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Let f : G ! H be a ¯xed homomorphism and p 0 : G ¤ H ! G and p 0 0 : G ¤ H ! H
the two projections of the free product. Then a co-action relative to f is a
homomorphism s : G ! G ¤ H such that p 0 s = id and p 0 0 s = f . We study this notion
and investigate the following questions. What restrictions does s place on the
structure of the group G? What form does s take in special cases? When does s
induce a co-multiplication on H? What is the relation between associativity of s and
associativity of the induced co-multiplication m on H? What are the properties of
the operation of Hom(H; B) on Hom(G; B) induced by s : G ! G ¤ H? In addition,
we give several diverse examples of co-actions in the last section.

1. Introduction

Let f : X ! Y be a map of topological spaces and Cf the mapping cone of f . Let
§ X be the suspension of X and p0 : Cf _ § X ! Cf and p00 : Cf _ § X ! § X the
two projections of the wedge. Then there is a homotopy co-action of § X on Cf

which is given by a map s : Cf ! Cf _ § X such that p0s is homotopic to the identity
map of Cf and p00s is homotopic to the collapsing map Cf ! § X . Geometrically,
s is obtained by identifying the `equator’ of the cone CX ³ Cf to the base point.
This homotopy co-action is a basic concept of homotopy theory and has proved to
be an extremely useful tool (see [3, ch. 11, 14], [7, ch. 2]). In the case Y is a point,
the co-action becomes the canonical co-multiplication m : § X ! § X _ § X of the
suspension § X .

The notion of a co-multiplication for groups has been considered by several
authors [1,2, 4]. For a group G, this consists of a homomorphism m : G ! G ¤ G,
the free product of G with itself, whose composition with each of the two projec-
tions is the identity homomorphism id of G. In the present work we transfer the
notion of homotopy co-action from the homotopy category of spaces to the cate-
gory of groups, thereby obtaining a generalization of the notion of a group with
a co-multiplication. More precisely, let f : G ! H be a  xed homomorphism and
p0 : G ¤ H ! G and p00 : G ¤ H ! H the two projections. Then a co-action of H on
G relative to f is a homomorphism s : G ! G ¤ H such that p0s = id and p00s = f
(de nition 4.5). This is the central notion which we study in this paper.
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We now brie®y summarize the contents of the paper. Section 2 introduces our
terminology and notation in group theory. In x 3, after stating some known results
on co-multiplications, we prove that a stable subgroup for a co-multiplication is
a free factor (theorem 3.7). We begin the study of co-actions in x 4. We show a
co-action s : G ! G ¤ H rel f gives a free product decomposition of G into a
free subgroup and a free product of subgroups of K = kernel f on which s is
determined (proposition 4.8). We then obtain a complete description of s on all  nite
subgroups of G (corollary 4.10). In x 5 we give necessary and su¯ cient conditions
for a co-action s to induce a co-multiplication m on H (proposition 5.3). For such
co-actions, we study the relation between associativity of s and associativity of m
(proposition 5.11). We then obtain in theorem 5.15 a canonical set of generators of G
in the case when the co-action s is associative. We consider in x 6 homomorphisms
f : G ! H , called free homomorphisms, such that G and H are free and f is
compatible with certain bases of G and H (de nition 6.1). We investigate the right
action of Hom(H; B) on Hom(G; B) induced by a co-action s rel f , for any group
B. For certain co-actions s, we prove that the pre-images of i¤ : Hom(G; B) !
Hom(K; B) are precisely the orbits of Hom(G; B) under the action of Hom(H; B),
where i is the inclusion of K in G (theorem 6.7, remark 6.8). The  nal section deals
with several diverse examples of co-actions. These are intended to illustrate our
results.

2. Preliminaries

In this section we introduce our conventions regarding group theory and  x our
notation. All groups will be written multiplicatively. If G is a group, then 1 2 G
is the unit or identity of G. If g 2 G, we usually denote the inverse g 1 by ·g.
The commutator [g; h] of elements g; h 2 G is given by [g; h] = ·g·hgh. If g 2 G
and H ³ G is a subgroup, then the conjugate subgroup ·gHg is denoted Hg. For
subgroups H; K ³ G, we denote the smallest subgroup containing H and K by
HK. If S ³ G is a subset of the group G, then SG is the normal closure of S in G,
i.e. the smallest normal subgroup containing S.

For groups G and H , the free product G ¤ H is de ned in the usual way. An
element ¹ 2 G ¤ H can be written

¹ = g1h1 ¢ ¢ ¢ gnhn;

where gi 2 G and hi 2 H . We call ¹ reduced if g2; : : : ; gn 6= 1 and h1; : : : ; hn 1 6= 1.
We frequently write ¹ = g0

1h00
1 : : : g0

nh00
n, especially in the case G = H, where g0

i

signi es that g0
i is in the  rst factor of the free product and h00

i signi es that h00
i is

in the second factor. For g 2 G, h 2 H and k 2 K, we denote by g0, h00 and k000

the obvious elements in the triple free product G ¤ H ¤ K. If G is a group, then a
subgroup H ³ G is called a free factor of G if there exists a subgroup K ³ G such
that G = H ¤ K .

The identity homomorphism of G is denoted id : G ! G. For a free product
G ¤ H , there are projection homomorphisms pG : G ¤ H ! G and pH : G ¤ H ! H
and injection homomorphisms iG : G ! G ¤ H and iH : H ! G ¤ H . When G = H ,
we write p0 = pG, p00 = pH , i0 = iG and i00 = iH . Homomorphisms f : G ! L and
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g : H ! M induce a homomorphism f ¤ g : G ¤ H ! L ¤ M in the standard way. If
L = M , then we obtain a canonical homomorphism (f; g) : G ¤ H ! L.

We will frequently work with free groups F and consider bases of F . If X is a
basis of F , then we write F = hXi to indicate that F is generated by the basis
X . Let G be a group, H a set with distinguished element e and f : G ! H a
surjection such that f(1) = e. Then a section of f is a function ¼ : H ! G such
that f ¼ = id : H ! H and ¼ (e) = 1. Since f is onto, a section ¼ always exists.
If H is a group and f : G ! H is an epimorphism, we still refer to a section as a
function ¼ : H ! G such that f ¼ = id and ¼ (1) = 1. If ¼ is a homomorphism, we
call it a section homomorphism. If f : G ! H is an epimorphism of groups and H
is free, there is a section homomorphism ¼ : H ! G.

3. Co-multiplications

We begin this section by recalling some known results on co-multiplications. Let H
be a group and p0; p00 : H ¤ H ! H the two projections. We de ne EH ³ H ¤ H
to be the equalizer of p0 and p00. Thus if ¹ = g0

1h00
1 ¢ ¢ ¢ g0

nh00
n 2 H ¤ H , then ¹ 2 EH

if and only if g1 ¢ ¢ ¢ gn = h1 ¢ ¢ ¢ hn. For each h 2 H , set ¹ h = h0h00 2 EH and let
XH = f¹ h j h 2 H; h 6= 1g.

Theorem 3.1 (see theorem 1.4 of [2], proposition 3.1 of [1]). The group EH is a
free group with basis XH .

Remark 3.2. In proposition 3.1 of [1], there is an algorithm to express ¹ = g0
1h00

1 ¢ ¢ ¢
g0

nh00
n in EH in terms of the basis XH . If

¯ 1 = g1; ¯ 2 = ·h1g1; ¯ 3 = ·h1g1g2; : : : ; ¯ 2n 1 = ·hn 1 : : : ·h1g1 : : : gn;

then ¹ = ¹ ¯ 1
·¹ ¯ 2 ¹ ¯ 3

·¹ ¯ 4 ¢ ¢ ¢ ¹ ¯ 2n 1 .

Definition 3.3. A homomorphism m : H ! H ¤ H is called a co-multiplication if
p0m = p00m = id : H ! H , where p0; p00 : H ¤ H ! H are the two projections. We
call m associative if (m ¤ id)m = (id ¤m)m : H ! H ¤ H ¤ H .

For any group H , there is a homomorphism º H : EH ! H de ned by º H =
p0jEH = p00jEH . If m is a co-multiplication of H , then m induces a homomorphism
(also called m) H ! EH , which is a section homomorphism of º H . Conversely, a
section homomorphism of º H determines a co-multiplication of H. We shall often
not distinguish the co-multiplication H ! H ¤ H from the section homomorphism
H ! EH . Moreover, if m is a co-multiplication of H , then m : H ! EH is a
monomorphism and so H is a free group by theorem 3.1.

Definition 3.4. If m : H ! H ¤ H is a co-multiplication, then the set

Dm = fh j h 2 H; h 6= 1; mh = h0h00g ³ H

is called the diagonal set of m.

Theorem 3.5 (see corollary 3.12 of [4], corollary 4.6 of [1]). Let m be a co-multi-
plication of H . Then m is associative () Dm is a basis of H .
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This concludes our summary of known results on co-multiplications which we
shall need. The remainder of this section is devoted to a new result on co-multiplica-
tions which is needed in later sections.

Let H be a group with co-multiplication m and let A ³ H be a subgroup.

Definition 3.6. We say that A is left stable (with respect to m) if m(A) ³ A ¤ H .
A similar de nition holds for right stable.

Theorem 3.7. Let m be a co-multiplication of H such that A ³ H is left stable.
Then A is a free factor of H .

Proof. Let » : H ! H=A be the natural projection onto the set of left co-sets of A
de ned by » (h) = hA. Since » is onto, we choose a section ¼ : H=A ! H of » . We

set ĥ = ¼ » (h) for each h 2 H and note that the set of all ĥ is a complete set of co-set
representatives of H modulo A. The basis XH of the equalizer EH (theorem 3.1)
can be written as the disjoint union XA [Y 0 [Z , where XA = f¹ w j w 2 A; w 6= 1g,
Y 0 = f¹ k j k 62 A; k 6= k̂g and Z = f ¹ k̂ j k̂ 6= 1g. By an elementary transformation,
we obtain that XA [ Y [ Z is also a basis of EH , where Y = f·¹ k ¹ k̂

j k 6= k̂; k 62 Ag.
Now let w 2 A and write mw = g0

1h00
1 ¢ ¢ ¢ g0

nh00
n, where gi 2 A and hi 2 H . Let

¯ 1; ¯ 2; : : : ; ¯ 2n 1 be the sequence of elements of H de ned in remark 3.2. Note that
each ¯ i = ² i ® i, where ² i 2 H and ® i 2 A. Also, ¯ 1 = ® 1 and ² 2k = ² 2k + 1, so that
^¯ 2k = ^¯ 2k + 1. Thus

mw = ¹ ¯ 1
·¹ ¯ 2

¹ ¯ 3
¢ ¢ ¢ ¹ ¯ 2n 1

= ¹ ® 1

n 1Y

k = 1

(·¹ ¯ 2k ¹ ¯ 2k+1 )

= ¹ ® 1

n 1Y

k = 1

(·¹ ¯ 2k ¹ ^¯ 2k
)(·¹ ¯ 2k+1 ¹ ^¯ 2k+1

) 1:

If ^¯ i = 1, then ·¹ ¯ i ¹ ^¯ i
= ·¹ ¯ i , and so either ·¹ ¯ i ¹ ^¯ i

= 1 or ·¹ ¯ i ¹ ^¯ i
2 ·XA. If ^¯ i 6= 1, then

either ·¹ ¯ i ¹ ^¯ i
= 1 or ·¹ ¯ i ¹ ^¯ i

2 Y . Since ¹ ® 1 = 1 or ¹ ® 1 2 XA, we have that mw lies
in the subgroup of EH generated by the subset XA [ Y of the basis XA [ Y [ Z
of EH . It follows that m(A) is a free factor of m(H) [5, exercise 32, p. 117]. Since
m : H ! m(H) is an isomorphism, A is a free factor of H .

Remark 3.8. Let m : H ! H ¤H be a co-multiplication and Am ³ H the equalizer
of (m ¤ id)m and (id ¤m)m. We proved in [1, theorem 4.4(2)] that Am is left and
right stable under m, and then showed that Am is a free factor of H with basis
Dm. We now see that this latter result is a special case of theorem 3.7.

Corollary 3.9. Let A ³ H be a subgroup, j : A ! H be the inclusion and
m0 : A ! A ¤ A a co-multiplication. Then m0 extends to a co-multiplication of
H () H is free and A is a free factor of H .

4. Co-actions

In this section f : G ! H will be a  xed homomorphism. We let K = kernel f ,
I = imagef and denote the inclusions i : K ! G and j : I ! H . For every g 2 G,
we denote ² g = gf (g) 2 G ¤ H , which is sometimes written g0f (g)00.
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Definition 4.1. The equalizer of fpG : G ¤ H ! H and pH : G ¤ H ! H is
denoted Ef ³ G ¤ H . The semi-equalizer Ef is the subgroup of G ¤ H generated by
² g = g0f(g)00, for all g 2 G.

Clearly, Ef ³ Ef , but they are not equal in general (see remark 4.7(iii) and
lemma 4.4). We introduce some notation next.

Let pf = pGjEf
: Ef ! G and º f = pGj E f

: Ef ! G. Note that iG : G ! G ¤ H
carries K to Ef and so induces homomorphisms if : K ! Ef and ´ f : K ! Ef .
Also, f ¤ id : G ¤H ! H ¤H carries Ef to EI since (f ¤ id)(² g) = ¹ f(g) 2 EI . We let
¸ = (f ¤ id)jEf

: Ef ! EI . Now f : G ! H is onto I and so determines a surjection
f 0 : G ! I. Let ¿ : I ! G be a section of f 0. If g 2 G, we write ĝ = ¿ f (g). Then
¿ determines a section homomorphism ¼ : EI ! Ef of ¸ by setting ¼ ( ¹ f(g)) = ² ĝ.
Our next few results deal with Ef .

Proposition 4.2. Ef = if (K) ¤ ¼ (EI), and so Ef is isomorphic to K ¤ EI .

Proof. If k 2 K , note that ² k = k0 = if (k). For each g 2 G, there exists a
kg 2 K such that g = kgĝ. In particular, a generator ² g of Ef can be written
² g = k0

gĝf (ĝ) = k0
g ² ĝ. Thus every non-trivial element of Ef can be written as a

product
º 1k0

1 º 2k0
2 ¢ ¢ ¢ º nk0

n; (¤)

with n > 1, where (a) ki 2 K and ki 6= 1 for i = 1; : : : ; n 1 and (b) º i 2 ¼ (EI),
º i 6= 1 for i = 2; : : : ; n and º i is a product of factors ²

° i;j

ĝi;j
, with ° i;j 6= 0, ĝi;j 6= 1

and ĝi;j 6= ĝi;j + 1. Thus cancellation cannot occur in the terms of (¤), and so
Ef = if (K) ¤ ¼ (EI).

We note that if (K) is a canonical free factor of Ef , but the other factor depends
on the choice of section ¿ .

Corollary 4.3. Ef is a free group () K is a free group.

Lemma 4.4. If f : G ! H is onto, then Ef = Ef .

Proof. An element c 2 Ef can be written

c = g0
1h00

1g0
2h00

2 ¢ ¢ ¢ g0
nh00

n;

with gi 2 G and hi 2 H , where f (g1 ¢ ¢ ¢ gn) = h1 ¢ ¢ ¢ hn. Since f is onto, hi = f(xi),
for some xi 2 G. We apply the method given in remark 3.2 to de ne elements
of G: ¯ 1 = g1, ¯ 2 = ·x1g1, ¯ 3 = ·x1g1g2; : : : ; ¯ 2n 1 = ·xn 1 ¢ ¢ ¢ ·x1g1 ¢ ¢ ¢ gn. Then
c = ² ¯ 1 ·² ¯ 2 ² ¯ 3 ·² ¯ 4 ¢ ¢ ¢ ² ¯ 2n 1 , and so c 2 Ef .

We now give the main de nition of the paper.

Definition 4.5. Let f : G ! H be a homomorphism. A homomorphism s : G !
G ¤ H is called a right co-action rel f if pGs = id and pHs = f .

There is clearly a de nition of left co-action. However, we shall usually consider
right co-actions and call them co-actions.

Note that a co-action s : G ! G ¤ H factors through Ef ³ G ¤ H , and we also
call this homomorphism s : G ! Ef . The next lemma is then obvious.
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Lemma 4.6. s : G ! G ¤ H is a co-action rel f () s : G ! Ef is a section
homomorphism of º f : Ef ! G.

Remark 4.7.

(i) If G = H and f = id, then a co-action s : G ! G¤G is just a co-multiplication
of G and Ef = EG = Ef .

(ii) If f : G ! H is onto, then s : G ! G ¤ H is a co-action rel f if and only if
s : G ! Ef is a section homomorphism of pf : Ef ! G.

(iii) In examples 7.2 and 7.4 we show that s(G) need not be contained in Ef and
hence Ef 6= Ef .

(iv) If m : H ! H ¤ H is a co-multiplication and A ³ H is left stable (de ni-
tion 3.6), then mjA : A ! A ¤ H is a right co-action rel the inclusion A ! H .

The following proposition and its corollaries show that it is only the free part of
G on which a co-action is non-trivial. Apart from its independent interest, this will
justify considering co-actions on free groups.

In the case that s is a co-action and f is onto, s(G) ³ Ef and Ef º K ¤ EI

(proposition 4.2). By the Kurosh theorem [6, theorem 5.1], we then obtain an iso-
morphism of s(G) with the free product of a free group and a free product of
conjugates of certain subgroups of K . The next result, which also uses the Kurosh
theorem, extends this by not requiring that f be onto and by giving a precise
description of s on the non-free factor.

Proposition 4.8. If s : G ! G ¤ H is a co-action rel f , then G = L ¤ K1 for
subgroups L and K1 of G such that L is a free group, K1 ³ K = kernel f and K1

is isomorphic to ¤
j 2 J

Uj for subgroups Uj ³ K . Furthermore, for every j 2 J , there
exists wj 2 ker pG such that s(u) = ·wjuwj, for every u 2 Uj.

Proof. We apply the Kurosh theorem [6, theorem 5.1, p. 219] to the subgroup
s(G) ³ G ¤ H (which is isomorphic to G) and obtain

G = L ¤ ( ¤
j 2 J

Uj) ¤ ( ¤
i 2 A

Vi);

where L is free and s(Uj) (respectively, s(Vi)) is conjugate in G¤H to a subgroup of
G (respectively, H). Thus pHs(Uj) = pGs(Vi) = 1 and f = pHs (respectively, id =
pGs) gives Uj ³ K (respectively, Vi = 1). Finally, if u 2 Uj, s(u) = ·yjwyj for some
w 2 Uj . Then u = pG(s(u)) = (pG(·yj))w(pG(yj)), and so w = (pG(yj))u(pG(·yj)).
Thus s(u) = ·wjuwj, where wj = (pG(·yj))yj 2 ker pG.

Corollary 4.9. K is free () G is free. In particular, if f : G ! H is one-to-one,
then G is free.

We next show how a co-action s behaves on  nite subgroups of G.

Corollary 4.10. Let s : G ! G ¤ H be a co-action rel f : G ! H and T ³ G
a ¯nite subgroup. Then T ³ K and there is an element v 2 ker pG such that
s(t) = ·vtv, for all t 2 T .
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Proof. Since s(T ) ³ G ¤ H is a  nite subgroup, by [5, p. 194, exercise 12], s(T ) is
conjugate to a subgroup of G or to a subgroup of H . The argument in the proof
of proposition 4.8 shows that s(T ) = ·aUa, where U ³ K, and that, for t 2 T ,
s(t) = ·ata, with a 2 ker pG.

Corollary 4.11. Let G be a ¯nite group. If s : G ! G¤H is a co-action rel f , then
f is the trivial homomorphism and there exists v 2 ker pG such that s(g) = ·vgv,
for g 2 G. Moreover, there is a one-to-one correspondence between co-actions of G
and elements of ker pG.

Corollary 4.12. If s : G ! G ¤ H is a co-action rel f : G ! H and L is as in
proposition 4.8, then there exists a co-action ·s : L ! L ¤ H rel f j L : L ! H such
that the following diagram commutes:

G
s ! G ¤ H

pL

??y
??ypL ¤ id

L
·s ! L ¤ H

Proof. The proof is an easy exercise and hence omitted.

5. Co-multiplications induced by co-actions

Let s : G ! G ¤ H be a co-action rel f .

Definition 5.1. A co-multiplication m : H ! H ¤H is induced by s if the following
diagram commutes:

G
s ! G ¤ H

f

??y
??yf ¤ id

H
m ! H ¤ H

In this section we determine when a co-action induces a co-multiplication. In that
case, we then study the relationship between properties of the co-action and of the
co-multiplication.

Definition 5.2. Let s : G ! G ¤H be a co-action rel f . We say that s is inductive
if s(K) ³ ker(f ¤ id), where f ¤ id : G ¤ H ! H ¤ H .

We now give necessary and su¯ cient conditions for s to induce a co-multiplication
on H .

Proposition 5.3. Let s : G ! G ¤ H be a co-action rel f and H be a free group.
Then we have the following.

(i) If f is onto, then s induces a co-multiplication on H () s is inductive.

(ii) For any f : G ! H , s induces a co-multiplication on H () s is inductive
and I = f(G) is a free factor of H .
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Proof.

(i) (=: If s is inductive, then (f ¤ id)(sK) = 1, and so (f ¤ id)s : G ! H ¤ H
induces a homomorphism m : H ! H ¤ H such that the diagram in de nition 5.1
commutes. Since f is onto, m is a co-multiplication.

=): Conversely, if there is a co-multiplication m : H ! H ¤ H such that the
diagram in de nition 5.1 commutes, then s(K) ³ ker(f ¤ id). Thus s is inductive.

(ii) (=: Apply (i) to the homomorphism f 0 : G ! I to conclude that there is a co-
multiplication mI on I such that mIf 0 = (f ¤ id)s. But H = I ¤J , for some subgroup
J . Since H is free, so is J , and hence there is a co-multiplication mJ : J ! J ¤ J .
Then mI and mJ determine a co-multiplication m on H with the desired properties.

=): If s induces m, then (f ¤ id)s(K) = 1, so s is inductive. Also, H is free by
x 3. Finally, m(f(G)) ³ (f ¤ id)(G ¤ H) = f(G) ¤ H . Therefore, I is left stable with
respect to m. By theorem 3.7, I is a free factor of H .

Remark 5.4.

(i) In the proof of the second part of proposition 5.3, we wrote H = I ¤ J , where
H is free. If Z is a basis for J , then we may assume that the co-multiplication
m of H satis es mz = z 0z00 for all z 2 Z. Unless otherwise stated, we will
assume that m is so de ned.

(ii) Let s : G ! G ¤ H be a co-action rel f and ·s : L ! L ¤ H the associated
co-action rel f jL given in corollary 4.12. Then it is not di¯ cult to show that
s induces a co-multiplication m : H ! H ¤ H if and only if ·s induces the
co-multiplication m : H ! H ¤ H .

(iii) In example 7.2 we show that a co-action need not induce a co-multiplication.

We next use proposition 5.3 to extend theorem 3.7 from co-multiplications to
certain co-actions.

Definition 5.5. Let s : G ! G ¤ H be a co-action rel f and A ³ G a subgroup.
We say that A is stable with respect to s if s(A) ³ A ¤ H .

Proposition 5.6. If A ³ G is stable with respect to a co-action s : G ! G ¤ H rel
f , f is one-to-one and I is a free factor of H, then A is a free factor of G.

Proof. Since I is a free factor of H, there is a projection pI : H ! I . The homo-
morphism s0 : G ! G ¤ I given by

G
s! G ¤ H

id ¤ pI! G ¤ I

is then a co-action rel f 0 = pIf . Since f 0 : G ! I is an isomorphism, s0 is inductive
and so, by proposition 5.3, s0 induces a co-multiplication m on I,

G
s0

! G ¤ H

f 0

??y
??yf 0 ¤ id

I
m ! I ¤ I
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Then m(f 0A) = (f 0 ¤ id)s0A ³ (f 0 ¤ id)(id ¤pI)(A ¤ H) ³ f 0A ¤ I. Thus f 0A is
left stable with respect to m. By theorem 3.7, f 0(A) is a free factor of I = f 0(G).
Therefore, A is a free factor of G.

In example 7.3, we show that if f is not one-to-one, then A need not be a free
factor.

We next turn to a consideration of associativity for a co-action.

Definition 5.7. Let s : G ! G ¤ H be a co-action rel f which induces a co-
multiplication m : H ! H ¤ H . We say that (s; m) is associative or, more brie®y,
that s is associative if the following diagram commutes:

G
s ! G ¤ H

s

??y
??ys ¤ id

G ¤ H
id ¤ m! G ¤ H ¤ H

More generally, the associator As of s is the equalizer of (s ¤ id)s and (id ¤m)s :
G ! G ¤ H ¤ H .

Remark 5.8.

(i) If G = H and f = id, then s = m, As = Am and associativity of the co-
action s is just associativity of the co-multiplication m (de nition 3.3 and
remark 3.8).

(ii) f (As) ³ Am.

(iii) s is associative () As = G.

Definition 5.9. For i = 1; 2, let si : Gi ! Gi ¤H be a co-action rel fi : Gi ! H . A
homomorphism ¿ : G1 ! G2 is a co-action homomorphism ¿ : (G1; s1) ! (G2; s2)
if f1 = f2 ¿ and the following diagram commutes:

G1
s1 ! G1 ¤ H

¿

??y
??y ¿ ¤ id

G2
s2 ! G2 ¤ H

For example, in corollary 4.12, pL : (G; s) ! (L; ·s) is a co-action homomorphism.
The proof of the following proposition is then clear.

Proposition 5.10. If s : G ! G ¤ H is a co-action rel f and m : H ! H ¤ H is a
co-multiplication, then we have the following.

(i) m is induced by s () f : (G; s) ! (H; m) is a co-action homomorphism.

(ii) (s; m) is associative () s : (G; s) ! (G ¤ H; id ¤m) is a co-action homomor-
phism.

Proposition 5.11. Let s : G ! G ¤ H be a co-action rel f which induces a co-
multiplication m : H ! H ¤ H that satis¯es the condition in remark 5.4(i).
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(i) If s is associative, then m is associative.

(ii) If f is one-to-one, then s is associative if and only if m is associative.

Proof.

(i) By remark 5.8(ii), I = f (G) ³ Am. Since mz = z0z00 for z 2 Z , a basis of J , it
follows that J ³ Am. But H = I ¤ J , and so Am = H . Thus m is associative.

(ii) We assume f is one-to-one and m is associative. Then

(id ¤m)mf = (m ¤ id)mf;

(id ¤m)(f ¤ id)s = (m ¤ id)(f ¤ id)s;

(f ¤ id ¤ id)(id ¤m)s = (f ¤ id ¤ id)(s ¤ id)s:

Since f ¤ id ¤ id is one-to-one, s is associative.

Remark 5.12. In examples 7.5 and 7.6 we give examples of non-associative co-
actions. In example 7.7 we give an example in which m is associative but s is not.

For the last theorem of this section we introduce the following de nition.

Definition 5.13. Let s : G ! G ¤ H be a co-action rel f . An element g 2 G is
called s-characteristic if s(g) = h00

1g0h00
2 for some h1; h2 2 H.

Note that f (g) = h1h2.

The proof of the next lemma is then clear.

Lemma 5.14. Let the co-action s rel f induce a co-multiplication m on H and let
g 2 G be an s-characteristic element. If s(g) = h00

1g0h00
2 , then ·h1; h2 2 Dm [ f1g.

Then we have the following theorem, whose proof is a modi cation of [4, theo-
rem 3.10].

Theorem 5.15. Let the co-action s rel f induce a co-multiplication m on H . Then
(s; m) is associative if and only if G is generated by the set of s-characteristic
elements.

Proof. If the s-characteristic elements generate G, then (s; m) is associative by
lemma 5.14. For the converse, let g 2 G and write s(g) =

Qn
i= 1 g0

ih
00
i in reduced

form. The number, between 2n 2 and 2n inclusive, of non-trivial factors in s(g)
is denoted jgj. We prove by induction on jgj that g is in the subgroup generated
by the s-characteristic elements. If jgj 6 2, the result is clear, and so we assume
jgj > 3.

Case 1 (g 6= 1). Our hypothesis gives g0
1(m(h1))0g0

2 ¢ ¢ ¢ = s(g1)h000
1 ¢ ¢ ¢ . Comparing

the two expressions up to the  rst occurrence of a triple prime term, we obtain
that s(g1) must equal g0

1h00 for some h 2 H . Clearly, h = f (g1) and so g1 is s-
characteristic. But j·g1gj < jgj, and thus, by induction, g is in the subgroup generated
by s-characteristic elements.
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Case 2 (g = 1). Then we have m(h1)0g0
2 ¢ ¢ ¢ = h000

1 s(g2) ¢ ¢ ¢ . Comparing the two
expressions up to the  rst occurrence of a single prime term, we get m(h1) = h00

1h0
1

and s(g2) = h00
1 g0

2h00, where h may be trivial. As in case 1, g is in the subgroup
generated by s-characteristic elements.

This completes the induction.

Corollary 5.16. Let the co-action s rel f induce a co-multiplication m on H .
Then the associator As is generated by all elements in As which are s-characteristic.
Consequently, As is stable with respect to s.

Corollary 5.17. Let m be an associative co-multiplication on H . Then A ³ H is
a stable subgroup if and only if A has a basis of elements of the form c or ·de, where
c, d and e belong to Dm.

Proof. In this case, s = m j A : A ! A ¤ H is a co-action relative to the inclusion
and (s; m) is obviously associative. Thus A has a set of generators of the required
form and, by eliminating redundancies, a basis of such elements.

6. Operations in exact Hom sequences

In this section we study the exact sequence of homomorphism sets obtained by
applying the functor Hom( ; B) to a certain sequence of groups and homomor-
phisms. We show that the existence of a co-action yields more structure in the
exact sequence and hence more information regarding exactness. The motivation
for this section comes from a study in topology of the Puppe sequence of homotopy
sets of a co- bration [7, ch. 2].

We put restrictions on the homomorphism f : G ! H . We consider inductive
co-actions s : G ! G ¤ H rel f , and so H must be free. We will also assume that
G is free. Although there are non-trivial co-actions s : G ! G ¤ H when G is not
free (see example 7.8), the results 4.8, 4.9, 4.12 and 5.4(ii) provide strong reasons
for studying co-actions in the case when G is free. Thus, for a homomorphism
f : G ! H with kernel K and image I , we introduce the following de nition.

Definition 6.1. The homomorphism f : G ! H is called free if there are disjoint
sets X, Y , Y 0, Z such that G is free with basis X [ Y , I is free with basis Y 0, H is
free with basis Y 0 [ Z, f jY : Y ! Y 0 is a bijection and f (x) = 1, for all x 2 X .

Thus if we set K0 = hXi, then K = KG
0 and G = K0 ¤ hY i. We also identify Y

and Y 0 under f and write Y for Y 0. We set J = hZi and so H = I ¤J . Furthermore,
f : G = K0 ¤ I ! H = I ¤ J can be regarded as f = iIpI . We also set

i0 = iK0 : K0 ! G = K0 ¤ I and k = pJ : H = I ¤ J ! J:

Lemma 6.2. If f is a homomorphism of free groups of ¯nite rank, then f is free
homomorphism () I is a free factor of H .

Proof. The proof follows immediately from [5, theorem 3.3].

In this section we assume f is a free homomorphism.
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Definition 6.3. The sequence of groups and homomorphisms

1 ! K0
i0! G

f! H
k! J ! 1

is called the co-¯bre sequence of the free homomorphism f .

Note that i0 is one-to-one and k is onto, but that the co- bre sequence is not
exact. However, the kernel of each homomorphism is the normal closure of the
image of the previous homomorphism.

For groups A and B, let Hom(A; B) denote the set of homomorphisms A ! B.
Then the constant homomorphism which carries A to 1 2 B is a distinguished
element of Hom(A; B). A homomorphism g : A0 ! A induces g ¤ : Hom(A; B) !
Hom(A0; B) de ned by g ¤ (a) = ag.

Definition 6.4. For any free homomorphism f : G ! H and group B, the co- bre
sequence of f yields the following sequence,

1 ! Hom(J; B)
k¤
! Hom(H; B)

f¤

! Hom(G; B)
i¤

0! Hom(K0; B) ! 1;

which is called the Puppe sequence of the co- bre sequence of f .

Proposition 6.5. The Puppe sequence of the co-¯bre sequence of f is an exact
sequence of based sets and maps.

Now we consider a co-action s : G ! G ¤ H rel f . Then s induces a right
action of the set Hom(H; B) on the set Hom(G; B), which is de ned as follows.
Let ¬ 2 Hom(G; B) and  2 Hom(H; B) and set ¬ ¢  2 Hom(G; B) equal to the
composition

G
s! G ¤ H

( ¬ ; )! B:

Definition 6.6. Let f : G ! H be a free homomorphism and s : G ! G ¤ H a
co-action rel f . Then s is called special if

(i) s(k0) = k0
0 for every k0 2 K0, and

(ii) X 0 [ Y 0 [ sY [ Z 00 is a basis for G ¤ H .

Here, X 0 = iG(X), Y 0 = iG(Y ) and Z 00 = iH(Z).

We note that every special co-action is inductive. For if s is special and k 2 K,
then k is a product of elements of the form ·xk0x, with x 2 G and k0 2 K0. But
s(·xk0x) = (s·x)k0

0(sx), and so s(·xk0x) is in the kernel of f ¤ id. However, not every
inductive co-action is special, as example 7.3 shows.

Theorem 6.7. Let f : G ! H be a free homomorphism, s : G ! G¤H a special co-
action rel f and i¤

0 : Hom(G; B) ! Hom(K0; B) the map induced by i0 : K0 ! G.
For ¬ ; ¬ 0 2 Hom(G; B), i¤

0( ¬ ) = i ¤
0( ¬ 0) if and only if there exists a  2 Hom(H; B)

such that ¬ 0 = ¬ ¢  . Furthermore, if f is onto, then  is unique.

Proof. Clearly, i ¤
0( ¬ ¢  ) = i¤

0( ¬ ). Now suppose i¤
0( ¬ ) = i ¤

0( ¬ 0) and consider P the
push-out of i0 : K0 ! G and i0 : K0 ! G with inclusions j1; j2 : G ! P . Then
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P is just the free product of G with itself with amalgamated subgroup K0. Since
si0 = iGi0, there is a homomorphism ³ : P ! G¤H such that ³ j1 = s and ³ j2 = iG.
Because X is a basis of K0 and X [ Y is a basis of G, then W = X 0 [ Y 0 [ Y 00 is a
basis of P . Thus ³ jW is given by ³ (x0) = x0, ³ (y0) = sy and ³ (y00) = y0, for x 2 X
and y 2 Y . Hence ³ (W ) = X 0 [ sY [ Y 0, a subset of the basis X 0 [ Y 0 [ sY [ Z 00 of
G¤H (de nition 6.6). Therefore, there is a homomorphism · : G¤H ! P such that
· ³ = id. Note that if f is onto, Z is empty, and so · = ³ 1 is an isomorphism. Now
let ¬ ; ¬ 0 2 Hom(G; B) with i ¤

0( ¬ ) = i¤
0( ¬ 0). Then ¬ and ¬ 0 determine ¬ j¬ 0 : P ! B

such that ( ¬ 0j ¬ )j1 = ¬ 0 and ( ¬ 0j¬ )j2 = ¬ . We de ne  : H ! B as the composition

H
iH! G ¤ H

·! P
¬ 0 j¬! B:

Then a straightforward argument yields ¬ ¢  = ¬ 0.
Now assume the homomorphism f is onto. Then ³ is an isomorphism and so

³ ¤ : Hom(G ¤ H; B) ! Hom(P; B) is a bijection. Suppose  ; ® 2 Hom(H; B) and
¬ ¢  = ¬ ¢ ® . Then ( ¬ ;  )s = ( ¬ ; ® )s. Thus

³ ¤ ( ¬ ;  )j1 = ³ ¤ ( ¬ ; ® )j1 and ³ ¤ ( ¬ ;  )j2 = ³ ¤ ( ¬ ; ® )j2:

Therefore, ³ ¤ ( ¬ ;  ) = ³ ¤ ( ¬ ; ® ) and so ( ¬ ;  ) = ( ¬ ; ® ). Hence  = ® .

Remark 6.8. If i : K ! G is the inclusion, then theorem 6.7 holds, with i replacing
i0. This is so because K is the normal closure of K0 in G and hence i¤

0( ¬ ) = i¤
0( ¬ 0)

if and only if i ¤ ( ¬ ) = i¤ ( ¬ 0).

Now let f : G ! H be free and s : G ! G ¤ H an inductive co-action rel f . By
proposition 5.3, s induces a co-multiplication m on H . Then m determines a binary
operation, denoted `+’, on the set Hom(H; B) in the usual way.

Proposition 6.9. Let s : G ! G ¤ H be an inductive co-action rel a free homo-
morphism f : G ! H . If ¬ ; ¬ 0 2 Hom(H; B), then f ¤ ( ¬ ) = f ¤ ( ¬ 0) if and only if
there is a unique ® 2 Hom(J; B) such that ¬ 0 = k ¤ ® + ¬ , where k = pJ : H ! J .

Proof. Consider t = (k ¤ id)m de ned as the following composition,

H
m! H ¤ H

k ¤ id! J ¤ H;

which is then a left co-action rel k. Note that H = I ¤ J = hY i ¤ hZi, and let
j = iI : I ! H . Then we have the co- bre sequence of k,

1 ! I
j! H

k! J ! 1 ! 1;

where k is a free homomorphism. One easily shows that t is special and then applies
theorem 6.7 (for left co-actions) to complete the proof.

Remark 6.10. If s : G ! G ¤ H is a special co-action rel a free homomorphism
f , then theorem 6.7 and proposition 6.9 are applicable to s and give additional
information on the exactness of the Puppe sequence. In fact, theorem 6.7 and
proposition 6.9 are the group-theoretic analogues of proposition 2.48 of [7].
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7. Examples

We give examples to show the necessity of the hypotheses of some of the previous
results and to illustrate the possibilities. We let ha1; : : : ; aki denote the free group
with basis fa1; : : : ; akg.

Example 7.1. A co-action with H not free. Let Z be the in nite cyclic group
generated by x and let ¬ be the non-trivial element in the two-element group Z2.
Let f : Z ! Z2 be de ned by f (x) = ¬ . Then a co-action s : Z ! Z ¤ Z2 can be
de ned by

s(x) = xn1 ¬ xn2 ¬ ¢ ¢ ¢ ¬ xnk ;

where ni are integers such that n2; : : : ; nk 1 6= 0,
P

ni = 1 and k 1 (the number
of occurrences of ¬ ) is odd. This, in fact, determines all co-actions s : Z ! Z ¤ Z2

rel f .

Example 7.2. A co-action that does not induce a co-multiplication. Let G = hyi
be the free group on y and H = hz; ui the free group on z and u. De ne f : G ! H
by f (y) = z2. De ne a co-action s : G ! G ¤ H rel f by

sy = y02z00u00 ·y0·u00z00:

Then s does not induce a co-multiplication on H . For, if it did, the co-multiplication
would carry z2 to z04z00u00 ·z02 ·u00z00, which is not possible since the latter term is not
a square. Note that f is not free and s(G) 6³ Ef .

Example 7.3. An inductive co-action which is not special (also a counterexample
to extending proposition 5.6). G = hx; yi, H = hyi and f : G ! H is the free
homomorphism given by f(x) = 1 and f (y) = y. De ne s : G ! G ¤ H by

sx = ·y00x0y00 and sy = y0y00:

Then s is clearly inductive but not special. Let M ³ G be the subgroup generated
by x2. Then M is stable under s, but M is not a free factor of G.

Example 7.4. A co-action with s(G) 6³ Ef . Let G = hx; yi, H = hy; zi and
f : G ! H be the free homomorphism de ned by f(x) = 1 and f (y) = y. De ne
s : G ! G ¤ H by

sx = x0;

sy = ·x0 ·z00x0z00y0y00

= [x0; z00]y0y00:

Example 7.5. A co-action which is not associative in the case f is one-to-one.
G = hyi, H = hy; zi and f : G ! H is given by f (y) = y. De ne s : G ! G ¤ H by

sy = y02y00z00 ·y0·z00:

Then it is easily seen that s is special (hence inductive). The induced co-multi-
plication m on H satis es

my = y02y00z00 ·y0·z00 and mz = z0z00;
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and, by theorem 3.5, is seen to be non-associative. By proposition 5.11, s is not
associative.

Example 7.6. A co-action which is not associative in the case f is onto. Let
G = hx; y1; y2; y3i, H = hy1; y2; y3i, f (x) = 1 and f (yi) = yi, i = 1; 2; 3. De ne
s : G ! G ¤ H by

sx = x0;

sy1 = y0
1x0y00

1 ·x0;

sy2 = y0
2y00

2 ;

sy3 = y0
3y00

3 [·y0
1; [·y0

1; y00
2 ]]:

Then s is special since x0, y0
1, y0

2, y0
3, sy1, sy2, sy3 are a basis of G ¤H . The induced

co-multiplication m : H ! H ¤ H is given by

myi = y0
iy

00
i ; i = 1; 2; and my3 = y0

3y00
3 [·y0

1; [·y0
1; y00

2 ]]:

By [1, example 3.7(4)], m is not associative. By proposition 5.11, s is not associative.

Example 7.7. m associative does not imply s associative. Let G = hx; y1; y2i,
H = hy1; y2i, f(x) = 1 and f (yi) = yi, i = 1; 2. De ne s : G ! G ¤ H by

sx = x0;

sy1 = y0
1y00

1 [x0; y00
2 ];

sy2 = y0
2y00

2 :

Then s is special and the induced co-multiplication m : H ! H ¤ H satis es
myi = y0

iy
00
i , i = 1; 2. Thus m is associative, but a simple computation shows that

s is not associative.

Example 7.8. A co-action with G not free. Let Z = hxi and Z2 be the two-element
group with generator ¬ . Let ¸ : Z ! Z2 be de ned by ¸ (x) = ¬ . Let G = Z ¤ Z2,
H = Z2 and let f : G = Z ¤ Z2 ! H = Z2 be the homomorphism which is ¸ on Z
and trivial on Z2. Then a co-action s : G ! G ¤ H rel f is de ned by

s(x) = x0 ¬ 00 ¬ 000 ·¬ 00 and s( ¬ ) = ·¬ 000 ¬ 00 ¬ 000:
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