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MODELING AND OPTIMIZATION OF GENETIC
SCREENS VIA RNA INTERFERENCE AND FACS

YAIR GOLDBERG and YUVAL NOV

Department of Statistics, University of Haifa, Israel

We study mathematically a method for discovering which gene is related to a cell charac-
teristic (“phenotype”) of interest. The method is based on RNA interference – a molecular
process for gene deactivation – and on coupling the phenotype with cell fluorescence. A
small number of candidate genes are thus isolated, and then tested individually. We model
probabilistically this process, prove a limit theorem for its outcome, and derive operational
guidelines for maximizing the probability of successful gene discovery.

1. INTRODUCTION

A fundamental problem in science is discovering which genes are related to an organism’s
phenotype of interest (a phenotype is an observable trait or characteristic, such as eye color
or susceptibility for a certain disease). Revealing unknown gene–phenotype relationships
advances our understanding of biological systems, and often paves the way for developing
novel therapeutics.

A widely used experimental approaches for studying the gene–phenotype relationship
is based on RNA interference (RNAi) – a natural biochemical process, in which small RNA
molecules deactivate (or “silence”) genes inside cells. Biotechnological advances of the past
decade allow scientists to exploit the RNAi mechanism and deactivate specific genes of their
choosing, by introducing into cells appropriately designed RNAi molecules. RNAi technology
has thus become a powerful tool that revolutionized biomedical and genetic research. For
reviews, see Dykxhoorn and Lieberman [6], Mohr, Bakal, and Perrimon [12].

When attempting to discover which (supposedly single) gene – henceforth termed the
target gene – is related to a specific cell phenotype of interest, a researcher can deactivate
a candidate gene using the appropriate RNAi construct, and then observe whether the
phenotype is altered; when it is, a relationship between the two is established. However,
since the organisms under study typically have many thousands of genes, genome-wide
RNAi experiments of this type are often too expensive and laborious to be carried out on
a gene-by-gene basis.

An alternative is pooled RNAi screens, whereby a large number of RNAi constructs of
various types (i.e., corresponding to various genes) are inserted randomly into a large pop-
ulation of cells. We refer to a cell with at least one construct deactivating the target gene as
a target cell. All cells then undergo selection based on the phenotype, and the abundance of
each RNAi construct type among the selected cells is measured. If the selection favors cells
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not exhibiting the phenotype (so-called negative selection), it will result in enrichment of
the target cells, and hence in a relatively high count of the RNAi constructs corresponding
to the target gene. A small number of genes exhibiting high RNAi counts (say, the three
genes corresponding to the three highest counts) can then be validated in separate, individ-
ual (i.e., not pooled) RNAi experiments, in the hope that the target gene is among them.
Conversely, under positive selection, some low-count genes need to be validated.

In most pooled RNAi screens, the phenotype of interest directly influences the surviv-
ability of the cells, so that the desired selection takes place automatically as a result of
inserting the RNAi constructs into the cells. When this is not the case, it is sometimes pos-
sible to couple the phenotype with fluorescence, as measured in a flow cytometry experiment
(e.g., Bassik et al. [1], Fellmann et al. [7]). In such an experiment, the cells are processed by
a fluorescence-activated cell sorter (FACS), which first excites fluorescent-labeled molecules
harbored in them, and then sorts the cells into two categories according to the resulting
fluorescence intensity. The coupling means that the cells in which the target gene was deac-
tivated (the target cells) tend to exhibit stronger fluorescence, so the entire process results
in enrichment of the target cells. The relative abundance of the various construct types
among the selected cells can then be measured, and a small number of genes corresponding
to the top counts can be further validated, as described above.

In this work, we model probabilistically and optimize this FACS-aided pooled RNAi
experiment. The main decision point in our analysis concerns the FACS selection criterion:
if too many cells pass the selection, no detectable signal for the target gene will emanate
from the construct counts; if the selection is too stringent, few or no target cells will be
selected, resulting again in a failure to discover the target gene.

Several studies have dealt with statistical aspects of RNAi experiments (König et al.
[10], Birmingham et al. [2], Bassik et al. [1], Hao et al. [9]). Our approach differs from
those pursued in these studies, in that rather than being data driven, it models probabilis-
tically the experiment starting from its fundamentals (e.g., the distribution of the number
of constructs inserted to a cell, and the distribution of a cell’s fluorescence intensity).
In a broad sense, our work belongs to a line of works tackling problems in biotechnol-
ogy and bioinformatics, using tools of operations research and applied probability (Piau
[13], Strickland, Barnes, and Sokol [15], Blazewicz et al. [3], �Lukasiak, B�lażewicz, and
Mi�lostan [11], Blazewicz et al. [4], Caserta and Voß [5]).

2. MODEL AND NOTATION

Let r be the number of genes considered. These genes may constitute the entire genome of
the organism under study, or some sizable subset thereof (e.g., all genes related to signaling
pathways). We index the genes by i = 1, . . . , r, and, without loss of generality, designate
the index i = 1 to the target gene. Let n be the number of cells sorted by FACS, indexed
by k = 1, . . . , n. In a typical experiment, r is in the thousands and n is in the millions.

Define Nk,i to be the number of constructs of type i inserted into cell k, so that the
target cells (those in which the target gene was deactivated) are those satisfying Nk,1 ≥ 1.
Let Fk be the fluorescence intensity of cell k, and denote by G1 and G2 the cumulative
distribution functions (CDFs) of the fluorescence intensity of the target and non-target
cells, respectively. Then,

P (Fk ≤ a) =

{
G1(a) Nk,1 ≥ 1,

G2(a) Nk,1 = 0.
(1)

https://doi.org/10.1017/S0269964814000254 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964814000254


MODELING AND OPTIMIZATION OF GENETIC SCREENS VIA RNA INTERFERENCE 133

It is assumed that G1 is larger than G2 in some sense (e.g., via the usual stochastic order,
whereby G1(a) ≤ G2(a) for all a). Also define

G1(a) = 1 − G1(a), G2(a) = 1 − G2(a).

The experimenter may define the FACS selection criterion either through a percentile
(i.e., the selected cells are the top t percents of the cells, in terms of their fluorescence
intensity, for some t ∈ (0, 1)) or through a fixed threshold (i.e., the selected cells are those
whose fluorescence intensity exceeds some threshold α). The latter criterion is more tractable
mathematically, so we adopt it henceforth. The resulting construct count corresponding to
gene i is therefore

Xi =
n∑

k=1

Nk,iI{Fk>α}, i = 1, . . . , r.

The analysis below relies on the behavior of Mk,i = Nk,iI{Fk>α}, which is the contribution
of cell k to the construct count Xi.

We consider two models for the process of inserting the RNAi constructs into the cells:
the multinomial model, which is simpler to analyze, and the Poisson model, which is more
realistic.

2.1. The Multinomial Model

In the multinomial model it is assumed that each cell always admits a single construct, so
that Nk =

∑r
i=1 Nk,i = 1 for each cell k = 1, . . . , n. The type of the construct in each cell

is equally likely to be any of the r possible construct types, independent of other cells.
Define X0 =

∑n
k=1 I{Fk<α} to be the number of cells not selected by the FACS. Then,

the joint distribution of the Xi is multinomial:

(X0,X1,X2, . . . , Xr) ∼ Mult(n, p0, p1, p2, . . . , pr),

where

p0 =
1
r
G1(α) +

r − 1
r

G2(α), p1 =
1
r
G1(α), pi =

1
r
G2(α), i ≥ 2.

It is easily verified that under the multinomial model, for any power m > 0,

E[(Mk,1)m] =
1
r
G1(α), E[(Mk,i)m] =

1
r
G2(α), i ≥ 2 (2)

and

Var(Mk,1) =
1
r
G1(α)

(
1 − 1

r
G1(α)

)
(3)

Var(Mk,i) =
1
r
G2(α)

(
1 − 1

r
G2(α)

)
, i ≥ 2 (4)

Cov(Mk,1,Mk,i) = − 1
r2

G1(α)G2(α), i ≥ 2 (5)

Cov(Mk,i,Mk,j) = − 1
r2

G2(α)2, i, j ≥ 2, i �= j. (6)
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2.2. The Poisson Model

Under the Poisson model, the process of preparing the cells with the constructs for the
FACS is comprised of two steps. In the first step, each cell admits a Poisson number of
constructs, with parameter λ that is called “multiplicity of infection.” The value of λ is
typically low, in the range 0.1–1, and we treat it as exogenously given, rather than as a
decision variable. As in the multinomial model, the type of each construct is assumed to
be drawn uniformly from {1, . . . , r}, independent of other constructs. Because the support
of the Poisson distribution includes the value 0, a cell may contain no constructs, in which
case it will contribute no useful information for the experiment. To avoid this, in the second
step, all cells having no constructs are eliminated, and only those with at least one construct
are processed by the FACS machine. Thus, the total number of constructs per cell has a
Poisson distribution truncated below 1.

Proposition 1: In the Poisson model, the contribution Mk,i of cell k to the construct count
Xi satisfies

E(Mk,1) =
λc1

r(1 − e−λ)
,

E(Mk,i) =
λc2

r(1 − e−λ)
, i ≥ 2,

Var(Mk,1) =
c1

1 − e−λ

(
λ

r
+

λ2

r2

)
−

(
λc1

r(1 − e−λ)

)2

,

Var(Mk,i) =
c2

1 − e−λ

(
λ

r
+

λ2

r2

)
−

(
λc2

r(1 − e−λ)

)2

, i ≥ 2,

Cov(Mk,1,Mk,i) =
c1λ

2

r2(1 − e−λ)
− c1c2λ

2

r2(1 − e−λ)2
i ≥ 2,

Cov(Mk,i,Mk,j) =
c2λ

2

r2(1 − e−λ)
− c2

2λ
2

r2(1 − e−λ)2
i, j ≥ 2, i �= j,

E[(Mk,1)3] =
c1

1 − e−λ

[
λ

r
+ 3

(
λ

r

)2

+
(

λ

r

)3
]
,

E[(Mk,i)3] =
c2

1 − e−λ

[
λ

r
+ 3

(
λ

r

)2

+
(

λ

r

)3
]

i ≥ 2.

where

c1 = c1(α) = G1(α),

c2 = c2(α) = G2(α)e−λ/r + G1(α)(1 − e−λ/r).

Proof: Because of the elimination of cells having zero constructs, the counts Nk,1, . . . , Nk,r

at each cell k satisfy

(Nk,1, . . . , Nk,r) d= (N̂k,1, . . . , N̂k,r) | N̂k ≥ 1, k = 1, . . . , n,

where d= denotes equality in distribution, N̂k,1, . . . , N̂k,r are independent Poisson (λ/r)
random variables, and N̂k =

∑r
i=1 N̂k,i ∼ Poisson(λ).
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The distribution of a cell’s fluorescence depends only on the presence of constructs of
type 1 (recall Eq. (1)), so for x ≥ 1 we have

P (Fk > α | N̂k,1 = x) = G1(α) = c1, (7)

and for i ≥ 2, since N̂k,1 and N̂k,i are independent,

P (Fk > α | N̂k,i = x) = P (Fk > α | N̂k,i = x, N̂k,1 = 0)P (N̂k,1 = 0 | N̂k,i = x)

+ P (Fk > α | N̂k,i = x, N̂k,1 ≥ 1)P (N̂k,1 ≥ 1 | N̂k,i = x)

= P (Fk > α | N̂k,1 = 0)P (N̂k,1 = 0)

+ P (Fk > α | N̂k,1 ≥ 1)P (N̂k,1 ≥ 1)

= G2(α)e−λ/r + G1(α)(1 − e−λ/r)

= c2. (8)

Using (7), we have for x ≥ 1,

P (Mk,1 = x) = P (Nk,1 = x, Fk > α)

= P (N̂k,1 = x, Fk > α | N̂k ≥ 1)

=
P (N̂k,1 = x, Fk > α)

P (N̂k ≥ 1)

=
P (N̂k,1 = x)P (Fk > α | N̂k,1 = x)

P (N̂k ≥ 1)

=
e−λ/r(λ/r)xc1

x!(1 − e−λ)
.

Similarly, using (8), for i, j ≥ 2, i �= j and x, y ≥ 1 we get

P (Mk,i = x) =
e−λ/r(λ/r)xc2

x!(1 − e−λ)
,

P (Mk,1 = x,Mk,i = y) =
e−2λ/r(λ/r)x+yc1

x!y!(1 − e−λ)
,

P (Mk,i = x,Mk,j = y) =
e−2λ/r(λ/r)x+yc2

x!y!(1 − e−λ)
.

Computing now the moments through their basic definitions – e.g., E(Mk,1) =∑∞
x=1 xP (Mk,1 = x) – the proposition is proved. �

When λ is near zero, there is a low probability that a cell will admit two constructs or
more. Because cells with no constructs are eliminated, the probability in this case of having
eventually a single construct is close to 1, similar to the multinomial model, in which there is
always a single construct in each cell. The next proposition formalizes this observation, and
asserts that the entire Poisson model converges in distribution to the multinomial model
as λ → 0. This proposition is the only place in this work in which the multinomial and the
Poisson models are considered simultaneously; to distinguish between them notationally,
we attach a superscript (λ) to all random variables related to the Poisson model.
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Proposition 2: Let X1,X2, . . . , Xr denote the construct counts under the multinomial
model, and let X

(λ)
1 ,X

(λ)
2 , . . . , X

(λ)
r denote the construct counts under the Poisson model.

Then,

(X(λ)
1 ,X

(λ)
2 , . . . , X(λ)

r ) ⇒ (X1,X2, . . . , Xr) as λ → 0.

Proof: As in the proof of Proposition 1, let N̂
(λ)
k =

∑r
i=1 N̂

(λ)
k,i ∼ Poisson(λ) be the total

number of constructs inserted into cell k before eliminating the empty cells, under the
Poisson model. Using l’Hospital’s rule, we have

lim
λ→0

P (N (λ)
k = 1) = lim

λ→0
P (N̂ (λ)

k = 1 | N̂ (λ)
k ≥ 1)

= lim
λ→0

P (N̂ (λ)
k = 1)

P (N̂ (λ)
k ≥ 1)

= lim
λ→0

λe−λ

1 − e−λ

= lim
λ→0

e−λ − λe−λ

e−λ

= 1.

Thus, N
(λ)
k ⇒ 1 as λ → 0 for each cell k. The result now follows from the Continuous

Mapping Theorem. �

2.3. Maximizing the Probability of Discovery

Under either the multinomial or the Poisson model, let X[1] ≥ X[2] ≥ · · · ≥ X[r−1] be the
order statistics of the r − 1 non-target construct counts X2, . . . , Xr, sorted from largest to
smallest. Also let v denote the number of genes to be validated; this number is assumed
to be exogenously given, according to budget constraints. The target gene is discovered in
the experiment if it is among the v genes that are validated, an event that occurs if the
construct count of the target gene is among the v top counts. Mathematically, the probability
of discovery is

pdisc(α) = P (X[v] < X1). (9)

Our goal is to find a threshold α∗ that maximizes this probability, that is, that satisfies

α∗ = arg max
α

pdisc(α).

3. ASYMPTOTIC ANALYSIS

Let n, the number of cells, approach infinity, and assume that the number of genes grows to
infinity with n, that is, r = r(n) → ∞ as n → ∞. We attach a superscript n to all random
variables defined above, so that Xn

i =
∑n

k=1 Mn
k,i is the construct count corresponding to
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gene i in the nth system. Let

Y n
i =

Xn
i − E(Xn

i )√
Var(Xn

i )
, i = 1, 2, . . . , r(n), (10)

be the normalized construct counts, and define the process

Yn = (Y n
1 , Y n

2 , . . . , Y n
r(n), 0, 0, . . .). (11)

The following result asserts that if r(n) approaches infinity slower than n, then the
scaled construct counts are asymptotically normal and independent.

Proposition 3: Under both the multinomial and the Poisson models, and for fixed α, if
r(n) → ∞ and n/r(n) → ∞ as n → ∞, then

Yn ⇒ (Z1, Z2, . . .) as n → ∞,

where the Zi are independent standard normal random variables.

Proof: By Theorem 1.4.8 of van der Vaart and Wellner [16], it is enough to prove finite-
dimensional convergence, that is, to show that for each d ∈ N,

Y n = (Y n
1 , . . . , Y n

d )T ⇒ (Z1, . . . , Zd)T .

By the Cramér–Wold theorem, it needs to be shown that for each a ∈ R
d,

aT Y n ⇒ N(0, aT a). (12)

Define

Qn
k,i =

Mn
k,i − E(Mn

k,i)√
nVar(Mn

k,i)
.

Then,

E(Qn
k,i) = 0, (13)

Var(Qn
k,i) = 1/n, (14)

Cov(Qn
k,1, Q

n
k,i) =

Cov(Mn
k,1,M

n
k,2)

n
√

Var(Mn
k,1)Var(Mn

k,2)
, i ≥ 2 (15)

Cov(Qn
k,i, Q

n
k,j) =

Cov(Mn
k,2,M

n
k,3)

nVar(Mn
k,2)

, i, j ≥ 2, i �= j. (16)
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Define V n
k =

∑d
i=1 aiQ

n
k,i. Then,

n∑
k=1

V n
k =

n∑
k=1

d∑
i=1

aiQ
n
k,i

=
d∑

i=1

ai

n∑
k=1

Mn
k,i − E(Mn

k,i)√
nVar(Mn

k,i)

=
d∑

i=1

ai

Xn
i − nE(Mn

k,i)√
nVar(Mn

k,i)

= aT Y n.

Thus, proving (12) is equivalent to proving
∑n

k=1 V n
k ⇒ N(0, aT a). Now consider the tri-

angular array {V n
k , k = 1, . . . , n, n = 1, 2, . . .}. Using (13)–(16), we have that E(V n

k ) = 0
and

Var(V n
k ) =

d∑
i=1

Var(aiQ
n
k,i) +

∑
i�=j

Cov(aiQ
n
k,i, ajQ

n
k,j)

=
1
n

d∑
i=1

a2
i +

2
n

⎡⎢⎢⎣ Cov(Mn
k,1,M

n
k,2)√

Var(Mn
k,1)Var(Mn

k,2)

d∑
i=2

a1ai +
Cov(Mn

k,2,M
n
k,3)

Var(Mn
k,2)

∑
i,j≥2
i<j

aiaj

⎤⎥⎥⎦.

Therefore,

s2
n = Var

(
n∑

k=1

V n
k

)
= nVar(V n

1 )

=
d∑

i=1

a2
i + 2

⎡⎢⎢⎣ Cov(Mn
k,1,M

n
k,2)√

Var(Mn
k,1)Var(Mn

k,2)

d∑
i=2

a1ai +
Cov(Mn

k,2,M
n
k,3)

Var(Mn
k,2)

∑
i,j≥2
i<j

aiaj

⎤⎥⎥⎦ . (17)

Using Eqs. (3)–(6) for the multinomial model, or Proposition 1 for the Poisson model,
we have that the coefficients before both sums in the square brackets in the last expression
converge to zero as n → ∞, as the numerator in each is O(1/r2), and the denominator is
O(1/r). Therefore, s2

n → ∑d
i=1 a2

i as n → ∞.
By the Lindeberg–Feller Central Limit Theorem, a sufficient condition for

1
sn

n∑
k=1

V n
k ⇒ N(0, 1) (18)

is the Lyapunov condition:

there exists δ > 0 such that
1

s2+δ
n

n∑
k=1

E
(|V n

k |2+δ
) → 0 as n → ∞.
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We now show that the condition holds for δ = 1. Since V n
1 , . . . , V n

n are identically distributed
for each n, the Lyapunov condition in the case δ = 1 reduces to

n

s3
n

E
(|V n

1 |3) → 0 as n → ∞.

Using Minkowski inequality and the fact that the Mn
k,i are non-negative, we have that

n

s3
n

E
(|V n

1 |3) =
n

s3
n

E

⎛⎜⎝
∣∣∣∣∣∣

d∑
i=1

ai

Mn
1,i − E(Mn

1,i)√
nVar(Mn

1,i)

∣∣∣∣∣∣
3
⎞⎟⎠

=
1
s3

n

E

⎛⎜⎝
∣∣∣∣∣∣

d∑
i=1

ai[Mn
1,i − E(Mn

1,i)]

n1/6
√

Var(Mn
1,i)

∣∣∣∣∣∣
3
⎞⎟⎠

≤ 1
s3

n

⎡⎢⎢⎣ d∑
i=1

⎛⎜⎝E

∣∣∣∣∣∣ai[Mn
1,i − E(Mn

1,i)]

n1/6
√

Var(Mn
1,i)

∣∣∣∣∣∣
3
⎞⎟⎠

1/3
⎤⎥⎥⎦

3

≤ 1
s3

n

⎡⎢⎢⎣ d∑
i=1

⎛⎜⎝E

∣∣∣∣∣∣ aiM
n
1,i

n1/6
√

Var(Mn
1,i)

∣∣∣∣∣∣
3
⎞⎟⎠

1/3
⎤⎥⎥⎦

3

.

Recall that s2
n converges to a constant. Thus, since the sum in the last expression

involves a finite and fixed number of summands, to show that the last expression converges
to zero, it is enough to show that for each i, the expression

E

∣∣∣∣∣∣ aiM
n
1,i

n1/6
√

Var(Mn
1,i)

∣∣∣∣∣∣
3

=
|a3

i |E[(Mn
1,i)

3]
n1/2[Var(Mn

1,i)]3/2
(19)

converges to zero. Indeed, using Eqs. (2)–(6) for the multinomial model, or Proposition 1
for the Poisson model, we have that E[(Mn

1,i)
3] converges to zero at rate 1/r, whereas

[Var(Mn
1,i)]

3/2 does so at rate 1/r3/2. Thus, the entire right-hand side of the last displayed
equation is of order (r/n)1/2, and since we assumed that n/r → ∞, the Lyapunov condition
is satisfied.

We have shown that (18) holds. What we need to show is (12), which may be written
equivalently as

1
‖a‖2

n∑
k=1

V n
k ⇒ N(0, 1).

However, since sn → (
∑d

i=1 a2
i )1/2 = ‖a‖2, the proposition is proved. �

4. APPROXIMATING THE PROBABILITY OF DISCOVERY

Under either the multinomial or the Poisson model, evaluating the exact probability of
discovery pdisc(α) in (9) is difficult, because of the dependence among the Xi. We therefore
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use the asymptotic result of the previous section to derive an approximation to pdisc(α). For
fixed n and r, let X̃1, . . . , X̃r be independent normal random variables, with E(X̃i) = E(Xi)
and Var(X̃i) = Var(Xi). By Proposition 3, when both n and r are large, but r � n, these
X̃1, . . . , X̃r may serve as approximations to X1, . . . , Xr. Let φ1 be the density function of
X̃1, and Φ2 be the CDF of X̃i for i ≥ 2 (recall that X2, . . . , Xr are identically distributed);
note that both φ1 and Φ2 depend on α. Also let X̃[1] ≥ X̃[2] ≥ · · · ≥ X̃[r−1] be the order
statistics of X̃2, . . . , X̃r, and define

p̃disc(α) = P (X̃[v] < X̃1) (20)

to be the approximation to the probability of discovery pdisc(α) in (9).

Proposition 4:

p̃disc(α) =
∫ ∞

−∞

r−1∑
j=r−v

(
r − 1

j

)
[Φ2(x)]j [1 − Φ2(x)]r−j−1φ1(x) dx.

Proof: Because X̃2, . . . , X̃r are iid with CDF Φ2, the CDF of X̃[v] is

P (X̃[v] ≤ x) =
r−1∑

j=r−v

(
r − 1

j

)
[Φ2(x)]j [1 − Φ2(x)]r−j−1.

See p. 87 of Serfling [14]. Conditioning on the value of X̃1 in the right-hand side of (20) and
integrating with respect to its density φ1, the proposition is proved. �

FIGURE 1. The probability of discovering the target gene as a function of the selection
threshold α. Solid curve is the true probability of discovery for the exact system, pdisc(α),
as estimated by simulation. The dashed curve is the approximate probability of discovery,
p̃disc(α).

https://doi.org/10.1017/S0269964814000254 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964814000254


MODELING AND OPTIMIZATION OF GENETIC SCREENS VIA RNA INTERFERENCE 141

FIGURE 2. The approximate probability of discovery p̃disc(α) as a function of α, for
various system parameters. Left panel: G1 = N(μ, 1) for various mean values μ, and
G2 = N(0, 1). Right panel: various values of v, the number of genes to be validated.

The dashed curve in Figure 1 shows p̃disc(α), the approximate probability of discovery,
as a function of α. The solid curve is the true probability of discovery, pdisc(α), as estimated
by simulation. The system parameters are r = 200 genes, n = 40, 000 cells, v = 3 genes to be
validated, fluorescence distributions G1 = N(0.4, 1) and G2 = N(0, 1), and the multinomial
model.

The main feature of Figure 1 is that the approximate curve follows the exact curve very
closely. Thus, the asymptotics-based approximation works well in practice. The optimal
threshold α∗ for this system parameters is about 0.8. Note also that the curve of pdisc(α)
is plotted only for α ≤ 3; the reason for this is that for α > 3 the selection criterion is too
stringent, so that in practice no cells satisfy it, and the construct counts – which are always
integer in the exact system – are all zero. In contrast, the counts in the approximate system
are continuous random variables, which may assume near-zero values, and so p̃disc(α) can
be computed for any α.

Figure 2 shows how the curve p̃disc(α) changes with the system parameters. The left
panel shows the influence of the separation between the two fluorescence distributions G1

and G2, and the right panel the influence of v, the number of genes to be validated. As
expected, better separation and higher v result in higher probabilities of discovery.

5. THE TWO-STAGE DISCOVERY PROBLEM

After enriching the target cells by FACS, it is possible to enrich them further, by first
growing the selected cells until their population is large enough, and then processing them
in a second FACS round.

We model this two-stage process as follow. We let n be the number of cells processed
by FACS in the first stage. As before, Nk,i denotes the number of constructs of type i
inserted into cell k (according to either the multinomial model or the Poisson model), and
Fk denotes the fluorescence intensity of cell k, which is determined according to (1). The
selection criterion for cell k in the first stage is Fk > α, for some threshold α. Each selected
cell from the first stage gives rise to L descendant cells, to be processed in the second
stage; all L descendants of the same ancestor cell inherit the RNAi construct content of
their ancestor. The fluorescence intensity of the lth descendant of cell k is measured in the
second FACS stage, and is denoted by Fk,l; the distribution of Fk,l is the same as that of
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the ancestor cell, that is,

P (Fk,l ≤ a) =

{
G1(a) Nk,1 ≥ 1,

G2(a) Nk,1 = 0.

For each ancestor cell k, the L fluorescence intensities Fk,1, . . . , Fk,L of the L descendant
cells are conditionally independent given Nk,1. The selected cells in the second stage are
those satisfying Fk,l > β, for some threshold β. The final construct counts are given by

Xi =
n∑

k=1

L∑
l=1

Nk,iI{Fk>α, Fk,l>β}, i = 1, . . . , r.

Let Tk,i = Nk,iI{Fk>α}
∑L

l=1 I{Fk,l>β}, so that Xi =
∑n

k=1 Tk,i. The Tk,i are thus the
counterparts of the Mk,i from the single-stage problem.

Proposition 5: Under the multinomial model, the Tk,i satisfy

E(Tk,1) =
1
r
LG1(α)G1(β),

E(Tk,i) =
1
r
LG2(α)G2(β) i ≥ 2,

Var(Tk,1) =
1
r
G1(α)

[
LG1(β)G1(β) + L2G1(β)2

]− 1
r2

G1(α)2L2G1(β),

Var(Tk,i) =
1
r
G2(α)

[
LG2(β)G2(β) + L2G2(β)2

]− 1
r2

G2(α)2L2G2(β) i ≥ 2,

Cov(Tk,1, Tk,i) = − 1
r2

L2G1(α)G1(β)G2(α)G2(β) i ≥ 2,

Cov(Tk,i, Tk,j) = − 1
r2

L2G2(α)2G2(β)2 i, j ≥ 2, i �= j,

E[(Tk,1)3] =
1
r
LG1(α)G1(β)

(
L2G1(β)2 − 3LG1(β)2 + 2G1(β)2

+ 3LG1(β) − 3G1(β) + 1
)
,

E[(Tk,i)3] =
1
r
LG2(α)G2(β)

(
L2G2(β)2 − 3LG2(β)2 + 2G2(β)2

+ 3LG2(β) − 3G2(β) + 1
)
, i ≥ 2,

Proof: Under the multinomial model, Tk,i is binomial conditional on Nk,iI{Fk>α} = 1, and
zero otherwise:

Tk,1 |Nk,1I{Fk>α} = 1 ∼ Bin(L,G1(β)),

Tk,i |Nk,iI{Fk>α} = 1 ∼ Bin(L,G2(β)), i ≥ 2.

The moments of Tk,i are then the well known moments of the binomial distribution, mul-
tiplied either by P (Nk,1I{Fk>α} = 1) = G1(α)/r for i = 1, or by P (Nk,iI{Fk>α} = 1) =
G2(α)/r for i ≥ 2. �
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As in the single-stage problem, we let both n and r = r(n) approach infinity, and define
the normalized construct count Y n

i through (10), and the process Yn through (11). The
following result is the two-stage counterpart of Proposition 3, and asserts that the scaled
construct counts are again asymptotically normal and independent.

Proposition 6: Under both the multinomial and the Poisson models, and for fixed
thresholds α and β, if r(n) → ∞ and n/r(n) → ∞ as n → ∞, then

Yn ⇒ (Z1, Z2, . . .) as n → ∞,

where the Zi are independent standard normal random variables.

Proof: For brevity, we prove the proposition only for the multinomial model. The proof
follows the exact same steps as that of Proposition 3, with the Tk,i replacing the Mk,i.
Only two points need to be reestablished: the first is that the coefficients before both sums
in the square brackets in equation (17) converge to zero as n → ∞; this is true since by
Proposition 5, we again have that the numerator of each is O(1/r2), whereas the denomi-
nator is O(1/r). The second point is that for each i, the expression at the right-hand side
of Eq. (19) converge to zero as n → ∞; this is again true since by Proposition 5, that
expression is O((r/n)1/2), and by assumption, n/r → ∞. �

The decision variables in the two-stage model are the thresholds α and β. Clearly, it is
desirable to enrich the first-stage selected cells as much as possible, and this can be done
by raising α. However, as in the single-stage problem, setting α too high may result in no
target cells (and hence no constructs of type 1) among the selected cells. We resolve this
conflict by maximizing α subject to a constraint that ensures that the number of selected
target cells is high enough. Let

W1 = W1(α) =
n∑

k=1

I{Fk>α, Nk,1≥1}

FIGURE 3. The probability of discovery as a function of α in a single-stage system (lower
curve) and as a function of β in a two-stage system (upper curve).
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be the number of target cells selected by the FACS. Under the multinomial model, for
example, W1 ∼ Bin(n,G1(α)/r). We may then set α to be maximal subject to E(W1) ≥ b,
or to P (W1 ≥ b) ≥ 1 − ε, for some b and ε.

As in the single-stage problem, we let p̃disc(α, β) be the approximate probability of
discovery, based on the normal approximation from Proposition 6. The solid curve in
Figure 3 depicts p̃disc(α∗, β) as a function of β, where α∗ = 0.55 is the maximal α satisfy-
ing E(W1) ≥ 10, and for a multinomial system with parameters r = 200, n = 5000, v = 3,
G1 = N(0.3, 1), and G2 = N(0, 1). The parameter L was set to 4, the value required so that
the expected number of cells processed in the second stage is roughly 5000. The dashed
curve is p̃disc(α) as a function of α for a single-stage system with the same parameters,
except for n = 10, 000 (so that the total number of cells processed by FACS in the two
systems is roughly same). Dividing the screening between two stages improves significantly
the probability of discovering the target gene: the maximal probability of discovery in the
two-stage system is 0.64 (achieved by β∗ = 0.1), whereas in the single-stage system, it is
0.28 (achieved by α∗ = 0.9).

6. DISCUSSION

In this paper, we modeled and analyzed probabilistically FACS-based RNAi genetic screen-
ing experiments. The key decision variable in the analysis is the FACS selection threshold α,
which needs to be set optimally so as to maximize the probability of discovering the target
gene. This probability of discovery is determined by two factors: the number of the selected
cells, and the enrichment level (the proportion of the target cells among the selected cells).
The strong law of large numbers guarantees that when the enrichment level is fixed, the
probability of discovery approaches 1 as the number of the selected cells increases; clearly,
when the number of selected cells is fixed, increasing the enrichment level also results in a
higher probability of discovery. Raising α, therefore, has two contradicting effects on the
probability of discovery, as it both decreases the number of selected cells, and increases
the enrichment level. The optimal α∗ balances these opposing requirements, and can be
determined through our normal approximation.

The two fluorescence distributions G1 and G2 were not assumed to be of any specific
type in our analysis. Furusawa et al. [8] advocate using a log-normal distribution to model
FACS fluorescence readings. However, since the FACS selection process is ordinal, the entire
analysis is invariant under monotonically increasing transformations of the fluorescence
distributions. Log-normal distributions may thus be converted to normal ones, as we used
in our simulations.

In Section 5 of this paper, we studied a two-stage version of the discovery problem.
In principle, it is possible to repeat the enrichment–reproduction process multiple times,
rather than just two, to increase further the probability of discovery. However, each such
repetition increases the likelihood of introducing a contamination into the cell population,
in which case the entire experiment is lost. We follow therefore Bassik et al. [1], and study
only the single- and two-stage versions of the problem.

This paper is concerned with the stochastic modeling and analysis of RNAi experiments,
and the statistical aspects of the problem are beyond its scope. These aspects, however,
deserve study: for example, the uncertainty resulting from estimating G1 and G2 can be
accounted for in a more detailed analysis, and so is the noise inherent to measuring the
construct counts. We plan to study such statistical aspects, in conjunction with the above
model, in a sequel to this work.
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