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A control volume based analytical method for calculating the efficiency η of flapping
foil power generators was developed for single and tandem foil configurations. Ignoring
unsteady effects and non-uniform pressures resulted in theoretical limits identical to the
Betz (η = 16/27 for a single turbine) and Newman (η = 16/25 for tandem turbines) limits.
Inclusion of unsteady flow and non-uniform pressure distributions produced theoretical
efficiency maxima in excess of these limits. Simulation of single and tandem foil cases to
determine the magnitude of these effects showed that the Betz limit would not be exceeded
by a single foil system in practice, but that it is conceivable that a tandem foil system could
exceed the Newman limit due to the strong unsteady vortex wake of the upstream turbine
entraining additional energy into the path of the downstream turbine and maintaining
pressures in the wake below ambient.
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1. Background

Conventional rotary turbines are generally accepted to be governed by the Betz limit
in the maximum power that they can extract from a flow (van Kuik (2007) suggests that
‘Lanchester–Betz–Joukowsky limit’ is the more correct terminology, but for convenience
we will continue to use the accepted ‘Betz limit’). This is based on an analysis of the
streamtube enclosing the flow passing through the swept area of the turbine, which is
treated as an idealised actuator disk (Betz 1920), and makes no particular assumptions
about the nature of the turbine, rotary or otherwise. The flow is assumed to be inviscid
and steady, rotationality of the flow in the wake is ignored and ambient pressure at the
far upstream and downstream ends of the streamtube as well as along its outer boundary
is assumed (see e.g. Manwell, McGowan & Rogers 2009). The analysis states that the
maximum power that can be extracted from a given flow is in the ratio 16/27, or 0.593, of
that which flows through the turbine swept area.

† Email address for correspondence: j.young@adfa.edu.au
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902 A30-2 J. Young and others

Various models incorporating wake rotation differ in their predictions of efficiency
versus turbine blade tip speed ratio. Sørensen (2011) and Sørensen & van Kuik (2011)
discuss some controversy suggesting that, at low tip speed ratios, rotary turbines may in
fact substantially exceed the Betz limit (e.g. Sharpe 2004; Lam 2006). However, when the
effect of lateral pressure and friction forces are included in the axial momentum equation,
as shown in Sørensen (2011) and Sørensen & van Kuik (2011), the Betz limit is again
respected at all tip speed ratios.

Vennell (2013) notes that the 16/27 limit can be exceeded significantly when tidal
flow in a channel is considered, due to blockage effects from the constraints imposed
by the channel walls (whereas wind turbines are usually considered operating in an
infinite, unbounded space). Incidentally, this is also the source of many claims of systems
exceeding the Betz limit, by using a flow constriction (e.g. a shroud) ahead of and around
the turbine to speed the flow, but using the original flow speed for non-dimensionalisation.
In a similar vein, Vennell (2013) makes a distinction between high power, and high power
coefficient non-dimensionalised by the local mean flow velocity that the turbine is exposed
to, which may be much lower than the free-stream velocity at the front of a turbine
farm. He thus proposes a stricter definition of the Betz limit, which poses the question
of whether a turbine within a farm in a channel can generate more power than a single
turbine operating at the Betz limit in the same channel. Several studies have examined
the role of non-uniform inflow conditions in the form of shear flow such as from an
atmospheric boundary layer, for isolated (Chamorro & Arndt 2013) and laterally spaced
turbines (Draper et al. 2016). These found no change or a potential for a 1 %–2 % increase
in maximum power output for an isolated turbine, and variability in the blockage effect for
a laterally bounded shear flow dependent on the shape of the velocity distribution and the
turbine position within it.

The Betz limit for two turbines in tandem, i.e. one behind the other so that the
downstream turbine is in the wake of the upstream one, is 0.64 and asymptotes to 0.66
for many turbines in tandem (Newman 1986). There are suggestions in the literature that
flapping foils are not subject to the Betz limit (Kinsey & Dumas 2012b), at least for two
in tandem, due to the vortical nature of the wake of the leading foil entraining additional
momentum from the free stream to re-energise the wake somewhat before it encounters the
trailing foil. This is supported by the simulations of Kinsey & Dumas (2012b) of two foils
in tandem achieving an efficiency of η = 0.64, right against the Newman limit for this
configuration, which seems unlikely without such a mechanism. Dabiri (2007) also states
that the Betz limit does not apply to flapping foil systems because of the unsteadiness, and
that vortex dynamics could be exploited to exceed that limit. Very recently, Dabiri (2020)
notes that unsteady motions of an idealised actuator disk turbine plane in a streamwise
direction can also provide a way to exceed the Betz limit.

Flapping foil turbines are under consideration as alternatives to rotary turbines in river
and tidal flow applications (Xiao & Zhu 2014; Young, Lai & Platzer 2014), due to their
potential for higher relative performance at lower Reynolds numbers (i.e. low flow speeds
and small scales). However, there is as yet no rigorous assessment of the theoretical
maximum power extraction capability of flapping foils as there is for rotary systems
(Young et al. 2014). This paper provides a methodology to perform that analysis for both
single and multiple foil systems, to determine whether unsteady momentum and energy
transport can increase the limits of performance as suggested by Kinsey & Dumas (2012b)
and Dabiri (2007, 2020). It extends and improves upon initial work by the authors for
a single foil only (Young, Tian & Lai 2017), with consideration of several important
additional physical effects as well as the tandem foil configuration.
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Analysis of unsteady flow effects on the Betz limit 902 A30-3

2. Time-averaged flow of a flapping wing turbine

The Betz limit is derived with the assumption of steady flow (e.g. Manwell et al. 2009),
and in the simplest form also ignores viscous effects. The efficiency of power extraction
from the flow depends on the so-called ‘axial induction factor’ defined as the fractional
decrease in flow velocity between the free stream and the plane of the turbine. This in
turn determines the extent to which the streamtube passing through the maximum extent
of the turbine frontal area, spreads between the free stream far upstream and the wake far
downstream.

How may we then perform a similar analysis of the highly unsteady flow through a
flapping wing turbine? Our starting point is to time average the flow field over one cycle
of flapping motion (with the provision that the flow field around the wing is periodic with
period T equal to that of the flapping cycle), and to obtain the streamtube passing through
the maximum extent of the swept area of the flapping wing, based on the time-averaged
velocities. The derivation in § 2 follows that in Young et al. (2017), but with additional
terms included in the energy equation (namely work done by viscous forces, and viscous
dissipation of mechanical energy).

The unsteady flow satisfies the incompressible Navier–Stokes equation (in tensor
notation)

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
. (2.1)

The flow variables may be split into average and fluctuating terms

ui = Ui + u′
i, p = P + p′ etc., (2.2a,b)

where vector variables such as Ui (velocity) and scalar variables such as P (pressure) are
defined as flow variables time averaged over one flapping cycle (using the usual overbar
as shorthand for the averaging process)

Ui = ui = 1
T

∫ t+T

t
ui(t) dt, P = p̄ = 1

T

∫ t+T

t
p(t) dt, (2.3a,b)

and thus are independent of time. This is notationally precisely equivalent to the
Reynolds-averaged Navier–Stokes (RANS) process more generally employed in modelling
the effects of turbulence, although noting that there is no assumption here of turbulence in
the flow, and the averaging process is explicitly defined as a time average with period equal
to one flapping cycle. The time-averaged flow then satisfies the steady RANS equation

Uj
∂Ui

∂xj
= − 1

ρ

∂P
∂xi

+ ν
∂2Ui

∂xj∂xj
− ∂

∂xj
(u′

iu
′
j). (2.4)

The effect of unsteadiness in the flow is thus encompassed entirely within the Reynolds
stress term Rij = u′

iu
′
j, which manifests itself as a diffusive effect. There is no convection

of any flow property across a streamline locally tangent to the time-averaged velocity
components Ui, and diffusion of momentum across streamlines via molecular viscosity
is usually ignored in the Betz analysis as being small. However, the Reynolds stress term
now provides an additional mechanism for diffusion of momentum across the sides of
the time-average streamtube, and in principle this diffusion may be large enough that it
must be considered in the Betz analysis. Additional transport of kinetic energy across the
streamtube sides is similarly apparent from time averaging the conservation of energy
equation.
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902 A30-4 J. Young and others

The integral forms of conservation equations for mass, momentum and mechanical
energy (i.e. ignoring changes in internal and potential energy and no external heat transfer,
but including viscous dissipation) in a control volume (CV) constituting the streamtube
enclosing the maximum extent of the turbine frontal area are used to perform the analysis
in detail (2.5)–(2.7). Here the streamtube is defined by streamlines locally tangent to the
time-averaged velocity field, as shown in figure 1.

∂

∂t

∫
CV

ρ dV +
∫

CS
ρuini dA = 0, (2.5)

− fi −
∫

CS
pni dA +

∫
CS

τijnj dA = ∂

∂t

∫
CV

ρui dV +
∫

CS
ρuiujnj dA, (2.6)

−Ẇ = ∂

∂t

∫
CV

(
1
2ρuiui

)
dV +

∫
CS

(
p + 1

2ρuiui
)

ujnj dA

−
∫

CS
(uiτij)nj dA +

∫
CV

φ dV, (2.7)

τij = μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
, φ = τij

∂ui

∂xj
, (2.8a,b)

where fi = Fi + f ′
i represents the time-averaged and fluctuating fluid forces on the turbine,

Ẇ represents the power produced by the turbine and the control surface CS is the boundary
of the CV. The second-to-last term in the energy equation represents work done by viscous
forces on the control volume boundary, and the last term represents viscous dissipation
of mechanical energy within the control volume. Splitting flow variables into mean and
fluctuating components and time averaging results in∫

CS
Uini dA = 0, (2.9)

−Fi =
∫

CS
Pni dA −

∫
CS

τ̄ijnj dA +
∫

CS
ρUiUjnj dA +

∫
CS

ρu′
iu

′
jnj dA, (2.10)

−Ẇ =
∫

CS

(
PUj + 1

2ρUiUiUj + p′u′
j + 1

2ρ
(

u′
iu

′
iUj + 2Uiu′

iu
′
j + u′

iu
′
iu

′
j

))
nj dA

−
∫

CS
uiτijnj dA +

∫
CV

φ̄ dV. (2.11)

For clarity and as an aid to later calculation, the triadic tensor terms in (2.11) are here
written as vectors in two dimensions

UiUiUj =
[
(U2 + V2)U
(U2 + V2)V

]
u′

iu
′
iUj =

[
(u′2 + v′2)U

(u′2 + v′2)V

]

Uiu′
iu

′
j =

[
Uu′2 + Vu′v′

Uu′v′ + Vv′2

]
u′

iu
′
iu

′
j =

[
(u′2 + v′2)u′

(u′2 + v′2)v′

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (2.12)

Continuity is unaffected by this process, so that, from (2.9), U∞A1 = UEA2 = UTAT =
ṁ/ρ in figure 1. The momentum and energy equations now have a number of additional

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

61
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.612


Analysis of unsteady flow effects on the Betz limit 902 A30-5

CS = Time-averaged
streamtube boundary

Far upstream
boundary, area A1

Far downstream
boundary, area A2

Norminal turbine
plane, area AT

U∞ UE

1
T

2

FIGURE 1. Time-averaged streamtube as the control surface (CS) for analysis of the flapping
foil turbine, adapted from Young et al. (2017).

correlation terms that are not apparent in steady flow, which may be directly calculated
and their effect quantified. In turbulence modelling the Reynolds stress term cannot be
determined exactly and is the subject of a closure problem. Here, however, we may directly
compute the unsteady correlation terms, Rij for example, by solving for the unsteady flow
ui, uj then time averaging and subtracting off mean variables to obtain

Rij = u′
iu

′
j = (uiuj) − UiUj. (2.13)

All the other correlation terms in (2.10) and (2.11) are computed in the same way by direct
measurement of the fluctuating flow field terms.

3. Single flapping foil system

3.1. Modification of the Betz analysis
The Betz analysis proceeds by equating the horizontal force on an actuator disk
representing the turbine multiplied by the horizontal velocity through the disk, with the
power extracted by the turbine. Accordingly the vertical and cross-stream components of
the momentum equation play no role in the analysis, and only the horizontal (streamwise)
component of the momentum equation is of interest. The analysis in § 3.1 again largely
follows that in Young et al. (2017), but with important additional physics considered (work
by viscous forces and viscous dissipation as noted above, and fluctuating forces on the
turbine plane as discussed below). The horizontal component of (2.10), and (2.11) are
rewritten as

Fx = −
∫

CS
ρUUjnj dA + Cα

1
2 ṁU∞ = 1

2 ṁU∞(CFM + Cα), (3.1)

Ẇ = −
∫

CS

1
2ρUiUiUjnj dA + Cβ

1
2 ṁU2

∞ = 1
2 ṁU2

∞(CWKE + Cβ), (3.2)

where CFM and CWKE encompass respectively the time-average horizontal momentum
and the time-average kinetic energy entering and leaving the control volume. Note the
omission of subscript for the first U in (3.1), indicating this is the horizontal velocity
component only; Cα and Cβ encapsulate the effects ignored in the standard Betz analysis,
including non-free-stream pressure on the control surface boundary, viscous effects and
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unsteady flow effects, with each of these defined in coefficient form below:

CFM = − 1
1
2 ṁU∞

∫
CS

ρUUjnj dA

CWKE = − 1
1
2 ṁU2∞

∫
CS

1
2
ρUiUiUjnj dA

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (3.3)

Cα = CFP + CFV + CFR, (3.4)

Cβ = CWPA + CWPF + CWA + CWB + CWC, (3.5)

CFP = − 1
1
2 ṁU∞

∫
CS

Pnx dA

CFV = 1
1
2 ṁU∞

∫
CS

τ̄x jnj dA

CFR = − 1
1
2 ṁU∞

∫
CS

ρu′u′
jnj dA

CWPA = − 1
1
2 ṁU2∞

∫
CS

PUjnj dA

CWPF = − 1
1
2 ṁU2∞

∫
CS

p′u′
jnj dA

CWA = − 1
1
2 ṁU2∞

∫
CS

1
2
ρ(u′

iu
′
iUj + 2Uiu′

iu
′
j + u′

iu
′
iu

′
j)nj dA

CWB = 1
1
2 ṁU2∞

∫
CS

uiτijnj dA

CWC = − 1
1
2 ṁU2∞

∫
CV

φ̄ dV

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.6)

Note again the use of the x subscript (nx in CFP and τ̄x j in CFV), and the lack of subscript
for the first u′ in CFR, as these coefficients are based on horizontal (i.e. streamwise)
components of force. The additional terms representing momentum (Cα) and energy (Cβ)
flows in and out of the control volume provide a mechanism by which the energy extraction
and efficiency of the turbine may be altered, by modifying the pressure drop across (and
hence force on) the turbine plane, or the average flow velocity through the turbine plane
or both, either separately or together.

We take the usual step of equating the power extracted by the turbine Ẇ, with the vector
multiplication of the force fi on the turbine and the velocity through the turbine plane
uTi = UTi + u′

Ti
. Unlike the standard Betz analysis we must take into account that the force

and velocity are fluctuating quantities, and we must also include dissipation and any other
losses of mechanical energy across the turbine plane ẆLT . At this point ẆLT is included as
a necessary term, and its evaluation is discussed in § 3.3.

Ẇ = fiuTi − ẆLT

Ẇ = FiUTi + f ′
i u′

Ti
− ẆLT = Fx UT + f ′

i u′
Ti

− ẆLT

}
. (3.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

61
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.612


Analysis of unsteady flow effects on the Betz limit 902 A30-7

Here the time-averaged values of forces on the turbine and velocities through the turbine
plane are zero in all directions except streamwise due to symmetry. Noting that mass flow
rate ṁ = ρU∞A1 = ρUTAT and having used (3.7) to solve for UT , the efficiency of power
extraction is then

η = Ẇ
1
2ρU3∞AT

= 1
1
2 ṁU3∞

Ẇ
Fx

(Ẇ − f ′
i u′

Ti
+ ẆLT), (3.8)

with the efficiency being related to the mean output power coefficient via

C̄P = Ẇ
1
2ρU3∞AF

= η
AT

AF
, (3.9)

where AF is the planform area of the foil. For a rectangular foil this reduces to C̄P = ηd/c
where c is the foil chord and d is the vertical distance swept by the trailing edge.

We define one further coefficient

Cγ = −f ′
i u′

Ti
+ ẆLT

1
2 ṁU2∞

, (3.10)

which encapsulates the fluctuating force and velocity terms and losses of mechanical
energy across the turbine plane. Using (3.1)–(3.6) and (3.10), the efficiency reduces to

η = (CWKE + Cβ)(CWKE + Cβ + Cγ )

CFM + Cα

. (3.11)

We now perform the integrations over the control surface in (3.3), noting that the only
places where the time-averaged velocity is not orthogonal to the local outward normal are
the inlet and exit. This gives an efficiency of

η = (1 − a2 + Cβ)(1 − a2 + Cβ + Cγ )

2(1 − a) + Cα

, (3.12)

and a time-averaged velocity through the turbine plane of

UT

U∞
= Ẇ − f ′

i u′
Ti

U∞Fx
= CWKE + Cβ + Cγ

CFM + Cα

= 1 − a2 + Cβ + Cγ

2(1 − a) + Cα

, (3.13)

using the definition a = UE/U∞, the ratio of the far downstream wake and upstream
velocities. The horizontal time-averaged velocity components at the CS inlet and exit,
U∞ and UE are taken to be uniform across those boundaries, and the vertical components
V1 and V2 are ignored as small relative to the horizontal components. These assumptions
are examined in § 3.3. For comparison when only the mean momentum and energy terms
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902 A30-8 J. Young and others

are considered, as in the standard Betz analysis, the efficiency becomes the usual

η = (CWKE)2

CFM
= (1 − a2)2

2(1 − a)
. (3.14)

Differentiating (3.12) with respect to a and setting the result to zero to find the a = aopt
value for maximum efficiency requires solution of a quartic equation in a.

aopt = a :
∂η

∂a
= 0, (3.15)

ηmax = (1 − a2
opt + Cβ)(1 − a2

opt + Cβ + Cγ )

2(1 − aopt) + Cα

. (3.16)

This is done symbolically using the Matlab Symbolic Math Toolbox, which returns four
roots. The correct physical one can be identified because setting Cα = Cβ = Cγ = 0
(indicating no unsteadiness, no mean pressure flow work, no viscous effects, etc.) recovers
the usual Betz result of aopt = 1/3, UT/U∞ = 2/3 and ηmax = 16/27 for only one of the
roots. The resulting expression for aopt is not provided here due to its length.

3.2. Performance limits from the modified Betz analysis
Equation (3.11) represents the actual efficiency achieved by the flapping foil turbine, which
may be determined by calculating all the coefficients defined in (3.3)–(3.10). In contrast,
(3.16) represents the maximum efficiency that the turbine could potentially achieve under
the same conditions. In this section we determine the latter, while the following section
evaluates the coefficients from numerical simulation to show whether this maximum
performance could be achieved in practice.

Without knowing a priori physically realistic signs or magnitudes of Cα, Cβ and Cγ , we
can nevertheless determine that there exist numerical combinations of these coefficients
that result in ηmax > 16/27 in (3.16). A starting point to make the analysis tractable is to
consider the effect of Cα and Cβ (momentum and energy fluxes), with Cγ = 0. Applying
constraints to ensure non-imaginary solutions for ηmax , 0 < aopt < 1 (i.e. the downstream
flow velocity remains both positive and less than the upstream velocity), and ηmax < 1
(the turbine cannot extract more energy than exists in the flow) results in the region shown
in figure 2, and the corresponding contours of turbine plane velocity UT/U∞ in figure 3.
Figure 2 suggests that in principle the Betz limit may be exceeded – the question then
becomes whether these numerical values of Cα, Cβ and Cγ are physically realistic or
indeed possible for the flapping foil turbine.

For example, in figure 2 with Cβ = 0, positive values of Cα reduce ηmax , but −0.268 <

Cα < 0 results in 0.77 > ηmax > 0.593. This would require either the net force due to
non-uniform pressure on the control surface to be negative (pressure at the downstream
CS outlet higher than at the inlet, which is not physically realistic), or the viscous force
on the sides of the CS to be negative (again not physically realistic given that the flow
on the CS sides is in the downstream direction), or that there is a net transport of
momentum out of the CS sides due to unsteady effects. Whether the latter is realistic
is not immediately apparent, but is evaluated in § 3.3. Alternatively, leaving Cα = 0,
ηmax > 16/27 for 0 < Cβ < 0.25. The CWPA component due to non-uniform pressure
would be zero along the CS sides (no time-average flow across the boundary) but would
be expected to be small and positive from contributions at the CS inlet and outlet
since again P1 < P2 is not physically realistic. The expected sign and magnitude of the
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α + 4Cα − 3Cβ = 0 ηmax = 1

ηmax = 16/27

FIGURE 2. Region of Cα and Cβ space (shaded) for which 16/27 < ηmax < 1 and 0 < aopt <
1, from (3.15) and (3.16), with Cγ = 0. Contours equally spaced between ηmax = 16/27 and
ηmax = 1, adapted from Young et al. (2017).
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FIGURE 3. Contours of UT/U∞ from (3.13), with a = aopt for all values of Cα and Cβ , with
Cγ = 0. Shaded region as for figure 2.

other terms comprising Cβ are harder to estimate without direct evaluation as in § 3.3.
Figure 2 also shows values of ηmax > 16/27 even where Cβ < 0, i.e. where energy is
being extracted from the control volume by unsteady effects and mean pressure flow
work, rather than additional energy being provided. This is discussed further in § 3.4.
Finally, one may note additional issues at the extremes of this analysis; for example
at Cα = 0 and Cβ = 0.25, the predicted maximum efficiency is ηmax = 1.0 and yet
UT/U∞ = 1.0, thus the foil is extracting all the available power without creating any
velocity change between the far upstream and the turbine plane. This comes about
because we have imposed these given values of Cα and Cβ , without accounting for
how they would be or whether they could be produced, which is the focus of the next
section.

Note that it is sufficient to consider the effect of Cα, Cβ and Cγ on the maximum
efficiency ηmax alone, and not also on the mean power coefficient C̄P, due to the
relationship between them in (3.9). For a given foil and kinematics, the foil area and
turbine plane area are constants and the power coefficient differs from the efficiency only
by a constant multiple.

It should also be noted that the analysis so far has made no assumption of the
dimensionality of the control volume, so is equally applicable to two-dimensional (2-D)
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or 3-D flows. In what follows here for a single foil an evaluation of the pressure and
velocity correlation terms has been made using 2-D simulations, as a demonstration
of the methodology and to simplify the interpretation of the results. The impact of
three-dimensionality is further discussed in § 4.2.

3.3. Evaluation of non-idealised momentum and energy terms
The 2-D unsteady viscous incompressible flow around a flapping foil was simulated with
an in-house immersed-boundary lattice-Boltzmann method solver (Tian et al. 2011; Liu
et al. 2017). The most efficient case from Kinsey & Dumas (2008) was chosen to examine
the relative size and impact of each of the terms comprising Cα, Cβ and Cγ in § 3.1, and is
referred to here as Case 1.

A NACA0015 aerofoil section oscillates in heave y(t) = hc sin(2πft) and pitch θ(t) =
θ0 sin(2πft + φ), pitching about the 1/3 chord point with heave amplitude h = 1.0 chords,
pitch amplitude θ0 = 76.3◦, pitch leading heave with phase φ = 90◦, non-dimensional
frequency f ∗ = fc/U∞ = 0.14, at Reynolds number Re = 1100 based on chord length.
This case serves also as a validation of the solver and mesh spacing, conducted and
reported in Liu et al. (2017) and further detailed here. The computational domain is a
60c × 40c rectangular box with domain boundaries at 20c upstream, 40c downstream,
and 20c in each cross-stream direction from the foil pivot point. Boundary conditions
are u = U1, v = 0, and ∂p/∂n = 0 at the upstream, p = 0 and ∂(u, v)/∂n = 0 at the
downstream, and ∂(u, v, p)/∂n = 0 at the top and bottom boundaries. A multi-block
Cartesian grid is employed, uniform in both x and y directions within a 7c × 3c inner
box enclosing the flapping foil, with grid spacing of �x = �y = 3.125 × 10−3c (320
points along the foil chord). The grid spacing is gradually increased in the remainder
of the domain moving towards the boundaries, with a total of 4.62 million cells in
the grid. A convective timestep �t̂ = �tU1/c = 0.002 is used, resulting in 3571 time
steps per flapping cycle for f ∗ = 0.14. The simulation was run for 12 flapping cycles,
with periodicity being reached after four cycles and the final four cycles used for time
averaging.

Figure 4 shows the high level of agreement in force and power developed by the foil,
between the present simulation and the literature on which Case 1 is based. This shows that
details of the time history of the flow (critical in this analysis given the need to evaluate
fluctuations from the time average) have been faithfully reproduced.

Figure 5 shows the time-averaged values of the pressure coefficient and non-dimensional
vorticity, while figure 6 shows time-averaged values of steady and unsteady kinetic
energy, with the control surface CS defined as the streamlines based on the time-averaged
velocities U and V passing through the maximum extent of the swept area of the
flapping wing. This may be compared to the schematic of the situation shown in
figure 1. In the steady kinetic energy field we see some unexpected features, such
as the lowest velocity point in the wake not immediately behind the turbine plane
but some 3 to 5 chord lengths downstream, as well as a non-monotonic variation of
velocity magnitude along the streamtube boundaries. Similarly in the pressure field
there is a wavy structure of low pressure that extends significantly downstream of the
turbine and again leads to a non-monotonic variation of pressure along the streamtube
boundaries. The low pressure regions are seen to correspond closely to the regions of
high vorticity magnitude, indicating the paths of vortices shed from the leading edge
of the foil during the flapping cycle and convecting downstream. This suggests that
unsteady effects will make a significant contribution to the time-average behaviour of
the system. The highly vortical nature of this case is underlined in figure 7, showing
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FIGURE 4. Comparison of simulation results against Kinsey & Dumas (2008).
(a) Instantaneous lift coefficient CL = fy/

1
2ρU2∞c; (b) instantaneous output power coefficient

CP = Ẇ/ 1
2ρU3∞c.

the development of a strong leading edge vortex over the foil, and the mixing of flow
regions inside and outside the time-average streamtube induced by the shed vortices in
the wake.

Each of the terms in (3.1)–(3.6) and (3.10) is now integrated on the control surface
shown in figure 5, to determine their respective contributions to the force and power
output from the flapping foil turbine. The upstream and downstream boundaries (inlet
and exit of the streamtube) are placed at x/c = −19.5 and x/c = 39.5 respectively, just
inside the boundaries of the computational domain. In the modified Betz analysis the effect
of oscillating forces and velocities through the turbine plane in (3.10) is calculated by
spatially averaging the velocity components across the turbine plane at each time step
to obtain uTi , then subtracting off the time-averaged values UTi to obtain the fluctuating
velocities u′

Ti
, and multiplying by the instantaneous fluctuating force components f ′

i derived
from (2.6); ẆLT is then determined by subtracting the product of force and velocity
from the overall power and thus accounts for viscous dissipation of mechanical energy,
as well as any effects that cannot be directly measured such as that introduced by the
spatial averaging process where the velocity components across the turbine plane are
non-uniform.

The efficacy of the control volume approach developed in § 3.1 is tested here,
with the results shown in table 1. The power developed by the flapping foil may be
calculated directly from instantaneous forces and moments on the foil surface and the
translational and rotational velocities as Ẇ = fy ẏ + Mθ̇ , and the efficiency obtained from
(3.8). Equation (3.11) is then used to calculate the efficiency via the CV approach for
comparison, using the calculated coefficient values in table 2. The time-averaged drag
coefficient on the turbine is also compared.
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FIGURE 5. Time-averaged values of pressure coefficient CP (a) and non-dimensional vorticity
Ωc/U∞ (anticlockwise positive, b) for Case 1. The grey region in each plot indicates the
cross-section of the area swept by the foil, black lines show the time-average streamtube that
defines the control volume used for analysis.
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FIGURE 6. Time-averaged values of non-dimensional steady kinetic energy (KE) =
0.5(U2 + V2)/U2∞ (a) and unsteady KE = 0.5(u′u′ + v′v′)/U2∞ (b) for Case 1.

We see that there is very good agreement between all three sets of values (note that
Kinsey & Dumas (2008) reported values of η = 0.337 and C̄P = 0.86, and the value of
C̄P = 0.863 given in table 1 is inferred from the value of η and the known value of the
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FIGURE 7. Instantaneous non-dimensional vorticity ωc/U∞ (anticlockwise positive),
t/T = 0.125, for Case 1. Black lines show the time-average streamtube.

Literature Present (direct) Present (CV)

C̄P 0.863 0.875 0.867
C̄D — 2.071 2.069
η 0.337 0.341 0.338

TABLE 1. Comparison between time-averaged power coefficient C̄P, time-averaged drag
coefficient C̄D = Fx/(0.5ρU2∞c) and efficiency η. Values taken from the literature (Kinsey &
Dumas 2008), direct measurement from foil surface and via CV approach from (3.11) (Case 1).

CFM 0.5945

Cα 0.4620 = Σ CFP 0.2733
CFV 0.0310
CFR 0.1576

CWKE 0.4990

Cβ −0.0510 = Σ CWPA 0.2105
CWPF −0.0310
CWA 0.0152
CWB 0.0179
CWC −0.2636

Cγ 0.3500

TABLE 2. Force and power coefficient contributions integrated over the complete streamtube
(Case 1). Definitions of the coefficients given in (3.6) and (3.10).

trailing edge vertical swept distance d). The slight discrepancy in the direct power and
efficiency values compared to the literature is considered acceptable given the differing
numerical approaches used to solve the flow. The close similarity between the direct and
CV-based values of force, power and the actual efficiency of the turbine from (3.11) gives a
high degree of confidence in the methodology, and its ability to then predict the maximum
potential efficiency from (3.16).

Figure 8 shows the contribution of terms in (3.6), as a function of distance along the
streamtube sides (i.e. excluding the contributions from the CV upstream and downstream
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FIGURE 8. Force and power coefficient contributions on the sides of the streamtube, integrated
from the control volume inlet to the value of x/c indicated (Case 1).

boundaries). Here, the upstream control volume boundary is kept fixed at x/c = −19.5,
and the contributions integrated from that point to a variable point represented by the x/c
coordinate, thus these are cumulative contributions from the upstream boundary to the
point plotted. We see weak force contributions from viscous effects and pressure along the
streamtube sides, but a strong diffusion of unsteady momentum from the Reynolds stress
(represented by the CFR term) into the streamtube between 0 and 4 chords downstream of
the foil pivot. See figure 7 for an illustration of this occurring in the instantaneous flow
field. Momentum is removed between 4 and 7 chords, then increases and decreases again
several times further downstream, corresponding to the locations in figure 5 where strong
vorticity is crossing the streamtube sides.

Examining the power contributions, CWPA on the streamtube sides is exactly zero as
expected due to the time-averaged flow field being aligned to the streamtube, so is not
plotted here. There is a relatively weak negative contribution in CWPF (power reduced by
correlation of fluctuating pressure and velocity), and as expected the work from viscous
forces on the streamtube sides is also very small. There is a large contribution from
CWA representing convection of unsteady kinetic energy (u′

iu
′
iUj), work done by Reynolds

stresses (2Uiu′
iu

′
j) and transport of unsteady kinetic energy by fluctuating velocities (u′

iu
′
iu

′
j),

with a similar spatial distribution as CFR. The strongest contributor to Cβ in this case is the
viscous dissipation of mechanical energy represented by a relatively large negative value
of CWC.

Examining the values of Cα and Cβ from table 2 we see that for this set of flapping
kinematic parameters, there are effects ignored in the standard Betz analysis that make a
strong contribution to the force and power output. This is particularly true of the force due
to diffusion of unsteady momentum across the streamtube sides (CFR = 0.1576) which is
approximately a quarter of that due to momentum in and out of the streamtube through
the inlet and exit (CFM = 0.5945). There is also a strong contribution to force due to
non-free-stream pressure on the downstream exit of the streamtube. In the Betz analysis the
pressure far downstream is assumed to be equal to free stream; however, here we see that
even 40 chords downstream, the pressure is non-uniform across the wake, and low pressure
regions are correlated with the mean path of vorticity shed from the flapping foil as shown
in figure 5, indicating that these vortices remain coherent far downstream. Overall the
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FIGURE 9. Contours of ηmax vs Cα and Cβ from (3.15) and (3.16), with Cγ = 0.35. Values
from singe foil Case 1 annotated.

additional terms make almost as much contribution to force as does the momentum flux
(Cα/CFM = 0.77), with various contributions to the power almost cancelling in this case,
but regardless large enough to indicate that they should not be ignored.

3.4. Interpretation of single foil results
Figure 9 shows the Cα and Cβ results obtained above, overlaid on the potential maximum
efficiency contours plotted as in figure 2, but now with the non-zero value of Cγ available
to use in the calculation of (3.16). Case 1 falls just short of the region where ηmax is
theoretically greater than the Betz limit of 16/27, yet is well short of this value in the actual
efficiency achieved. Also using measured values of inlet area A1 and turbine plane area AT
and mass conservation UT/U∞ = A1/AT , gives UT/U∞ = 0.7306 for Case 1, somewhat
higher than the optimum Betz value of 2/3. To understand this discrepancy between
potential and actual performance we must first return to the definition of efficiency in
(3.8) and (3.12).

Equation (3.8) (or in coefficient form, (3.11)) states that the efficiency is determined by
the balance of kinetic energy fluxes entering and leaving the streamtube used as the control
volume, along with effects from viscous dissipation and fluctuating forces and velocities
through the turbine plane. If we first fix the denominator (constant mean force on the
turbine), to increase efficiency we must increase the net power which may be achieved by
a positive Cβ in (3.12). If instead we allow the denominator to change, additional force on
the turbine (Cα increasing) acts to slow the turbine plane velocity UT as seen in figure 3,
and additional energy must then be added to the streamtube to overcome this, leading to
the observed shape of the shaded region in figures 2 and 9.

Why then does Case 1 come close to the shaded region in figure 9, thus indicating
a very high potential performance, yet not achieve an actual efficiency anywhere near
the Betz limit? The answer is that the analysis of the single foil in § 3.1 does not take
into consideration where in the streamtube that extra energy is entering, just that it is
entering somewhere. Figure 8 shows very clearly that energy enters several to many chords
downstream of the turbine plane, where it is not available to pass through and be extracted
by the turbine. Figure 6 shows that while significant kinetic energy is generated by the
unsteady behaviour of the vortices shed from the foil, this manifests itself in the wake
of the foil within the time-averaged stream tube, and little additional kinetic energy is
entrained into the streamtube as a result. So the maximum theoretical efficiency might
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FIGURE 10. Time-averaged streamtubes (solid lines) as the control surfaces for tandem flapping
foil turbines T1 and T2 (nominal planes with areas A1 and A2 represented by dash-dot lines, see
figure 1 for the relationship between these planes and the physical foils). Streamlines are shown
as dotted lines. Despite the optical illusion, turbine areas A1 and A2 are equal in this figure.

exceed the Betz limit, but in practice that efficiency will never be achieved as the extra
energy is not used and escapes downstream.

The entry point of this additional energy is governed by the nature of the flapping
foil and the flow dynamics that is induced, and will necessarily be downstream of the
turbine plane as the generated leading and trailing edge vortices are convected by the
mean flow. Thus a single flapping foil turbine can still be said to be limited by the Betz
efficiency in practice. This analysis raises the prospect, however, that a second foil placed
in tandem several chords downstream of the first, may experience a meaningful benefit of
the additional energy induced by the unsteady action of the upstream foil. In what follows,
the analysis is further developed to consider just such a tandem foil geometry.

4. Twin flapping foil tandem system

4.1. Modification of the Newman analysis
Newman (1986) analysed the performance of an array of an arbitrary number of equally
sized turbines placed one behind the other, with the same assumptions as in the
standard Betz analysis (steady flow, atmospheric pressure on all streamtube boundaries, no
viscous effects, purely axial flow). This work used the Bernoulli equation applied along
streamlines between and around the turbines to find a maximum achievable efficiency
for two tandem turbines of 0.64, and 0.66 for an infinite number of turbines. We use the
terminology of tandem-turbine Betz limit and Newman limit interchangeably, believing
the former is the more recognisable form.

Here we perform a similar analysis using control volumes, in a manner more amenable
to including the additional momentum and energy transport terms that result from the
unsteady behaviour of the flapping foils. This is done for two tandem foils, as shown in
figure 10, but may be extended to an arbitrary number of foils in a relatively straightforward
manner (that is to say setting up the analysis is straightforward, but as will become
apparent the complexity of the solutions rapidly increases once more than one foil is
considered). Once again the analysis makes no assumption of dimensionality of the control
volumes.

In figure 10 the same approach is used as for the single foil case, where the leading
turbine T1 is enclosed in a control surface CS1 which starts far upstream, follows the
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time-average streamlines that pass through the limits of the swept area of the turbine,
but now terminates at the midpoint M between T1 and the trailing turbine T2. This trailing
turbine is similarly enclosed in control surface CS2 which starts at the midpoint M, follows
the streamlines passing through the limits of the swept area of T2, and ends far downstream.
Control surfaces which entirely enclose the foils, rather than abutting them or crossing
them (as in Newman 1986) are deliberately chosen here due to the need to perform time
averaging of computational fluid dynamics (CFD) solutions. This approach avoids the
question of how to appropriately calculate the time-average value of any flow quantity, at
a point in the flow through which the foil passes at some times during the flapping cycle,
i.e. where there is fluid–solid intermittency. The velocity at midpoint M is assumed to
be constant across the exit of CS1, as in Newman (1986), with any vertical component
negligible in comparison to the horizontal component.

The efficiency of the entire system is given by (3.8), with the power output now split
between the two foils

η = Ẇ
1
2ρU3∞AT

= Ẇ1 + Ẇ2
1
2ρU3∞AT

, (4.1)

with both turbines assumed to have the same swept area AT , without loss of generality.
In situations where the areas differed, the largest would be used in the calculation of the
overall efficiency of the system.

Similarly the power output of each individual foil may be defined by the forces on and
velocities through the turbine plane, along with any losses of mechanical energy across it
as in (3.7). The time-average horizontal velocities through each turbine UT1 and UT2 are
solved for and then substituted into the expression for efficiency to give

η = Ẇ1
1
2ρU3∞AT

+ Ẇ2
1
2ρU3∞AT

= 1
1
2 ṁ1U3∞

Ẇ1

Fx 1
(Ẇ1 − (f ′

i u′
Ti
)1 + ẆLT1)

+ 1
1
2 ṁ2U3∞

Ẇ2

Fx 2
(Ẇ2 − (f ′

i u′
Ti
)2 + ẆLT2)

= (CWKE1 + Cβ1)(CWKE1 + Cβ1 + Cγ 1)

CFM1 + Cα1

+ (CWKE2 + Cβ2)(CWKE2 + Cβ2 + Cγ 2)

CFM2 + Cα2
, (4.2)

where ṁ1 = ρUT1AT and ṁ2 = ρUT2AT are the mass flow rates through the upstream
and downstream turbines respectively. We now define force and power coefficient
terms as per (3.4)–(3.6) for each of the control surfaces, but with slightly differing
non-dimensionalising factors as in table 3.

Integrating over the control surfaces as for the single foil case results in

η =
(
1 − a2 + Cβ1

) (
1 − a2 + Cβ1 + Cγ 1

)
2(1 − a) + Cα1

+
(
a2 − b2 + Cβ2

) (
a2 − b2 + Cβ2 + Cγ 2

)
2(a − b) + Cα2

, (4.3)
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Foil Force Power

Upstream
1

1
2 ṁ1U∞

1
1
2 ṁ1U2∞

Downstream
1

1
2 ṁ2U∞

1
1
2 ṁ2U2∞

TABLE 3. Non-dimensionalising factors for force and power coefficients for upstream and
downstream turbines.

where now velocity ratios a = UM/U∞ and b = UE/U∞ are defined, and AM1 and AM2 are
the areas of the exit of CS1 and inlet of CS2 respectively. Following the same procedure as
for the single foil case, one may in principle find an expression for the maximum possible
efficiency ηmax by differentiating η with respect to a and b, setting both results to zero to
obtain two equations for the two unknowns aopt and bopt, and substituting these back into
(4.3). This is done first as a check with Cα1 = Cα2 = Cβ1 = Cβ2 = Cγ 1 = Cγ 2 = 0, where
the resulting equations are straightforward to solve (although there are four solutions, only
one of which is physical), resulting in aopt = UM/U∞ = 3/5, bopt = UE/U∞ = 1/5, and
ηmax = 16/25 = 0.64. This is precisely the result obtained by Newman (1986) for a two
turbine system, giving confidence in the methodology used here.

The equations may in principle be solved exactly as for a single foil, although when
all the additional force and power coefficients are non-zero the process of maximisation
becomes too complex to solve in symbolic form; thus for any given values of the
coefficients, aopt, bopt and ηmax are obtained numerically. For this more general case,
there are multiple solutions for each set of coefficient values, and these are reduced to
the single physical solution by application of the constraints 0 < aopt < 1, 0 < bopt < 1,
bopt < aopt (the flow velocity must be reduced through each turbine, and cannot be reversed
in direction), ∂2η/∂a2 < 0 and ∂2η/∂b2 < 0 (the final two being imposed to ensure a
genuine maximum in the efficiency rather than an inflection point).

With six independent variables instead of three, the dependence of efficiency on the
force and power coefficients is difficult to show graphically. Four special cases are
illustrated in figure 11. In figures 11(a) and 11(b) the constraints ensuring non-imaginary
solutions are solved exactly and are indicated in equation form on the figure, whereas
in figures 11(c) and 11(d) the constraints are determined numerically and do not have a
closed-form solution. As for the single foil case, there are clearly sizeable regions of this
space where the tandem-turbine Betz limit is theoretically exceeded, and it is necessary
to determine whether the coefficient values required to push the overall efficiency up to
or beyond that limit can actually be achieved. In particular, the entry of momentum and
energy through the sides of the control volume ahead of the downstream turbine, induced
by the unsteady action of the upstream turbine, will be examined in detail. The separation
distance between the upstream and downstream turbines also clearly becomes an important
parameter, discussed further below.

4.2. Evaluation of non-idealised momentum and energy terms
Once again 2-D tandem foil flapping parameter combinations were chosen inspired by
cases from the literature, to examine the relative size and impact of each of the terms
comprising Cα1, Cα2, Cβ1, Cβ2, Cγ 1 and Cγ 2. Case 2 was based upon Kinsey & Dumas
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FIGURE 11. Region of Cα1, Cα2, Cβ1, Cβ2 space (shaded) for which 16/25 < ηmax < 1. (a)
Cα2 = Cβ2 = 0; (b) Cα1 = Cβ1 = 0; (c) Cα1 = Cα2 = 0; (d) Cα1 = Cα2 = 0.25. Cγ 1 = Cγ 2 =
0 in each panel.
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(2012b) representing the most efficient case from that study (they reported a maximum
efficiency of η = 0.641, right at the tandem foil Betz limit). Since force and power time
histories of the upstream and downstream foils were not available for this case in Kinsey &
Dumas (2012b), two more cases (here referred to as 3 and 4) for which they were available
were considered to act as validation of the numerical solver.

In Case 2 the upstream foil is a NACA0015 aerofoil oscillating in heave y1(t) =
hc sin(ωt) and pitch θ1(t) = θ0 sin(ωt + φ), pitching about the 1/3 chord point with heave
amplitude h = 1.0 chords, pitch amplitude θ0 = 75.0◦, pitch leading heave with phase φ =
90◦, non-dimensional frequency f ∗ = fc/U∞ = 0.14, at Reynolds number Re = 5.0 × 105.
The second foil is placed downstream from the first with a distance of 5.4 chords separating
their respective pivot points and with identical geometry and motion parameters, except
that the downstream foil oscillates out of phase relative to the upstream foil, i.e. y2(t) =
hc sin(ωt + φ1−2) and pitch θ1(t) = θ0 sin(ωt + φ + φ1−2) with φ1−2 = 180◦. Kinsey &
Dumas (2012b) simulated a range of separation distances and inter-foil phases with these
values producing the highest efficiency found for the chosen individual foil kinematics
at this Reynolds number. They argued that critical to the high efficiency achieved was a
strong interaction between the downstream foil and the shed vortices of the upstream foil,
and those vortices entraining additional momentum and energy to increase the dynamic
pressure of the flow that the downstream foil would otherwise be exposed to.

Case 3 is identical to Case 2, except for a reduced pitch amplitude (θ0 = 70.0◦). Case 4
is identical to Case 3 except for an increased flapping frequency ( f ∗ = 0.18).

The solver employed for the single foil cases is unsuitable here due to the much higher
Reynolds number, so the commercial code ANSYS Fluent 19.2 is used. The computational
domain is 72.8c × 40c with domain boundaries at 21.4c upstream of the leading foil pivot
point and 46c downstream of the trailing foil pivot point (plus 5.4c separation between
the pivot points), and 20c in each cross-stream direction. A second-order pressure-based
coupled scheme is used to solve the incompressible Navier–Stokes equations, and the k-ω
SST turbulence model (see Menter 1994) is used with turbulent viscosity ratio of 1.0 and
turbulence intensity of 0.1 % assumed at the upstream inlet. The overset mesh technique
is used, with high resolution body-fitted grids around the foils (200 cells along the foil
chord, and first cell spacing of 1.0 × 10−6 chords, resulting in y+ < 1.0 at all times) and
a multi-block Cartesian background grid (with spacing �x = �y = 0.0125c gradually
increasing away from the foils and wake region). Total cell count is approximately 750 000
and there are 2000 time steps per flapping cycle. The simulations were run for 18 flapping
cycles to ensure periodicity of the solution, with the final 8 cycles used for time averaging.

The Case 2 simulation resulted in a combined efficiency for the upstream and
downstream foils of η = 0.653, very close to the 0.641 predicted by Kinsey & Dumas
(2012b). Case 3 and 4 results were 0.620 vs 0.614, and 0.532 vs 0.521, respectively. In
addition, figure 12 shows the high level of agreement in vertical force generated by the
upstream and downstream foils, between the present simulations and the literature on
which Cases 3 and 4 are based. While there are some very small discrepancies in the
vertical force time histories leading to the differences in the computed efficiencies, most
likely due to differences in mesh construction and motion strategy between the present
work (overset mesh) and the literature (non-conformal sliding mesh), the quantitative and
qualitative levels of agreement are considered high for these three different foil kinematics,
indicating that details of vortex shedding and other interactions between the upstream foil
wake and the downstream foil have been successfully captured. While unsteady RANS was
used here for direct comparison with Kinsey & Dumas (2012b), at this Reynolds number
there are likely to be smaller scale vortical structures overlaid on the larger scales captured
by the solver. It was considered that this was unlikely to significantly affect the conclusions
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FIGURE 12. Comparison of simulation results (CFD) against Kinsey & Dumas (2012b).
Instantaneous lift coefficient CL = Fy/

1
2ρU2∞c, Case 3 (a) and Case 4 (b), parameters given

in § 4.2. US = upstream foil, DS = downstream foil.

to be drawn from this analysis, although a fuller treatment in three dimensions with large
eddy simulation is suggested for future work as noted at the end of this section.

Since Case 2 involves turbulent flow simulated using an unsteady RANS turbulence
model (k-ω SST), the solver tracks two additional variables in addition to the pressure
and velocities, namely turbulent kinetic energy k and specific dissipation rate ω. The only
interaction between the turbulence and the momentum equation in the solver is through
modification of the viscosity (addition of the so-called turbulent viscosity μT derived
from k and ω in the turbulence model). Thus (2.6) requires no modification other than
using μ + μT in calculation of the shear stress τij instead of μ. At this point it should
be noted that the conservation of mechanical energy equation is not explicitly solved
by the CFD solver. Rather (2.7) represents the conservation equation that is inherently
satisfied by the CFD solutions, and is derived by multiplying (2.6) by instantaneous
velocity vector ui and summing over tensor indices. Since the flow field is modified by
the effects of turbulence via the turbulent viscosity, such effects are inherently included
in the energy equation, including the additional turbulent dissipation and similarly do not
require separate treatment. For completeness though in the following analysis we examine
the magnitude of the transport of turbulent kinetic energy for comparison with the other
energy transport mechanisms. In the time-averaging time scale of one flapping period, this
turbulent kinetic energy can be considered to have steady and fluctuating components

k(t) = K + k′, K = k̄ = 1
T

∫ t+T

t
k(t) dt. (4.4a,b)

Figure 13 shows the time-averaged values of the pressure coefficient and
non-dimensional vorticity, with the control surfaces CS1 and CS2 defined as the
streamlines based on the time-averaged velocities U and V passing through the maximum
extent of the swept area of the upstream and downstream flapping wings, respectively.
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FIGURE 13. Time-averaged values of pressure coefficient CP (a) and non-dimensional vorticity
Ωc/U∞ (anticlockwise positive, b) for Case 2. The grey regions in each panel indicate the
cross-section of the areas swept by the foils, black lines show the time-average streamtubes.

The exit of CS1 and the inlet of CS2 are both placed at the midpoint between the two
nominal turbine planes, in correspondence with the schematic shown in figure 10. As in the
single foil Case 1, there is significant pressure variation along the streamtube boundaries,
although the pressure field is no longer strongly correlated with the time-averaged
vorticity. Comparison of kinetic energy components in figure 14 shows that unsteady KE
is a significant proportion of the total entering the inlet of the downstream streamtube and
into the turbine plane, confirming predictions made at the end of § 3.4. This is also readily
apparent in figure 15, where the downstream foil is observed strongly interacting with the
vortex wake shed from the upstream foil. Interestingly both the unsteady KE and steady
turbulent K in figure 14 show streams coming from the trailing edge of the upstream foil
and entering the sides of the downstream streamtube, just ahead of the downstream foil,
supporting the optimality of the chosen separation distance. This behaviour is similar to
the laminar case in figure 6, although there the two streams do not diverge as widely and
come together much closer to the upstream foil, only about two chords downstream of the
nominal turbine plane. This suggests that the ideal separation distance between upstream
and downstream foils would be strongly influenced by Reynolds number. It is noted that
the turbulent kinetic energy in this case is an order of magnitude smaller than the unsteady
kinetic energy, and is also not as strongly transported into the downstream streamtube
(lacking the strong central ‘jet’ of unsteady KE shown behind the upstream foil). Thus the
effect of the turbulent flow in Case 2 is to alter the vortex shedding and wake of the two
turbines in comparison to the laminar single foil cases, rather than contributing directly to
the downstream turbine energy budget.

Now we must look closely at the breakdown of the momentum and energy components
entering the streamtubes. Noting the discussion at the end of § 3.4, it makes little sense to
quantify the Cα and Cβ values for each control surface in its entirety, but rather to look
only at components which flow into the control surface ahead of the turbine, and hence are
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FIGURE 14. Time-averaged values of non-dimensional steady KE = 0.5(U2 + V2)/U2∞ (a),
unsteady KE = 0.5(u′u′ + v′v′)/U2∞ (b) and turbulent K/U2∞ (c) for Case 2. Note colour scale
differences between panels, emphasising the relative sizes of the energy components.
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FIGURE 15. Instantaneous non-dimensional vorticity ωc/U∞ (anticlockwise positive),
t/T = 0.035, for Case 2. Black lines show the time-average streamtubes.

available for use by that turbine and will have a material effect on the performance. Thus
the exit for each streamtube is taken to be at the maximum horizontal extent of the flapping
motion of the foil trailing edge ( just aft of the nominal turbine plane). As was done for the
single foil case, we first check the efficacy of the control volume approach in measuring
the actual performance of the tandem foil turbine system, before using it to predict the
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Literature Present (direct) Present (CV)

η1 0.359 0.368 0.368
η2 0.283 0.285 0.277
η 0.641 0.653 0.644

TABLE 4. Comparison of upstream (η1), downstream (η2) and total efficiency (η). Values taken
from the literature (Kinsey & Dumas 2012b), direct measurement from foil surface and via CV
approach (Case 2).

CFM1 0.3900 CFM2 0.1937

Cα1 0.4442 = Σ CFP1 0.4155 Cα2 0.4872 = Σ CFP2 0.4071
CFV1 0.0027 CFV2 0.0013
CFR1 0.0261 CFR2 0.0788

CWKE1 0.3491 CWKE2 0.2518

Cβ1 0.1095 = Σ CWPA1 0.3380 Cβ2 0.1713 = Σ CWPA2 0.2458
CWPF1 −0.0309 CWPF2 0.0257
CWA1 −0.1331 CWA2 −0.0491
CWB1 0.0015 CWB2 −0.0002
CWC1 −0.0660 CWC2 −0.0508

Cγ 1 0.2084 Cγ 2 0.0222

TABLE 5. Force and power coefficient contributions from upstream (subscript 1) and
downstream (subscript 2) foils (Case 2). Definitions of the coefficients given in (3.6) and (3.10).
Note the different non-dimensionalisation of upstream and downstream coefficients as given in
table 3.

maximum potential performance. Table 4 shows very good agreement between the overall
and individual foil efficiencies comparing values from Kinsey & Dumas (2012b) and the
present calculation, when measuring forces and moments directly on the foil surfaces.
Importantly the control volume analysis also yields the same level of agreement in the
overall system efficiency and in the breakdown between the upstream and downstream
foils, giving a high degree of confidence in the ability of the method to predict the
maximum potential efficiency of the system.

The various coefficients used in the calculation of the CV-based efficiencies in table 4
are provided in table 5. Examining the values of Cα1, Cβ1, Cα2, Cβ2, Cγ 1 and Cγ 2 shows
that in this tandem foil Case 2, as for the single foil Case 1, there are significant effects
not considered in the standard Betz analysis. Once again there is a major contribution
from non-uniform pressure in terms of the force placed on the control surface seen in CFP,
and in the flow work CWPA. This is true of both upstream and downstream foils. Reynolds
stresses seen in CFR also contribute to the forces, through the sides of CS1 and the sides and
inlet of CS2 although the contribution is small in comparison to the pressure. Interestingly
for this case the transport of unsteady kinetic energy and steady turbulent kinetic energy
via the steady flow field, as well as flow work done by the Reynolds stresses, showing up
in the CWA terms, produces slightly negative values. Thus the overall effect of unsteady
energy transport is removing some energy from that available for both foils, rather than
adding it as expected. However, the negative effect from CWA for the downstream foil is
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FIGURE 16. Contours of overall system ηmax from (4.3), values from tandem foil Case 2
annotated. Shaded region indicates 16/25 < ηmax < 1. Contours equally spaced between the
lowest and highest ηmax values indicated in each frame. (a) Cα2 and Cβ2 variable, all other
values as per table 5. (b) Cβ1 and Cβ2 variable, all other values as per table 5.

only one third the magnitude of the upstream foil value, suggesting that in comparison
the downstream foil is benefiting from the unsteady flows of energy from the upstream
foil. The viscous dissipation CWC terms are negative (as they must be), but are relatively
much less strong than for the single foil case, which is reasonable given the much higher
Reynolds number of the tandem foil case. Overall the size of the Cα and Cβ terms in
comparison to the standard momentum and energy flux terms CFM and CWKE, for both
upstream and downstream terms, show that they cannot sensibly be ignored.

Referring to (4.3) with the measured values of Cα1, Cβ1, Cα2, Cβ2, Cγ 1 and Cγ 2 in table 5,
we may now calculate the optimum velocity ratios a = UM/U∞ and b = UE/U∞ and the
corresponding maximum efficiency for Case 2. This gives results of aopt = 0.503, bopt =
0.177 and ηmax = 0.777, an efficiency significantly beyond the achieved value of 0.644,
and well outside the variation seen in the three different values in table 4. This result,
shown graphically in figure 16, suggests that there is scope for improvement in the already
high performance achieved by the tandem foil system, and an efficiency somewhat beyond
the tandem-turbine Betz (Newman) limit of η = 0.64, at least for high aspect ratio foils
where the flow is predominantly two-dimensional as examined here.
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As pointed out in § 3.1 the analysis method is applicable to 3-D flows, although the
evaluation of the unsteady effects has been conducted here in two dimensions. Kinsey &
Dumas (2012a) examined the performance of a 3-D rectangular planform foil of aspect
ratio 7.0 with endplates, at Re = 5.0 × 105. Simulations in three dimensions showed
excellent agreement with experimental results, with a 15 %–16 % reduction in power
generation compared to the same case in two dimensions. Further work (Kinsey & Dumas
2012c) at different aspect ratios with and without endplates resulted in power reductions
of 20 %–30 % compared to the equivalent 2-D cases. This was attributed to changes in
structure and diminution of leading edge vortices at the foil tips and interaction with the
trailing tip vortices. The question arises whether the reduction in performance seen in three
dimensions would thus definitively preclude the tandem-turbine Betz limit being exceeded
in practice. This will again depend on whether the flow of additional unsteady momentum
and energy (i.e. unaccounted for in the standard steady analysis) is into or out of the control
volume sides behind the tips of the leading foil. Visualisations of the 3-D wake structure
are available in the literature for a single finite aspect ratio foil in propulsive (e.g. Buchholz
& Smits 2008) and power extracting (e.g. Kim et al. 2017) regimes, in the form of dye
streaklines and vorticity iso-surfaces. However, figures 13–15 show that it is difficult to
infer the flow of unsteady kinetic energy from the time-averaged vorticity field, and harder
again from the instantaneous vorticity. Therefore 3-D simulations of the turbulent flow
around tandem flapping foil turbines with high resolution of the wake structures, time
averaged over many flapping cycles to ensure statistically stationary results, are needed to
answer this question more fully.

5. Conclusions

A detailed control volume analysis of single foil and tandem foil flapping turbines has
been developed here, to measure and examine the impact of physical processes ignored
in the standard Betz analysis, including non-uniform non-ambient pressures, unsteady
transport of momentum and energy and viscous flow work and dissipation. This approach
was able to closely match time-resolved and time-averaged forces and achieved efficiencies
of the single and tandem systems obtained from direct measurement on the foil surfaces
for two literature cases. The Betz analysis was extended to include these additional
measured effects, to predict a new potential maximum efficiency for the single and tandem
configurations.

The extended Betz analysis of the single (non-optimal) flapping foil turbine case
considered in this paper predicted a maximum efficiency close to but not quite at the Betz
limit. However, the actual achieved efficiency was much lower, and the great majority of
the induced momentum and energy flows into the time-averaged streamtube occurred in
the wake of the foil rather than passing through the turbine plane, and hence were not
actually beneficial. Despite this, these effects were significant and promising – the action
of the vortices shed from the leading edge of the foil during the flapping cycle is to draw
momentum and energy into the wake, in a manner not accounted by the standard Betz
analysis. This suggested that a second foil in tandem, at the correct downstream location,
could benefit from these effects and might indeed account for the high efficiencies for
tandem foils reported in the literature, right up against the tandem foil Betz limit.

For the high efficiency tandem flapping foil turbine case considered here, the same
effects of non-uniform pressure, and diffusion of momentum and kinetic energy across
the streamtube sides, were apparent, with some evidence that the tandem foil system
is benefiting from the induction of momentum and energy from the upstream foil into
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the path of the downstream foil, where it may be extracted with the correct positioning
and phasing of the downstream foil relative to the upstream one. The predominant effect
though is from the pressure in the wake, and the fact that it is unsteady, non-uniform across
the wake and remains below ambient for a large distance downstream of the turbine plane
due to the coherent vortex wake from the foils.

Overall these findings confirm suggestions made by Kinsey & Dumas (2012b) in the
unsteady nature of the flow physics allowing the Betz limit for tandem foil systems to
be exceeded. Exactly how much past that limit, though, is determined by the unsteady
interactions between the downstream foil and the wake of the leading foil, which are
sensitive to factors such as the geometry and kinematics of the foils, spacing and phasing
between them, coupled with Reynolds number. Thus determining an exact numerical limit
to the performance of these systems remains an unresolved challenge, and may not in fact
be possible in the same way that the original Betz analysis provided a single figure, due
to the complexity of the vortical wakes and the importance of their interactions with the
foils in determining performance. The present work has therefore not attempted to find
foil geometry and kinematic parameter combinations that exceed the Betz limit; that is
the subject of ongoing research by the authors and other groups. It is anticipated that the
present paper will give some additional guidance in that search by providing insight into
the flows of unsteady momentum and energy and how one or more foils may access these.
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