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SUMMARY
In this paper we consider the problem of planning paths
for articulated bodies operating in workplaces containing
obstacles and regions with preferences expressed as degrees
of desirability. Degrees of desirability could specify danger
zones and desire zones. A planned path should not collide
with the obstacles and should maximize the degrees of
desirability. Region desirability can also convey search-
control strategies guiding the exploration of the search
space. To handle desirability specifications, we introduce
the notion of flexible probabilistic roadmap (flexible PRM)
as an extension of the traditional PRM. Each edge in a
flexible PRM is assigned a desirability degree. We show
that flexible PRM planning can be achieved very efficiently
with a simple sampling strategy of the configuration space
defined as a trade-off between a traditional sampling
oriented toward coverage of the configuration space and a
heuristic optimization of the path desirability degree. For
path planning problems in dynamic environments, where
obstacles and region desirability can change in real time, we
use dynamic and anytime search exploration strategies. The
dynamic strategy allows the planner to replan efficiently
by exploiting results from previous planning phases. The
anytime strategy starts with a quickly computed path
with a potentially low desirability degree which is then
incrementally improved depending on the available planning
time.

KEYWORDS: Robotics; Path planning; Replanning;
Anytime planning; Dynamic planning.

1. Introduction
In its traditional form, the path planning problem is to plan a
path for a moving body (typically a robot) from a given start
configuration to a given goal configuration in a workspace
containing a set of obstacles. The basic constraint on solution
paths is to avoid collision with obstacles, which we call
hereby a hard constraint. There exist numerous approaches
for path planning under this constraint.3, 8, 12, 17, 24

In many complex applications, however, in addition to
obstacles that must be avoided, we may have dangerous areas
that must be avoided as much as possible. That is, a path
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going through these areas is not highly desirable, but would
be acceptable if no better path exists or can be computed
efficiently. The danger concept is relevant, for example, in
military applications. Some path planning techniques that
deal with it have been proposed, including refs. [22, 26].
Conversely, it may be desirable for a path to stay close
to certain areas as much as possible. Even when a path
planning problem has no explicit notion of region desirability,
introducing the notion provides a way to control the quality
of a path generated by a randomized path planning method.
Indeed, paths are obtained by connecting milestones that
are randomly sampled in the free workspace and this tends
to yield awkward paths, requiring heuristic post-processing
operations to smooth them. In this paper we demonstrate
that one can influence the sampling strategy to generate less
awkward paths by specifying zones the path is preferred to go
through. We also show that region desirability specifications
can also help control the exploration of the sampled search
space and make the path planner more efficient.

Our path planning approach builds flexible roadmaps by
extending existing sampling techniques, including delayed
collision checking, single query, bi-direction and adaptive
sampling.25 Desirable and undesirable workspace regions are
soft constraints on the robot path, whereas obstacles are hard
constraints. The soft constraints convey preferences for rating
solution paths which must avoid obstacles. The more a path
avoids undesired zones and goes through desired zones, the
better it is.

The exploration of the sampled configuration space
is done using dynamic and anytime space exploration
methods.14, 19, 20 In dynamic environments, a path planner
can adapt a previously computed path to dynamic changes
in obstacle configurations, goals or region desirability by
computing a new path. Dynamic state space exploration
strategies reuse the results obtained from previous searches to
achieve better performance compared to re-searching from
scratch. In addition, an anytime search strategy proceeds
incrementally, starting with a path having a low desirability
degree and then improving it incrementally. In this way at
“any time,” the planner has a plan with some degree of
satisfaction that is improved as more planning time is spent.

Our test bed is a simulation of the Space Station Remote
Manipulator System (SSRMS) deployed on the International
Space Station (ISS). The SSRMS is a 17-meter long
articulated robot manipulator, having a translation joint,
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Fig. 1. (Colour online) ISS path planning domain and robot control station.

seven rotational joints (each with a range of 270◦) and
two latching end-effectors, which can be moved to various
fixtures, giving it the capability to “walk” from one grappling
fixture to next on the exterior of the ISS.6 Astronauts operate
SSRMS using the robot control station located inside one of
the ISS compartments (Fig. 1). A robot control station has
an interface with three monitors, each connected to a camera
placed at a strategic location of the ISS. There are many
cameras covering different parts of the ISS structure and
three of them are selected and mapped to the three monitors.

Most of the SSRMS tasks on the ISS involve moving
the robot from one configuration to another in order, for
example, to move a payload from the shuttle or inspect a
region of the ISS exterior using a camera mounted on the end
effector. A judicious choice of the camera on each of the three
monitors along different segments of a robot path ensures
that the operator is appropriately aware of the robot motion.
Computed paths must go as much as possible through camera
fields of view to enable a good appreciation of the robot
motion. In other words, the camera fields of view convey
preferences for regions through which the robot path should
remain as much as possible while avoiding collisions with
the ISS structure.

In the next section we give the background and discuss
some of the related works. We then present our path
planning approach to handling path preferences in the
robot workspace. We follow with experiments in the
ISS environment and in a car repair domain, showing
the capability of the new planning approach to handle
path preferences and search control specifications that are
expressed by assigning desirability degrees to workspace
regions.

2. Background and Related Work
A configuration q of an articulated robot with n degrees
of freedom (DOF) is an n element vector of the robot
joint positions. Since the robot moves by changing its
joint rotations or translations, a path between two points
is a sequence of configurations sufficiently close together
connecting the two points. A path is collision-free or in the
space of collision-free configurations, Cfree, if the robot does
not collide with any obstacle in the workspace in any of

the configurations on the path. Computing a path is seen
as making a query (to the path planner) with the input
of the start and goal configurations. Two very commonly
used approaches to path planning are the combinatorial and
randomized approaches.

Combinatorial approaches, also called decomposition or
exact approaches, proceed by searching through a geometric
representation of Cfree. Given a 2D or 3D model of obstacles
in the workspace, a 2D or 3D model of the robot, the
configuration space is decomposed into an occupancy grid of
cells, also called a roadmap. A path from a start cell to a goal
cell is then found by searching a sequence of moves between
adjacent free cells, connecting the start configuration to the
goal.8, 13, 17, 21 These moves correspond to possible edges in a
graph with nodes corresponding to free cells in the grid.
Graph-search algorithms such as A∗ search9, 23 or AD∗20

can be used to compute a path between the start and goal
configurations.

Randomized approaches, also known as sampling-based
approaches, proceed by sampling the space of the robot
configurations. Given a 2D or 3D model of obstacles in
the workspace and a 2D or 3D model of the robot, a
randomized planner builds a graph of nodes corresponding
to configurations in Cfree by picking configurations randomly
and checking that they are collision-free. It uses a fast
collision detection checker (called a local planner) to check
that an edge between two adjacent nodes is also collision-
free; each time the local planner succeeds, the corresponding
edge (i.e., local path or path segment) is inserted into the
graph. The graph built that way is called a probabilistic
roadmap (PRM)12 or a rapidly exploring random tree
(RRT)17 and is a simplified representation of Cfree. Here too
graph-search algorithms such as A∗ search23 or AD∗20 can be
used to explore the graph to find a collision-free path linking
the start to the goal configuration.

Therefore, combinatorial as well as randomized
approaches have in common the discretization problem to
build an intermediate graph structure (the roadmap) and
search through it. The key difference lies in what the graph
represents and how it is built. With combinatorial approaches
the graph is meant to be an exact representation of Cfree

and its construction takes into account the geometry of
the workspace and the robot. With sampling approaches,
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the graph represents samples of Cfree. It is not an exact
representation of Cfree. Given that the configuration space is
randomly sampled, randomized approaches do not guarantee
a full coverage of free space and they are not complete and
do not guarantee optimality. In fact, they are probabilistically
complete, meaning that the more the samples are made, the
closer the probability of guaranteeing the absence or presence
of a solution gets to 1.25 Combinatorial approaches guarantee
completeness and optimality by using a sufficiently small
discritization step. In practice, this results in large search
spaces, making the approaches generally intractable for high-
dimensional configuration spaces.10

A heuristic method for grid decompositions is to plan
using a coarse discretization space. If no solution is found
or to improve the solution found so far, a new planning
iteration is made with finer discretization pace. The process
can be iterated as more planning time is invested or until a
satisfactory solution is found. Another exploration strategy
for the occupancy grid maybe to use random search.18 While
this may help coping with the complexity of the configuration
space, in very large configuration spaces the planner spends
a large amount of time generating the occupancy grid.10

Sampling-based methods generally offer better performance
than exact methods for domains with high-dimensional
spaces.5, 10, 17

2.1. Probabilistic roadmap approach
Our randomized implementation follows a PRM approach.25

However, it can be easily adapted to an RRT approach
given an RRT approach fundamentally corresponds to a
single-query PRM with on-the-fly search of the sampled
roadmap combined with on-the-fly collision detection.18

Our implementation includes various configuration modes
that allow the planner to run in a single or multiple-query
mode, with on-the-fly search of the roadmap or not and with
collision detection on-the-fly or delayed.

A PRM is an undirected graph G = (N, V ) with N being
the nodes of the graph and V the arcs. The nodes are sampled
configurations in Cfree, also called milestones. The arcs
represent links or segments v connecting two configurations.
Algorithm 1 shows a basic PRM path planning algorithm. It
starts by initializing the roadmap G with the start and goal
configurations nstart and ngoal. Then a new node n is sampled
randomly, with a probability measure π , in Cfree and added
to the roadmap. A set of nodes in G and in the neighborhood
of n called Vn is selected. Using a collision checker (local
planner), we look for a node n′ in Vn such that the link (n, n′)
is free of collisions and then add it to G. The process is
repeated until a path connecting nstart and ngoal is found.

The above algorithm follows a single-query on-the-
fly collision detection approach. The samples of Cfree

corresponding to the nodes in the graph G are generated
while searching G and detecting collision on the fly. On each
query, the graph is reconstructed. It is conceivable to generate
G, store it and then search it each time we have a query.
In this case, a sufficiently large G needs to be generated
to cover potential queries. This is known as a multiple-
query approach because several queries can be made on
the same roadmap. A delayed collision-checking approach
would avoid checking collisions (Step 6) until a whole path

Algorithm 1: Basic PRM Algorithm
01. Initialize the roadmap G with two nodes, nstart and ngoal
02. Repeat
03. Sample a configuration n from Cfree with probability

measure π
04. if (n ∈ Cfree) Then add n as a new node of G
05. for some nodes n′ in a neighborhood Vn of n in G

such that n′ �= n
06. if collisionFree(n,n’) then add v = (n, n′) as a

new edge of G
07. until nstart and ngoal are in the same connected component

of G
08. if nstartand ngoal are in the same connected component of

G Then
09. return a path between them
10. else
11. return No Path

has been found. If a segment on the path turns out to be
colliding, the algorithm would backtrack to search for a new
path. A delayed collision-checking method can outperform
a non-delayed one on some planning domains.3, 25

A PRM planner selects a node to expand in the free
configuration space according to some given sampling
measure. The efficiency of PRM approaches significantly
depends on this measure.10 A naive sampling measure will
likely lose efficiency when the free space Cfree contains
narrow passages. A narrow passage is a small region in
Cfree where the sampling probability becomes very low.
Some approaches exploit the geometry of obstacles in the
workspace to adapt the sampling measure accordingly.2, 15, 16

Other methods use machine learning techniques to adapt the
sampling strategy dynamically during the construction of the
probabilistic roadmap.4, 11, 16

2.2. Path planning with preferences
In addition to collision avoidance, the concept of dangerous
areas that have to be avoided as much as possible has been
addressed in some path planning approaches.22, 26 Herein
we generalize the concept to preferences among regions in
the Cfree space. Different regions can be assigned different
degrees of desirability, meaning that we would like the path
planner to compute a path which not only avoids obstacles
but also maximizes the degree of desirability for the path.
Since path quality criterion may also depend on other metrics
such as the distance along the path, we define the overall
path quality as a trade-off between region desirability and
distance. The trade-off is conveyed by a parameter weighing
the contribution of each of these criteria to the global path-
quality criterion. As a means to convey preferences among
collision-free paths, region desirability provides a way to
specify search control information for a path planner. It can
be used to determine how the search process chooses the next
node to expand.

2.3. Anytime path planning
In real-time applications involving the computation of an
optimal solution, it is often desirable to have an incremental
algorithm that computes its solution as a sequence of
intermediate useful but suboptimal solutions, converging
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toward an optimal solution. Dean and Bodddy7 called
these anytime algorithms. Such an algorithm guarantees a
useful approximate solution anytime, which gets improved
incrementally if more planning time is allowed. With a
PRM planner, an anytime capability can be integrated into
the search algorithm exploring the sampled roadmap. In
particular, using the A∗ heuristic graph-search algorithm,
one can implement a twofold anytime capability.

If given a transition function covering the entire search
space and an admissible heuristic, A∗ guarantees finding
an optimal solution. In our case, the search space is the
sampled roadmap and a heuristic function h(n) is a function
taking a configuration n as input and returning the estimated
distance from a configuration n to the goal configuration.
It is admissible if it never overestimates the actual distance
h∗(n). We use the Euclidean distance as admissible heuristic.
Obviously, the larger the search space, the more time it may
take to find an optimal solution, even though A∗ does not
have to exhaust the search space to guarantee optimality. To
mitigate the combinatorial size of the state space, one can run
A∗ on a smaller portion of the search space (producing an
approximate path), then expand the search space and compute
a new solution path for it and so on. This gives a sequence of
solutions, converging to the optimal when the entire search
space is covered. Given a deadline for computing a solution,
the search space will be iteratively expanded accordingly; a
solution for each chunk of expansion is then computed. This
implements an anytime capability through state expansion.
The search process can be stopped anytime and give a
solution (more precisely anytime after the time necessary
for a first solution) and the more time it is given, the better
the solution will be.

Another interesting property of A∗ is that if given an
inadmissible heuristic h(n) = h∗(n) + ε, then the cost of the
path computed by A∗ minus the cost of the optimal distance is
less than or equal to ε. In other words, ε is an upper bound on
the error for the cost of the solution compared to the optimal
solution. Moreover, A∗ tends to return a solution, possibly
suboptimal, faster with inadmissible heuristics than with
admissible heuristics. Based on these two observations and
given an admissible heuristic h (e.g., the Euclidean distance),
another way to implement an anytime A∗ search would be
to compute a path using h(n) + ε1, then another solution
using h(n) + ε2 and so on. In other words, a sequence of
solutions using a decreasing error bound εi on the admissible
heuristic is computed, with εi+1 < εi . Given a deadline
for computing a solution path, the inflating factor will be
decreased iteratively, computing a solution for each decrease.
This is the anytime capability through heuristic improvement.

Both previous methods for implementing anytime
capabilities with A∗ are complementary and can be combined
as is the case in the Anytime Repairing A∗ (ARA∗)
algorithm.21 We use a similar approach to explore a
randomized flexible roadmap.

2.4. Dynamic path planning
In the ISS environment, most of the structure is fixed, only the
robots can move. However, region desirability degrees can
change as well as the goal. Regions of desirability depend

on the task and the involved camera views. Depending on
the orbit of the ISS, a camera may have its view toward the
sun, making it undesirable. From the roadmap perspective,
this means that the cost of a segment between two nodes
can change dynamically. Such changes may invalidate a
previously calculated path, either because it is no longer
optimal or simply because it now leads to a dead-end.
Replanning is necessary in such cases.

Dynamic path planners adapt dynamically to change
happening around the robot by repairing incrementally their
representation of the environment. Different approaches
exist that are extensions of the A∗ algorithm, including
D∗ Lite,13 Anytime Dynamic A∗ (AD∗)20 and Generalized
Adaptive A∗ (GAA∗).27 These algorithms extend A∗ search
to solve dynamic search problems faster by updating
heuristics on nodes using knowledge acquired from previous
searches.

3. Flexible Anytime Dynamic Probabilistic
Roadmap Path Planner
Combining region preferences, anytime search and dynamic
replanning, we obtain a flexible anytime dynamic
probabilistic roadmap planner (FADPRM). The general idea
is to keep track of milestones in an optimal solution to
the goal. When changes are noted, edge costs are updated
and a new roadmap is re-computed fast, starting from
the goal, taking into account previous traces of the path-
calculation. This brings us back to a method in between the
multiple-query approach and the single-query approach. The
difference with a multiple-query approach is that we are now
only concerned with the roadmap to the current goal that the
robot is trying to reach in a dynamic environment.

FADPRM uses GAA∗ to explore the roadmap. The cost of
an edge between two configurations depends on the actual
distance between the configurations and the desirability
degrees of the configurations along that edge. In a preliminary
version of FADPRM,1 we have used AD∗ instead of
GAA∗. We now use GAA∗ instead of AD∗ because they
have comparable performances, yet GAA∗ has a simpler
description. Note that the contribution of FADPRM does not
just amount to using GAA∗ to explore a sampled roadmap.
The integration of preferences and their use to control both
the path quality as well as the search-process for computing
such a path are the key contributions.

3.1. Algorithm sketch
FADPRM works with Cfree segmented into zones, each zone
being assigned a degree of desirability (dd), that is, a real
number in the interval [0 1]. The closer the dd is to 1, the more
desirable is the zone. Every configuration in the roadmap is
assigned a dd equal to the average of dd of zones overlapping
with it. The dd of a path is an average of dd of configurations
in the path. An optimal path is one having the highest dd.

The input for FADPRM is thus as follows: a start
configuration, a goal configuration, a 3D model of obstacles
in the workspace, a 3D specification of zones with
corresponding dd and a 3D model of the robot. Given this
input, we can perform the following:
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1. To find a path connecting the input and goal configuration,
we search backward from the goal toward the start
(current) robot configuration. Backward instead of
forward search is done because the robot moves; we want
to re-compute a path to the same goal but from the current
position whenever the environment changes before the
goal is reached.

2. A probabilistic priority queue OPEN contains nodes on
the frontier of the current roadmap (i.e., nodes that need
to be expanded because they have no predecessor yet;
or nodes that have been previously expanded but are not
being updated anymore) and a list CLOSED contains
non-frontier nodes (i.e., nodes already expanded).

3. Search consists of repeatedly picking a node from
OPEN , generating its predecessors and putting the new
ones and the ones not yet updated in OPEN .
(a) Every node n in OPEN has a key priority

proportional to the node’s density and best estimate to
the goal. The density of a node n, density(n), reflects
the density of nodes around n and is the number of
nodes in the roadmap with configurations that are a
short distance away. The estimate to the goal, f (n),
takes into account the node’s dd and the Euclidean
distance to the goal configuration as explained below.
Nodes in OPEN are selected for expansion in
decreasing priority. With these definitions, a node n

in OPEN is selected for expansion with priority
proportional to

(1 − β)/density(n) + β ∗ f (n),

β is the inflation factor with 0 ≤ β ≤ 1.
(b) To increase the resolution of the roadmap, a new

predecessor is randomly generated within a short
neighborhood radius (the radius is fixed empirically
based on the density of obstacles in the workspace)
and added to the list of predecessors in the roadmap
generated so far; then the entire list of predecessors is
returned.

(c) Collision is delayed: detection of collisions on the
edges between the current node and its predecessors
is delayed until a candidate solution is found; if
colliding, we backtrack and rearrange the roadmap
by eliminating nodes involved in this collision.

4. The robot may start executing the first path found.
5. Concurrently, the path continues to be improved.
6. Changes in the environment (moving obstacles and zones

or changes in dd for zones) cause updating of the roadmap
and replanning.

With β equals to 0, the selection of a node to expand
is totally blind to zone degrees of desirability and to edge
costs (Euclidian distance). Assuming OPEN is the entire
roadmap, this case corresponds to a normal PRM and the
algorithm probabilistically converges toward an optimal
solution as is the case for a normal PRM.25 With β = 1,
the selection of a node is the best-first strategy and by
adopting an A*-like f (n) implementation, we can guarantee
finding an optimal solution within the resolution of the
roadmap sampled so far. Therefore, the expression (1 −

β)/density(n) + β ∗ f (n) implements a balance between
fast-solution search and best-solution search by choosing
different values for β.

Values of β closer to 1 give better solutions, but take more
time. An initial path is generated fast assuming a value close
to 0, then β is increased by a small quantity, a new path is
computed again and so on. At each step, we have a higher
probability of getting a better path (probability 1 when β

reaches 1). This is the key in the anytime capability of our
algorithm.

The heuristic estimate is separated into two components
g(n) (the quality of the best path so far from n to the goal
configuration) and h(n) (estimate of the quality of the path
from n to the start configuration), that is, f (n) = (g(n) +
h(n))/2; we divide by 2 to normalize f (n) to values between
[0, 1]. This definition of f (n) is as in normal A* except that

� We do backward search, hence g(n) and h(n) are reversed.
� The quality of a path is a combination of its dd and its

cost in terms of distance traveled by the robot. Given
pathCost(n, n′), the cost between two nodes, g(n), is
defined as follows:

g(n) = pathdd(ngoal, n)/(1 + γpathCost(ngoal, n))

with 0 ≤ γ ≤ 1.
� The heuristic h(n) is expressed in the same way as g(n)

and estimates the cost of the path remaining to reach nstart:

h(n) = pathdd(n, nstart)/(1 + γpathCost(n, nstart)).

The factor γ determines the influence of dd on g(n) and
h(n). With γ = 0, nodes with high dd are privileged, whereas
with γ = 1 and with the dd of all nodes equal to 1, nodes
with the least cost to the goal are privileged. In the last case, if
the cost between two nodes pathCost(n, n′)) is chosen to be
the Euclidean distance, then we have an admissible heuristic
and the algorithm is guaranteed to converge to the optimal
solution. When dds are involved and since zones can have
arbitrary configurations, it is difficult to define admissible
heuristics. The algorithm guarantees improvement of the
solution, but it is impossible to verify optimality. Since
the dd measures the quality of the path, the idea is to run the
algorithm until a satisfactory dd is reached. The functions
pathdd and pathCost are implemented by attaching these
values to nodes and updating them on every expansion or
when dynamic changes are observed in the environment.

3.2. Algorithm details
The detailed structure of the FADPRM path planner
is presented in Algorithm 2. Since FADPRM proceeds
backwards, it updates h-values with respect to the start
configuration of all expanded nodes n after every search as
follows:

h(n) = g(nstart) − g(n).

Following GAA*, FADPRM does not initialize all g- and
h-values upfront. Instead, it uses the variables counter,
search(n) and pathcost(x) to decide when to initialize and
update them by calling UpdateState():
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Algorithm 2: FADPRM Algorithm
01. KEY(n)
02. f (n) = [g(n) + h(n)]/2;
03. return [(1 − β)/density(n) + β.f (n); h(n)]

04. UPDATESTATE(n)
05. if search(n) �= 0
06. if (g(n) + h(n) < pathcost(search(n))
07. h(n) = pathcost(search(n)) − g(n);
08. g(n) = 0;
09. else if (search(n) = 0)
10. g(n) = 0;
11. search(n) = counter

12. COMPUTEORIMPROVEPATH()
13. while (NoPathf ound)
14. remove n with max key from OPEN ;
15. if (Connect(n, nstart))
16. return β-suboptimal path;
17. else
18. ExpandNode(n);;
19. For all n′ ∈ Pred(n)
20. UPDATESTATE(n′)
21. g(n′) = g(n) + c(n, n′)
22. insert n′ into OPEN ;
23. insert n into CLOSED;

24. MAIN()
25. counter = 1;
26. g(nstart) = g(ngoal) = 0;
27. search(nstart) = search(ngoal) = 0;;
28. β = β0;
29. OPEN = CLOSED = ∅
30. UPDATESTATE(nstart)
31. UPDATESTATE(ngoal)
32. insert ngoal into OPEN with key(ngoal );
33. while (Not collision-free Path)
34. Rearrange Tree;
35. ComputeorImprovePath();
36. counter = counter + 1;
37. if OPEN = ∅
38. pathcost(search(n)) = 0
39. else
40. pathcost(search(n)) = g(nstart)
41. publish current β0−suboptimal solution;
42. while (nstart not in neighborhood of ngoal)
43. if nstart changed
44. if addtoTree(nstart)
45. publish current solution;
46. if changes in edge costs are detected
47. for all changed edges (u, v)
48. Update the edge cost c(u, v);
49. UpdateState(u);
50. Update the priorities for all
51. n ∈ OPEN according to Key(n);
52. CONSISTENCYPROCEDURE()
53. decrease β or replan from scratch;
54. if β < 1
55. increase β;
56. CLOSED = ∅;
57. while (Not collision-free Path)
58. Rearrange Tree;
59. ComputeorImprovePath();
60. counter = counter + 1;
61. if OPEN = ∅
62. pathcost(search(n)) = 0
63. else
64. pathcost(search(n)) = g(nstart)
65. publish current β−suboptimal solution;
66. if β = 1
67. wait for changes in edges cost;

� The value of counter is x in the xth execution of
ComputeOrImprovePath, that is, the xth call for GAA∗
on the roadmap.

� search(n) stores the number of the last search that
generated node n. FADPRM initializes these values to
0 for new nodes in the roadmap.

� pathcost(x) stores the cost for the best path found on the
roadmap by the xth search. More precisely, the formula

for pathcost(x) is

pathcost(x) = g(nstart) =
pathdd(ngoal, nstart)/(1 + γpathCost(ngoal, nstart)).

Nodes in OPEN are expanded in decreasing priority to
update their g-values and their predecessors’ g- and h-values.
The ordering of nodes in OPEN is based on a node priority
key(n), which is a pair [k1(n), k2(n)] defined as follows:

key(n) = [(1 − β)/density(n) + βf (n), h(n)],

with f (n) = [(g(n) + h(n)]/2 and key(n) ≤ key(n′) if
k1(n) ≤ k1(n′) or (k1(n) = k1(n′) and k2(n) ≤ k2(n′)). During
the update on nodes, FADPRM initializes the g-value of
nodes not yet generated by an already performed search,
nodes with search(n) = 0, to zero.

In the function ComputeorImprovePath(), when a node
n with maximum key is extracted from OPEN , we first try
to connect it to nstart using a fast local planner as in SBL (for
Single-query Bidirectional PRM planner with Lazy collision
detection).25 If it succeeds, a path is then returned (line 16
in Algorithm 2). The expansion on a node n with maximum
key from the OPEN (line 18 in Algorithm 2) consists of
sampling a new collision-free node in the neighborhood of
n25 and then the sampled node is added in the set Pred(n).
After increasing the connectivity of the roadmap by adding a
new node, FADPRM executes an update of the heuristics of
all nodes in Pred(n) in order to make them more informed
and then allow for later more focused searches.

FADPRM updates the h-values of node n (line 7) if the
following different conditions are satisfied:
� The node has not yet been generated by the current search

(search(n) �= counter).
� The node was generated by a previous search

(search(n) �= 0).
� The node was expanded by the search that generated it last

(g(n) + h(n) < pathcost(counter)).

FADPRM sets h(n) (in line 7) to the difference between
g(nstart) that is the cost of the path from nstart to ngoal during the
last search that expanded n and g(n) that remained the same
since the same search. Dynamic changes in the environment
affect (increase or decrease) edge costs. Such changes are
handled by a consistency procedure, adapted from GAA∗
and described below. This procedure invoked at line 52 of
the main algorithm whenever a cost decrease is observed.
When invoked, it updates the h-values with respect to the
start node.

The Main procedure in FADPRM first sets the inflation
factor β to a low value β0 so that a suboptimal plan can
be generated quickly (line 41). Then if no changes in edge
costs are detected, β is increased to improve the quality of its
solution (lines 54–55). This will continue until the maximum
of optimality is reached with β = 1 (lines 66–67).

FADPRM also follows the concept of lazy collision
checking. Every time a β-suboptimal path is returned by
ComputeorImprovePath(), it is checked for collision. If a
collision is detected on one of the edges constituting the path,
a rearrangement of the roadmap is then needed to eliminate
nodes involved in this collision (Lines 34, 58). FADPRM also
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Algorithm 3: Consistency Procedure
01. CONSISTENCYPROCEDURE()
02. update the increased and decreased action costs (if any);
03. OPEN = ∅;
04. for all edges (n, n′)
05. with (n �= nstart) and edge cost c(s, s ′) decreased
06. UPDATESTATE(n);
07. UPDATESTATE(n′));
08. if (h(n) > c(n, n′) + h(n′))
09. (h(n) = c(n, n′) + h(n′))
10. if n ∈ OPEN

11. delete n from OPEN ;
12. insert n in OPEN with key-value KEY(n);
13. while (OPEN �= ∅);
14. delete n′ with smallest key-value from OPEN ;
15. for all states n �= nstart with succ(n) = n′
16. UPDATESTATE(n);
17. if (h(n) > c(n, n′) + h(n′)))
18. (h(n) = c(n, n′) + h(succ(n′)))
19. if n ∈ OPEN

20. delete n from OPEN ;
21. insert n in OPEN with key-value KEY(n);

handles the case of a floating starting configuration (lines 43–
44).

4. Experimental Results
In the first set of experiments we illustrate and validate the
replanning and anytime capabilities of FADPRM in dealing
with highly complex environments with preferences. In the
second set of experiments we illustrate the search control
capability of FADPRM and show how region desirability
specifications can help control the exploration of the sampled
search space and make path planning more efficient.

Experiments are made in two different environments: a
simulation of the SSRMS on the ISS and a Puma robot
operating on a car. The SSRMS is the most complex
environment: 7 DOF, 75 obstacles modeled with 85,000
triangles. The Puma robot has 6 DOF and its environment is
modeled by approximately 7000 triangles.

All experiments were run on a 1.86 GHZ Core 2 Processor
with 2 GB of RAM. We consider paths with a dd of 0.5 to be
neutral, below 0.5 to be dangerous and above to be desirable.
More specifically, dangerous zones are given a dd of 0.2 and
desirable ones a dd of 0.8. A free configuration of the robot
not having any contact with zones is assigned a dd of 0.5. We
use pathdd as a measure for path quality. For all experiments,
PRM refers to an implementation of SBL.25

4.1. Fast replanning capability
In the SSRMS application, the concept of dangerous and
desirable zones is motivated by a real-world application
dealing with teaching astronauts to operate the SSRMS in
order to move payloads or inspect the ISS using a camera
mounted at the end effector. Astronauts have to move the
SSRMS remotely, within safe corridors of operations. The
definition of a safe corridor is that it must of course avoid
obstacles (hard constraint), but also go as much as possible
within regions visible through cameras mounted on the ISS
exterior (so that the astronaut can see the manipulations
through a monitor on which the cameras are mapped). Hence,
safe corridors depend on view angles and lighting conditions
for cameras mounted on the ISS, which change dynamically
with the orbit of the ISS by modifying their exposure to direct

Fig. 2. (Colour online) SSRMS going through three different
camera fields of view (purple, green and blue cones) and avoiding
a non-desired zone (red box).

sunlight. As safe corridors are more complex to illustrate on
paper, we just picked conical zones approximating camera
view regions and polygonal zones at arbitrary locations.
Figure 2 illustrates a trajectory of the SSRMS carrying a
load and going through three camera fields of view (purple,
green and blue cones) and avoiding a non-desired zone with
very limited lighting conditions (red box).

The first experiment illustrates the situation in which a
human operator is learning to manipulate the SSRMS from
a given start configuration to a given goal configuration. To
provide feedback on whether he is on the right track, from
every current configuration, we call the FADPRM planner to
calculate a path with a high dd to the goal. If no such path
exists, we notify the learner that he is moving the SSRMS
to a dead end. Although paths are computed to confirm the
learner is on the right track, they are not displayed to him.
Hence, while the learner is making suitable progress toward
the goal, they are solving the problem on their own.

Figure 3 shows the time taken for replanning while
the human operator is moving the robot toward a goal
configuration in the scenario of Fig. 2. We conducted the
experiment three times with the operator doing exactly
the same manipulations to reach the goal from the start
configuration and each time using FADPRM (with β = 0)
and the normal PRM. Except for the first few iterations,
FADPRM take less replanning time than PRM. For FADPRM
and in the first few iterations, the overhead incurred by the
GAA*-based exploration dominates the planning time. In
later iterations, it is outweighed by the savings gained by
replanning from the previous roadmap.

In Fig. 4 we compare the time needed for FADPRM and
PRM to find a solution for 15 arbitrary queries in the ISS
environment. Since the time (and path quality) for finding
path is a random variable given the random sampling of the
free workspace, for each query we ran each of the planners
10 times and reported the average planning time. In this case,
FADPRM is used in a mode that does not store the roadmap
between successive runs. Before displaying the results, we
sorted the PRM setting in increasing order of complexity,
starting with queries taking less time to solve.

For FADPRM, we show results with β = 0 and 0.4. With
β = 0, FADPRM behaves exactly like the normal PRM. With
β = 0.4, planning takes more time for both planners. This
validates our previous analysis about FADPRM: with β =
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Fig. 3. (Colour online) FADPRM versus PRM in replanning.

0, an FADPRM planner behaves in way very similar to a
normal PRM, but as soon as we start seeking optimality (in
our case with β = 0.4), the time for planning will increase
proportionally.

On an other hand, Fig. 5 shows that β = 0.4 yields higher
quality paths than β = 0. This validates another previous
analysis: higher β-values yield better paths but take more
time to compute.

4.2. Search control capability
Specifying zone degrees of desirability provides a means
to accelerate the computation of a path. Since FADPRM
explores configurations in the order of specified preferences,
it is possible to control the search process via the specification
of regions with suitable degrees of desirability, so it reaches
a solution very quickly on average.

To illustrate the search control capability in the ISS
environment, we establish a planning scenario where the
SSRMS has to carry a load to a space shuttle docked to
the ISS. Path planning is further made more complex in
this scenario with the final configuration placed in a narrow
passage: near the shuttle and surrounded by a number of
modules as shown on Fig. 6. Normal PRMs start losing
efficiency in such areas since the sampling probability
becomes very low. In the first experiment (Fig. 6(a)), we
plan for a path with a wide desired zone on the left of the
shuttle. In the second experiment (Fig. 6(b)), we specify a
non-desired zone on the right of the shuttle and two wide
desired zones on the front and on the left of the shuttle.
By adding zones with appropriate degrees of desirability,
we wanted to influence the sampling of the free workspace
to yield better paths. Here planning is done without any
call to a post-processing smoothing step as is usually done

Fig. 4. (Colour online) FADPRM versus PRM in planning time.
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Fig. 5. (Colour online) FADPRM versus PRM in path quality (Pathdd).

with normal PRM planners.25 This explains why we have
awkward trajectories in Figures 6(a) and (b).

In Fig. 7 we compare the time needed for FADPRM
and PRM to find a solution for 15 different queries within
both scenarios of Figs. 6(a) and (b). For all queries, the
goal configuration with the carried module inside the shuttle
remains the same. Start configurations are picked randomly
at different locations around the shuttle. For each query we
ran each of the planners 10 times and reported the average
planning time. Before displaying the results, we sorted the
PRM setting in increasing order of complexity, starting with
queries taking less time to solve. For FADPRM we show the
results with β = 0, 0.4 and 0.7. In these experiments, the
bias factor γ that determines the influence of the dd on the
cost of edges within the roadmap is equal to 0.5.

With β = 0, FADPRM behaves exactly like a normal
PRM in both scenarios yielding very complex awkward paths
requiring an approximately equivalent time to compute. As
soon as we start seeking optimality with β = 0.4 and 0.7,
the time for planning in the two scenarios increases. In both
scenarios, FADPRM with β = 0.7 yields better paths than

FADPRM with β = 0.4 but takes more computing time.
Figure 8 confirms this and shows better quality (i.e., better
dds) for paths computed with FADPRM (β = 0.7) compared
with paths found by FADPRM (β = 0.4).

If we compare the time taken for planning with the same
version of FADPRM (β = 0.4 or 0.7) within the two different
scenarios of Fig. 6, we note that more planning time is
needed in the scenario of Fig. 6(a). With larger values of β,
the sampling with FADPRM is pushed into areas with high
values of dd. If the workspace is not covered with enough
desired zones, the planner may remain stuck sampling within
one desired zone of the workspace. This explains the problem
of local minima that we see in Fig. 7 with FADPRM in
scenario of Fig. 6(a). The more β is increased, the more the
sampling is pushed within high dd zones. This explains why
the local minima problem is more frequent with FADPRM
with β = 0.7. By increasing the coverage of the workspace
with more desired and non-desired zones such as in Fig. 6(b),
we significantly improve the planning time needed for finding
an optimal solution and considerably reduce the probability
of having the local minima problem (Fig. 7).

Fig. 6. (Colour online) Not smoothed paths with FADPRM (β = 0.7) in the ISS environment.
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Fig. 7. (Colour online) FADPRM (β = 0.4 and 0.7) versus PRM in planning time.

The factor γ determines the influence of the dd on g(n)
and h(n). With γ = 0, nodes with high dd are privileged,
whereas with γ = 1 and with the dd of all nodes equal to
1, nodes with the least cost to the goal are privileged. In
the following experiment, we test the influence of different
values of γ on the planning time with FADPRM (β = 0.7) in
the scenario of Fig. 6(b) with a well-constrained workspace.

Seeking optimality in the robot path takes more time and can
lead to local minima problems. With FADPRM, the local
minima problem can have the following two reasons:

1. distance-minima problem: The planner remains stuck
sampling without success in a narrow passage around a
configuration too close to the goal-configuration.

Fig. 8. (Colour online) Path quality with FADPRM (β = 0.4 and 0.7).

Fig. 9. (Colour online) Planning time with FADPRM (β = 0.7) with γ = 0.5 and 0.2.
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Fig. 10. (Colour online) Smoothed paths with FADPRM in the ISS environment (β = 0.7).

2. dd-minima problem: The planner remains stuck sampling
without success within a tiny desirable zone of the
workspace like in the scenario of Fig. 6(a).

By increasing the influence of dd on the cost of nodes,
we reduce the probability of having the distance-minima
problem. By increasing the coverage of the workspace with
desired and non-desired zones, we reduce the probability
of having the dd-minima problem. This explains why in
Fig. 9, FADPRM with γ = 0.2 takes less time for planning
compared with FADPRM with γ = 0.5. More importantly,
no occurrences of the local minima problem are observed
with FADPRM (γ = 0.2).

4.3. Path-quality control capability
With randomized path planners, paths are obtained by
connecting milestones that are randomly sampled in the free
workspace and this tends to yield awkward paths, requiring
heuristic post-processing operations to smooth them. With
FADPRM, it is possible to influence the sampling strategy
and generate less awkward paths by specifying zones we
prefer them to go through or zones we want them to avoid.

In Fig. 6, we note an improvement in the smoothness of the
path generated with FADPRM on the scenario of Fig. 6(b)
compared with the path in Fig. 6(a). In Fig. 11, we measure
the time needed for smoothing the paths (as shown on Fig. 10)
found on the 15 queries of Fig. 7.

Compared with normal PRM, FADPRM (with β = 0.4 or
0.7) always produces paths that need less post-processing
smoothing time. In both scenarios, FADPRM with β = 0.7

needs less time for smoothing than FADPRM with β = 0.4.
Here we note that the more we seek optimality in the robot
path, the less awkward solution paths are, which explains
why they require less time to smooth.

We also note that for both versions of FADPRM (with
β = 0.4 or 0.7), more smoothing time is required in the first
scenario in Fig. 6(a). The more the path is constrained with
desired and undesired zones within the workspace, the more
quality and efficiency we guarantee in the solution path. That
is, the path is smoother and requires less time to smooth.

Figure 12 confirms the same results found with not
smoothed solution paths in Fig. 8. Increasing β into
FADPRM yields smoothed paths with better quality in terms
of degrees of desirability. Also, the more we cover the
workspace with desirability zones, the more this path quality
is enhanced. Zones with degrees of desirability provide
a means to specify a sampling strategy that controls the
search process to generate better paths (better dds and better
smoothness) by simply annotating the 3D workspace with
the regions’ degrees of desirability.

4.4. Generality of the results
By running the previous experiments on several randomly
chosen samples and reporting the average results, we
somewhat try to verify that FADPRM features are not
dependent on one specific scenario. Obviously, the ISS
domain has a specific structure. Runs on different domains
are necessary to increase confidence in the generality of the
observed performances of FADPRM. In this regard, we did

Fig. 11. (Colour online) FADPRM versus PRM in smoothing time.
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Fig. 12. (Colour online) FADPRM versus PRM in path quality of smoothed paths.

numerous experiments on a simulated Puma robot operating
on a car. The obtained results confirm those in the SSRMS
domain.

For instance, to evaluate the search-control capability of
FADPRM, in one of the experiments we specified a small
desirable zone (see Fig. 13(a)) and in another we specified
a wider desirable zone (in front of the car) and a wide
undesirable zone (in the back) (see Fig. 13(b)). In both sets
of experiments we wanted to influence the sampling of the
free workspace to yield paths that move the robot in front of
the car (from the left side, to the front, then to the right side).

By specifying a desirable zone on the right front of the
car as shown in Fig. 13(a) and running FADPRM planner
many times on the same query (input/goal configuration),
they yielded better paths, on average, than PRM. On the other
hand, by enlarging the size and coverage of the desirable zone
and adding an undesirable zone (right, on the back of the car),
as shown in Fig. 13(b), we noted that the quality of paths
increased by 50% over 100 trials. The second experiment
succeeds more often because the path is more constrained; a
wider desirable zone on the front of the car together with an
undesirable zone on the back of the car makes the probability
of sampling a configuration along the desirable region higher
than in the first setup.

Figure 14 shows the anytime capability of FADPRM (with
β = 0.4) on these two experiments. We note continuous
improvement of the path quality (pathdd) for the two
settings. The more the time it is given, the better the

path provided by FADPRM. The results here confirm the
observations noted in the first experiment with the SSRMS.
Handling zones with degrees of desirability provides
FADPRM with a powerful sampling strategy that helps
generate better quality paths. And, the better the coverage of
the workspace with preference zones, the more optimal (in
terms of degrees of desirability) the solution path to which
FADPRM converges.

5. Conclusion
In many real-world path planning applications, in addition
to obstacles that must be avoided, we may have areas that
the body is preferred to avoid (or, conversely, to go through)
as much as possible. This is the case in the ISS domain
where preferences are tied to camera views which change
dynamically, in part because of varying environmental
conditions throughout the orbit.

In this paper we presented a new randomized approach
for robot path planning which extends the PRM framework
to handle a workspace containing regions with degrees
of desirability. Our approach integrates dynamic and
anytime search exploration strategies to deal with problems
in dynamic environments where obstacles and region
desirability can change in real time. The dynamic strategy
allows the planner to replan efficiently by exploiting results
from previous planning iterations. The anytime strategy starts
with a quickly computed path with a potentially low degree

Fig. 13. (Colour online) PUMA robot around a car.
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Fig. 14. (Colour online) Path quality evolution with FADPRM.

of desirability which is then incrementally improved if more
planning time is allowed.

The experiments validated the different features of
FADPRM on two particular path planning domains.
Although we obtain good path quality and better replanning
time than normal PRM approaches, there remains potential
for improvement on both dimensions. Paths still need to be
smoothed in post-processing, and for real-time applications
we still want a planning algorithm that is as fast as possible.
We will therefore continue to explore ways to improve our
approach and look for alternatives.

FADPRM is a component in a large simulation prototype
for training astronauts on the SSRMS. It is invoked by an
intelligent tutoring system (ITS) to monitor robot operations
carried out by a student and provide feedback on how to
control the arm. For instance, given the task of moving the
SSRMS from one configuration to another, the ITS can try
computing a path from the current configuration to the goal
and advise the student when the current configuration seems
to be a dead-end. The student can then backtrack to a previous
point from which better paths to the goal are available.
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