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Results are presented of experimental investigations into the motion of a heavy sphere
in a rotating cylinder which is completely filled with highly viscous fluid. For a given
cylinder rotation rate, the sphere adopts a fixed position and rotates adjacent to the
cylinder wall. For the case of a smooth sphere the motion is consistent with that predic-
ted by a Stokes flow model. Artificially roughened spheres exhibit particle–boundary
contact caused by impacts of surface asperities with the boundary for low cylinder
surface speeds. For higher cylinder surface speeds the behaviour of the roughened
spheres crosses smoothly from the particle–boundary contact regime to motion with
hydrodynamically lubricated flow.

1. Introduction
The motion of a sphere in a Stokes flow near to a boundary is of fundamental impor-

tance since it arises in many industrial problems, such as bearings, cleaning processes,
colloidal suspensions, fluidization and filtration (Dowson & Taylor 1979; Segre,
Herbolzheimer & Chaikin 1997). The simplest experimental system that can be used
to realize this kind of flow is that of a sphere immersed in a viscous fluid moving
down an inclined plane (Smart, Beimfohr & Leighton 1993; Galvin, Zhao & Davis
2001; Prokunin 2004). This apparently simple configuration has been used to develop
models for the motion of both smooth and rough spheres.

Goldman, Cox & Brenner (1967) modelled the translational and rotational motion
of a perfectly smooth sphere near to a vertical smooth boundary by considering torque
and force balances tangential to the boundary. However, owing to the reversibility of
the Stokes equations and the local symmetry of the flow geometry, this model predicts
no net hydrodynamical force normal to the boundary. A perfectly smooth sphere will
asymptotically approach the wall if the boundary is inclined at an angle less than 90o

to the horizontal. The resolution of this problem for the case of a heavy sphere was
provided by Ashmore, del Pino & Mullin (2005) who showed that cavitation in the
lubrication layer breaks the symmetry of the flow so that the flow exerts a normal
force on the sphere, which can balance the normal component of the sphere’s weight.
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Hence, a cavity exists in the lubricating layer between the sphere and the moving
boundary, and details such as the size and position of the bubble have been verified
experimentally.

Now that the motion of a smooth heavy sphere near to a boundary in a Stokes
flow is understood, one question to ask concerns the role of surface roughness. It is
well known (see e.g. Acheson 1990) that there is a mathematical singularity when the
distance between a sphere and boundary asymptotically approaches zero, i.e. when
the lubricating layer depth tends to zero. Hence, a perfect sphere moving towards a
smooth wall can theoretically never make contact. Similarly, a perfect sphere touching
a smooth wall can never break contact. However, experimental data confirm that
particle–boundary contact can be made and broken and this is believed to arise from
the presence of surface roughness. Smart et al. (1993) provide a model to describe
such effects on spheres moving near to a boundary in a Stokes flow. In the model
the motion is considered to comprise tangential motion arising from slip between
the sphere and plane, normal motion of a part of the sphere surface relative to the
plane arising from rotation of the sphere, and pressure-driven channel flow in the
lubrication layer between the sphere and plane. Smart et al. (1993) use a classical
mechanics approach to model the roughness effects by introducing a frictional force
into the theory of Goldman et al. (1967). This opposes the translational motion of
the sphere where a coefficient of friction is assumed to exist between the sphere and
boundary. The precise value of the coefficient of friction is obtained by fitting with
experimental data. Galvin et al. (2001) develop this model and use it to describe the
motion of a rough sphere in a Stokes flow close to a smooth boundary. Specifically,
they include two distinctive roughness levels on the sphere.

The present study is an investigation into the effects of roughness levels on a heavy
sphere moving near to a boundary in a Stokes flow, where the measure of roughness
ε is defined as the ratio of the maximum peak–valley depth of the rough asperities to
the sphere diameter. The system consists of a horizontal rotating cylinder filled with
very viscous fluid. A roughened steel sphere was placed within the fluid and found
to rotate at a fixed point adjacent to the upward moving wall in the lower quadrant
of the cylinder for a set rotation rate. When the cylinder was made to rotate faster
the sphere moved up the wall to new fixed points until it reached 90o, where upon it
fell from the wall and oscillatory motion set in. This in turn could lead to periodic
particle–particle interactions when two spheres were present and spatio-temporal
chaos with three spheres, all of which are described in detail in Mullin et al. (2005).

We will concern ourselves with fixed-point behaviour where the sphere sits in the
lower quadrant of the cylinder. This is analogous to a sphere rolling down an inclined
plane: where the plane can lie at an angle between 0 and 90o, the tangent to the
sphere at the point of nearest approach to the cylinder wall can also lie between
0 and 90o. Differences between these two systems are discussed in more detail in
§ 3. Our experimental observations show that particle–boundary contact is possible
for roughened spheres at small angles, but their motion can be described by the
hydrodynamic model of Ashmore et al. (2005) over a wide range of angles up the
cylinder wall. Moreover, there is a smooth crossover between the particle–boundary
contact and the hydrodynamic regimes.

2. Hydrodynamic model for smooth spheres adjacent to an inclined plane
It is useful to review the hydrodynamic model for a smooth sphere adjacent to an

inclined plane in a Stokes flow, of Ashmore et al. (2005). A smooth sphere of radius
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a and density ρs rotates at a rate ω in a semi-infinite fluid bath close to a boundary.
The fluid has viscosity µ and density ρf and the boundary is inclined at angle θ ,
moving at velocity U . The sphere sits adjacent to the boundary, separated by a thin
lubrication layer of thickness h0, and its motion can be found from the lubrication
approximation of the Stokes equations. The key idea is that the pressure distribution
in the lubricating layer in the expansion region of the flow drops below the negative
vapour pressure of the fluid. A vapour cavity is formed and the pressure distribution
is truncated at the vapour pressure. The symmetry of the problem is then broken and
a net normal force exists thereby preventing sphere/boundary contact.

We choose a polar coordinate system (r, φ) with origin at the point of closest
approach between the sphere and boundary and with the angle φ equal to zero in
the opposite direction to boundary motion. The deviation from atmospheric pressure
in the lubricating layer is p(r, φ), the difference between atmospheric pressure and
vapour pressure is pb, and the density difference is �ρ = ρs − ρf . Variables are non-
dimensionalized as follows:

U =
µU

�ρga2
, Ω =

ωa

U
, H0 =

h0

a
,

Pb =
pb

�ρga
, P =

p

�ρga
, R =

r

(2h0a)1/2
.

⎫⎪⎪⎬
⎪⎪⎭

(2.1)

Ashmore et al. (2005) argue that the tangential force and torque balances on the
sphere will not be greatly affected by the presence of the vapour bubble so that the
asymptotic solutions of Goldman et al. (1967) should still be valid:

16π

5

(
1 − Ω

4

)
U ln

(
1

H0

)
+ 6π(0.9588 + 0.2526Ω)U =

4π

3
sin θ, (2.2)

1

10
(1 − 4Ω) ln

(
1

H0

)
− 0.1895 − 0.3817Ω = 0. (2.3)

The force balance normal to the plane is

FN = 2H0

∫ 2π

0

∫ √
1/2H0

0

PR dR dφ =
4π

3
cos θ (2.4)

where FN has been non-dimensionalized by �ρga3. The pressure distribution in
the gap is given by the lubrication pressure Plub, truncated at the vapour pressure:
P (R, φ) = max{Plub(R, φ), −Pb}, where

Plub(R, φ) =
6
√

2(1 + Ω)U
5H3/2

0

R

(1 + R2)2
cosφ. (2.5)

The equations of motion can be solved using a Newton–Rhapson scheme to find
U, Ω and H0, as well as an estimate for the vapour bubble size, for a given value of
the vapour pressure Pb.

3. Experimental setup
The experiments were carried out using a glass cylinder of length 195 mm and

inner radius 60.00 ± 0.02 mm, which was precision bored to a surface roughness of
20 ± 4 × 10−6 defined as the ratio of maximum peak–valley depth to cylinder diameter
and measured using a surface roughness comparator. A schematic diagram of the
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Figure 1. Overview of the experimental apparatus. (a) Front view showing the sphere inside
the cylinder. (b) Sphere rotating close to the cylinder wall in the fixed-point regime.

apparatus is given in figure 1(a). The end caps of the cylinder contained centred
ball races which were used to mount the cylinder horizontally and this was checked
with a precision level. The cylinder was rotated at constant angular velocity using a
DC feedback controlled motor connected via a gear box and toothed-belt drive. Its
rotational frequency was monitored using an optical shaft encoder and was found
to be constant to within ±0.001 Hz. Sphere rotation rates were estimated using a
stopwatch to measure the passage time of lightly applied pen marks on the sphere to
pass a known position averaged over 50 orbits.

The two fluids used in this study were silicone oil and glycerine, held at a constant
temperature to an accuracy of ±0.1 ◦C. The kinematic viscosities were found by inter-
polating viscosity–temperature calibration charts provided by the fluid manufacturers
and the values used in the experiments described here were 813 and 1192 mm2 s−1

for glycerine (corresponding to temperatures of 23.6 and 19.5 ◦C respectively) and
1089 mm2 s−1 for silicone oil (only one temperature was used for silicone oil, 21.7 ◦C).
Prokunin (2004) showed that air dissolved in the system can form a bubble in
the lubrication layer between the sphere and boundary. Degassing the fluids before
carrying out the experiments reduced any dissolved air that may have otherwise
interfered with the sphere motion. The effects caused by gassy fluids will be discussed
in § 4.

The steel spheres used in the experiments had densities of 7800 ± 5 kg m−3 and
diameters of 6.0, 15.8 and 25.0 mm. Tolerances on the diameter of the spheres were
2.5 µm and the inherent roughness of the smooth spheres was ε = 5.0 ± 0.2 × 10−6.
In addition to these, a 15.8 mm sphere and three 25 mm spheres were artificially
roughened. This was done by uniformly grinding the spheres in a rotating drum with
grits of well-defined sizes over a period of 3 days. The 25 mm artificially roughened
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Figure 2. Relationship between the cylinder surface speed and sphere rotational speed for the
6 mm sphere. The solid curve represents the theoretical predictions of Ashmore et al. (2005).
Discrepancies between the experimental data and theoretical predictions are of order the size
of the experimental uncertainty when this small sphere is used, suggesting that curvature effects
or the outer flow field are the cause of the discrepancy between prediction and experiment in
figure 3.

spheres had measured roughnesses of ε = 84 ± 4 × 10−6, 164 ± 4 × 10−6 and 440 ± 20 ×
10−6 and the 15.8 mm sphere was roughened to ε = 481 ± 19 × 10−6. Surface roughness
was measured using an optical interferometric profilometry device where a light beam
was reflected off the sphere and its surface topography was recorded by measuring
the scattered light.

For slow cylinder rotation rates the spheres rotated at fixed points up the cylinder
wall, separated from the boundary by a thin lubrication layer as shown schematically
in figure 1(b) and described in detail by Mullin et al. (2005). All experiments were
carried out in the single-sphere fixed-point regime. Increasing the cylinder surface
speed increased the angle up the wall at which the sphere was stationary until, at 90 ◦,
the motion of the sphere became unstable and it began to oscillate.

The model of Ashmore et al. (2005) describes the translation and rotation of a
sphere down an inclined plane, with boundary conditions that all motion tends to zero
in the outer flow field. In our experiments the inclined plane is replaced with a cylinder
of finite curvature so the outer flow field is limited by the cylinder diameter and effects
due to curvature can exist. Moreover, after one complete rotation of the cylinder the
sphere travels in the wake created from its previous passing of that point on the
cylinder wall. We found quite a large discrepancy between theoretical prediction and
experimental measurement for the 25 mm diameter spheres but also found that this
discrepancy reduced with reducing sphere size. A graph of sphere rotational speed as
a function of cylinder surface speed for the 6 mm sphere in silicone oil is plotted in
figure 2, with excellent agreement between theoretical predictions and experimental
measurement. Hence, this suggests that a sizeable amount of the discrepancy is due
to either the finite curvature of the drum or the outer flow field.
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Figure 3. Relationship between the cylinder surface speed and sphere rotational speeds for
the 25 mm spheres with roughnesses of ε = 5 × 10−6 (circles), 84 × 10−6 (squares), 164 × 10−6

(diamonds) and 440 × 10−6 (stars). The motion can be described in terms of a particle–
boundary contact regime (A) and a hydrodynamic regime (B) with a smooth crossover (C)
between the two. The transition between region A and C is labelled 1 and that between B
and C is labelled 2 for the ε = 440 × 10−6 sphere. The solid curve represents the theoretical
predictions of Ashmore et al. (2005). The cylinder was completely filled with glycerine and held
at a constant temperature of 23.6 ± 0.1 ◦C, corresponding to a viscosity of 813 ± 7 mm2 s−1.
Inset is the ratio of sphere rotational speed to cylinder surface speed as a function of position
angle for the ε =5 × 10−6 (circles) and ε = 440 × 10−6 (squares) spheres.

4. Results and discussion
Plots of the rotational speed of the 25 mm diameter spheres versus that of the

cylinder are shown in figure 3 where each data point was recorded at a fixed point
of the sphere. The three roughened spheres possessed quite different behaviour from
the smooth sphere at low cylinder rotation rates. Rough spheres rotated at the same
speed as the boundary, as may be seen in region A of figure 3 where the gradient of
the slope is equal to 1, plotted as an inset to figure 3, indicating sphere–wall contact.
This suggests that continual impacts occurred between rough asperities on the sphere
and cylinder wall and the sphere was driven by frictional contact with the boundary.
However, a vapour cavity was observed over the entire rotational speed range, i.e.
even in the sphere–boundary contact regime.

At faster cylinder rotation rates the roughened spheres began to slip with respect to
the cylinder wall and departed from the sphere–boundary contact regime. A smooth
transition (region C) was found between the contact and the hydrodynamic regimes
where the latter is in accord with previous results for smooth spheres (region B).
Slippage between the rough spheres and boundary first occurred at angles of 11◦,
13◦ and 15 ± 2 ◦ for the ε = 84 × 10−6, 164 × 10−6 and 440 × 10−6 spheres respectively
and departure from the contact regime appeared sharp. The motion of the spheres
crossed over to the hydrodynamic limit gradually and joined it at angles of 18◦,
22◦ and 26 ± 2 ◦ for the three increasing roughnesses. The corresponding angles at
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Figure 4. Comparison of the vapour cavity size in-between the cylinder wall and the smooth
(circles) and the roughest (squares) 25 mm diameter steel spheres. Angle represents the sphere
position up the wall, defined in figure 1. Bubble area is the measured viewable area (projected
as a disk) of the cavitation bubble, normalized by the square of the sphere radius. The fluid
is glycerine at 23.6 ◦C. The solid curve represents the theoretical predictions of Ashmore et al.
(2005).

which the predicted gap width exceeds the maximum rough asperity sizes are 21◦,
31◦ and 55 ◦ respectively, but it is unclear whether the predicted gap should be
compared to the distance from the cylinder surface to the maximum asperity height,
the average asperity height or the sphere’s core diameter. Coefficients of friction can
be found for the three roughened spheres by taking the tangent of the angle at which
slip first occurs. They are 0.194 ± 0.036, 0.231 ± 0.037 and 0.270 ± 0.037 respectively
for the ε = 84 × 10−6, 164 × 10−6 and 440 × 10−6 spheres. The roughened spheres
continued to achieve a steady state according to the hydrodynamical theory until
the cylinder rotation rate was increased sufficiently for the spheres’ location angle to
exceed 90 ◦, whereupon they left the fixed point motion and began to oscillate. Hence,
the roughened spheres rotated in accord with the hydrodynamic behaviour of the
smooth sphere for a large range of position angles and cylinder surface speeds. Most
importantly, the behaviour of the spheres in all three regimes (contact, transition and
hydrodynamic) was found to be both continuous and reversible, i.e. no hysteretic
behaviour was found with increasing and decreasing cylinder surface speed. The size
of the bubble is defined as its measured area when viewed through the cylinder wall.
Estimates for the size of the vapour cavity for the roughest sphere are plotted as a
function of angular location of the fixed points in figure 4. It is interesting to note
that the bubble size is little affected by the roughness. The cavitation bubble was
always found in the same position and approximately the same size as for the case
of the smooth sphere. This suggests that there was a continuous flow of fluid around
the rough asperities capable of creating the pressure distribution required to cause
cavitation even in the contact regime.
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Figure 5. Relationship between the cylinder surface speed and sphere rotational speeds for
15.8 mm rough sphere in glycerine (squares) and silicone oil (circles).

The depth of the lubrication layer between the smooth sphere and cylinder wall is
estimated to be ∼0–50 µm using the model of Ashmore et al. (2005), with a pressure
variation of ±1 MPa. For roughened spheres in the crossover regime the lubrication
depth will be between that predicted for the hydrodynamic limit and particle–
boundary contact. The corresponding pressure variation will significantly increase
from ±1 MPa as contact is approached and pressure-dependent effects of viscosity
may become important. For such effects to be significant the pressure variation must
exceed 100 MPa (Kapitza 1965; Cook et al. 1994). To test whether the sphere motion
was affected by this the experiment was repeated in both glycerine (T = 20.4 ± 0.1 ◦C)
and silicone oil (T = 21.8 ± 0.1 ◦C). At these temperatures the two fluids have similar
viscosities at atmospheric pressure (ν = 1095 ± 10 mm2 s−1 for glycerine and ν =1086 ±
3 mm2 s−1 for silicone oil) but at higher pressures a 50 % increase in the viscosity of
silicon oil is achieved at a pressure of 100 MPa compared with 600 MPa for glycerine.
Plots of the rotation speed of the 15.8 mm diameter sphere against that of the cylinder
for both fluids is shown in figure 5. Both sets of data overlay each other showing that
any effects from the pressure dependence of viscosity are negligible.

An investigation of the effects of dissolved air in the system was carried out by
repeating the experiment with the smooth 25 mm sphere without degassing the fluid.
The reduced pressure required to form a bubble from dissolved gases in the fluid is
considerably less than for a vapour cavity and hence the observed bubble is expected
to be larger. Images are shown in figure 6 of the cavitation bubble for both a
degassed and a gassy system. The gas bubble was saturated with air and had an area
approximately 8 times larger than the cavitation bubble in the degassed system. The
streamwise diameter and, hence, the visible area of an air bubble can be predicted by
finding the radii at which the pressure distribution given by the model of Ashmore
et al. (2005) and the saturation pressure for air in glycerine (∼5 kPa) cross. Using this
method, the theoretical relative size of the air bubble to the vapour bubble is found
to be 8.03, in good agreement with the measured value. When reducing the cylinder
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vapour cavities

(a) (b)

Figure 6. Images of the cavitation bubble for a degassed experiment (a) and an experiment
where the fluid had not been degassed (b). The sphere is a 25 mm roughened steel sphere
and the rotation directions of sphere and cylinder surface are bottom to top. The fluid is
glycerine at 23.6 ◦C. These images were recorded through the cylinder wall adjacent to the
sphere, perpendicular to the point of closest approach.

rotation rate to zero and allowing the sphere to come to rest, the cavitation bubble
collapsed and the dissolved air was released and floated to the top of the cylinder, as
reported by Prokunin (2004). No difference was detected in the relationship between
cylinder surface speed and sphere rotational speed in either system. Hence the bubble
has little effect on the tangential force and its primary role is in facilitating a net
normal force. The weak effect of the different bubble size on the tangential force and
torque is consistent with their known logarithmic dependence on the sphere–boundary
separation (Goldman et al. 1967).

5. Conclusions
We have observed the effects of surface roughness on spheres moving near to a

boundary in a Stokes flow in a rotating cylinder. Smooth spheres move in the hydro-
dynamical regime described by Ashmore et al. (2005).

At low cylinder rotation rates the roughened spheres rotate at the same rate as the
cylinder, indicating particle–boundary contact. As the cylinder rotation rate is
increased the spheres slip with respect to the cylinder wall and there is a continuous
crossover from the particle–boundary contact regime and the hydrodynamic limit.

The hydrodynamic regime, in which roughness effects are negligible, is understood.
The symmetry of the problem is broken by the truncation of the pressure distribution
at the vapour pressure in the lubricating layer. Here we have shown that the vapour
cavity in the system is robust to roughness level and system impurities, such as
dissolved air. The size of the cavitation bubble does not appear to have a significant
effect on the motion of the sphere.

The model of Smart et al. (1993) cannot be used to explain the results presented
here for heavy spheres. Their model predicts that the particle–boundary contact
regime reaches the hydrodynamical limit (transition 2 in our nomenclature) at a
sphere position angle of 90 ◦, whereas this is found to occur at much less than
90 ◦ experimentally (∼26 ◦ for the roughest 25 mm sphere). The effect that surface
roughness has on the flow dynamics is a complicated issue and the possibility of
including cavitation in the model of Smart et al. (1993) is left open.
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