Co-actions of groups

Martin Arkowitz

Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA (martin.arkowitz@dartmouth.edu)

Mauricio Gutierrez

Department of Mathematics, Tufts University, Medford, MA 02155, USA (mgutierr@tufts.edu)

(MS received 26 February 1999; accepted 22 December 1999)

Let $f: G \to H$ be a fixed homomorphism and $p': G * H \to G$ and $p'': G * H \to H$ the two projections of the free product. Then a co-action relative to f is a homomorphism $s: G \to G * H$ such that p's = id and p''s = f. We study this notion and investigate the following questions. What restrictions does s place on the structure of the group G? What form does s take in special cases? When does sinduce a co-multiplication on H? What is the relation between associativity of s and associativity of the induced co-multiplication m on H? What are the properties of the operation of Hom(H, B) on Hom(G, B) induced by $s: G \to G * H$? In addition, we give several diverse examples of co-actions in the last section.

1. Introduction

Let $f: X \to Y$ be a map of topological spaces and C_f the mapping cone of f. Let ΣX be the suspension of X and $p': C_f \vee \Sigma X \to C_f$ and $p'': C_f \vee \Sigma X \to \Sigma X$ the two projections of the wedge. Then there is a homotopy co-action of ΣX on C_f which is given by a map $s: C_f \to C_f \vee \Sigma X$ such that p's is homotopic to the identity map of C_f and p''s is homotopic to the collapsing map $C_f \to \Sigma X$. Geometrically, s is obtained by identifying the 'equator' of the cone $CX \subseteq C_f$ to the base point. This homotopy co-action is a basic concept of homotopy theory and has proved to be an extremely useful tool (see [3, ch. 11, 14], [7, ch. 2]). In the case Y is a point, the co-action becomes the canonical co-multiplication $m: \Sigma X \to \Sigma X \vee \Sigma X$ of the suspension ΣX .

The notion of a co-multiplication for groups has been considered by several authors [1,2,4]. For a group G, this consists of a homomorphism $m: G \to G * G$, the free product of G with itself, whose composition with each of the two projections is the identity homomorphism id of G. In the present work we transfer the notion of homotopy co-action from the homotopy category of spaces to the category of groups, thereby obtaining a generalization of the notion of a group with a co-multiplication. More precisely, let $f: G \to H$ be a fixed homomorphism and $p': G * H \to G$ and $p'': G * H \to H$ the two projections. Then a co-action of H on G relative to f is a homomorphism $s: G \to G * H$ such that p's = id and p''s = f (definition 4.5). This is the central notion which we study in this paper.

© 2001 The Royal Society of Edinburgh

We now briefly summarize the contents of the paper. Section 2 introduces our terminology and notation in group theory. In $\S3$, after stating some known results on co-multiplications, we prove that a stable subgroup for a co-multiplication is a free factor (theorem 3.7). We begin the study of co-actions in §4. We show a co-action $s: G \to G * H$ rel f gives a free product decomposition of G into a free subgroup and a free product of subgroups of K = kernel f on which s is determined (proposition 4.8). We then obtain a complete description of s on all finite subgroups of G (corollary 4.10). In $\S5$ we give necessary and sufficient conditions for a co-action s to induce a co-multiplication m on H (proposition 5.3). For such co-actions, we study the relation between associativity of s and associativity of m(proposition 5.11). We then obtain in theorem 5.15 a canonical set of generators of Gin the case when the co-action s is associative. We consider in §6 homomorphisms $f: G \to H$, called free homomorphisms, such that G and H are free and f is compatible with certain bases of G and H (definition 6.1). We investigate the right action of $\operatorname{Hom}(H, B)$ on $\operatorname{Hom}(G, B)$ induced by a co-action s rel f, for any group B. For certain co-actions s, we prove that the pre-images of i^* : Hom $(G, B) \rightarrow$ $\operatorname{Hom}(K, B)$ are precisely the orbits of $\operatorname{Hom}(G, B)$ under the action of $\operatorname{Hom}(H, B)$, where i is the inclusion of K in G (theorem 6.7, remark 6.8). The final section deals with several diverse examples of co-actions. These are intended to illustrate our results.

2. Preliminaries

In this section we introduce our conventions regarding group theory and fix our notation. All groups will be written multiplicatively. If G is a group, then $1 \in G$ is the unit or identity of G. If $g \in G$, we usually denote the inverse g^{-1} by \bar{g} . The commutator [g,h] of elements $g,h \in G$ is given by $[g,h] = \bar{g}\bar{h}gh$. If $g \in G$ and $H \subseteq G$ is a subgroup, then the conjugate subgroup $\bar{g}Hg$ is denoted H^g . For subgroups $H, K \subseteq G$, we denote the smallest subgroup containing H and K by HK. If $S \subseteq G$ is a subset of the group G, then S^G is the normal closure of S in G, i.e. the smallest normal subgroup containing S.

For groups G and H, the free product G * H is defined in the usual way. An element $\xi \in G * H$ can be written

$$\xi = g_1 h_1 \cdots g_n h_n,$$

where $g_i \in G$ and $h_i \in H$. We call ξ reduced if $g_2, \ldots, g_n \neq 1$ and $h_1, \ldots, h_{n-1} \neq 1$. We frequently write $\xi = g'_1 h''_1 \ldots g'_n h''_n$, especially in the case G = H, where g'_i signifies that g'_i is in the first factor of the free product and h''_i signifies that h''_i is in the second factor. For $g \in G$, $h \in H$ and $k \in K$, we denote by g', h'' and k'''the obvious elements in the triple free product G * H * K. If G is a group, then a subgroup $H \subseteq G$ is called a free factor of G if there exists a subgroup $K \subseteq G$ such that G = H * K.

The identity homomorphism of G is denoted id : $G \to G$. For a free product G * H, there are projection homomorphisms $p_G : G * H \to G$ and $p_H : G * H \to H$ and injection homomorphisms $i_G : G \to G * H$ and $i_H : H \to G * H$. When G = H, we write $p' = p_G$, $p'' = p_H$, $i' = i_G$ and $i'' = i_H$. Homomorphisms $f : G \to L$ and $g: H \to M$ induce a homomorphism $f * g: G * H \to L * M$ in the standard way. If L = M, then we obtain a canonical homomorphism $(f,g): G * H \to L$.

We will frequently work with free groups F and consider bases of F. If X is a basis of F, then we write $F = \langle X \rangle$ to indicate that F is generated by the basis X. Let G be a group, H a set with distinguished element e and $f : G \to H$ a surjection such that f(1) = e. Then a section of f is a function $\sigma : H \to G$ such that $f\sigma = \operatorname{id} : H \to H$ and $\sigma(e) = 1$. Since f is onto, a section σ always exists. If H is a group and $f : G \to H$ is an epimorphism, we still refer to a section as a function $\sigma : H \to G$ such that $f\sigma = \operatorname{id}$ and $\sigma(1) = 1$. If σ is a homomorphism, we call it a section homomorphism. If $f : G \to H$ is an epimorphism of groups and H is free, there is a section homomorphism $\sigma : H \to G$.

3. Co-multiplications

We begin this section by recalling some known results on co-multiplications. Let H be a group and $p', p'' : H * H \to H$ the two projections. We define $E_H \subseteq H * H$ to be the *equalizer* of p' and p''. Thus if $\xi = g'_1 h''_1 \cdots g'_n h''_n \in H * H$, then $\xi \in E_H$ if and only if $g_1 \cdots g_n = h_1 \cdots h_n$. For each $h \in H$, set $\xi_h = h'h'' \in E_H$ and let $X_H = \{\xi_h \mid h \in H, h \neq 1\}$.

THEOREM 3.1 (see theorem 1.4 of [2], proposition 3.1 of [1]). The group E_H is a free group with basis X_H .

REMARK 3.2. In proposition 3.1 of [1], there is an algorithm to express $\xi = g'_1 h''_1 \cdots g'_n h''_n$ in E_H in terms of the basis X_H . If

$$\delta_1 = g_1, \qquad \delta_2 = \bar{h}_1 g_1, \qquad \delta_3 = \bar{h}_1 g_1 g_2, \dots, \delta_{2n-1} = \bar{h}_{n-1} \dots \bar{h}_1 g_1 \dots g_n$$

then $\xi = \xi_{\delta_1} \bar{\xi}_{\delta_2} \xi_{\delta_3} \bar{\xi}_{\delta_4} \cdots \xi_{\delta_{2n-1}}.$

DEFINITION 3.3. A homomorphism $m: H \to H * H$ is called a *co-multiplication* if $p'm = p''m = \text{id}: H \to H$, where $p', p'': H * H \to H$ are the two projections. We call *m* associative if $(m * \text{id})m = (\text{id} * m)m: H \to H * H * H$.

For any group H, there is a homomorphism $\pi_H : E_H \to H$ defined by $\pi_H = p'|E_H = p''|E_H$. If m is a co-multiplication of H, then m induces a homomorphism (also called m) $H \to E_H$, which is a section homomorphism of π_H . Conversely, a section homomorphism of π_H determines a co-multiplication of H. We shall often not distinguish the co-multiplication $H \to H * H$ from the section homomorphism $H \to E_H$. Moreover, if m is a co-multiplication of H, then $m : H \to E_H$ is a monomorphism and so H is a free group by theorem 3.1.

DEFINITION 3.4. If $m: H \to H * H$ is a co-multiplication, then the set

$$D_m = \{h \mid h \in H, \ h \neq 1, \ mh = h'h''\} \subseteq H$$

is called the *diagonal set* of m.

THEOREM 3.5 (see corollary 3.12 of [4], corollary 4.6 of [1]). Let m be a co-multiplication of H. Then m is associative $\iff D_m$ is a basis of H. This concludes our summary of known results on co-multiplications which we shall need. The remainder of this section is devoted to a new result on co-multiplications which is needed in later sections.

Let H be a group with co-multiplication m and let $A \subseteq H$ be a subgroup.

DEFINITION 3.6. We say that A is *left stable* (with respect to m) if $m(A) \subseteq A * H$. A similar definition holds for right stable.

THEOREM 3.7. Let m be a co-multiplication of H such that $A \subseteq H$ is left stable. Then A is a free factor of H.

Proof. Let $\rho: H \to H/A$ be the natural projection onto the set of left co-sets of A defined by $\rho(h) = hA$. Since ρ is onto, we choose a section $\sigma: H/A \to H$ of ρ . We set $\hat{h} = \sigma\rho(h)$ for each $h \in H$ and note that the set of all \hat{h} is a complete set of co-set representatives of H modulo A. The basis X_H of the equalizer E_H (theorem 3.1) can be written as the disjoint union $X_A \cup Y' \cup Z$, where $X_A = \{\xi_w \mid w \in A, w \neq 1\}$, $Y' = \{\xi_k \mid k \notin A, k \neq \hat{k}\}$ and $Z = \{\xi_{\hat{k}} \mid \hat{k} \neq 1\}$. By an elementary transformation, we obtain that $X_A \cup Y \cup Z$ is also a basis of E_H , where $Y = \{\bar{\xi}_k \xi_{\hat{k}} \mid k \neq \hat{k}, k \notin A\}$.

Now let $w \in A$ and write $mw = g'_1 h''_1 \cdots g'_n h''_n$, where $g_i \in A$ and $h_i \in H$. Let $\delta_1, \delta_2, \ldots, \delta_{2n-1}$ be the sequence of elements of H defined in remark 3.2. Note that each $\delta_i = \eta_i \gamma_i$, where $\eta_i \in H$ and $\gamma_i \in A$. Also, $\delta_1 = \gamma_1$ and $\eta_{2k} = \eta_{2k+1}$, so that $\hat{\delta}_{2k} = \hat{\delta}_{2k+1}$. Thus

$$mw = \xi_{\delta_1} \xi_{\delta_2} \xi_{\delta_3} \cdots \xi_{\delta_{2n-1}}$$

= $\xi_{\gamma_1} \prod_{k=1}^{n-1} (\bar{\xi}_{\delta_{2k}} \xi_{\delta_{2k+1}})$
= $\xi_{\gamma_1} \prod_{k=1}^{n-1} (\bar{\xi}_{\delta_{2k}} \xi_{\hat{\delta}_{2k}}) (\bar{\xi}_{\delta_{2k+1}} \xi_{\hat{\delta}_{2k+1}})^{-1}$

If $\hat{\delta}_i = 1$, then $\bar{\xi}_{\delta_i} \xi_{\delta_i} = \bar{\xi}_{\delta_i}$, and so either $\bar{\xi}_{\delta_i} \xi_{\delta_i} = 1$ or $\bar{\xi}_{\delta_i} \xi_{\delta_i} \in \bar{X}_A$. If $\hat{\delta}_i \neq 1$, then either $\bar{\xi}_{\delta_i} \xi_{\delta_i} = 1$ or $\bar{\xi}_{\delta_i} \xi_{\delta_i} \in Y$. Since $\xi_{\gamma_1} = 1$ or $\xi_{\gamma_1} \in X_A$, we have that mw lies in the subgroup of E_H generated by the subset $X_A \cup Y$ of the basis $X_A \cup Y \cup Z$ of E_H . It follows that m(A) is a free factor of m(H) [5, exercise 32, p. 117]. Since $m: H \to m(H)$ is an isomorphism, A is a free factor of H.

REMARK 3.8. Let $m: H \to H * H$ be a co-multiplication and $A_m \subseteq H$ the equalizer of $(m * \mathrm{id})m$ and $(\mathrm{id} * m)m$. We proved in [1, theorem 4.4(2)] that A_m is left and right stable under m, and then showed that A_m is a free factor of H with basis D_m . We now see that this latter result is a special case of theorem 3.7.

COROLLARY 3.9. Let $A \subseteq H$ be a subgroup, $j : A \to H$ be the inclusion and $m' : A \to A * A$ a co-multiplication. Then m' extends to a co-multiplication of $H \iff H$ is free and A is a free factor of H.

4. Co-actions

In this section $f: G \to H$ will be a fixed homomorphism. We let K = kernel f, I = image f and denote the inclusions $i: K \to G$ and $j: I \to H$. For every $g \in G$, we denote $\eta_g = gf(g) \in G * H$, which is sometimes written g'f(g)''.

DEFINITION 4.1. The equalizer of $fp_G : G * H \to H$ and $p_H : G * H \to H$ is denoted $\mathcal{E}_f \subseteq G * H$. The semi-equalizer E_f is the subgroup of G * H generated by $\eta_g = g'f(g)''$, for all $g \in G$.

Clearly, $E_f \subseteq \mathcal{E}_f$, but they are not equal in general (see remark 4.7(iii) and lemma 4.4). We introduce some notation next.

Let $p_f = p_G|_{E_f} : E_f \to G$ and $\pi_f = p_G|_{\mathcal{E}_f} : \mathcal{E}_f \to G$. Note that $i_G : G \to G * H$ carries K to E_f and so induces homomorphisms $i_f : K \to E_f$ and $\iota_f : K \to \mathcal{E}_f$. Also, $f * \mathrm{id} : G * H \to H * H$ carries E_f to E_I since $(f * \mathrm{id})(\eta_g) = \xi_{f(g)} \in E_I$. We let $\nu = (f * \mathrm{id})|_{E_f} : E_f \to E_I$. Now $f : G \to H$ is onto I and so determines a surjection $f' : G \to I$. Let $\phi : I \to G$ be a section of f'. If $g \in G$, we write $\hat{g} = \phi f(g)$. Then ϕ determines a section homomorphism $\sigma : E_I \to E_f$ of ν by setting $\sigma(\xi_{f(g)}) = \eta_{\hat{g}}$. Our next few results deal with E_f .

PROPOSITION 4.2. $E_f = i_f(K) * \sigma(E_I)$, and so E_f is isomorphic to $K * E_I$.

Proof. If $k \in K$, note that $\eta_k = k' = i_f(k)$. For each $g \in G$, there exists a $k_g \in K$ such that $g = k_g \hat{g}$. In particular, a generator η_g of E_f can be written $\eta_g = k'_g \hat{g} f(\hat{g}) = k'_g \eta_{\hat{g}}$. Thus every non-trivial element of E_f can be written as a product

$$\pi_1 k_1' \pi_2 k_2' \cdots \pi_n k_n', \tag{(*)}$$

with $n \ge 1$, where (a) $k_i \in K$ and $k_i \ne 1$ for i = 1, ..., n - 1 and (b) $\pi_i \in \sigma(E_I)$, $\pi_i \ne 1$ for i = 2, ..., n and π_i is a product of factors $\eta_{\hat{g}_{i,j}}^{\epsilon_{i,j}}$, with $\epsilon_{i,j} \ne 0$, $\hat{g}_{i,j} \ne 1$ and $\hat{g}_{i,j} \ne \hat{g}_{i,j+1}$. Thus cancellation cannot occur in the terms of (*), and so $E_f = i_f(K) * \sigma(E_I)$.

We note that $i_f(K)$ is a canonical free factor of E_f , but the other factor depends on the choice of section ϕ .

COROLLARY 4.3. E_f is a free group $\iff K$ is a free group.

LEMMA 4.4. If $f: G \to H$ is onto, then $\mathcal{E}_f = E_f$.

Proof. An element $c \in \mathcal{E}_f$ can be written

$$c = g'_1 h''_1 g'_2 h''_2 \cdots g'_n h''_n$$

with $g_i \in G$ and $h_i \in H$, where $f(g_1 \cdots g_n) = h_1 \cdots h_n$. Since f is onto, $h_i = f(x_i)$, for some $x_i \in G$. We apply the method given in remark 3.2 to define elements of G: $\delta_1 = g_1, \ \delta_2 = \bar{x}_1 g_1, \ \delta_3 = \bar{x}_1 g_1 g_2, \ldots, \delta_{2n-1} = \bar{x}_{n-1} \cdots \bar{x}_1 g_1 \cdots g_n$. Then $c = \eta_{\delta_1} \bar{\eta}_{\delta_2} \eta_{\delta_3} \bar{\eta}_{\delta_4} \cdots \eta_{\delta_{2n-1}}$, and so $c \in E_f$.

We now give the main definition of the paper.

DEFINITION 4.5. Let $f: G \to H$ be a homomorphism. A homomorphism $s: G \to G * H$ is called a *right co-action rel* f if $p_G s = \text{id and } p_H s = f$.

There is clearly a definition of left co-action. However, we shall usually consider right co-actions and call them co-actions.

Note that a co-action $s: G \to G * H$ factors through $\mathcal{E}_f \subseteq G * H$, and we also call this homomorphism $s: G \to \mathcal{E}_f$. The next lemma is then obvious.

LEMMA 4.6. $s: G \to G * H$ is a co-action rel $f \iff s: G \to \mathcal{E}_f$ is a section homomorphism of $\pi_f: \mathcal{E}_f \to G$.

Remark 4.7.

- (i) If G = H and f = id, then a co-action $s : G \to G * G$ is just a co-multiplication of G and $\mathcal{E}_f = E_G = E_f$.
- (ii) If $f: G \to H$ is onto, then $s: G \to G * H$ is a co-action rel f if and only if $s: G \to E_f$ is a section homomorphism of $p_f: E_f \to G$.
- (iii) In examples 7.2 and 7.4 we show that s(G) need not be contained in E_f and hence $\mathcal{E}_f \neq E_f$.
- (iv) If $m : H \to H * H$ is a co-multiplication and $A \subseteq H$ is left stable (definition 3.6), then $m|_A : A \to A * H$ is a right co-action rel the inclusion $A \to H$.

The following proposition and its corollaries show that it is only the free part of G on which a co-action is non-trivial. Apart from its independent interest, this will justify considering co-actions on free groups.

In the case that s is a co-action and f is onto, $s(G) \subseteq E_f$ and $E_f \approx K * E_I$ (proposition 4.2). By the Kurosh theorem [6, theorem 5.1], we then obtain an isomorphism of s(G) with the free product of a free group and a free product of conjugates of certain subgroups of K. The next result, which also uses the Kurosh theorem, extends this by not requiring that f be onto and by giving a precise description of s on the non-free factor.

PROPOSITION 4.8. If $s : G \to G * H$ is a co-action rel f, then $G = L * K_1$ for subgroups L and K_1 of G such that L is a free group, $K_1 \subseteq K = \text{kernel } f$ and K_1 is isomorphic to $* U_j$ for subgroups $U_j \subseteq K$. Furthermore, for every $j \in J$, there exists $w_j \in \text{ker } p_G$ such that $s(u) = \bar{w}_j u w_j$, for every $u \in U_j$.

Proof. We apply the Kurosh theorem [6, theorem 5.1, p. 219] to the subgroup $s(G) \subseteq G * H$ (which is isomorphic to G) and obtain

$$G = L * \binom{*}{j \in J} U_j * \binom{*}{i \in A} V_i),$$

where L is free and $s(U_j)$ (respectively, $s(V_i)$) is conjugate in G * H to a subgroup of G (respectively, H). Thus $p_H s(U_j) = p_G s(V_i) = 1$ and $f = p_H s$ (respectively, id $= p_G s$) gives $U_j \subseteq K$ (respectively, $V_i = 1$). Finally, if $u \in U_j$, $s(u) = \bar{y}_j w y_j$ for some $w \in U_j$. Then $u = p_G(s(u)) = (p_G(\bar{y}_j))w(p_G(y_j))$, and so $w = (p_G(y_j))u(p_G(\bar{y}_j))$. Thus $s(u) = \bar{w}_j u w_j$, where $w_j = (p_G(\bar{y}_j))y_j \in \ker p_G$.

COROLLARY 4.9. K is free \iff G is free. In particular, if $f : G \to H$ is one-to-one, then G is free.

We next show how a co-action s behaves on finite subgroups of G.

COROLLARY 4.10. Let $s : G \to G * H$ be a co-action rel $f : G \to H$ and $T \subseteq G$ a finite subgroup. Then $T \subseteq K$ and there is an element $v \in \ker p_G$ such that $s(t) = \overline{v}tv$, for all $t \in T$. *Proof.* Since $s(T) \subseteq G * H$ is a finite subgroup, by [5, p. 194, exercise 12], s(T) is conjugate to a subgroup of G or to a subgroup of H. The argument in the proof of proposition 4.8 shows that $s(T) = \bar{a}Ua$, where $U \subseteq K$, and that, for $t \in T$, $s(t) = \bar{a}ta$, with $a \in \ker p_G$.

COROLLARY 4.11. Let G be a finite group. If $s : G \to G * H$ is a co-action rel f, then f is the trivial homomorphism and there exists $v \in \ker p_G$ such that $s(g) = \bar{v}gv$, for $g \in G$. Moreover, there is a one-to-one correspondence between co-actions of G and elements of $\ker p_G$.

COROLLARY 4.12. If $s : G \to G * H$ is a co-action rel $f : G \to H$ and L is as in proposition 4.8, then there exists a co-action $\overline{s} : L \to L * H$ rel $f \mid L : L \to H$ such that the following diagram commutes:

$$\begin{array}{ccc} G & \xrightarrow{s} & G * H \\ p_L & & \downarrow p_L * \mathrm{id} \\ L & \xrightarrow{\overline{s}} & L * H \end{array}$$

Proof. The proof is an easy exercise and hence omitted.

5. Co-multiplications induced by co-actions

Let $s: G \to G * H$ be a co-action rel f.

DEFINITION 5.1. A co-multiplication $m: H \to H * H$ is *induced by s* if the following diagram commutes:

$$\begin{array}{ccc} G & \xrightarrow{s} & G * H \\ f \downarrow & & \downarrow f * \mathrm{id} \\ H & \xrightarrow{m} & H * H \end{array}$$

In this section we determine when a co-action induces a co-multiplication. In that case, we then study the relationship between properties of the co-action and of the co-multiplication.

DEFINITION 5.2. Let $s: G \to G * H$ be a co-action rel f. We say that s is *inductive* if $s(K) \subseteq \ker(f * \mathrm{id})$, where $f * \mathrm{id}: G * H \to H * H$.

We now give necessary and sufficient conditions for s to induce a co-multiplication on H.

PROPOSITION 5.3. Let $s: G \to G * H$ be a co-action rel f and H be a free group. Then we have the following.

- (i) If f is onto, then s induces a co-multiplication on $H \iff s$ is inductive.
- (ii) For any $f : G \to H$, s induces a co-multiplication on $H \iff s$ is inductive and I = f(G) is a free factor of H.

Proof.

(i) \Leftarrow : If s is inductive, then (f * id)(sK) = 1, and so $(f * id)s : G \to H * H$ induces a homomorphism $m : H \to H * H$ such that the diagram in definition 5.1 commutes. Since f is onto, m is a co-multiplication.

 \implies : Conversely, if there is a co-multiplication $m : H \to H * H$ such that the diagram in definition 5.1 commutes, then $s(K) \subseteq \ker(f * \mathrm{id})$. Thus s is inductive.

(ii) \iff : Apply (i) to the homomorphism $f': G \to I$ to conclude that there is a comultiplication m_I on I such that $m_I f' = (f * id)s$. But H = I * J, for some subgroup J. Since H is free, so is J, and hence there is a co-multiplication $m_J: J \to J * J$. Then m_I and m_J determine a co-multiplication m on H with the desired properties.

⇒: If s induces m, then (f * id)s(K) = 1, so s is inductive. Also, H is free by § 3. Finally, $m(f(G)) \subseteq (f * id)(G * H) = f(G) * H$. Therefore, I is left stable with respect to m. By theorem 3.7, I is a free factor of H. \Box

Remark 5.4.

- (i) In the proof of the second part of proposition 5.3, we wrote H = I * J, where H is free. If Z is a basis for J, then we may assume that the co-multiplication m of H satisfies mz = z'z'' for all $z \in Z$. Unless otherwise stated, we will assume that m is so defined.
- (ii) Let $s: G \to G * H$ be a co-action rel f and $\bar{s}: L \to L * H$ the associated co-action rel f|L given in corollary 4.12. Then it is not difficult to show that s induces a co-multiplication $m: H \to H * H$ if and only if \bar{s} induces the co-multiplication $m: H \to H * H$.
- (iii) In example 7.2 we show that a co-action need not induce a co-multiplication.

We next use proposition 5.3 to extend theorem 3.7 from co-multiplications to certain co-actions.

DEFINITION 5.5. Let $s : G \to G * H$ be a co-action rel f and $A \subseteq G$ a subgroup. We say that A is *stable* with respect to s if $s(A) \subseteq A * H$.

PROPOSITION 5.6. If $A \subseteq G$ is stable with respect to a co-action $s: G \to G * H$ rel f, f is one-to-one and I is a free factor of H, then A is a free factor of G.

Proof. Since I is a free factor of H, there is a projection $p_I : H \to I$. The homomorphism $s' : G \to G * I$ given by

$$G \xrightarrow{s} G * H \xrightarrow{\operatorname{id} * p_I} G * I$$

is then a co-action rel $f' = p_I f$. Since $f' : G \to I$ is an isomorphism, s' is inductive and so, by proposition 5.3, s' induces a co-multiplication m on I,

Then $m(f'A) = (f' * id)s'A \subseteq (f' * id)(id * p_I)(A * H) \subseteq f'A * I$. Thus f'A is left stable with respect to m. By theorem 3.7, f'(A) is a free factor of I = f'(G). Therefore, A is a free factor of G.

In example 7.3, we show that if f is not one-to-one, then A need not be a free factor.

We next turn to a consideration of associativity for a co-action.

DEFINITION 5.7. Let $s : G \to G * H$ be a co-action rel f which induces a comultiplication $m : H \to H * H$. We say that (s, m) is *associative* or, more briefly, that s is *associative* if the following diagram commutes:

$$\begin{array}{ccc} G & \xrightarrow{s} & G \ast H \\ s \downarrow & & \downarrow s \ast \mathrm{id} \\ G \ast H & \xrightarrow{\mathrm{id} \ast m} & G \ast H \ast H \end{array}$$

More generally, the associator A_s of s is the equalizer of (s * id)s and $(id * m)s : G \to G * H * H$.

Remark 5.8.

- (i) If G = H and f = id, then s = m, $A_s = A_m$ and associativity of the coaction s is just associativity of the co-multiplication m (definition 3.3 and remark 3.8).
- (ii) $f(A_s) \subseteq A_m$.
- (iii) s is associative $\iff A_s = G$.

DEFINITION 5.9. For i = 1, 2, let $s_i : G_i \to G_i * H$ be a co-action rel $f_i : G_i \to H$. A homomorphism $\phi : G_1 \to G_2$ is a co-action homomorphism $\phi : (G_1, s_1) \to (G_2, s_2)$ if $f_1 = f_2 \phi$ and the following diagram commutes:

$$\begin{array}{ccc} G_1 & \xrightarrow{s_1} & G_1 \ast H \\ \phi & & & \downarrow \phi \ast \mathrm{id} \\ G_2 & \xrightarrow{s_2} & G_2 \ast H \end{array}$$

For example, in corollary 4.12, $p_L : (G, s) \to (L, \bar{s})$ is a co-action homomorphism. The proof of the following proposition is then clear.

PROPOSITION 5.10. If $s: G \to G * H$ is a co-action rel f and $m: H \to H * H$ is a co-multiplication, then we have the following.

- (i) m is induced by $s \iff f: (G, s) \to (H, m)$ is a co-action homomorphism.
- (ii) (s,m) is associative $\iff s: (G,s) \to (G*H, \mathrm{id}*m)$ is a co-action homomorphism.

PROPOSITION 5.11. Let $s: G \to G * H$ be a co-action rel f which induces a comultiplication $m: H \to H * H$ that satisfies the condition in remark 5.4(i). (i) If s is associative, then m is associative.

(ii) If f is one-to-one, then s is associative if and only if m is associative.

Proof.

(i) By remark 5.8(ii), $I = f(G) \subseteq A_m$. Since mz = z'z'' for $z \in Z$, a basis of J, it follows that $J \subseteq A_m$. But H = I * J, and so $A_m = H$. Thus m is associative.

(ii) We assume f is one-to-one and m is associative. Then

$$(\mathrm{id} * m)mf = (m * \mathrm{id})mf,$$
$$(\mathrm{id} * m)(f * \mathrm{id})s = (m * \mathrm{id})(f * \mathrm{id})s,$$
$$(f * \mathrm{id} * \mathrm{id})(\mathrm{id} * m)s = (f * \mathrm{id} * \mathrm{id})(s * \mathrm{id})s.$$

Since f * id * id is one-to-one, s is associative.

REMARK 5.12. In examples 7.5 and 7.6 we give examples of non-associative coactions. In example 7.7 we give an example in which m is associative but s is not.

For the last theorem of this section we introduce the following definition.

DEFINITION 5.13. Let $s: G \to G * H$ be a co-action rel f. An element $g \in G$ is called *s*-characteristic if $s(g) = h_1''g'h_2''$ for some $h_1, h_2 \in H$. Note that $f(g) = h_1h_2$.

The proof of the next lemma is then clear.

LEMMA 5.14. Let the co-action s rel f induce a co-multiplication m on H and let $g \in G$ be an s-characteristic element. If $s(g) = h_1''g'h_2''$, then $\bar{h}_1, h_2 \in D_m \cup \{1\}$.

Then we have the following theorem, whose proof is a modification of [4, theorem 3.10].

THEOREM 5.15. Let the co-action s rel f induce a co-multiplication m on H. Then (s,m) is associative if and only if G is generated by the set of s-characteristic elements.

Proof. If the s-characteristic elements generate G, then (s,m) is associative by lemma 5.14. For the converse, let $g \in G$ and write $s(g) = \prod_{i=1}^{n} g'_i h''_i$ in reduced form. The number, between 2n-2 and 2n inclusive, of non-trivial factors in s(g) is denoted |g|. We prove by induction on |g| that g is in the subgroup generated by the s-characteristic elements. If $|g| \leq 2$, the result is clear, and so we assume $|g| \geq 3$.

CASE 1 $(g \neq 1)$. Our hypothesis gives $g'_1(m(h_1))'g'_2 \cdots = s(g_1)h'''_1 \cdots$. Comparing the two expressions up to the first occurrence of a triple prime term, we obtain that $s(g_1)$ must equal g'_1h'' for some $h \in H$. Clearly, $h = f(g_1)$ and so g_1 is scharacteristic. But $|\bar{g}_1g| < |g|$, and thus, by induction, g is in the subgroup generated by s-characteristic elements.

CASE 2 (g = 1). Then we have $m(h_1)'g'_2 \cdots = h''_1s(g_2)\cdots$. Comparing the two expressions up to the first occurrence of a single prime term, we get $m(h_1) = h''_1h'_1$ and $s(g_2) = h''_1g'_2h''$, where h may be trivial. As in case 1, g is in the subgroup generated by s-characteristic elements.

This completes the induction.

COROLLARY 5.16. Let the co-action s rel f induce a co-multiplication m on H. Then the associator A_s is generated by all elements in A_s which are s-characteristic. Consequently, A_s is stable with respect to s.

COROLLARY 5.17. Let m be an associative co-multiplication on H. Then $A \subseteq H$ is a stable subgroup if and only if A has a basis of elements of the form c or \overline{de} , where c, d and e belong to D_m .

Proof. In this case, $s = m \mid A : A \to A * H$ is a co-action relative to the inclusion and (s, m) is obviously associative. Thus A has a set of generators of the required form and, by eliminating redundancies, a basis of such elements. \Box

6. Operations in exact Hom sequences

In this section we study the exact sequence of homomorphism sets obtained by applying the functor Hom(-, B) to a certain sequence of groups and homomorphisms. We show that the existence of a co-action yields more structure in the exact sequence and hence more information regarding exactness. The motivation for this section comes from a study in topology of the Puppe sequence of homotopy sets of a co-fibration [7, ch. 2].

We put restrictions on the homomorphism $f: G \to H$. We consider inductive co-actions $s: G \to G * H$ rel f, and so H must be free. We will also assume that G is free. Although there are non-trivial co-actions $s: G \to G * H$ when G is not free (see example 7.8), the results 4.8, 4.9, 4.12 and 5.4(ii) provide strong reasons for studying co-actions in the case when G is free. Thus, for a homomorphism $f: G \to H$ with kernel K and image I, we introduce the following definition.

DEFINITION 6.1. The homomorphism $f: G \to H$ is called *free* if there are disjoint sets X, Y, Y', Z such that G is free with basis $X \cup Y, I$ is free with basis Y', H is free with basis $Y' \cup Z, f|_Y : Y \to Y'$ is a bijection and f(x) = 1, for all $x \in X$.

Thus if we set $K_0 = \langle X \rangle$, then $K = K_0^G$ and $G = K_0 * \langle Y \rangle$. We also identify Y and Y' under f and write Y for Y'. We set $J = \langle Z \rangle$ and so H = I * J. Furthermore, $f: G = K_0 * I \to H = I * J$ can be regarded as $f = i_I p_I$. We also set

$$i_0 = i_{K_0} : K_0 \to G = K_0 * I$$
 and $k = p_J : H = I * J \to J$.

LEMMA 6.2. If f is a homomorphism of free groups of finite rank, then f is free homomorphism $\iff I$ is a free factor of H.

Proof. The proof follows immediately from [5, theorem 3.3].

In this section we assume f is a free homomorphism.

DEFINITION 6.3. The sequence of groups and homomorphisms

$$1 \to K_0 \xrightarrow{i_0} G \xrightarrow{f} H \xrightarrow{k} J \to 1$$

is called the *co-fibre sequence* of the free homomorphism f.

Note that i_0 is one-to-one and k is onto, but that the co-fibre sequence is not exact. However, the kernel of each homomorphism is the normal closure of the image of the previous homomorphism.

For groups A and B, let Hom(A, B) denote the set of homomorphisms $A \to B$. Then the constant homomorphism which carries A to $1 \in B$ is a distinguished element of Hom(A, B). A homomorphism $g: A' \to A$ induces $g^*: \text{Hom}(A, B) \to$ Hom(A', B) defined by $g^*(a) = ag$.

DEFINITION 6.4. For any free homomorphism $f : G \to H$ and group B, the co-fibre sequence of f yields the following sequence,

$$1 \to \operatorname{Hom}(J,B) \xrightarrow{k^*} \operatorname{Hom}(H,B) \xrightarrow{f^*} \operatorname{Hom}(G,B) \xrightarrow{i_0^*} \operatorname{Hom}(K_0,B) \to 1,$$

which is called the *Puppe sequence* of the co-fibre sequence of f.

PROPOSITION 6.5. The Puppe sequence of the co-fibre sequence of f is an exact sequence of based sets and maps.

Now we consider a co-action $s : G \to G * H$ rel f. Then s induces a right action of the set Hom(H, B) on the set Hom(G, B), which is defined as follows. Let $\alpha \in \text{Hom}(G, B)$ and $\beta \in \text{Hom}(H, B)$ and set $\alpha \cdot \beta \in \text{Hom}(G, B)$ equal to the composition

$$G \xrightarrow{s} G * H \xrightarrow{(\alpha,\beta)} B.$$

DEFINITION 6.6. Let $f: G \to H$ be a free homomorphism and $s: G \to G * H$ a co-action rel f. Then s is called *special* if

- (i) $s(k_0) = k'_0$ for every $k_0 \in K_0$, and
- (ii) $X' \cup Y' \cup sY \cup Z''$ is a basis for G * H.

Here,
$$X' = i_G(X), Y' = i_G(Y)$$
 and $Z'' = i_H(Z)$.

We note that every special co-action is inductive. For if s is special and $k \in K$, then k is a product of elements of the form $\bar{x}k_0x$, with $x \in G$ and $k_0 \in K_0$. But $s(\bar{x}k_0x) = (s\bar{x})k'_0(sx)$, and so $s(\bar{x}k_0x)$ is in the kernel of f * id. However, not every inductive co-action is special, as example 7.3 shows.

THEOREM 6.7. Let $f: G \to H$ be a free homomorphism, $s: G \to G * H$ a special coaction rel f and $i_0^*: \operatorname{Hom}(G, B) \to \operatorname{Hom}(K_0, B)$ the map induced by $i_0: K_0 \to G$. For $\alpha, \alpha' \in \operatorname{Hom}(G, B), i_0^*(\alpha) = i_0^*(\alpha')$ if and only if there exists a $\beta \in \operatorname{Hom}(H, B)$ such that $\alpha' = \alpha \cdot \beta$. Furthermore, if f is onto, then β is unique.

Proof. Clearly, $i_0^*(\alpha \cdot \beta) = i_0^*(\alpha)$. Now suppose $i_0^*(\alpha) = i_0^*(\alpha')$ and consider P the push-out of $i_0 : K_0 \to G$ and $i_0 : K_0 \to G$ with inclusions $j_1, j_2 : G \to P$. Then

P is just the free product of *G* with itself with amalgamated subgroup K_0 . Since $si_0 = i_G i_0$, there is a homomorphism $\theta : P \to G * H$ such that $\theta j_1 = s$ and $\theta j_2 = i_G$. Because *X* is a basis of K_0 and $X \cup Y$ is a basis of *G*, then $W = X' \cup Y' \cup Y''$ is a basis of *P*. Thus $\theta|_W$ is given by $\theta(x') = x'$, $\theta(y') = sy$ and $\theta(y'') = y'$, for $x \in X$ and $y \in Y$. Hence $\theta(W) = X' \cup sY \cup Y'$, a subset of the basis $X' \cup Y' \cup sY \cup Z''$ of G * H (definition 6.6). Therefore, there is a homomorphism $\mu : G * H \to P$ such that $\mu \theta = \text{id}$. Note that if *f* is onto, *Z* is empty, and so $\mu = \theta^{-1}$ is an isomorphism. Now let $\alpha, \alpha' \in \text{Hom}(G, B)$ with $i_0^*(\alpha) = i_0^*(\alpha')$. Then α and α' determine $\alpha | \alpha' : P \to B$ such that $(\alpha' | \alpha) j_1 = \alpha'$ and $(\alpha' | \alpha) j_2 = \alpha$. We define $\beta : H \to B$ as the composition

$$H \xrightarrow{i_H} G * H \xrightarrow{\mu} P \xrightarrow{\alpha' \mid \alpha} B.$$

Then a straightforward argument yields $\alpha \cdot \beta = \alpha'$.

Now assume the homomorphism f is onto. Then θ is an isomorphism and so θ^* : Hom $(G * H, B) \to$ Hom(P, B) is a bijection. Suppose $\beta, \gamma \in$ Hom(H, B) and $\alpha \cdot \beta = \alpha \cdot \gamma$. Then $(\alpha, \beta)s = (\alpha, \gamma)s$. Thus

$$\theta^*(\alpha,\beta)j_1 = \theta^*(\alpha,\gamma)j_1$$
 and $\theta^*(\alpha,\beta)j_2 = \theta^*(\alpha,\gamma)j_2.$

Therefore, $\theta^*(\alpha, \beta) = \theta^*(\alpha, \gamma)$ and so $(\alpha, \beta) = (\alpha, \gamma)$. Hence $\beta = \gamma$.

REMARK 6.8. If $i: K \to G$ is the inclusion, then theorem 6.7 holds, with *i* replacing i_0 . This is so because *K* is the normal closure of K_0 in *G* and hence $i_0^*(\alpha) = i_0^*(\alpha')$ if and only if $i^*(\alpha) = i^*(\alpha')$.

Now let $f: G \to H$ be free and $s: G \to G * H$ an inductive co-action rel f. By proposition 5.3, s induces a co-multiplication m on H. Then m determines a binary operation, denoted '+', on the set Hom(H, B) in the usual way.

PROPOSITION 6.9. Let $s : G \to G * H$ be an inductive co-action rel a free homomorphism $f : G \to H$. If $\alpha, \alpha' \in \text{Hom}(H, B)$, then $f^*(\alpha) = f^*(\alpha')$ if and only if there is a unique $\gamma \in \text{Hom}(J, B)$ such that $\alpha' = k^*\gamma + \alpha$, where $k = p_J : H \to J$.

Proof. Consider t = (k * id)m defined as the following composition,

$$H \xrightarrow{m} H * H \xrightarrow{k * \mathrm{id}} J * H,$$

which is then a left co-action rel k. Note that $H = I * J = \langle Y \rangle * \langle Z \rangle$, and let $j = i_I : I \to H$. Then we have the co-fibre sequence of k,

$$1 \to I \xrightarrow{j} H \xrightarrow{k} J \to 1 \to 1,$$

where k is a free homomorphism. One easily shows that t is special and then applies theorem 6.7 (for left co-actions) to complete the proof. \Box

REMARK 6.10. If $s: G \to G * H$ is a special co-action rel a free homomorphism f, then theorem 6.7 and proposition 6.9 are applicable to s and give additional information on the exactness of the Puppe sequence. In fact, theorem 6.7 and proposition 6.9 are the group-theoretic analogues of proposition 2.48 of [7].

7. Examples

We give examples to show the necessity of the hypotheses of some of the previous results and to illustrate the possibilities. We let $\langle a_1, \ldots, a_k \rangle$ denote the free group with basis $\{a_1, \ldots, a_k\}$.

EXAMPLE 7.1. A co-action with H not free. Let Z be the infinite cyclic group generated by x and let α be the non-trivial element in the two-element group Z_2 . Let $f : Z \to Z_2$ be defined by $f(x) = \alpha$. Then a co-action $s : Z \to Z * Z_2$ can be defined by

$$s(x) = x^{n_1} \alpha x^{n_2} \alpha \cdots \alpha x^{n_k}$$

where n_i are integers such that $n_2, \ldots, n_{k-1} \neq 0$, $\sum n_i = 1$ and k-1 (the number of occurrences of α) is odd. This, in fact, determines all co-actions $s : \mathbb{Z} \to \mathbb{Z} * \mathbb{Z}_2$ rel f.

EXAMPLE 7.2. A co-action that does not induce a co-multiplication. Let $G = \langle y \rangle$ be the free group on y and $H = \langle z, u \rangle$ the free group on z and u. Define $f : G \to H$ by $f(y) = z^2$. Define a co-action $s : G \to G * H$ rel f by

$$sy = y^{\prime 2} z^{\prime \prime} u^{\prime \prime} \bar{y}^{\prime} \bar{u}^{\prime \prime} z^{\prime \prime}.$$

Then s does not induce a co-multiplication on H. For, if it did, the co-multiplication would carry z^2 to $z'^4 z'' u'' \bar{z}'^2 \bar{u}'' z''$, which is not possible since the latter term is not a square. Note that f is not free and $s(G) \not\subseteq E_f$.

EXAMPLE 7.3. An inductive co-action which is not special (also a counterexample to extending proposition 5.6). $G = \langle x, y \rangle$, $H = \langle y \rangle$ and $f : G \to H$ is the free homomorphism given by f(x) = 1 and f(y) = y. Define $s : G \to G * H$ by

$$sx = \overline{y}''x'y''$$
 and $sy = y'y''$.

Then s is clearly inductive but not special. Let $M \subseteq G$ be the subgroup generated by x^2 . Then M is stable under s, but M is not a free factor of G.

EXAMPLE 7.4. A co-action with $s(G) \not\subseteq E_f$. Let $G = \langle x, y \rangle$, $H = \langle y, z \rangle$ and $f: G \to H$ be the free homomorphism defined by f(x) = 1 and f(y) = y. Define $s: G \to G * H$ by

$$sx = x',sy = \bar{x}'\bar{z}''x'z''y'y''= [x', z'']y'y''.$$

EXAMPLE 7.5. A co-action which is not associative in the case f is one-to-one. $G = \langle y \rangle, H = \langle y, z \rangle$ and $f : G \to H$ is given by f(y) = y. Define $s : G \to G * H$ by

$$sy = y'^2 y'' z'' \bar{y}' \bar{z}''.$$

Then it is easily seen that s is special (hence inductive). The induced co-multiplication m on H satisfies

$$my = y'^2 y'' z'' \bar{y}' \bar{z}''$$
 and $mz = z' z''$,

and, by theorem 3.5, is seen to be non-associative. By proposition 5.11, s is not associative.

EXAMPLE 7.6. A co-action which is not associative in the case f is onto. Let $G = \langle x, y_1, y_2, y_3 \rangle$, $H = \langle y_1, y_2, y_3 \rangle$, f(x) = 1 and $f(y_i) = y_i$, i = 1, 2, 3. Define $s : G \to G * H$ by

$$sx = x',$$

$$sy_1 = y'_1 x' y''_1 \bar{x}',$$

$$sy_2 = y'_2 y''_2,$$

$$sy_3 = y'_3 y''_3 [\bar{y}'_1, [\bar{y}'_1, y''_2]].$$

Then s is special since $x', y'_1, y'_2, y'_3, sy_1, sy_2, sy_3$ are a basis of G * H. The induced co-multiplication $m : H \to H * H$ is given by

$$my_i = y'_i y''_i, \quad i = 1, 2, \text{ and } my_3 = y'_3 y''_3 [\bar{y}'_1, [\bar{y}'_1, y''_2]].$$

By [1, example 3.7(4)], m is not associative. By proposition 5.11, s is not associative.

EXAMPLE 7.7. *m* associative does not imply *s* associative. Let $G = \langle x, y_1, y_2 \rangle$, $H = \langle y_1, y_2 \rangle$, f(x) = 1 and $f(y_i) = y_i$, i = 1, 2. Define $s : G \to G * H$ by

$$sx = x',$$

 $sy_1 = y'_1 y''_1 [x', y''_2],$
 $sy_2 = y'_2 y''_2.$

Then s is special and the induced co-multiplication $m : H \to H * H$ satisfies $my_i = y'_i y''_i$, i = 1, 2. Thus m is associative, but a simple computation shows that s is not associative.

EXAMPLE 7.8. A co-action with G not free. Let $\mathbf{Z} = \langle x \rangle$ and \mathbf{Z}_2 be the two-element group with generator α . Let $\nu : \mathbf{Z} \to \mathbf{Z}_2$ be defined by $\nu(x) = \alpha$. Let $G = \mathbf{Z} * \mathbf{Z}_2$, $H = \mathbf{Z}_2$ and let $f : G = \mathbf{Z} * \mathbf{Z}_2 \to H = \mathbf{Z}_2$ be the homomorphism which is ν on \mathbf{Z} and trivial on \mathbf{Z}_2 . Then a co-action $s : G \to G * H$ rel f is defined by

$$s(x) = x' \alpha'' \alpha''' \bar{\alpha}''$$
 and $s(\alpha) = \bar{\alpha}''' \alpha'' \alpha'''$.

Acknowledgments

M.A. thanks the Freie Universität of Berlin for its hospitality during the time that some of this work was done.

References

- 1 M. Arkowitz and M. Gutierrez. Comultiplications on free groups and wedges of circles. *Trans. Am. Math. Soc.* **350** (1998), 1663–1680.
- B. Eckmann and P. Hilton. Structure maps in group theory. Fund. Math. 50 (1961), 207– 222.
- 3 P. Hilton. Homotopy theory and duality (London: Gordon and Breach, 1965).
- 4 D. Kan. Monoids and their duals. Bol. Soc. Mat. Mex. 3 (1958), 52–61.
- 5 W. Magnus, A. Karras and D. Solitar. Combinatorial group theory (Wiley, 1966).
- 6 W. Massey. Algebraic topology: an introduction, GTM 56 (Springer, 1967).
- 7 R. Switzer. Algebraic topology-homotopy and homology (Springer, 1975).

(Issued 27 April 2001)