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Criciúma, SC, Brazil

Keywords: acetylcholinesterase, ketamine,
memory, schizophrenia

Prof. Alexandra Ioppi Zugno, Laboratório de

Neurociências, Programa de Pós-Graduação em
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Objective: Cognitive deficits in schizophrenia play a crucial role
in its clinical manifestation and seem to be related to changes in the
cholinergic system, specifically the action of acetylcholinesterase
(AChE). Considering this context, the aim of this study was to evaluate
the chronic effects of ketamine in the activity of AChE, as well as in
behavioural parameters involving learning and memory.
Methods: The ketamine was administered for 7 days. A duration of
24 h after the last injection, the animals were submitted to behavioural
tests. The activity of AChE in prefrontal cortex, hippocampus and
striatum was measured at different times after the last injection
(1, 3, 6 and 24 h).
Results: The results indicate that ketamine did not affect locomotor
activity and stereotypical movements. However, a cognitive deficit was
observed in these animals by examining their behaviour in inhibitory
avoidance. In addition, an increase in AChE activity was observed in all
structures analysed 1, 3 and 6 h after the last injection. Differently,
serum activity of AChE was similar between groups.
Conclusion: Chronic administration of ketamine in an animal model of
schizophrenia generates increased AChE levels in different brain tissues
of rats that lead to cognitive deficits. Therefore, further studies are
needed to elucidate the complex mechanisms associated with
schizophrenia.

Significant outcomes

> Ketamine induces the increase of acetylcholinesterase (AChE) activity.
> Ketamine induces impairment of memory.

Limitations

> The implementation of additional behavioural and biochemical tests (pre-pulse inhibition and
expression of cholinergic receptors, for example), could further reinforce our conclusions, or could
open up a different line of discussion.
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Introduction

Schizophrenia is a psychiatric disorder that affects
, 20 million people worldwide, leading to serious
professional and social restrictions for patients (1).
Cognitive improvement has been the most important
challenge in schizophrenia treatment and many other
diseases as well. Schizophrenia was firstly called
‘dementia praecox’ by Kraepelin (2), owing to its
onset in young adults, in contrast to the more usual
‘elderly dementia’. The current pharmacological treat-
ment for schizophrenia has succeeded in diminishing
psychotic symptoms, but not cognitive deficits.
Actually, antipsychotics ameliorate the natural history
of schizophrenia (3), but their benefits are not enough
to provide a better life quality and restore the cognitive
function in similar patterns to non-schizophrenic
controls (4).

It was observed in animal models that changes in
cortical glutamatergic function are related to
dysfunction in subcortical dopaminergic neurotrans-
mission, which also affects the action of cholinergic
system in schizophrenic population (5–8). In patients,
these abnormalities in glutamatergic neurotrans-
mission are linked to memory deficits, as it is
known that the excitation of glutamate is essential
for the formation of different types of memory (9).

Acetylcholine (ACh) is a neurotransmitter present
in both the peripheral nervous system and central
nervous system of many organisms. Cholinergic
neurons form a neurotransmitter system, from the
brainstem and basal forebrain, which projects axons
to many areas of the brain. ACh is involved in
synaptic plasticity, specifically in learning and short-
term memory (STM) (10,11). ACh has been shown
to enhance the amplitude of synaptic potentials
following long-term potentiation in many regions,
including the dentate gyrus, CA1, piriform cortex
and neocortex. This effect can occur either by
enhancing N-methyl-D-aspartate receptor (NMDAR)
expression or indirectly by suppressing adaptation
(12,13). In addition, epidemiological surveys have
shown that schizophrenic patients make more use
of cigarettes (tobacco) than the general population
and these patients present more severe positive
symptoms of the disease, indicating that ACh
receptors may be related to this disorder (14,15).

AChE is the enzyme that breaks ACh in the
synaptic cleft in choline and acetate, being
choline reuptake and recycled presynaptically (16).
The AChE inhibitors are mainly used in the
treatment of Alzheimer’s disease. Although some
efficacy on cognitive deficits, they do not change the
course of the disease, and its role in the treatment of
the disease is unclear (17). In addition, a recent
meta-analysis has shown that que-specific cognitive

deficits (memory, motor speed and attention) of
patients with schizophrenia and schizoaffective
disorder are responsive to rivastigmine, donepezil
and galantamine (currently used AChE inhibitors
in Alzheimer’s disease), the adjunctive therapy.
However, confirmatory studies are needed to
determine the clinical utility of this treatment
strategy (18,19).

The model of ketamine is one of the most
widely accepted models for behavioural and
biochemical alterations in animals, similar to human
schizophrenia (20). Ketamine is a non-competitive
antagonist of NMDAR, an ionotropic glutamate
receptor. The NMDAR hypofunction is a well-
established alteration in schizophrenia and is
involved in memory function (21). Considering this
information, we opted to use this animal model to test
the hypothesis that ketamine alters AChE activity in a
short period of time. Moreover, our proposal was
also to investigate what kind of behavioural changes
may be seen 24 h after the last injection, as there is
evidence that behavioural changes may be secondary
to biochemical alterations.

Materials and methods

The experiments were conducted in accordance
with the Brazilian Society for Neuroscience and
Behaviour’s recommendations for animal care, after
the approval of the Ethics Committee in Animal
Usage of the Universidade do Extremo Sul
Catarinense (protocol number 96/2009). The entire
experiment was conducted in the laboratory of
neurosciences at the Universidade do Extremo Sul
Catarinense.

Animals

Adult male Wistar rats weighing 250–300 g were
obtained from our breeding colony. The animals
were housed in acrylic cages (five animals per cage)
with food and water available ad libitum and were
maintained on a 12-h light/dark cycle (lights on
at 7:00 a.m.). Two groups of animals (saline or
ketamine) were destined to behavioural tests.
Specifically, 12 animals per group were intended
to assess the locomotor activity and stereotypy. An
independent amount of animals (12 per group) was
used for memory evaluation on inhibitory avoidance.
Similarly, for the evaluation of object recognition,
12 animals per group were used. Therefore, a total
of 72 animals were used for all behavioural tests.
For the analysis of AChE activity in different
times, independent groups were selected and killed
1, 3, 6 or 24 h after the last injection. The brain
structures such as the prefrontal cortex, striatum and
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hippocampus were dissected and rapidly frozen
at 2808C until the biochemical analysis. For this
procedure, a number of five animals per group
were necessary.

Animal model of schizophrenia

Schizophrenia symptoms were induced by chronic
sub-anaesthetic doses of ketamine at 25 mg/kg
for 7 days. This dose induces hyperlocomotion
and stereotypy (20,22). Specifically, the animals
received ketamine intraperitoneally once a day
during 7 days. A duration of 24 h after the last
injection, the animals were destined to behavioural
evaluations, whereas an independent group of
animals was killed 1, 3, 6 and 24 h after the last
injection for the evaluation of AChE activity.

Behavioural tests

Open-field task. The open-field task was performed
in a 50 3 25 3 50 cm arena. Locomotor activity was
monitored using a computerised system (Activity
Monitor; Insight Laboratory Equipments, Ribeirão
Preto, SP, Brazil). This equipment monitored the
locomotor activity measuring the travelled distance
by each rat into blocks for 5 min. For the analysis,
the total distance of each block was measured
in both groups (saline or ketamine) over a period
of 60 min.

Stereotypy. Stereotypy is defined as rapid, repeti-
tive, frontward movements (23–25). This parameter
was analysed along with locomotor activity.
Stereotypy is considered by the software as an
unstable movement at any time when repetitive
movements are recorded in sequential readings
without alterations in the animal’s mass centre.
This evaluation was included to guarantee that
stereotypy was no longer present by the time the
animal’s memory was evaluated, and therefore any
alterations observed in memory tasks were not to
be attributed to the ketamine’s acute effects, but to
the long-lasting impairments caused by chronic
administration of the drug.

Inhibitory avoidance. The inhibitory avoidance
evaluation was initiated 24 h after the last
injection. The apparatus consisted of an acrylic
box whose floor is constructed from parallel
stainless steel bars, with a platform placed against
the left wall of the box (26,27). In the training
session, rats were placed on the platform and we
measured their latency to step down with all four
paws. Immediately after step down from the

platform, the animals received a 0.4 mA footshock
(electrical shock induced through the feet) for 2 s.

In the test session, animals were again placed on
the platform and had their latency to step down on
the grid measured, except that no footshock was
given. Latency is a classic parameter for memory
retention tasks. Test sessions for working memory
were conducted immediately after training (5 s)
(28). The given interval between training and test
sessions was 1.5 h to evaluate STM (29,30) and
24 h to long-term memory (LTM) (30,31).

Object recognition test. The task was performed
in the open-field arena and conducted as protocol
described elsewhere (31–33). Habituation was
initiated 24 h after last ketamine injection: animals
were placed in the left posterior corner of the
apparatus and allowed to explore environment for
5 min. No objects were present during the
habituation phase.

On the second day, 24 h after habituation, the
training session was conducted. Animals were
again placed in the apparatus, where two identical
objects (A1 and A2) were located and the
exploration time of each object was measured
during a total period of 5 min.

During the same session, 1 h and 30 min after
training, the animal’s STM was measured: the
animals were placed in the apparatus in the presence
of the first familiar object (A1) and the new object
to be recognised (B). Again, the time animals took
to explore each object was measured and recorded.

On the third day, 24 h after training, the animal’s
LTM was evaluated following the same procedure
applied for STM; however, the object B was
exchanged for object C (which is also different to
object A).

AChE activity

The activity test for this enzyme was conducted
according to the method of Ellman et al. (34). The
hydrolysis of ACh was assessed in a concentration of
0.8 mM in 1 ml of a solution containing 100 mM
phosphate buffer (pH 7.5) and 1.0 mM DTNB. A
volume of 50 ml of each sample was added to the
solution and pre-incubated for 3 min. The hydrolysis
was monitored by formation of the thiolate dianion
of DTNB to 412 nm for 2–3 min at intervals of 30 s
to 258C. The samples were evaluated in duplicates.

Protein levels

Protein levels were determined using the Lowry
(35) method, with bovine serum albumin used as
a standard.
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Statistical analysis

Data from AChE activity, open-field task and
stereotypical movements were analysed by the
Student t-test for unpaired samples. Training-test
session latency differences and object recognition
were assessed by the Wilcoxon test, followed by
individual Mann–Whitney U-test. All analyses were
performed using the statistical package for the social
sciences (SPSS) software. A value of p , 0.05 was
considered as statistical significance.

Results

Locomotor activity (Fig. 1) and stereotypical move-
ments (Fig. 2) evaluated 24 h after the last ketamine
injection showed no significant difference when
compared with the control group. Furthermore, the
total covered distance travelled by the groups was
similar (data not shown). Thus, we can suggest that
results found in the following memory tasks are more
likely a consequence of the long-lasting impairments
caused by chronic ketamine administration, rather
than the drug’s acute effect.

Working memory tested in the inhibitory avoidance
task was shown to be impaired, as ketamine-treated
animals showed significantly lower latency to step
down from the platform, when compared with the
saline group (Fig. 3). The same occurred when the
STM and LTM were evaluated using the same task
1.5 and 24 h after training (Fig. 4). In both sets of tests,
a significantly lower latency was seen within the
ketamine-treated animals, indicating poorer memory
acquisition when compared with saline-treated animals.

We also evaluated the animals STM and LTM
memories in the object recognition task. Again, 1, 5
and 24 h after-training trials, animals that were
chronically treated with ketamine showed memory
impairment, with significantly lower recognition
indexes, when compared with control group (Fig. 5).

The activity of the enzyme AChE was increased
in all brain structures analysed, which were: the
striatum, hippocampus and prefrontal cortex at time
intervals of 1, 3 and 6 h after the last injection of
ketamine. The same result was not observed in
animals that were analysed 24 h after the last dose of
the same drug (Fig. 6).

Regarding the evaluation of AChE in serum, in
search for a possible peripheral marker of the disorder,
there were no significant differences between ketamine-
treated animals and the control group (Fig. 6).

Discussion

Cognitive impairment is a characteristic symptom of
schizophrenia and it is present even in the prodromal

phase of the disorder (36–38). For schizophrenic
patients, memory deficits have a major influence on
recovery, social adjustment and functional aspects
of daily lives (39–41). Thus, animal models addres-
sing schizophrenia’s cognitive impairments can
contribute to our better understanding and possible
future treatments.

The chronic administration of ketamine cause
long-lasting cognitive deficits in rodents, even after
interrupting ketamine administration. Thus, this seems
to be a good animal model for a chronic disease as
schizophrenia, especially for ‘negative symptoms’. In a
study by Chatterjee et al. (42) these behavioural
alterations persisted at least for 10 days, after the
withdrawal of ketamine treatment. An in vitro study

Fig. 1. Locomotor activity was monitored using a compu-
terised system. The locomotor activity measured the distance
travelled by each rat into blocks of 5 min. The data were
organised in SPSS version 17.0, with a confidence interval of
95% and significance level a 5 0.05. p , 0.05.

Fig. 2. Stereotypical movements were analysed along with
locomotor activity and were evaluated 24 h after the last
ketamine injection and compared with the control group. The
data were organised in SPSS version 17.0, with a confidence
interval of 95% and significance level a 5 0.05 (p , 0.05).
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showed that sub-anaesthetic concentrations of
ketamine, while not affecting cell survival, may still
impair neuronal morphology and thus might lead to
dysfunctions of neural networks (43).

Our results show that chronic sub-anaesthetic
administration of ketamine impairs the rat’s
immediate memory, as well as its STM and LTM.
Similar results from our group were previously
published (44). However, the novelty here is the
result of object recognition test. Furthermore, our
findings corroborate previous studies that have shown
that ketamine (at sub-anaesthetic or anaesthetic
doses) negatively affects the rat’s performance in
different memory task by the blockade of NMDARs
(33,45–47).

The relationship involving ACh and cognitive
functions is well described in current literature
(28,48–51). Several studies have demonstrated the
association between augmented ACh release and
improvement in learning and memory, whereas
impairments in these cognitive functions are linked
to a decline in ACh release. This occurrence was
observed in brain structures such as the hippocampus,
nucleus accumbens, insular cortex, neocortex and
amygdala (48). It is important to highlight that the
memory impairment seen 24 h after the injection of
ketamine was not accompanied by changes in the
activity of the enzyme AChE at that time. It suggests
that the behavioural changes observed in inhibitory
avoidance can be a secondary effect of increased
AChE in 1, 3 and 6 h after ketamine treatment. In
addition, it can possibly be a result of modifications in
other neurotransmitter systems induced by ketamine
(e.g., a modulatory effect on the monoamines) (52).
Furthermore, the normalisation of AChE activity 24 h
after the last injection of ketamine suggests the return
of the balance in the levels of ACh in the synaptic
cleft. However, the reduction of ACh induced by
ketamine may initially induce an internalisation of
cholinergic receptors in the postsynaptic membrane,
causing a late cognitive effect. Therefore, our results
may be because of this fluctuation of cholinergic
markers (52).

There are several regions of the brain that can be
affected during the course of schizophrenia, leading
to its distinctive symptoms. Whereas paranoia and
hallucinations can be precipitated by an abnormal
function in the basal ganglia, agitation is highly
related to the limbic system and an impaired
hippocampal formation, inducing in learning and
memory deficits. Defects in the frontal lobe are

Fig. 5. The object recognition task was performed in the open-field
arena. Durations of 1.5 and 24 h after training, animals chronically
treated with ketamine showed memory impairment, with sig-
nificantly lower recognition indexes, when compared with control
group. To check whether the differences between the paired groups
was significant the Student’s t-test was used, considering as
significant differences in those with *p , 0.05 (different from
training). LTM, long-term memory; STM, short-term memory.

Fig. 3. Evaluation of working memory in both groups (saline
or ketamine) was taken 24 h after the last injection. In the
training session, rats were placed on the platform and we
measured their latency to step down with all four paws.
Immediately after step down from the platform, the animals
received a 0.4 mA footshock (electrical shock induced through
the feet) for 2 s. To check whether the differences between the
paired groups was significant, a Student’s t-test was used,
considering as significant differences in those with *p , 0.05,
different from saline.

Fig. 4. The short-term memory (STM) and long-term memory
(LTM) were evaluated using the inhibitory avoidance task 1.5
and 24 h after training. A significantly lower latency was seen
within the ketamine group, indicating poorer memory acquisi-
tion when compared with saline-treated animals. The data were
organised in SPSS with a confidence interval of 95% and
significance level a 5 0.05 (*p , 0.05, different from training).
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associated with problems involving executive
functions, for example, planning and organisation (53).

Studies concerning the neurochemistry of the
cognitive functions have emphasised the connection
between the cholinergic and glutamatergic systems.
Cholinergic activity in the cortex produces a
complex combination of inhibitory and excitatory
effects, which interfere with glutamatergic signalling
via NMDARs (49). According to Colgin et al. (54),
regarding the pathophysiology of schizophrenia,
cholinergic signals support the excitatory activity
of glutamate in the encoding of memory in
hippocampus, and thus ACh acts by modulating
the glutamatergic action. In this context, in our
present study, an increased activity of AChE was
observed in rats that received ketamine 1, 3 and
6 h after the last injection. These results are prob-
ably subsequent to changes in glutamatergic trans-
mission by ketamine (55). g-Aminobutyric acid and
AChE in rodent cortical neurons coexist (56),
and there can be simultaneous release of glutamate
and ACh from basal forebrain neurons as well
(57). Thus, modifications in AChE can reflect
changes in other neurotransmitter systems, not only
in cholinergic. Our study is limited by the lack
of specificity of the AChE activity. Because the
activity of an enzyme can be modified by several
mechanisms, it is not possible to infer whether there
were changes in substratum concentrations, enzyme
production or environmental (intra- or extracellular)
conditions (58).

One of the reasons suggested for the ACh decrease
in schizophrenia is the alteration of the nicotinic
receptors in this disorder. This hypothesis is sustained
by studies indicating that schizophrenic patients make a
significantly larger use of tobacco when compared with
general population (14,59–61). In addition, studies with
schizophrenic patients suggest that the ones that make
high use of tobacco present more severe positive
symptoms, while the use of tobacco is also associated
with a decrease of the negative symptoms (61–63).

We also analysed AChE in the animal’s serum after
treatment with ketamine, but we found no statistical
relevance when comparing with the control group. It
confirms that schizophrenia is still a disorder of
primarily clinical diagnosis (22,64), corroborating
with the absence of a peripheral marker. Therefore,
further studies correlating the drugs already used in
mental disorders in an attempt to unravel the intricate
pathophysiology mechanisms of schizophrenia and
aiming for a better control of the disorder are needed.
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