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ON LOCAL WEAK LIMIT AND SUBGRAPH COUNTS FOR SPARSE
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Abstract

We use an inequality of Sidorenko to show a general relation between local and global
subgraph counts and degree moments for locally weakly convergent sequences of sparse
random graphs. This yields an optimal criterion to check when the asymptotic behaviour
of graph statistics, such as the clustering coefficient and assortativity, is determined by
the local weak limit.

As an application we obtain new facts for several common models of sparse random
intersection graphs where the local weak limit, as we see here, is a simple random clique
tree corresponding to a certain two-type Galton–Watson branching process.
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1. Introduction

A rooted graph is a pair (H, v) where H is a graph and v ∈ V(H) is a distinguished ver-
tex called the root. We often use only the symbol H to denote (H, v); in this case we write
root(H) = v. For a graph G and its vertex v, let Br be the function that maps (G, v) to the the
rooted graph (H, v), where H is the subgraph induced on the vertices of G with distance from
v at most r. We simplify Br(G, v) = Br((G, v)) for Br and other functions on rooted graphs.

A graph is locally finite if the degree of each of its vertices is finite. Let ∼= denote the
isomorphism relation between connected rooted graphs which preserves the root. Let (G∗,
dloc) be the space of rooted connected locally finite graphs with equivalence relation ∼= and
distance

dloc(G1, G2) = 2− sup{r : Br(G1)∼=Br(G2)}.

Consider a sequence of finite graphs {Gn, n = 1, 2, . . .}. In this paper we assume |V(Gn)| ≥ 1
for n ≥ 1. Let v∗

n be a uniformly random vertex from V(Gn). The component of Gn contain-
ing v∗

n together with root v∗
n induces a Borel measure μn on (G∗, dloc) for each n. Let μ∗ be

another Borel measure on (G∗, dloc), and let G∗ denote a random element with law μ∗. (Without
loss of generality we assume that all random objects we define in the paper are random ele-
ments in a single probability space (�,F , P) with the specified laws; the integration E is
over �.) Following Benjamini and Schramm [5], Aldous, Lyons, and Steele, and other authors
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[2, 36, 37], we say that G∗ is the local weak limit of {(Gn, v∗
n)} and write (Gn, v∗

n)
d−→ G∗ if

and only if the measures μn converge weakly to μ∗: for each continuous bounded function
f : (G∗, dloc) →R,

Ef (Gn, v∗
n) →Ef (G∗). (1.1)

Here and below all limits are as n → ∞, unless stated otherwise. Since (G∗, dloc) is separable

and complete [1], a standard argument (e.g. Theorem 2.3 of [8]) shows that (Gn, v∗
n)

d−→ G∗ if
and only if, for each non-negative integer r and each rooted connected graph H,

P(Br(Gn, v∗
n) ∼= H) → P(Br(G∗) ∼= H).

We focus on models of random graphs with bounded average degree. Among others, the inho-
mogeneous random graph model of Bollobás, Janson, and Riordan [22] and the preferential
attachment model (see Berger, Borgs, Chayes, and Saberi [7]) have been shown to have a weak
limit (in an explicit form). Recently such a limit was also shown to exist for random planar
graphs [46]. The local weak limit, if it exists, yields a lot of information about the asymptotics
of various graph parameters; see e.g. [6], [19], [22], [23], [36], and [44].

The present contribution consists of a general result, Theorem 2.1, relating the asymp-
totics of subgraph counts with the local weak limit, and its application in the area of random
intersection graphs.

The structure of the paper is as follows. In Section 2 we present and prove Theorem 2.1.
In a separate result, Theorem 3.1 of Section 3, we determine the (very simple) local weak
limit of several popular random intersection graph models. Combining this with Theorem 2.1
and using the fact that many important graph parameters can be expressed in terms of small
subgraph counts, we obtain a number of previous and some new results for this type of models;
see Section 4. The same method works for any sparse random graph model where we have
weak local convergence (see e.g. Section 4.2).

The first manuscript of this paper was completed and posted to arXiv in 2015 [40]. Since
then there has appeared some work in a similar general direction, including, for example, [47],
unaware of the very general Theorem 2.1. A recent book in preparation [33] also devotes a
chapter to weak limits as a general technique to study real world networks. The present version
of the paper fixes several minor errors and omissions and has an updated literature list.

2. Local weak limit and subgraph counts

In Section 7 of [19], Bollobás, Janson, and Riordan remark that the local weak limit does not
always determine the global subgraph count asymptotics; see also Example 2.1 below. They
propose an extra condition of ‘exponentially bounded tree counts’. Our main result is that a
simple condition on the degree moment is sufficient and, in general, necessary.

A homomorphism from a graph H to a graph G is a mapping from V(H) to V(G) that
maps adjacent vertices in H to adjacent vertices in G. Let emb(H, G) denote the number of
embeddings (injective homomorphisms) from H to G. For a rooted graph H′ let emb′(H′, G, v)
denote the number of embeddings from H′ to G that map root(H′) to v. Let R(H) denote the
set of all |V(H)| possible rooted graphs obtained from a graph H. Finally, let dG(v) denote the
degree of vertex v in G.
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Local weak limit and subgraph counts 757

Theorem 2.1. Let h ≥ 2 be an integer, let {Gn, n = 1, 2, . . .} be a sequence of graphs, such that
n1 = n1(n) = |V(Gn)| → ∞ and n1 ≥ 1, let v∗

n be chosen uniformly at random from V(Gn), and

suppose (Gn, v∗
n)

d−→ G∗. Write dn = dGn (v∗
n), d∗ = dG∗ (r∗), where r∗ = root(G∗), and assume

E(d∗)h−1 < ∞. Then the following statements are equivalent:

(i) Edh−1
n →E(d∗)h−1,

(ii) dh−1
n is uniformly integrable,

(iii) for any connected graph H on h vertices and any H′ ∈R(H),

n−1
1 emb(H, Gn) →E emb′(H′, G∗, r∗).

The above theorem provides a sufficient condition for the continuous but not necessarily
bounded function fH : (G∗, dloc) →R defined by fH(G, v) = emb′(H, G, v) to satisfy (1.1). It is
easy to construct weakly convergent sequences for which (i)–(iii) fail to hold.

Example 2.1. Let (Gn, v∗
n) be as in Theorem 2.1 and assume |V(Gn)| = n. Let (G′

n, v∗
n) be

obtained by merging edges of a clique on a subset Sn of Gn. If |Sn| = �(n1/h) and |Sn| = o(n)

then (G′
n, v∗

n)
d−→ G∗, but (i)–(iii) do not hold for G′

n.

The proof of our theorem follows from the next basic but not widely known result of
Sidorenko [45].

Theorem 2.2. (Sidorenko, 1994.) Let H be a connected graph on h vertices. Then, for any
graph G,

hom(H, G) ≤ hom(K1,h−1, G) =
∑

v∈V(G)

dG(v)h−1.

Here hom(H, G) is the number of homomorphisms from H to G, and K1,s is the complete
bipartite graph with part sizes 1 and s. A special case where H is a path has been rediscovered
in [27]; see also [24].

Below, in Section 4, we restate Theorem 2.1 in a random setting and demonstrate how it
implies general results on network statistics expressible through subgraph counts such as the
clustering and assortativity coefficients.

Recall that a sequence of random variables {Xn, n = 1, 2, . . .} is uniformly integrable if
supa→∞ supn E|Xn|I|Xn|>a = 0, and equivalently if E|Xn|I|Xn|>ωn → 0 for any ωn → ∞. A
basic fact (see e.g. [9, pp. 31–32]) is as follows.

Lemma 2.1. Suppose random variables X∗, Xn, n = 1, 2, . . . are non-negative, integrable and
Xn converges to X∗ in distribution as n → ∞. Then {Xn} is uniformly integrable if and only if
EXn →EX∗.

Proof of Theorem 2.1. In the proof denote G = Gn and v∗ = v∗
n.

(i) ⇔ (ii) We see that dn converges in distribution to d∗ by (1.1). Thus dh−1
n converges in

distribution to (d∗)h−1 and the proof follows by Lemma 2.1.
(i) ⇒ (iii) Suppose (i) holds. Fix any connected graph H with |V(H)| = h. Let r be the

diameter of H. Write bj(G, v) = |Bj(G, v)| and b∗
j = |Bj(G∗)|. Note that P(b∗

j = ∞) = 0 for j =
0, 1, . . . since G∗ is locally finite. For a rooted graph H′ denote

X(H′) = emb′(H′, G, v∗) and X∗(H′) = emb′(H′, G∗, r∗).
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Using Sidorenko’s theorem, Theorem 2.2, for any H′ ∈R(H),

EX(H′) = n−1
1 emb(H, G) ≤ n−1

1 hom(H, G)

≤ n−1
1 hom(K1,h−1, G) =Edh−1

n →E(d∗)h−1 < ∞. (2.1)

Next, we have X(H′) → X∗(H) in distribution for each H′ ∈R(H) (apply (1.1) to the contin-
uous and bounded function f (G, v) = Iemb′(G,H′,v)=k). Therefore, by Fatou’s lemma and (2.1),

EX∗(H′) ≤ lim inf EX(H′) < ∞.

Let ε ∈ (0, 1). Since E(d∗)h−1 and EX∗(H′) are finite, we can find a t > 0 such that

E(d∗)h−1
Id∗>t ≤E(d∗)h−1

Ib∗
r+1>t < ε and

EX∗(H′)Ib∗
r+1>t < ε for each H′ ∈R(H).

Pick s ≥ t large enough that P(b∗
r+1 > s) ≤ 0.5εt−(h+r−1). By Lemma 2.1 and (1.1), for each

H′ ∈R(H),

Edh−1
n Idn≤t →E(d∗)h−1

Id∗≤t, (2.2)

EX(H′)Ibr+1(G,v∗)≤s →EX∗(H′)Ib∗
r+1≤s ≥EX∗(H′) − ε, (2.3)

EX(H′)Ibr+1(G,v∗)∈(t,s] →EX∗(H′)Ib∗
r+1∈(t,s] ≤ ε, (2.4)

P(br+1(G, v∗) > s) → P(b∗
r+1 > s) ≤ 0.5εt−(h+r−1). (2.5)

Define subsets of V(G):

R1 := {v : dG(v) > t}, R2 := {v : br+1(G, v) > s}.
We call an embedding σ of H into G bad if its image shares a vertex with R1 ∪ R2. Denote the
set of all bad embeddings by Xbad. Note that for H′ ∈R(H)

0 ≤ emb(H, G) − n1EX(H′)Ibr+1(G,v∗)≤s ≤ |Xbad|. (2.6)

Let X1 be the set of all embeddings σ whose image intersects both R1 and V \ (R1 ∪ R2).
Let X2 =Xbad \X1. By Theorem 2.2, the number of bad embeddings which have the image
entirely contained in R1 is

emb(H, G[R1]) ≤ hom(H, G[R1])

≤
∑
v∈R1

dG(v)h−1

= n1
(
Edh−1

n −Edh−1
n Idn≤t

)
≤ n1Edh−1

n − n1E(d∗)h−1 + εn1 + o(n1)

≤ εn1 + o(n1). (2.7)

Here the last two inequalities follow by (i) and (2.2). Let v ∈ V \ (R1 ∪ R2) be a vertex in
the image of an embedding in X1. By the definition of R1 and R2, br+1(G, v) ∈ (t, s]. So
using (2.4),

|X1| ≤ n1

∑
H′∈R(H)

EX(H′)Ibr+1(G,v∗)∈(t,s] ≤ hεn1 + o(n1).
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Now consider a subgraph Hσ of G, Hσ
∼= H corresponding to an embedding σ ∈X2. Hσ cannot

have an edge in E1 = {xy ∈ G : x ∈ R1, y ∈ V(G) \ (R1 ∪ R2)}, otherwise σ would be an element
of X1 =Xbad \X2. So V(Hσ ) is contained in R1 ∪ Q, where

Q =
⋃

v∈R2

V(Br(G − E1, v)) \ R1.

Note that since each vertex in Q has degree at most t, |Q| ≤ 2|R2|tr. By Theorem 2.2,

|X2| ≤
∑
v∈R1

dG(v)h−1 +
∑
v∈Q

dG(v)h−1. (2.8)

For the second term we have by (2.5)

∑
v∈Q

dG(v)h−1 ≤ |Q|th−1 ≤ 2|R2|trth−1 ≤ εn1 + o(n1). (2.9)

Combining (2.7), (2.8), and (2.9), we obtain |X2| ≤ 2εn1 + o(n1). We have proved

|Xbad| = |X1| + |X2| ≤ (h + 2)εn1 + o(n1).

Since the proof holds for arbitrarily small ε, we see that n−1
1 |Xbad| → 0. Thus (iii) follows

using (2.3) and (2.6).
(iii) ⇒ (i) Write (x)p = x(x − 1) · · · (x − p + 1). Then (iii) applied to H = K1,h−1 yields

E(dn)h−1 →E(d∗)h−1, while (G, v∗)
d−→ G∗ shows that (dn)h−1 → (d∗)h−1 in distribution.

Thus (dn)h−1 is uniformly integrable by Lemma 2.1. This implies that for any j = 1, 2, . . . ,

h − 1(dn)j ≤ (dn)h−1 is uniformly integrable, so by Lemma 2.1 again E(dn)j →E(d∗)j. Using
S(h − 1, j) to denote Stirling numbers of the second kind,

E(dn)h−1 =
h−1∑
j=1

S(h − 1, j)E(dn)j →
h−1∑
j=1

S(h − 1, j)E(d∗)j =E(d∗)h−1. �

The next fact is simple and known (see Lemma 9.3 of [22]), but we include a proof for
completeness.

Lemma 2.2. Suppose (Gn, v∗
n)

d−→ G∗ and the degree dn of a uniformly random vertex v∗
n from

V(Gn) is uniformly integrable. Write n1 = n1(n) = |V(Gn)|. Let G′
n be obtained from Gn by

adding or removing edges incident to a set Sn ⊆ V(Gn) of size o(n1). Then (G′
n, v∗

n)
d−→ G∗.

Proof of Example 2.1. It is straightforward that the uniform integrability condition (ii) fails
for G′

n, so the other two conditions also fail by Theorem 2.1. The fact that Gn and G′
n have the

same local weak limit G∗ follows from Lemma 2.2. �

Proof of Lemma 2.2. Let Nn denote the set of vertices in V(Gn) \ Sn which have a neighbour
in Sn.

Claim 2.3. For any ε ∈ (0, 1) there are δ > 0, n0 > 0 such that if n ≥ n0 and 0 < |Sn| < δn1
then |Nn| ≤ εn1.
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Proof. Let δ and n0 be such that δ < ε, EdnIdn>0.5εδ−1 < 0.5ε for all n ≥ n0. Assume that
|Nn| > εn1 for some n ≥ n0. Write d(v) = dGn (v). We have

n1EdnIdn>0.5εδ−1 ≥
∑
v∈Sn

d(v)Id(v)>0.5εδ−1

≥
∑
v∈Sn

(
d(v) − 0.5εδ−1)

Id(v)>0.5εδ−1

≥ |Sn|
(

|Sn|−1
∑
v∈Sn

d(v) − 0.5εδ−1

)

≥ εn1 − 0.5εn1

≥ 0.5εn1,

which is a contradiction. Here we used Jensen’s inequality and the assumption
∑

v∈S d(v) ≥
|Nn| > εn1. �

Now fix any positive integer r. As is done in [22], we apply the above claim r times to get

that the set N(r)
n of vertices at distance at most r from Sn in Gn has size o(n1). Now (G′

n, v∗
n)

d−→
G∗ follows since

P(Br(Gn, v∗
n) ∼= Br(G′

n, v∗
n)) ≥ P

(
v∗

n �∈ N(r)
n

)= 1 − o(1). �

3. Uncorrelated random clique trees

Random intersection graphs were introduced in [38] and received some attention as a poten-
tial model for large empirical networks with clustering; see e.g. the survey papers [16] and [17].
We show that in the regime that yields sparse graphs with a positive clustering coefficient in
such models the weak limit is very specific, namely it is an uncorrelated random clique tree,
defined formally below.

Let H = (V1, V2, E) be a bipartite graph. The intersection graph G = G(H) of H is the graph
on the vertex set V(G) = V1 with edges

E(G) = {
uv : ∃w ∈ V2 such that uw, wv ∈ H

}
,

where e ∈ H is shorthand for e ∈ E(H). An intersection graph of a random bipartite graph H
is called a random intersection graph. It will be convenient to assume that Vi consists of the
first ni elements of a countable set V i, where V1 ∩ V2 = ∅. The set V2 is often called the set of
attributes. (The names V and W are often used in the literature for V1 and V2.) We will call
the elements of V i vertices of type i. For v ∈ Vi we denote Sv = �H(v), Xv = |Sv|, where �H(x)
is the set of neighbours of v in the graph H. Sometimes we will want to stress the type of v
in the notation. Since Vi = {

v(i)
1 , v(i)

2 , . . .
}

consists of the first ni vertices of Vi, for v = v(i)
j we

will set X(i)
v := Xv and S(i)

v := Sv. We will let X ∼ Y denote the fact that X and Y have the same
distribution.

Many different variants of the random bipartite graph H have been studied; see e.g. the
survey papers [16] and [17].

• The active random intersection graph: each v ∈ V1 independently chooses X(1)
v from a

distribution P on {0, . . . , n2}, then draws a uniformly random subset S1
v of size X(1)

v of
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its neighbours from V2 (independently of other vertices). A special case is the binomial
random intersection graph.

• The passive random intersection graph: each v ∈ V2 independently chooses X(2)
v from a

distribution P on {0, . . . , n1}, then draws a uniformly random subset S2
v of size X(2)

v of
its neighbours from V1 (independently of other vertices).

• The inhomogeneous random intersection graph Ginhomog(n1, n2, ξ (1), ξ (2)): the vertices
v ∈ Vi are independently assigned random non-negative weights ξ

(i)
v ∼ ξ (i). Given the

weights, edges vw appear in H independently with probability

min

(
ξ

(1)
v ξ

(2)
w√

n1n2
, 1

)
.

• We will also consider random intersection graphs Gconf(d1, d2) based on the configu-
ration model: see [32], [34], and [48]. Let d1 = {d1,u, u ∈ V1} and d2 = {d2,v, v ∈ V2}
be sequences of non-negative integers indexed by V1 and V2 respectively such that∑

u d1,u =∑
v d2,v. The random bipartite multigraph Hconf(d1, d2) with parts (V1, V2)

of sizes n1 and n2 is obtained as follows. Distribute the total number of 2
∑

d1,u half-
edges among the vertices of V1 ∪ V2 so that the jth vertex of part i, v = v(i)

j , receives di,v

half-edges. Pick a uniformly random perfect matching between the half-edges of parts
V1 and V2. In the bipartite graph, add an edge between u and v whenever a half-edge
from u is matched with a half-edge from v (we allow multi-edges).

Usually (see e.g. [12]) the above models yield random graphs with a linear number of edges
and a clustering coefficient bounded away from zero only if n2/n1 = 	(1). Therefore we will
assume n2/n1 = 	(1) in this paper.

Let μ be the distribution of a random variable Z on [0, ∞) with 0 <EZ < ∞. We let Z∗
denote a random variable with the size-biased distribution

μ∗(A) = (EZ)−1
∫

A
t dμ(t)

for any Borel set A. If Z is integer-valued, then P(Z∗ = k) = (EZ)−1kP(Z = k). (We follow the
star notation of other authors; see e.g. [4] and [36]. We also use symbols such as G∗, d∗, v∗ to
denote objects unrelated to size-biased random variables; the actual meaning should be clear
from the context.)

Given two random variables D1, D2 on {0, 1, 2, . . .} with ED1,ED2 ∈ (0, ∞), define a
multi-type Galton–Watson process T = T (D1, D2) as follows. S(0) consists of a single root
node r = root(T ). The root r has a set S(1) of offspring, where |S(1)| ∼ D1. For each k ≥ 1,
S(k + 1) consists of the offspring of the nodes in S(k). Given |S(k)|, the number of offspring
of each node in S(k) is independent and distributed as D∗

i(k) − 1. Here i(k) = 2 if k is odd and
i(k) = 1 otherwise. We call S(k), the set of vertices at distance k from the root, the generation
k of T . A corresponding random tree, also denoted by T , is a graph on the vertex set ∪kS(k)
with edges {uv : v is an offspring of u} and root r. Consider T as a bipartite graph with parts
(V1, V2), where V1 and V2 consists of all nodes in generations 0, 2, . . . and 1, 3, . . . respec-
tively. We define the uncorrelated random clique tree GT to be the intersection graph of T
rooted at r.
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For a finite (random) sequence A, we write X ∈u A to denote the fact that X is chosen uni-
formly at random from all the elements of A (given A). For random variables Z, Z1, Z2, . . . ,

we let Zn
d−→ Z denote the fact that Zn converges in distribution to Z.

Let H be a rooted connected graph. For a (multi-)graph G of size n1 ≥ 1, write pr(G, H) =
n−1

1 |{v ∈ V(G) : Br(G, v) ∼= H}|. Let {Gn, n = 1, 2, . . .} be a sequence of finite random graphs
with |V(Gn)| ≥ 1, let v∗

n ∈u V(Gn), and let G∗ be a random graph on (G∗, dloc). (For multigraphs
we define G1 ∼= G2 if and only if there are bijections φ1 : V(G1) → V(G2) and φ2 : E(G1) →
E(G2) such that φ1 maps the endpoints of e to the endpoints of φ2(e) for each edge e ∈ G1, and

φ1(root(G1)) = root(G2).) We write L((Gn, v∗
n) | Gn)

p−→ L(G∗) as n → ∞ if, for each non-
negative integer r and each rooted connected graph H,

pr(Gn, H)
p−→ P(Br(G∗) ∼= H). (3.1)

As observed in the recent literature [46], this is equivalent to the convergence of the conditional
random measures L((Gn, v∗

n) | Gn) to the fixed measure L(G∗) in probability, also known as
quenched convergence. That is, consider the space of Borel measures on (G∗, dloc) with the

Lévy–Prokhorov metric π . Then π (L((Gn, v∗
n) | Gn),L(G∗))

p−→ 0 if and only if (3.1) holds for
each r and each H as above. This can be seen using an argument similar to (iv) on page 72
of Billingsley [9]. While this equivalence reduces many questions related to local weak limits
to the classical theory for separable metric spaces, in this paper it is only used to justify our
notation.

Theorem 3.1. Let {Gn} be a sequence of random intersection graphs where the underlying
bipartite graphs are Hn = (V1, V2, F) with V1 = V1(n), V2 = V2(n) and F = F(n). For i = 1, 2
write v∗

i = v∗
i (n), where v∗

i (n) ∈u Vi, ni = ni(n) = |Vi| and X(i) = X(i)(n) = Xv∗
i
.

Suppose {n1}, {n2} are sequences of positive integers, such that n1, n2 → ∞, n2/n1 → β ∈
(0, ∞) and

(i) either Gn, n = 1, 2, . . . is an active random intersection graph and there is a random
variable D1 with ED1 ∈ (0, ∞) such that EX(1) →ED1 and

X(1) d−→ D1; (3.2)

(ii) or Gn, n = 1, 2, . . . is a passive random intersection graph and there is a random
variable D2 with ED2 ∈ (0, ∞) such that EX(2) →ED2 and

X(2) d−→ D2; (3.3)

(iii) or Gn = Ginhomog(n1, n2, ξ (1), ξ (2)), n = 1, 2, . . . , such that for i = 1, 2 0 <Eξ (i) < ∞
and ξ (i) does not depend on n;

(iv) or Gn = Gconf(d1, d2), n = 1, 2, . . . , where d1 = d1(n), d2 = d2(n) are non-random and

for i = 1, 2 we have Ed1,v∗
i
→EDi and d1,v∗

i

d−→ Di.

Then both (3.2) and (3.3) hold and L((Gn, v∗
1) | Gn)

p−→ L(GT ) with T = T (D1, D2) where
any Di that is not defined here is defined in Remark 3.1.

The proof is available in the arXiv version of this paper [40, Appendix A]. (In case
(iv) a previous version (v2) of [40] stated an analogous result for random sequences d1, d2.
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We simplified the condition to match, for example, [3] and [34]. The previous result follows
by a simple technical argument.)

Recall that given a non-negative random variable X, a mixed Poisson random variable with
parameter X attains value k with probability E e−XXk(k!)−1 for k = 0, 1, . . . . We denote this
distribution by Po (X).

Remark 3.1. (See also [11] and [12].) In case (i) we have D2 ∼ Po (β−1
ED1), in

case (ii) we have D1 ∼ Po (βED2), and in case (iii) we have D1 ∼ Po
(
β1/2ξ (1)

Eξ (2)
)
,

D2 ∼ Po
(
β−1/2ξ (2)

Eξ (1)
)
. Thus in (i)–(iv) βED2 =ED1.

Remark 3.2. For arbitrary random variables D′
1, D′

2 on {0, 1, 2, . . .} with positive means,
there is a sequence of random configuration intersection graphs as in (iv) for which D1 = D′

1,
D2 = D′

2.

Thus in active, passive, and inhomogeneous models, either D1, or D2, or both, has a (mixed)
Poisson distribution. The configuration model generalises these models in terms of local weak
limits. For example, both D1 and D2 can be power-law.

The fact that T (D1, D2) is a limit for many sparse bipartite graph sequences is intuitive
and in some physics literature has been assumed implicitly [39, 41]. A result similar to
Theorem 3.1(iv) can be found in [23] and [43]. A nice proof for almost sure convergence
in random configuration graphs (which could possibly be extended to bipartite graphs) can
be found in [25]. For completeness, we provide our own formal proof in the Appendix of
the arXiv version [40]. We do not use the second moment condition and work under slightly
weaker assumptions (convergence in probability). We are not aware of prior literature on weak
limits in cases (i)–(iii).

4. Applications

The proofs of the results in this section are given in Section 4.4. Let {Gn} be a sequence of
finite random graphs, and let G∗ be a random element on (G∗, dloc). Assume |V(Gn)| ≥ 1 for
all n and let v∗

n be chosen uniformly at random from V(Gn) (given Gn).

4.1. Subgraph counts in random graphs

To apply Theorem 2.1 in a random setting we need some easy technical facts. Due to the
equivalence mentioned after (3.1), the Lévy–Prokhorov metric and Skorokhod’s representation
theorem could be used to show these or stronger properties (see e.g. [23], [46]), but we derive
them from more basic arguments.

Lemma 4.1. Suppose L((Gn, v∗
n) | Gn)

p−→ L(G∗) and {(Gn, v∗
n)} are defined on the same

probability space. Then there is a random set A of positive integers such that

(a) P(n ∈ A) → 1 as n → ∞ and

(b) almost surely |A| = ∞ and (Gn, v∗
n)

d−→ G∗ as n → ∞, n ∈ A.

Lemma 4.2. L((Gn, v∗
n) | Gn)

p−→ L(G∗) if and only if, for each bounded continuous function

f : (G∗, dloc) →R, we have E(f (Gn, v∗
n) | Gn)

p−→Ef (G∗).
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We now restate Theorem 2.1 for sequences of random graphs.

Lemma 4.3. Let h ≥ 2 be an integer, suppose L((Gn, v∗
n) | Gn)

p−→ L(G∗) and assume
inf |V(Gn)| → ∞. As before, denote d∗ = dG∗ (r∗), r∗ = root(G∗), n1 = n1(n) = |V(Gn)| and
assume E(d∗)h−1 < ∞. Let dn denote the degree of a uniformly random vertex in Gn. Then
the following statements are equivalent:

(i) Edh−1
n →E(d∗)h−1,

(ii) dh−1
n is uniformly integrable,

(iii) for any connected graph H on h vertices and any H′ ∈R(H),

n−1
1 E emb(H, Gn) →E emb′(H′, G∗, r∗).

Each of the above statements implies that for any connected graph H on h vertices and any
H′ ∈R(H),

n−1
1 emb(H, Gn)

p−→E emb′(H′, G∗, r∗). (4.1)

4.2. General weakly convergent sequences

In this section we assume that L((Gn, v∗
n) | Gn)

p−→ L(G∗), n1 = n1(n) = |V(Gn)| ≥ 3 is non-
random and n1 → ∞. As before, dn is the degree of v∗ = v∗

n in Gn and d∗ is the degree
of the root r∗ of G∗. Lemma 4.3 yields convergence of n1

−1emb(H, Gn) provided that the
(|V(H)| − 1)th degree moment of Gn converges. This allows us to determine the limit behaviour
of statistics based on subgraph counts.

The clustering coefficient of a graph G is defined as

α(G) := emb(K3, G)

emb(P3, G)
,

where K3 is the clique on three vertices and Pt is the path on t vertices. (Set α(G) := 0 when
the denominator is zero.) For a rooted graph H′ let hom′(H′, G, v) denote the number of homo-
morphisms from H′ to G that map root(H′) to v. For t ≥ 2, let K′

t be Kt rooted at any vertex and
let K′

1,t be the bipartite graph K1,t rooted at the vertex of degree t.

Corollary 4.1. Suppose L((Gn, v∗
n) | Gn)

p−→ L(G∗) and Ed2
n →E(d∗)2 ∈ (0, ∞). Then

α(Gn)
p−→ α∗ := E emb′(K′

3, G∗, r∗)

E emb′(K′
1,2, G∗, r∗)

= E emb′(K′
3, G∗, r∗)

E(d∗)2
.

The assortativity coefficient (see e.g. [18], [35]) for a graph G is defined as Pearson’s
correlation of the degrees over the neighbouring vertices,

r(G) := g(G) − b(G)2

b′(G) − b(G)2
,

where

g(G) := (2e(G))−1
∑

dG(u)dG(v), b(G) := (2e(G))−1
∑

dG(u),

b′(G) := (2e(G))−1
∑

dG(u)2, e(G) := |E(G)|,
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and the sums are over all 2e(G) ordered pairs (u, v) of adjacent vertices in G. We define
r(G) := 0 when either e(G) or b′(G) − b(G)2 is zero (i.e. G is regular). The above quanti-
ties can be easily expressed in terms of subgraph count statistics; see e.g. [22] and Section 4.4.
Let P′

4 denote the graph P4 rooted at one of its internal vertices.

Corollary 4.2. Suppose L((Gn, v∗
n) | Gn)

p−→ L(G∗), Ed3
n →E(d∗)3 < ∞ and Var(d∗) > 0.

Then

Er(Gn)
p−→ ρ∗ := Ed∗

E hom′(P′
4, G∗, r∗) − (E(d∗)2)2

Ed∗E(d∗)3 − (E(d∗)2)2
. (4.2)

Corollaries 4.1 and 4.2 easily follow from Lemma 4.3; see Section 4.4. Notice that since
α(G), r(G) ∈ [0, 1], convergence in probability in these corollaries implies convergence of
means.

Statistics that can be expressed in terms of integrals of bounded functions, such as the limit
degree distribution, are obtained directly from the local weak limit. Hence no degree moment
conditions are necessary. Let πk(G) be the fraction of vertices of degree k in G. By Lemma 4.2,

πk(Gn) =E
(
IdGn (v∗

n)=k | Gn
) p−→ P(d∗ = k). (4.3)

Given a graph G and an integer k ≥ 2, let (u∗
1, u∗

2, u∗
3) be a uniformly random triple of distinct

vertices from V(G). The conditional clustering coefficient is

αk(G) := P
(
u∗

1u∗
3 ∈ G | u∗

1u∗
2, u∗

2u∗
3 ∈ G, d(u∗

2) = k
)
,

and set αk(G) := 0 if the event in the condition has probability zero. Lemma 4.2 implies that
if P(d∗ = k) > 0 then

αk(Gn)
p−→ α∗

k = EId∗=k emb′(K′
3, G∗, r∗)

k(k − 1)P(d∗ = k)
. (4.4)

The conditional assortativity (see [18]) is defined as

rk(G) := E
(
dG(u∗

2) | u∗
1u∗

2 ∈ G, d(u∗
1) = k

)
,

and set rk(G) := 0 if the event in the condition has probability zero. Let P′
3 be P3 rooted at one

of the endpoints.

Corollary 4.3. Suppose L((Gn, v∗
n) | Gn)

p−→ L(G∗), Ed2
n →E(d∗)2 < ∞ and P(d∗ = k) > 0.

Then

rk(Gn)
p−→ r∗

k = EId∗=k hom′(P′
3, G∗, r∗)

kP(d∗ = k)
= 1 + EId∗=k emb′(P′

3, G∗, r∗)

kP(d∗ = k)
.

In a similar way we can study the bivariate degree distribution [13] and many other
functionals.

4.3. The case of random intersection graphs

Here we apply the above general results in the case where the limit is the uncorrelated
clique tree of Section 3. We stress that Theorem 2.1 and its corollaries are applicable to a
much broader class of sequences, including the inhomogeneous sparse random graph and the
preferential attachment model [7, 22], general random configuration graphs with their many
potential applications (see e.g. [34]), and random graphs from certain minor-closed classes,
including random planar graphs [29, 42, 46].
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Theorem 3.1 yields the first main condition (convergence to a local weak limit) for
Lemma 4.3. For the other condition (convergence of a degree moment) we prove the following
result.

Lemma 4.4. Let {Gn} be a sequence as in Theorem 3.1 and let k be a positive integer. Suppose
an additional condition for each of cases (i)–(iv) of Theorem 3.1 holds:

(i) E(X(1))k →EDk
1 < ∞,

(ii) E(X(2))k+1 →EDk+1
2 < ∞,

(iii) E(ξ (1))k < ∞ and E(ξ (2))k+1 < ∞,

(iv) Edk
1,v∗

1
→EDk

1 < ∞ and Edk+1
2,v∗

2
→EDk+1

2 < ∞.

Then E(d∗)k < ∞ and Edk
n →E(d∗)k.

(We simplified (iv) of a previous version of [40] to fixed sequences and dropped a redundant
assumption. To extend it to random d1, d2, use arguments similar to those of the proof of
Lemma 4.3.) The special case of (i) where k ≤ 2 was shown in [15]. Here we use a different
argument based on Theorem 3.1; see Section 4.4.

Using the same notation as in Section 4.2, assume that L((Gn, v∗
n) | Gn)

p−→ L(G∗) =
L(GT ), where T = T (D1, D2), ED1 > 0 and ED2 > 0. Let Z1, Z2, . . . ∼ D∗

2 − 1 be indepen-
dent and independent of D1. By (4.3) we have

πk(Gn)
p−→ P(d∗ = k) = P

( D1∑
i=1

Zi = k

)
.

For sequences of graphs as in Theorem 3.1(i)–(iii), the corresponding convergence of means
has been shown in [10] and [14]; see also Remark 3.1. We also notice that the second moment
condition required in [14] for the inhomogeneous model is not necessary.

By simple calculations we get

EZk
1 = E(D2 − 1)kD2

ED2
, E(Z1)k =E(D2)k+1(ED2)−1, k = 1, 2, . . . ,

Ed∗ =E(Z1 + · · · + ZD1 ) =ED1EZ1,

E(d∗)2 =ED1EZ2
1 +E(D1)2(EZ1)2,

E(d∗)3 =ED1EZ3
1 + 3E(D1)2EZ1EZ2

1 +E(D1)3(EZ1)3,

E emb′(K′
3, G∗, r∗) =ED1E(Z1)2 =ED1(EZ2

1 −EZ1)

and

E hom′(P′
4, G∗, r∗) =ED1EZ3

1 +E(D1)2EZ1EZ2
1 + E(D1)2

ED1
E(d∗)2

EZ1. (4.5)

(The above estimates also hold in the case when either side is infinite.)
When ED3

2 < ∞ and ED2
1 < ∞, we have

α∗ = ED1ED2E(D2)3

ED1ED2E(D2)3 +E(D1)2(E(D2)2)2
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in Corollary 4.1. Using Remark 3.1, this simplifies to α∗ =ED1/ED2
1 for active random inter-

section graphs and to α∗ =E(D2)3(E(D2)3 + β(E(D2)2)−2 for passive random intersection
graphs. This is equal to a related estimate α̂ = lim E emb(K3, Gn)(E emb(P3, Gn))−1 obtained
by Bloznelis [12] and the estimates of Godehardt, Jaworski, and Rybarczyk [30] for these
particular models.

Similarly, if ED2
1 < ∞ and ED4

2 < ∞ then ρ∗ in Corollary 4.2 is a rational function of ED1,
ED2

1, and EDk
2, k = 1, 2, 3, 4 obtained by using (4.5) and the above expressions for E(d∗)j in

(4.2). One can check by simple algebra that ρ∗ is equal to

ρ̂ = lim
(
Eg(Gn) −Eb(Gn)2)(

Eb′(Gn) −Eb(Gn)2)−1

computed in [18] for sparse passive and active random intersection graphs.
Assuming only that P(d∗ = k) > 0, we get in (4.4)

α∗
k = E

(∑D1
j=1 Zi(Zi − 1) | d∗ = k

)
k(k − 1)

.

If D2 ∼ Po (λ), as is the case for the active random intersection graph of Theorem 3.1(i), for
example, then as in [18] (but without a second moment assumption)

α∗
k = λP(d∗ = k − 1)

kP(d∗ = k)
.

Finally, if ED2
1 < ∞, ED2

2 < ∞ in Corollary 4.3, we have

r∗
k = k−1

E

( D1∑
i=1

Z2
i

∣∣∣∣ d∗ = k

)
+ E(D1)2E(D2)2

ED1ED2
.

This agrees with a related estimate obtained in [18] for active and passive random intersection
graphs.

Thus Corollaries 4.1–4.3 generalise several previous results for particular random intersec-
tion graph models to arbitrary sequences of graphs with the uncorrelated clique tree as a limit.
Applying them together with Lemma 4.4 with an appropriate k yields slightly stronger versions
(i.e. convergence in probability and optimal moment conditions) of these results for the active
and passive random intersection graphs with bounded expected degree. We are not aware of
similar prior results for the inhomogeneous and configuration models.

4.4. Proofs

The radius of a connected rooted graph is the maximum distance from any vertex of the
graph to the root.

Proof of Lemma 4.1. Let H1, H2, . . . be an enumeration of finite graphs in G∗. For positive
integers i, n, define the event

B(i, n) = {∃j ≤ i : |prj(Gn, Hj) − P(Brj (G
∗) ∼= Hj)| > i−1},

where rj is the radius of Hj. By the assumption of the lemma, P(B(i, n)) → 0 for each i =
1, 2, . . . . Define N1 = 1, Ni, i = 2, 3, . . . by taking

Ni = 1 + sup
{
n > Ni−1 : P(B(i, n)) > i−1}.
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Let i(n) = max{i : Ni ≤ n}. Now let A = {
n : B(i(n), n)

}
. We have P(n �∈ A) = P(B(i(n), n)) ≤

i(n)−1 → 0. For any sequence of events {An, n ≥ 1} on the same probability space (�,F , P),
we have

P( ∩m≥1 ∪n≥mAn) ≥ lim sup P(An). (4.6)

Thus

P(|A| = ∞) ≥ lim sup P
(
B(i(n), n)

)= 1.

Now, by the definition of B(i, n) on the event |A| = ∞, we have (Gn, v∗
n)

d−→ G∗ as n → ∞,
n ∈ A. �

Proof of Lemma 4.2. (⇐) The function (G∗, dloc) →R that maps (G, v) to IBr(G,v)∼=H is
bounded and continuous for each r ≥ 0 and connected rooted graph H.

(⇒) Without loss of generality we may assume {(Gn, v∗
n)} are defined on a single prob-

ability space. Let A be a random set guaranteed by Lemma 4.1. Suppose there is some
ε > 0, a bounded continuous function f , and an infinite subset of positive integers B, such
that P(|E(f (Gn, v∗

n) | Gn) −Ef (G∗)| > ε) > ε for all n ∈ B. Define a random set C = {n ∈
B : |E(f (Gn, v∗

n) | Gn) −Ef (G∗)| > ε}. Since for n ∈ A ∩ B we have P(n ∈ A ∩ C) ≥ ε − o(1),

by (4.6) P(|A ∩ C| = ∞) ≥ ε. However, (Gn, v∗
n)

d−→ G∗ when n → ∞, n ∈ A, by (1.1), which
contradicts our assumption. �

Proof of Lemma 4.3. We can assume n1 ≥ 1.
(i) ⇔ (ii) This follows by Lemma 2.1, since Lemma 4.2 implies convergence in distribution

of dh−1
n to (d∗)h−1.

(i) ⇒ (4.1), (iii) Assume (i). Then there is a positive sequence an → 0, such that
|Edh−1

n −E(d∗)h−1| ≤ an. The empirical (h − 1)th moment of the degree of Gn is Dn =
n−1

1 hom(K1,h−1, Gn). Also, Dn =∑
H∈S dH(root(H))h−1pr(Gn, H), where S consists of

graphs in G∗ of radius 1. Since EDn =Edh−1
n , it follows by (i) and (3.1) that Dn

p−→E(d∗)h−1.
So there is a positive sequence εn → 0, such that for all n,

P
(|Dn −E(d∗)h−1| > εn

)≤ εn.

We may assume that εn ≥ an. Let the random set C consist of those n for which |Dn −
E(d∗)h−1| ≤ εn. It follows by (4.6) that P(|C| = ∞) = 1, P(n ∈ C) → 1 and on the event
|C| = ∞, Dn →E(d∗)h−1 as n → ∞, n ∈ C.

Let A be the random set guaranteed by Lemma 4.1. On the event |A ∩ C| = ∞, the
subsequence of graphs {Gn, n ∈ A ∩ C} satisfies the conditions of Theorem 2.1.

Assume (4.1) does not hold. Then there is H′ ∈R(H), ε > 0 and a deterministic infinite set
D of positive integers such that for all n ∈ D,

P(|Xn −EX∗| > ε) > ε.

Here Xn = n−1
1 emb(H, Gn) and X∗ = emb′(H′, G∗, r∗). Let D1 ⊆ D consist of those n in D for

which |Xn −EX∗| > ε. Again, by (4.6), we get that P(|A ∩ C ∩ D1| = ∞) ≥ ε. On this event
Xn �→EX∗ as n → ∞, n ∈ A ∩ C. This is a contradiction to Theorem 2.1(iii).

It remains to show (iii). Write Yn = n−1
1 hom(H, Gn). Trivially, Xn ≤ Yn, and by Lemma 2.2

Yn ≤ Dn. So, for any t > 0,

EXnIXn>t ≤EYnIYn>t ≤EDnIDn>t.
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Since EDn →E(d∗)h−1 and Dn
p−→E(d∗)h−1, Dn is uniformly integrable, and so is Xn. Since

Xn also converges in probability by (4.1), (iii) follows by Lemma 2.1.
(iii) ⇒ (i) The proof is identical to that of the corresponding implication of

Theorem 2.1. �

Proof of Corollary 4.1. Apply Lemma 4.3. �

Proof of Corollary 4.2. For non-empty G, we have

g(G) = hom(P4, G)

emb(K2, G)
, b(G) = hom(K1,2, G)

emb(K2, G)
, b′(G) = hom(K1,3, G)

emb(K2, G)
.

Let S(t, j) denote Stirling numbers of the second kind. Using Lemma 4.3,

1

n
emb(K2, Gn)

p−→Ed∗,

1

n
hom(P4, Gn)

= 1

n

(
emb(P4, Gn) + emb(K3, Gn) + 2 emb(P3, Gn) + emb(K2, Gn)

)
p−→E

(
emb′(P′

4, G∗) + emb′(K′
3, G∗) + emb(K′

1,2, G∗) + emb(P′
3, G∗) + emb′(K′

2, G∗)
)

=E hom′(P′
4, G∗, r∗),

1

n
hom(K1,t, Gn) = 1

n

t∑
j=1

S(t, j)emb(K1,j, Gn)
p−→E hom′(K′

1,t, G∗, r∗) =E(d∗)t

for t = 2, 3. The claim follows by the definition of r(G). �

Proof of Corollary 4.3. Note that πk(Gn)
p−→ P(d∗ = k) > 0 and when πk(G) > 0 we have

rk(G) = E
(
dG(u∗

2)IdGn (u∗
1)=kIu∗

1u∗
2∈G | Gn = G

)
P(dGn (u∗

1) = k, u∗
1u∗

2 ∈ G | Gn = G)

= (n1)−1
2 H(G)

k(n1 − 1)−1πk(G)

= n−1
1 H(G)(kπk(G))−1, (4.7)

where H(G) is the number of homomorphisms from P3 = xyz to G so that x is mapped to a
vertex of degree k. Let Ht(G) denote the number of such homomorphisms where additionally
y is mapped to a vertex of degree at most t, and let H̄t(G) = H(G) − Ht(G).

Fix δ > 0. We will show that for any ε > 0 and all n large enough,

P
(|n−1

1 H(Gn) −EId∗=k hom′(P′
3, G∗, r∗)| > δ

)≤ ε, (4.8)

i.e. n−1
1 H(Gn)

p−→EId∗=k hom′(P′
3, G∗, r∗).
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By Lemma 4.2,

n−1
1 Ht(Gn) =E

(
IdGn (u∗

1)=k

∑
u : uu∗

1∈Gn

dGn (u)IdGn (u)≤t

∣∣∣∣Gn

)

p−→ h∗
t =E

(
Id∗=k

∑
u : ur∗∈G∗

dG∗ (u)IdG∗ (u)≤t

)
.

Also, h∗
t → h∗ =EId∗=k hom′(P′

3, G∗, r∗) as t → ∞ since L((Gn, v∗
n) | Gn)

p−→ L(G∗) and
h∗ ≤E hom′(P′

3, G∗, r∗) < ∞ by Lemma 4.3. Therefore we can pick t1 such that for t ≥ t1
and all n large enough,

P

(
|n−1

1 Ht(Gn) − h∗
t | >

δ

4

)
≤ ε

4
, |h∗

t − h∗| ≤ δ

4

and so

P

(
|n−1

1 Ht(Gn) − h∗| > δ

2

)
≤ ε

2
. (4.9)

Next, note that

H̄t(Gn) ≤
∑

v∈V(Gn)

dGn (v)2
IdGn (v)>t.

So, by Markov’s inequality,

P
(
n−1

1 H̄t(Gn) > δ/2
)≤ 2δ−1n−1

1 EH̄t(Gn) ≤ 2δ−1
Ed2

nIdn>t.

Now d2
n is uniformly integrable by Lemma 4.3, so there is t2 such that for all t ≥ t2 and all large

enough n,

P
(
n−1

1 H̄t(Gn) > δ/2
)≤ ε

2
. (4.10)

Now (4.8) follows by setting t = max(t1, t2) and combining (4.7), (4.9), and (4.10). �

Proof of Lemma 4.4. Let Z1, Z2, . . . ∼ D∗
2 − 1 and D1 be independent. For a random variable

X with EX ∈ (0, ∞) and its size-biased version X∗, we have

E(X∗ − 1)j =
∑
m≥1

(m − 1)j
mP(X = m)

EX
= E(X)j+1

EX
, j = 1, 2, . . . .

Thus, using the assumptions and Remark 3.1,

E(Z1)j =E(D2)j+1(ED2)−1 < ∞ for j = 1, . . . , k. (4.11)

Similarly EZk
1 = (ED2)−1

EDk+1
2 < ∞. Write

(
k

k1, . . . , kj

)
= k!

k1! · · · kj! .
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Conditioning on D1, using linearity of expectation and symmetry, we get

E(d∗)k =E

( D1∑
i=1

Zi

)k

=
∑(

k

k1, . . . , kj

)
E

(
D1

j

)
EZk1

1 × · · · ×EZ
kj
j ∈ (0, ∞). (4.12)

Here the sum is over all j and all tuples of positive integers (k1, . . . , kj) such that k1 + · · · +
kj = k. Write dn = dGn (v∗

n) and recall that v∗
n is a uniformly random vertex from V(Gn). By

Theorem 3.1 L((Gn, v∗
n) | Gn)

p−→ L(G∗), so dk
n

d−→ (d∗)k. By Fatou’s lemma,

E(d∗)k ≤ lim inf Edk
n.

We assume without loss of generality that in case (iv) the sequences d1(n) and d2(n) (not to
be confused with the random variable dn) are symmetric random permutations of two fixed-
degree sequences (each permutation of a particular sequence is equally likely). So in all cases
(i)–(iv) by symmetry EdGn (v1)k =Edk

n, where v1 is a fixed vertex in V(Gn). For each of the
random intersection graph models we will show

EdGn (v1)k ≤E(d∗)k + o(1). (4.13)

Let T ∼ T (D1, D2). Assume that D1 = dT (root(T )), x1, . . . , xD1 are the children of root(T )
and Zi is the number of children of xi. For each n define a bipartite graph (a tree) H̃n as follows.
On the event D1 > n2, let H̃n be a tree consisting of just the root ṽ1. On the event D1 ≤ n2, let
H̃n be the subtree induced by generations 0, 1 and 2 of T , but take only the first Z′

i = ZiIZi≤n1−1
children for the node xi, i = 1, . . . , D1. Label the root v1. Given D1, Z1, . . . , ZD1 , draw labels
for x1, . . . , xD1 from V2 uniformly at random without replacement and draw Z′

i distinct labels
from V1 \ {v1} for the children of xi i = 1, . . . , D1, for each i (conditionally) independently.
Here Vi = Vi(Hn) is the set of first ni vertices of the fixed ground set V i as in Theorem 3.1.

Write d̃n = ID1≤n2

∑D1
i=1 Z′

i and notice that d̃n is an upper bound on the degree of v1 in the
resulting intersection graph. We have, as in (4.12),

Ed̃k
n =

∑(
k

k1, . . . , kj

)
E

(
D1

j

)
ID1≤n2E(Z′

1)k1 × · · · ×E(Z′
t)

kt

=E(d∗)k − o(1). (4.14)

Here we used (4.11), (4.12) and bounds

E(D1)jID1≤n2 =E(D1)j − o(1), E(Z′
1)j =EZj

1 −EZj
1IZ1>n1−1 =EZj

1 − o(1),

valid for any j ≤ k by Lemma 2.1. Thus it suffices to prove that EdGn (v1)k ≤Ed̃k
n + o(1). Recall

that Hn is the bipartite graph underlying the intersection graph Gn. Call a path xyz good if
x = v1, y ∈ V2 and z ∈ V1 \ {v1}. We have

dGn (v1) ≤
∑

I(v1wv, Hn) and d̃n =
∑

I(v1wv, H̃n)

where the sum is over all good paths v1wv and I(F, H) is the indicator of the event that F ⊆
E(H).

https://doi.org/10.1017/jpr.2021.84 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.84


772 V. KURAUSKAS

For any graph H we denote v(H) = |V(H)| and e(H) = |E(H)|. If H is bipartite (more
precisely, 2-coloured), vj(H), j = 1, 2 denotes the size of jth part Vj of H. Define an equiva-
lence relation between bipartite graphs H′ = (V ′

1, V ′
2, E′), H′′ = (V ′′

1 , V ′′
2 , E′′): H′ ∼ H′′ if and

only if there is an isomorphism from H′ to H′′ that maps V ′
j to V ′′

j , j = 1, 2. Let Fk con-
sist of one member for each equivalence class of all graphs formed from a union of k good
paths (a not necessarily disjoint union of graphs G1 = (V1, E1), . . . , Gk = (Vk, Ek) is a graph
(V1 ∪ · · · ∪ Vk, E1 ∪ · · · ∪ Ek)). For H′ ∈Fk, let N(H′) be the number of distinct tuples of k
good paths whose union is a bipartite graph H′′ with parts V ′′

1 ⊆ V1 and V ′′
2 ⊆ V2 such that

H′′ ∼ H′. It is easy to see that there are positive constants c(H′), C(H′) such that, for all n large
enough,

N(H′) = c(H′)(n1)v1(H′)−1(n2)v2(H′) = C(H′)nv(H′)−1
1 (1 + o(1)). (4.15)

By linearity of expectation,

EdGn (v1)k ≤E

(∑
I(v1wv, Hn)

)k =
∑

H′∈Fk

N(H′)EI(H′, Hn),

and similarly

Ed̃k
n =

∑
H′∈Fk

N(H′)EI(H′, H̃n).

Using (4.14), (4.15) and the fact that Fk is finite, in order to prove (4.13) it suffices to check
that

EI(H′, Hn) ≤EI(H′, H̃n) + o
(
n−v(H′)+1

1

)
for each H′ ∈Fk. (4.16)

So fix any H′ ∈Fk. Suppose v2(H′) = t and the degrees of vertices in V2(H′) are b1, . . . , bt.
Note that bj ≤ k + 1 for j = 1, . . . , t. Conditioning on D1 and the positions of generation 1
nodes labelled V2(H′) and using (4.11)

EI(H′, H̃n) =E
(D1)tID1≤n1

(n2)t

(Z′
1)b1−1

(n1 − 1)b1−1
× · · · × (Z′

t)bt−1

(n1 − 1)bt−1

= n−t
2 n−e(H′)+t

1 E(D1)t

t∏
i=1

E(Z′
i)bi−1(1 + o(1))

= β−tn−e(H′)
1 E(D1)t(ED2)−t

t∏
i=1

E(D2)bi(1 + o(1)). (4.17)

Now if H′ is a tree then e(H′) = v(H′) − 1, and (4.16) follows if

EI(H′, Hn) ≤EI(H′, H̃n)(1 + o(1)). (4.18)

Meanwhile, if H′ has a cycle then e(H′) ≥ v(H′) and EI(H′, H̃n) = O
(
n−v(H′)

1

)
, so (4.16) follows

whenever
EI(H′, Hn) = o

(
n−v(H′)+1). (4.19)

We now consider (4.16) for each model separately.
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(i) Active intersection graph. Let a1, . . . , as be the degrees of vertices in V1(H′). We can
assume a1 = dH′ (v1) = t. Of course, aj ≤ k, j = 1, . . . , s. Since the vertices in V1(H′) choose
their neighbours independently, using Lemma 2.1,

EI(H′, Hn) =E

s∏
i=1

(Xv)ai

(n2)ai

= n−e(H′)
2

s∏
i=1

E(D1)ai(1 + o(1)).

If H′ has a cycle then e(H′) ≥ v(H′) and EI(H′, Hn) = O
(
n−e(H′)

1

)
, so (4.19) holds.

By Remark 3.1, D2 ∼ Po (β−1
ED1). So E(D2)bi = (β−1

ED1)bi . Thus (4.17) reduces to

EI(H′, H̃n) = (βn1)−e(H′)
E(D1)t(ED1)e(H′)−t(1 + o(1))

If H′ has no cycle, then aj = 1 for all j ≥ 2. Thus

EI(H′, Hn) ≤ n−e(H′)
2 E(D1)t(ED1)e(H′)−t(1 + o(1))

and (4.19) follows.
(ii) Passive intersection graph. Since bi ≤ k + 1 for i = 1, . . . , t by assumption (ii) of the

lemma,

EI(H′, Hn) =E

s∏
i=1

(Xv)bi

(n1)bi

= n−e(H′)
1

s∏
i=1

E(D2)bi(1 + o(1)).

Using Remark 3.1, D1 ∼ Po (βED2), so E(D1)t = β t(ED2)t. Therefore (4.17) reduces to

EI(H′, H̃n) = n−e(H′)
1

s∏
i=1

E(D2)bi(1 + o(1))

and (4.16) follows.
(iii) Inhomogeneous random intersection graph. Let {ξu : u ∈ V(H′)} be independent random

variables such that ξu ∼ ξ (i) for u ∈ Vi(H′), i = 1, 2. Write a ∧ b = min (a, b). Then

EI(H′, Hn) =E

∏
uv∈E(H′)

(
ξuξv√
n1n2

∧ 1

)

≤ β−e(H′)/2n−e(H′)
1

∏
u∈V(H′)

Eξ
dH′ (u)
u (1 + o(1)).

If H′ contains a cycle, then by the assumption that E(ξ (1))k and E(ξ (2))k+1 are finite, we get

that EI(H′, Hn) = O
(
n−v(H′)

1

)
, so (4.19) holds. If H′ is a tree then

EI(H′, Hn) ≤ β−e(H′)/2n−e(H′)
1 E

(
ξ (1))t(

Eξ (1))s−1
t∏

j=1

E
(
ξ (2))bj(1 + o(1)). (4.20)

Using Remark 3.1, we have D1 ∼ Po
(
β1/2ξ (1)

Eξ (2)
)

and D2 ∼ Po
(
β−1/2ξ (2)

Eξ (1)
)
, so

E(D1)t = β t/2
E(ξ (1))t(Eξ (2))t and E(D2)j = β−j/2

E(ξ (2))j(Eξ (1))j for j ≤ k + 1. Putting these
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estimates into (4.17) and simplifying, we get the expression on the right-hand side of (4.20).
Then (4.18) follows.

(iv) Random configuration graph. For i = 1, 2, let

d̃i,m = n−1
i

∑
v∈Vi

(di,v)m.

Recall that N =∑n1
u∈V1 d1,u is the total number of half-edges in each of the parts. Since

n1, n2 → ∞ and by the assumption of the lemma Nn−1
1 →ED1, there exists ωn → ∞ such

that for all n
n1, n2, N ≥ ωn, ωn ≥ k + 2. (4.21)

The probability that Hn contains H′ as a subgraph is at most

a(H′) = 1

(N)e(H′)
E

∏
u∈V(H′)

(dHn (u))dH′ (u).

Here the product counts the number of ways to choose particular half-edges forming H′. Let
(u∗

1, . . . , u∗
s ) and (w∗

1, . . . , w∗
t ) be independent uniformly random tuples of distinct vertices

from V1(Hn) and V2(Hn) respectively. Using symmetry, (4.21), and the assumption of the
lemma,

a(H′) = 1

(N)e(H′)
E

s∏
i=1

(
d1,u∗

i

)
ai

t∏
j=1

(
d2,w∗

j

)
bj

≤ 1

(N)e(H′)

s∏
i=1

d̃1,ai

t∏
j=1

d̃2,bj (1 + o(1))

= (ED1n1)−e(H′)
s∏

i=1

E(D1)ai

t∏
j=1

E(D2)bj(1 + o(1)).

Again, if H′ has a cycle then (4.19) follows. Otherwise, if H′ is a tree, then since ED1n1 =
ED2n2(1 + o(1)) we have ED1 = βED2 and

(ED1)−e(H′)
s∏

i=1

E(D1)ai =E(D1)t
(ED1)s−1

(ED1)s+t−1
= β−t

E(D1)t(ED2)−t.

By comparing a(H′) with (4.17), we see that (4.18) holds. �
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