2.89 2.05 933 −0.97

18-21-16 459 0.023451 0.000552 0.282575 0.000058 −7.43 2.63 2.05 947 −0.98

18-21-18 450 0.037700 0.000843 0.282541 0.000051 −8.63 1.15 1.81 1002 −0.97

18-21-22 449 0.021270 0.000485 0.282584 0.000051 −7.11 2.76 1.81 933 −0.99

18-21-27 452 0.024640 0.000548 0.282540 0.000058 −8.66 1.23 2.05 995 −0.98

18-21-28 449 0.019110 0.000459 0.282545 0.000046 −8.49 1.38 1.63 986 −0.99

18-21-29 449 0.026110 0.000777 0.282599 0.000050 −6.58 3.19 1.77 919 −0.98

18-21-30 446 0.030200 0.000828 0.282560 0.000049 −7.96 1.73 1.73 975 −0.98

Sample NM18-40

18-40-01 455 0.022850 0.000562 0.282578 0.000063 −7.32 2.66 2.23 943 −0.98

18-40-06 437 0.052050 0.001204 0.282597 0.000063 −6.65 2.74 2.23 932 −0.96

18-40-09 459 0.060040 0.001444 0.282603 0.000066 −6.44 3.36 2.34 930 −0.96

18-40-13 455 0.028280 0.000679 0.282533 0.000058 −8.91 1.01 2.05 1009 −0.98

18-40-17 449 0.034890 0.000854 0.282565 0.000054 −7.78 1.97 1.91 968 −0.97

18-40-18 445 0.022940 0.000563 0.282608 0.000053 −6.26 3.49 1.88 901 −0.98

18-40-25 448 0.029060 0.000718 0.282574 0.000054 −7.46 2.31 1.91 952 −0.98

18-40-26 446 0.047390 0.001119 0.282600 0.000060 −6.54 3.07 2.12 926 −0.97

18-40-27 449 0.043680 0.001058 0.282552 0.000059 −8.24 1.45 2.09 992 −0.97

18-40-30 449 0.018702 0.000482 0.282567 0.000047 −7.71 2.16 1.66 956 −0.99

Sample NM18-46

18-46-05 439 0.019151 0.000518 0.282576 0.000070 −7.39 2.23 2.48 945 −0.98

18-46-10 452 0.017080 0.000461 0.282596 0.000057 −6.68 3.24 2.02 915 −0.99

18-46-11 447 0.010561 0.000295 0.282596 0.000055 −6.68 3.19 1.95 911 −0.99

18-46-13 448 0.026630 0.000670 0.282631 0.000056 −5.45 4.34 1.98 872 −0.98

18-46-14 453 0.017240 0.000454 0.282537 0.000057 −8.77 1.18 2.02 997 −0.99

18-46-16 439 0.038042 0.001076 0.282548 0.000068 −8.38 1.08 2.41 998 −0.97

18-46-19 448 0.015700 0.000449 0.282531 0.000056 −8.98 0.87 1.98 1005 −0.99

18-46-21 449 0.016660 0.000439 0.282599 0.000063 −6.58 3.29 2.23 911 −0.99

18-46-29 443 0.026330 0.000719 0.282550 0.000060 −8.31 1.34 2.12 986 −0.98

18-46-30 446 0.025770 0.000760 0.282597 0.000074 −6.65 3.07 2.62 921 −0.98
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Table 3. Major- (wt %) and trace-element (ppm) data for gabbroic and ultramafic rocks in Harihada–Chegendalai, northeastern Damaoqi

Rock
Type Gabbroic rocks Ultramafic rocks GSR

Sample
NM18-
21

NM18-
40

NM18-
41

NM18-
44

NM18-
45

NM18-
46

NM18-
20

NM18-
32

NM18-
33

NM18-
34

NM18-
35

NM18-
36

NM18-
38

NM18-
43

NM18-
47

GSR-2
(m)

GSR-2
(s)

GSR-3
(m) GSR-3(s)

SiO2 55.28 50.71 52.11 55.57 51.38 50.36 40.49 39.21 42.31 36.37 38.59 38.92 40.62 44.20 42.14 60.89 60.62 44.68 44.64

Al2O3 18.20 19.85 18.22 18.91 16.36 21.11 2.63 3.54 2.75 2.15 2.10 1.50 1.36 2.80 3.48 16.17 16.17 13.80 13.83

Fe2O3t 6.60 8.60 8.30 6.43 8.04 6.88 9.46 8.66 5.29 13.08 11.81 11.15 9.05 5.81 9.06 4.87 4.90 13.44 13.40

CaO 8.14 9.14 9.60 7.69 11.28 9.10 0.54 2.30 1.69 3.34 0.51 0.84 1.12 0.03 0.88 5.17 5.20 8.86 8.81

MgO 1.87 3.41 3.29 2.65 5.26 2.33 33.16 32.06 34.24 29.96 32.31 32.63 33.23 34.69 31.49 1.73 1.72 7.66 7.77

K2O 1.42 1.05 1.04 0.93 1.16 1.16 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 1.89 1.89 2.32 2.32

Na2O 4.15 3.01 3.27 4.35 3.16 4.14 0.03 0.08 0.04 0.01 0.03 0.01 0.01 0.08 0.07 3.86 3.86 3.36 3.38

MnO 0.12 0.14 0.12 0.11 0.14 0.11 0.09 0.05 0.05 0.10 0.08 0.08 0.06 0.18 0.12 0.08 0.08 0.17 0.17

TiO2 1.25 1.20 1.22 0.85 0.73 1.39 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.52 0.52 2.34 2.37

P2O5 0.44 0.50 0.51 0.33 0.16 0.57 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.23 0.24 0.95 0.95

LOI 2.34 2.25 2.13 2.02 2.20 2.68 13.20 13.75 13.30 14.69 14.19 14.46 14.12 11.83 12.42 4.44 4.44 2.24 2.24

Total 99.82 99.87 99.83 99.85 99.86 99.83 99.64 99.70 99.71 99.72 99.66 99.63 99.61 99.64 99.70 99.85 99.63 99.82 99.87

Mg no. 0.36 0.44 0.44 0.45 0.56 0.40 0.87 0.88 0.93 0.82 0.84 0.85 0.88 0.92 0.87 0.41 0.41 0.53 0.53

Li 7.79 8.84 8.87 9.07 14.90 9.18 21.80 1.33 1.03 0.84 8.87 9.18 5.48 1.18 1.00 18.78 18.30 10.04 9.50

Be 1.59 1.51 0.74 1.13 1.89 0.95 0.03 0.03 0.05 0.17 0.12 0.02 0.02 0.29 0.06 1.17 1.10 2.69 2.50

P 1578.00 1679.00 1699.00 1166.00 1001.00 1759.00 11.30 44.30 52.10 33.30 71.30 14.10 14.80 34.70 19.50 1062.71 1030.00 4609.79 4130.00

Sc 17.35 22.40 25.80 14.90 65.40 17.90 4.99 6.54 5.51 6.38 5.30 4.90 4.48 5.45 9.20 9.12 9.50 16.06 15.20

Ti 8739.00 8205.00 8114.00 5699.00 8893.00 8876.00 60.40 115.00 116.00 186.00 44.30 63.30 49.30 57.40 123.00 3328.17 3090.00 15813.60 14200.00

V 153.00 217.00 171.00 114.00 313.00 131.00 41.70 39.00 30.00 31.00 22.70 23.80 19.80 25.80 54.00 102.01 94.00 200.14 167.00

Mn 1042.00 1086.00 1013.00 829.00 1969.00 854.00 632.00 368.00 370.00 696.00 561.00 576.00 419.00 1373.00 841.00 598.25 604.00 1434.95 1310.00

Co 12.40 20.50 16.70 12.70 42.30 10.70 105.00 82.70 59.50 64.20 106.00 101.00 98.20 76.60 82.70 12.62 13.20 51.35 46.50

Cu 18.90 23.30 27.20 5.69 13.50 5.22 1.29 2.20 2.07 7.87 3.24 1.96 2.94 8.39 24.00 54.95 55.00 52.29 49.00

Ga 23.20 22.10 22.70 21.10 33.20 22.10 0.54 0.66 0.49 1.14 0.25 0.28 0.29 0.73 1.85 18.86 18.10 26.22 24.80

Rb 38.60 34.80 24.60 27.20 55.10 35.10 0.06 0.65 0.17 0.10 0.15 0.05 0.06 0.04 0.05 39.43 38.00 41.60 37.00

Sr 1038.00 1030.00 899.00 1077.00 1406.00 1339.00 13.90 27.30 18.30 34.60 7.82 28.40 14.40 2.15 7.84 821.13 790.00 1194.58 1100.00

Y 17.10 18.60 17.40 12.30 35.30 12.30 0.14 0.35 0.24 0.90 0.06 0.09 0.13 0.54 0.51 8.60 9.30 23.67 22.00

Zr 64.30 78.90 65.60 86.00 135.00 43.10 0.33 1.21 0.84 0.71 0.20 0.49 0.23 0.58 0.68 94.60 99.00 307.23 277.00

Nb 10.20 7.35 5.95 8.55 8.77 7.65 bdl bdl 0.00 0.34 bdl 0.04 bdl 0.13 0.09 5.71 6.80 75.64 68.00

Cs 2.05 1.81 1.31 1.32 1.55 1.07 0.05 0.04 0.07 0.05 0.04 0.04 0.04 0.01 0.04 1.74 2.30 0.45 0.70

Ba 592.00 592.00 501.00 495.00 611.00 425.00 2.20 16.80 7.55 2.10 7.41 10.20 15.10 1.93 0.75 1054.61 1020.00 551.29 527.00

La 28.80 26.30 24.70 21.10 32.00 22.80 0.02 0.15 0.14 0.63 0.14 0.20 0.16 0.40 0.18 20.85 22.00 55.99 56.00

Ce 58.20 54.00 44.00 42.20 67.60 43.20 0.04 0.25 0.25 1.39 0.30 0.38 0.30 0.94 0.41 40.56 40.00 111.61 105.00
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Table 3. (Continued )

Rock
Type Gabbroic rocks Ultramafic rocks GSR

Sample
NM18-
21

NM18-
40

NM18-
41

NM18-
44

NM18-
45

NM18-
46

NM18-
20

NM18-
32

NM18-
33

NM18-
34

NM18-
35

NM18-
36

NM18-
38

NM18-
43

NM18-
47

GSR-2
(m)

GSR-2
(s)

GSR-3
(m) GSR-3(s)

Pr 6.62 6.46 5.96 4.57 8.84 5.14 0.01 0.04 bdl 0.17 0.04 0.04 0.04 0.12 0.05 4.60 4.90 12.82 13.20

Nd 26.80 26.80 24.60 17.40 37.90 20.60 0.04 0.20 bdl 0.69 0.13 0.13 0.14 0.52 0.22 17.91 19.00 52.21 54.00

Sm 5.12 5.53 5.02 3.29 8.80 3.96 0.01 0.04 0.04 0.13 0.01 0.02 0.02 0.11 0.06 3.31 3.40 10.41 10.20

Eu 2.00 1.97 1.82 1.51 2.78 2.10 0.00 0.01 0.01 0.06 0.02 0.02 0.02 0.02 0.01 1.05 1.02 3.34 3.20

Gd 4.45 4.86 4.48 2.97 8.07 3.48 0.01 0.05 0.03 0.14 0.01 0.02 0.02 0.11 0.07 2.71 2.70 9.06 8.50

Tb 0.57 0.66 0.60 0.41 1.17 0.44 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.02 0.01 0.33 0.41 1.13 1.20

Dy 3.23 3.79 3.45 2.44 7.00 2.50 0.02 0.05 0.01 0.15 0.01 0.02 0.03 0.11 0.09 1.77 1.85 5.70 5.60

Ho 0.61 0.71 0.65 0.47 1.34 0.46 0.01 0.01 0.01 0.03 0.00 0.00 0.01 0.02 0.02 0.32 0.34 0.89 0.88

Er 1.69 1.98 1.83 1.37 3.76 1.27 0.02 0.04 0.03 0.10 0.01 0.01 0.02 0.06 0.06 0.84 0.85 2.01 2.00

Tm 0.23 0.27 0.25 0.20 0.52 0.17 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.01 0.01 0.11 0.15 0.23 0.28

Yb 1.43 1.71 1.58 1.30 3.32 1.06 0.02 0.04 0.03 0.12 0.01 0.01 0.02 0.05 0.07 0.72 0.89 1.23 1.50

Lu 0.22 0.26 0.24 0.21 0.51 0.16 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.01 0.01 0.11 0.12 0.17 0.19

Hf 1.72 2.20 1.80 2.39 3.87 1.17 0.01 0.03 0.03 0.03 0.01 0.02 0.01 0.01 0.02 2.65 2.90 6.46 6.50

Ta 0.66 0.56 0.46 0.74 0.56 0.48 bdl bdl 0.00 bdl bdl bdl bdl bdl 0.07 0.95 0.40 4.09 4.30

Pb 9.41 13.20 8.74 15.10 15.90 13.60 bdl bdl bdl 7.29 bdl bdl 1.02 5.33 4.81 7.39 11.30 10.42 7.00

Th 4.48 4.02 3.65 4.35 6.76 2.00 0.02 0.05 0.03 0.23 0.01 0.03 0.02 0.04 0.02 2.93 2.60 6.00 6.00

U 1.14 0.96 0.83 1.01 1.37 1.06 1.99 0.80 0.33 0.55 0.58 0.84 0.82 0.58 0.15 0.88 0.90 1.34 1.40

δEu 1.28 1.16 1.18 1.48 1.01 1.73 1.10 0.69 0.85 1.27 4.25 3.47 2.40 0.66 0.68 1.07 1.03 1.05 1.05

(La/Yb)N 14.43 10.99 11.21 11.61 6.91 15.43 0.60 2.70 3.60 3.61 14.63 11.88 7.47 5.75 1.84 20.74 17.73 32.60 26.78

∑REE 140.06 135.30 119.32 99.48 183.60 107.45 0.19 0.92 0.56 3.68 0.69 0.85 0.77 2.48 1.27 95.17 97.63 266.80 261.75

bdl – below detection limit; Mg no.= (MgO/40.3)/(MgO/40.3þ 0.9 * Fe2O3/71.84); δEu= EuN/(SmN * GdN)1/2; GSR-2(m) –measured data for GSR-2; GSR-2(s) – standard data for GSR-2; GSR-3(m) –measured data for GSR-3; GSR-3(s) – standard data for GSR-3.
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ultramafic rocks. The Mg no. values of the ultramafic rocks range
from 0.82 to 0.93, with an average of 0.87.

4.c.2. Trace elements
The primitive mantle-normalized trace-element patterns of six
gabbroic samples showed enrichment in Rb, Ba, K, Pb and Sr,
and depletion in Nb, Ta, Zr, Hf and Ti (Fig. 6a). The total rare earth
element (ΣREE) concentrations of six gabbroic samples ranged
from 99.48 ppm to 183.60 ppm, with an average of 130.87 ppm.
The chondrite-normalized REE patterns showed enriched light
rare earth elements (LREEs) and slightly depleted heavy rare earth
elements (HREEs): the (La/Yb)N, (La/Sm)N and (Gd/Yb)N ratios
were 6.91–15.43, 2.35–4.14 and 1.88–2.71, respectively. The gab-
broic samples exhibited positive Eu anomalies (δEu= 1.01–1.73,
average = 1.31; Fig. 6b).

The primitive mantle-normalized trace-element patterns of the
ultramafic samples were characterized by enrichment in fluid-
mobile elements (e.g. Ba, U, K, Pb and Sr) and negative Nb, Ta,
Zr and Hf anomalies (Fig. 6c). The chondrite-normalized REE
diagrams show LREE-enriched profiles. Furthermore, the HREE
profiles vary from being depleted to slightly enriched, with
(La/Yb)N, (La/Sm)N and (Gd/Yb)N ratios of 0.60–14.63,
1.07–6.63 and 0.55–1.72, respectively. The ultramafic samples
exhibited both positive and negative Eu anomalies (δEu= 0.66–
4.25, average = 1.71; Fig. 6d).

4.d. Spinel chemistry

Fresh Cr-spinel cores and the alteration products of Cr-spinels in
sample NM18-32 were analysed by electron probe micro-analyser
(EPMA), the compositions were calculated on the basis of 32 oxy-
gens (Jiang & Zhu, 2020) and the results are listed in Table 4. Fresh
Cr-spinel cores were enriched in Cr (47.73–55.81 wt % Cr2O3),
with Cr no. values varying from 0.70 to 0.83 (av. 0.75). They exhib-
ited Mg no. values varying between 0.28 and 0.40, with TiO2 con-
tents of 0.02–0.21 wt % and Al2O3 contents of 7.5–14.66 wt %. The
alteration products of the analysed Cr-spinels comprised ferrit-
chromite and Cr-magnetite.

5. Discussion

5.a. Late Ordovician ophiolite suite between the Bainaimiao
arc belt and the NCC

Previous studies have identified contemporary magmatic events in
the Bainaimiao arc belt. Sensitive high-resolution ion microprobe
(SHRIMP) zircon U–Pb dating yielded ages of 453.7 ± 3.1 Ma and
457.9 ± 2.6 Ma for a quartz diorite and a dacite in the Tulinkai area,
respectively, and a diorite and two quartz diorite adakites yielded
ages of 451.5 ± 2.9 Ma, 440.3 ± 2.4 Ma and 446.2 ± 2.2 Ma, respec-
tively (Jian et al. 2008). Li et al. (2012) reported a molybdenite Re–
Os isochron age of 445 ± 3.4 Ma and a weighted 206Pb–238U mean
age of 445 ± 6Ma for a granodiorite porphyry intrusion in the
Bainaimiao Cu–Mo deposit. The age of a Bainaimiao meta-vol-
canic rock was determined to be 449 Ma (Liu et al. 2014).

However, magmatic events in the southern margin of Bainaimiao
arc belt have not been studied extensively. SHRIMP zircon U–Pb dat-
ing yielded ages of 452 ± 3Ma, 446± 2Ma and 440 ± 2Ma for a dio-
rite, a quartz diorite and a granodiorite sample in northern Damaoqi,
respectively (Zhang & Jian, 2008). LA-ICP-MS zircon U–Pb dating
yielded an age of 458± 2Ma for a gabbroic diorite in the Damaoqi
area (Zhou et al. 2018b).

In this study, the zircon LA-ICP-MS U–Pb geochronology of
three gabbroic samples yielded crystallization ages of
450 ± 2Ma, 449 ± 1Ma and 448 ± 1Ma, indicating that the ophio-
lite suite formed during Late Ordovician time.

5.b. Petrogenesis of the gabbroic and ultramafic rocks

5.b.1. Assessment of element mobility
Zr is used as an alteration-independent index for geochemical var-
iations because of its immobility during interactions between igne-
ous rocks and hydrothermal fluids (Gibson et al. 1982; Pearce et al.
1992; Polat et al. 2002). Thus, correlations between trace elements
and Zr were used to assess the mobility of trace elements.

Gabbroic samples exhibited LOI values of 2.02–2.68 and exhib-
ited no obvious Ce anomalies (δCe= CeN/Sqrt(LaN × PrN)) (0.89–
1.05). This indicates that the primary chemical signatures of the
samples were not significantly affected by alteration and
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metamorphism (Polat &Hofmann, 2003). The REEs and high field
strength elements (HFSEs) of the gabbroic samples exhibited good
correlations with Zr, indicating that these elements were not sig-
nificantly affected by alteration processes, and thus can be used
to discuss petrogenesis. Large-ion lithophile elements (LILEs) also
showed correlations with Zr (online Supplementary Material Fig.
S1). The results were the same when using correlations between
trace elements and TiO2 to assess the mobility of the trace elements
(online Supplementary Material Fig. S1; Furnes et al. 2012). The
above-mentioned findings are also supported by the nearly parallel
patterns of the gabbroic samples on the chondrite-normalized REE
and primitive mantle-normalized multi-element diagrams. This
indicates that the primary chemical signatures of the gabbroic sam-
ples were not significantly obliterated.

Spinels in sample NM18-32 exhibited dark grey cores sur-
rounded by light grey rims (Fig. 7a). The Cr–Al–Fe3þ triangular
plot can be used to distinguish fresh and altered Cr-spinels
(Fig. 7b; Azer et al. 2013; Khalil et al. 2014). Fresh Cr-spinel cores
plotted along the Cr–Al join on this diagram. Ferritchromite and
Cr-magnetite rims plotted along the Cr–Fe3þ join, indicating that
there was a decrease in Al2O3 and an increase in Fe2O3. The con-
version of Cr-spinels to ferritchromite and Cr-magnetite may have

resulted from post-magmatic processes, such as serpentinization
and ophiolite emplacement, and the cores remain unaffected
(Barnes, 2000; Azer et al. 2013; Kapsiotis et al. 2018).

5.b.2. Petrogenesis of the gabbroic rocks
Zircons from the gabbroic samples exhibited slightly positive ϵHf(t)
values (0.87–4.34; Fig. 4d), reflecting the major contribution of the
mantle and the limited involvement of the continental crust
(Griffin et al. 2002). The Nb/La ratios of the gabbroic samples
(0.24–0.41) indicate that they were derived from the lithospheric
mantle (Smith et al. 1999). The Sm/Yb versus Sm diagram suggests
that the gabbroic rocks were sourced from the spinel–garnet transi-
tional zone (Fig. 8). It has been suggested that (Th/Nb)PM >1
(Saunders et al. 1992) and (Nb/La)PM <1 (Kieffer et al. 2004)
are two reliable indicators of crustal contamination. The gabbroic
rocks exhibited (Th/Nb)PM and (Nb/La)PM values of 2.20–6.47 and
0.23–0.39, respectively, indicating crustal contamination. On the
chondrite-normalized diagrams, the gabbroic samples were
slightly enriched in LREEs and slightly depleted in HREEs
(Fig. 6b). On the primitive mantle-normalized spider diagrams,
gabbroic samples were enriched in LILEs (e.g. Rb, Ba, U, K and
Sr) and depleted in HFSEs (e.g. Nb, Ta, Zr, Hf and Ti; Fig. 6a).
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These characteristics indicate a subduction-related origin (Stern,
2002; Pearce & Robinson, 2010; Ma et al. 2021). On the Ce/Nb ver-
sus Ce diagram, the gabbroic rocks plotted near the field of sedi-
ments, indicating the contribution of sediments (Fig. 9a). The
gabbroic rocks also exhibited the trends of sediments on the dia-
grams of Th/Yb versus Ba/La (Fig. 9b), Ba/Th versus Th (Fig. 9c)
and U/Th versus Th (Fig. 9d). The positive anomaly in Eu
(δEu= 1.01–1.73) indicates the accumulation of plagioclase
(Huang & Frey, 2003), which can be corroborated by the observed
high Sr and Al2O3 contents of the gabbroic rocks. On the diagram
of Th/Yb versus Nb/Yb, the gabbroic rocks plotted in the field of
continental arcs (Fig. 10). It has been suggested that the Zr content
of fore-arc basin basalt (FABB) is lower than that of mid-ocean
ridge basalt (MORB) and back-arc basin basalt (BABB; Pearce &
Norry, 1979). On the diagram of Zr/Y versus Zr, the gabbroic rocks
mainly plotted in the FABB field (Fig. 11a). On the diagram of La/
Nb versus Y, the gabbroic rocksmainly plotted in the FABB field or
near the FABB field (Fig. 11b). Consequently, the gabbroic rocks

could be derived from amantle wedge in a fore-arc tectonic setting,
metasomatized by subduction-derived melts from continental-
derived sediments with continental crust contamination, and
has experienced the accumulation of plagioclase.

5.b.3. Petrogenesis of the ultramafic rocks
Harzburgites are depleted, refractory residual mantle peridotites
that are formed by the partial melting of clinopyroxene-bearing
harzburgites and lherzolites (Stern et al. 2012). Depleted mantle
can be found in fore-arc tectonic settings, because water can reduce
the high melting temperature (Azer & Stern, 2007; Khalil et al.
2014). In primitive mantle-normalized spider diagrams, the
enrichment of fluid-mobile elements results from metasomatism
with fluids/melts, and low HFSE contents reflect high degrees of
melt extraction (Deschamps et al. 2013). Enrichment of LREEs
indicates the interaction of peridotites with LREE-enriched
melts/fluids, such as boninitic melts and crustal material
(Sharma & Wasserburg, 1996; Gruau et al. 1998; Parkinson &

Table 4. Electron-microprobe analyses of Cr-spinels in sample NM18-32 (by EPMA, in wt %)

Point 1-core 1-rim 2-core 2-rim 3-core 3-rim 4-core 4-rim 5-core 5-rim 6-core 6-rim 7-core 7-rim

MnO 0.59 1.01 0.83 0.84 0.63 1.55 0.55 2.22 0.88 0.53 0.67 1.05 0.70 0.63

Na2O bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 0.03 bdl bdl bdl

MgO 6.45 2.34 7.83 2.22 6.34 4.38 7.01 5.21 5.34 1.65 6.24 1.99 5.55 1.77

K2O 0.01 bdl bdl bdl bdl bdl bdl 0.02 bdl 0.01 bdl bdl 0.03 bdl

Cr2O3 52.23 16.18 47.73 13.87 50.44 36.78 51.03 44.47 55.81 9.40 52.56 15.33 53.54 9.97

SiO2 bdl 0.03 0.06 0.03 0.04 0.03 bdl bdl 0.04 0.01 0.05 bdl 0.03 0.03

Al2O3 12.87 0.10 13.48 0.02 13.38 0.45 14.66 0.97 7.50 bdl 11.59 0.04 9.32 0.03

CaO 0.04 0.01 0.02 0.06 bdl bdl bdl 0.03 bdl bdl bdl 0.01 0.00 0.05

TiO2 0.06 0.04 0.19 0.14 0.21 0.24 0.03 0.18 0.05 bdl 0.04 bdl 0.02 0.10

NiO 0.06 0.43 0.12 0.57 0.10 0.37 bdl 0.19 0.06 0.65 bdl 0.48 bdl 0.71

FeO 26.17 74.03 27.79 75.49 27.53 51.61 25.18 43.82 29.19 81.30 27.15 74.02 27.82 78.41

Total 98.48 94.17 98.05 93.24 98.68 95.41 98.47 97.10 98.87 93.55 98.33 92.92 97.01 91.71

Mn 0.14 0.26 0.19 0.22 0.14 0.39 0.12 0.54 0.21 0.14 0.15 0.27 0.17 0.17

Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

Mg 2.60 1.05 3.13 1.01 2.55 1.93 2.80 2.25 2.22 0.75 2.54 0.91 2.32 0.82

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00

Cr 11.18 3.86 10.11 3.34 10.76 8.60 10.80 10.17 12.28 2.26 11.34 3.71 11.88 2.44

Si 0.00 0.01 0.02 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01

Al 4.11 0.04 4.26 0.01 4.26 0.16 4.63 0.33 2.46 0.00 3.73 0.01 3.08 0.01

Ca 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02

Ti 0.01 0.01 0.04 0.03 0.04 0.05 0.01 0.04 0.01 0.00 0.01 0.00 0.00 0.02

Ni 0.01 0.10 0.03 0.14 0.02 0.09 0.00 0.04 0.01 0.16 0.00 0.12 0.00 0.18

Fe 5.93 18.67 6.23 19.23 6.21 12.77 5.64 10.60 6.80 20.69 6.20 18.97 6.53 20.33

Fe2þ 5.24 6.60 4.71 6.66 5.34 5.65 5.08 5.18 5.58 6.95 5.30 6.70 5.50 6.86

Fe3þ 0.69 12.07 1.52 12.57 0.88 7.12 0.56 5.42 1.21 13.74 0.90 12.27 1.03 13.48

Mg no. 0.33 0.14 0.40 0.13 0.32 0.25 0.36 0.30 0.28 0.10 0.32 0.12 0.30 0.11

Cr no. 0.73 0.99 0.70 1.00 0.72 0.98 0.70 0.97 0.83 1.00 0.75 1.00 0.79 1.00

bdl – below detection limit; Cr no.= Cr/(Crþ Al) atomic ratio; Mg no.=Mg/(Mgþ Fe2þ) atomic ratio.
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Pearce, 1998; Zhou et al. 2005; Dai et al. 2011). The chemical com-
positions of chromian spinels can indicate different tectonic set-
tings and magma processes (Dick & Bullen, 1984; Barnes &
Roeder, 2001; Kamenetsky et al. 2001; Arai et al. 2011). The spinels
from northeasternDamaoqi exhibited high Cr no. values (av. 0.75),
indicating that they were formed in the suprasubduction zone tec-
tonic setting, where the melts/fluids released from the subducted
slab interacted with the mantle wedge, and the mantle peridotites
experienced a high degree of partial melting (Roberts & Neary,
1993; Büchl et al. 2004; Zhou et al. 2014). The Cr no. values of the
spinels were comparable to those of spinels frommodern fore-arcs,
and distinctly higher than those of spinels from the back-arc basin
and mid-ocean ridge (MOR) peridotites (Azer & Stern, 2007). The
spinels plotted within the fore-arc peridotite field on the Cr no. ver-
susMg no. discrimination diagram (Fig. 12a). The contents of TiO2

in the analysed spinels reflect a magma-producing tectonic setting

(Arai, 1992; Arai et al. 2011; Arai & Miura, 2016). The TiO2 versus
Cr no. diagram suggests that the spinels may have been generated
in fore-arc peridotites, which interacted with the boninitic melt
(Fig. 12b). The Al2O3 wt % and TiO2 wt % contents of the spinels
indicate a suprasubduction zone origin (Fig. 12c). On the Fe2þ/
Fe3þ atomic ratio versus Al2O3 wt % diagram, all of the spinels
plotted in the suprasubduction zone peridotite field (Fig. 12d).
The characteristics of the spinels and the whole-rock geochemistry
of the peridotites jointly indicate that the peridotitesmay have been
residual mantle which has experienced a high degree of partial
melting and has interacted with fluids/melts released from a sub-
ducted slab in a fore-arc tectonic setting.

5.c. Tectonic implications

Previous studies have suggested that, from north to south, the
Ondor Sum subduction–accretion complex, Bainaimiao arc and
Xuniwusu Formation form a trench–arc–basin system. This sys-
tem was thought to have resulted from the southward subduction
of the Palaeo-Asian Ocean beneath the NCC (Xiao et al. 2003;
Zhang, J. F. et al. 2017). Located 133 km ENE of the studied area,
the Xuniwusu Formation was regarded as a back-arc basin deposit
because of its location, flysch sedimentary characteristics and detri-
tal zircon ages (Zhang, J. F. et al. 2017).

Both the gabbroic rocks and peridotites were formed in a fore-
arc tectonic setting. Furthermore, they crop out together in the
schists, so they can be considered as part of the Harihada–
Chegendalai ophiolitic mélange. Ophiolites are defined as ‘suites
of temporally and spatially associated ultramafic, mafic and felsic
rocks related to separate melting episodes and processes of mag-
matic differentiation in particular oceanic environments’ (Dilek
& Furnes, 2011). They are interpreted to be the remnants of ancient
oceanic crust and upper mantle (Dilek & Furnes, 2014). Ophiolites
can be classified based on the geochemical fingerprints of their
mafic lavas and dykes (Dilek & Furnes, 2011, 2014; Furnes &
Dilek, 2017; Furnes et al. 2020). As mentioned above, the gabbroic
rocks and peridotites analysed in this study are part of a suprasub-
duction zone ophiolitic mélange; their geochemical characteristics
indicate that they were formed in a fore-arc tectonic setting. In
recent years, some studies have proposed that there was a South
Bainaimiao Ocean between the exotic Bainaimiao arc and the NCC,
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and that the northward subduction of the South Bainaimiao Ocean
resulted in the collision between the Bainaimiao arc and theNCCdur-
ing late Silurian to early Carboniferous times (Zhang et al. 2014;
Eizenhöfer & Zhao, 2018; Zhou et al. 2018a; Ma et al. 2019). The
northern NCC was a passive continental margin during early
Palaeozoic time, and the Bainaimiao arc has been shown to have a
different basement from that of the NCC (Zhang et al. 2014). The
Xuniwusu Formation can be divided into three sediment cycles;
the provenances of the first two sediment cycles comprise solely
the Bainaimiao arc (Zhang, J. F. et al. 2017). In the last sediment cycle,
the Xuniwusu Formation was considered to have received detritus

fromboth the Bainaimiao arc and theNCC, deduced from the detrital
zircon ages ranging from Precambrian to Silurian, with the
Precambrian detrital zircons considered to have been derived from
the NCC (Zhang, J. F. et al. 2017). However, the Bainaimiao arc belt
also has Precambrian basement, which could have provided detritus
to the Xuniwusu Formation. It is also possible that the Xuniwusu
Formation received detritus from the NCC because of the shortening
of the South Bainaimiao Ocean (Chen et al. 2020). The Harihada–
Chegendalai ophioliticmélangemay have formed in a fore-arc setting,
resulting from the northward subduction of the South Bainaimiao
Ocean during Late Ordovician time (Fig. 13).

6. Conclusions

(1) Based on the whole-rock geochemical characteristics, the Late
Ordovician (c. 448–450Ma) gabbroic rocks in the Harihada–
Chegendalai area (northern Damaoqi) were deduced to have
been derived from a mantle wedge that was metasomatized
by subduction-derived fluids/melts with continental crust
contamination.

(2) According to the whole-rock geochemical characteristics and
mineral chemical characteristics, the ultramafic rocks were
deduced to comprise part of the depleted residual mantle,
which experienced a high degree of partial melting and inter-
acted with fluids/melts released from a subducted slab.

(3) The ultramafic and gabbroic rocks were found to be in fault
contact with each other, and to occur together in quartz-mica
schists. They comprise part of the Harihada–Chegendalai
ophiolitic mélange, which formed in a fore-arc tectonic setting.

(4) Combined with the results of previous studies, the evidence
presented here suggests that the South Bainaimiao Ocean
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may have subducted northward beneath the Bainaimiao arc
during Late Ordovician time, resulting in the formation of
the Harihada–Chegendalai fore-arc ophiolitic mélange.
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