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Abstract. In two recent articles, Norihiro Kamide introduces unusual variants of Nelson’s para-
consistent logic and its classical extension. Kamide’s systems, IP and CP, are unusual insofar as
double negations in these logics behave as intuitionistic and classical negations, respectively. In this
article we present Hilbert-style axiomatizations of both IP and CP. The axiom system for IP is
shown to be sound and complete with respect to a four-valued Kripke semantics, and the axiom
system for CP is characterized by four-valued truth tables. Moreover, we note some properties of
IP and CP, and emphasize that these logics are unusual also because they are contra-classical and
inconsistent but nontrivial. We point out that Kamide’s approach exemplifies a general method for
obtaining contra-classical logics, and we briefly speculate about a linguistic application of Kamide’s
logics.

§1. Introduction.

1.1. Background and aim. In his recent articles [10, 11], Norihiro Kamide introduces
variants of Nelson’s paraconsistent logic N4 (cf. [22, 12, 13]) and its classical extension
B→

4 (cf. [15]). As the titles of the two articles suggest, Kamide introduces sequent sys-
tems in which double negations behave as intuitionistic and classical negations, respec-
tively. However, the given semantics, shown to be sound and complete with respect to the
Gentzen-style systems, are the so-called bivaluational semantics, which are not the most
intuitive ones.

Based on these, we establish that the system CP, the variant of B→
4 , is a four-valued

logic and offer a four-valued Kripke semantics for IP, the variant of N4. We also observe
that the four-valued algebra that is sound and complete with respect to CP is
functionally complete, which implies the Post completeness of CP, and offer some re-
flections on the unusual unary operation. Moreover, we observe that both systems are
contra-classical logics, and point out that there is a general method to obtain contra-
classical logics out of a certain family of nonclassical logics. Although Kamide’s systems
are rather unusual, they might perhaps be applied to model negative concord in certain
natural languages.

1.2. Preliminaries. The language L consists of a finite set {∼, ∧, ∨, →} of proposi-
tional connectives and a countable set Prop of propositional variables which we denote
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by p, q, etc. Furthermore, we denote by Form the set of formulas defined as usual in
L. We denote a formula of L by A, B, C , etc. and a set of formulas of L by �, �, �,
etc.

§2. Proof systems. We first review the Gentzen-style sequent systems introduced by
Kamide in [10, 11]. We then present a Hilbert-style system. The equivalence of the two
systems will be established in §3.3.

2.1. Gentzen-style system for IP. First, we introduce the Gentzen-style system for IP.
A sequent is an expression of the form � ⇒ A or � ⇒, where A ∈ Form and � is a
finite subset of Form. We write B ⇒ A instead of {B} ⇒ A and �, � ⇒ A instead of
� ∪ � ⇒ A.

DEFINITION 2.1 (Kamide). The initial sequents of GIP are of the following form, for any
atomic formula p,

p ⇒ p ∼p ⇒ ∼p.

The structural inference rules of GIP are of the form:

� ⇒ A A, � ⇒ C
�, � ⇒ C

(cut) � ⇒ C
A, � ⇒ C

(we-left) � ⇒
� ⇒ A

(we-right).

The pure logical inference rules of GIP are of the form:

A, � ⇒ C
A ∧ B, � ⇒ C

(∧left1)
B, � ⇒ C

A ∧ B, � ⇒ C
(∧left2)

� ⇒ A � ⇒ B
� ⇒ A ∧ B

(∧right)

A, � ⇒ C B, � ⇒ C
A ∨ B, � ⇒ C

(∨left) � ⇒ A
� ⇒ A ∨ B

(∨right1) � ⇒ B
� ⇒ A ∨ B

(∨right2)

� ⇒ A B, � ⇒ C
A → B, �, � ⇒ C

(→ left)
A, � ⇒ B

� ⇒ A → B
(→ right)

.

The ∼-combined logical inference rules of GIP are of the form:

� ⇒ A
∼∼A, � ⇒ (∼∼left)

A, � ⇒
� ⇒ ∼∼A

(∼∼right)

∼A, � ⇒ C ∼B, � ⇒ C

∼(A ∧ B), � ⇒ C
(∼∧left) � ⇒ ∼A

� ⇒ ∼(A ∧ B)
(∼∧right1)

� ⇒ ∼B
� ⇒ ∼(A ∧ B)

(∼∧right2)

∼A, � ⇒ C

∼(A ∨ B), � ⇒ C
(∼∨left1)

∼B, � ⇒ C

∼(A ∨ B), � ⇒ C
(∼∨left2)

� ⇒ ∼A � ⇒ ∼B
� ⇒ ∼(A ∨ B)

(∼∨right)

A, � ⇒ C

∼(A → B), � ⇒ C
(∼→left1)

∼B, � ⇒ C

∼(A → B), � ⇒ C
(∼→left2)

� ⇒ A � ⇒ ∼B
� ⇒ ∼(A → B)

(∼→right)
.

REMARK 2.2. Note that if we replace (∼∼left) and (∼∼right) by the following rules,
we obtain a Gentzen-style system for N4.

A, � ⇒ C
∼∼A, � ⇒ C

� ⇒ A
� ⇒ ∼∼A.

2.2. Gentzen-style system for CP. Second, we introduce the Gentzen-style system for
CP. A sequent is an expression of the form � ⇒ �, where � and � are finite subsets of
Form. We write B ⇒ A instead of {B} ⇒ {A} and �, � ⇒ �, � instead of � ∪ � ⇒
� ∪ �.
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DEFINITION 2.3 (Kamide). The initial sequents of GCP are of the following form, for any
atomic formula p,

p ⇒ p ∼p ⇒ ∼p.

The structural inference rules of GCP are of the form:

� ⇒ �, A A, � ⇒ �

�, � ⇒ �, �
(cut) � ⇒ �

A, � ⇒ �
(we-left) � ⇒ �

� ⇒ �, A
(we-right).

The pure logical inference rules of GCP are of the form:

A, B, � ⇒ �

A ∧ B, � ⇒ �
(∧left)

� ⇒ �, A � ⇒ �, B
� ⇒ �, A ∧ B

(∧right)

A, � ⇒ � B, � ⇒ �

A ∨ B, � ⇒ �
(∨left)

� ⇒ �, A, B
� ⇒ �, A ∨ B

(∨right)

� ⇒ �, A B, � ⇒ �

A → B, �, � ⇒ �, �
(→ left)

A, � ⇒ �, B
� ⇒ �, A → B

(→ right)
.

The ∼-combined logical inference rules of GCP are of the form:

� ⇒ �, A
∼∼A, � ⇒ �

(∼∼left)
A, � ⇒ �

� ⇒ �, ∼∼A
(∼∼right)

∼A, � ⇒ � ∼B, � ⇒ �

∼(A ∧ B), � ⇒ �
(∼∧left)

� ⇒ �, ∼A, ∼B
� ⇒ �, ∼(A ∧ B)

(∼∧right)

∼A, ∼B, � ⇒ �

∼(A ∨ B), � ⇒ �
(∼∨left)

� ⇒ �, ∼A � ⇒ �, ∼B
� ⇒ �, ∼(A ∨ B)

(∼∨right)

A, ∼B, � ⇒ �

∼(A → B), � ⇒ �
(∼ → left)

� ⇒ �, A � ⇒ �, ∼B
� ⇒ �, ∼(A → B)

(∼ → right)
.

REMARK 2.4. Here is a brief summary of the results established by Kamide in [11].
Kamide proves some theorems regarding syntactical embeddings between GCP and
Gentzen’s sequent calculus LK for classical propositional logic, which are used to prove
cut-elimination and decidability for GCP. Moreover, he introduces bivaluational semantics
for GCP and proves some theorems regarding semantical embeddings between GCP and
LK. And by both syntactical and semantical embeddings, Kamide proves that the sequent
calculus is sound and complete with respect to the bivaluational semantics. Similarly,
Kamide proves several theorems for syntactical embeddings between GIP and Gentzen’s
sequent calculus LJ for intuitionistic propositional logic and uses these results to prove
cut-elimination, decidability, and paraconsistency for GIP. A sound and complete Kripke
semantics for IP is used in proving theorems for semantically embedding IP into LJ and
vice versa. The article concludes with Glivenko and Gödel–Gentzen translation theorems
for CP and IP.

2.3. Hilbert-style system for IP. We now introduce a Hilbert-style system for IP.

DEFINITION 2.5. The system HIP consists of the following axiom schemata and a rule of
inference, where A ↔ B abbreviates (A → B) ∧ (B → A).
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(Ax1) A → (B → A)
(Ax2) (A → (B → C)) → ((A → B) → (A → C)) (Ax9) (A → ∼∼A) → ∼∼A
(Ax3) (A ∧ B) → A (Ax10) (A ∧ ∼∼A) → B
(Ax4) (A ∧ B) → B (Ax11) ∼(A ∧ B) ↔ (∼A ∨ ∼B)
(Ax5) (C → A) → ((C → B) → (C → (A ∧ B))) (Ax12) ∼(A ∨ B) ↔ (∼A ∧ ∼B)
(Ax6) A → (A ∨ B) (Ax13) ∼(A → B) ↔ (A ∧ ∼B)

(Ax7) B → (A ∨ B) (MP) A A→B
B

(Ax8) (A → C) → ((B → C) → ((A ∨ B) → C))

Finally, we write � �hi A iff there is a sequence of formulas 〈B1, . . . , Bn, A〉 (n ≥ 0),
called a derivation, such that every formula in the sequence either (i) belongs to �; (ii) is
an axiom of IP; (iii) is obtained by (MP) from formulas preceding it in the sequence. As
usual, we write �, A1, . . . , An �hi B for � ∪ {A1, . . . , An} �hi B.

REMARK 2.6. If we replace (Ax9) and (Ax10) by ∼∼A ↔ A, then we obtain an
axiomatization for N4.

PROPOSITION 2.7 (Deduction theorem). For any � ∪ {A, B} ⊆ Form, �, A �hi B iff
� �hi A → B.

Proof. The left-to-right direction can be proved in the usual manner in the presence of
axioms (Ax1) and (Ax2), and (MP) the sole rule of inference. For the other direction, we
use (MP). �

2.4. Hilbert-style system for CP. We now introduce a Hilbert-style system for CP as
a variant of HIP.

DEFINITION 2.8. The system HCP is obtained by replacing (Ax9) by the following in the
system HIP:

A ∨ ∼∼A. (Ax9’)

Finally, we write � �hc A iff there is a sequence of formulas 〈B1, . . . , Bn, A〉 (n ≥ 0),
called a derivation, such that every formula in the sequence either (i) belongs to �; (ii) is
an axiom of CP; (iii) is obtained by (MP) from formulas preceding it in the sequence. As
usual, we write �, A1, . . . , An �hc B for � ∪ {A1, . . . , An} �hc B.

REMARK 2.9. Note that Peirce’s law, ((A → B) → A) → A, is derivable in view of
(Ax9’) and (Ax10) together with positive intuitionistic logic. Indeed, by (Ax10) we obtain
∼∼A → (A → B), and this together with (Ax9’) implies that A ∨ (A → B). Here we use
the following thesis of positive intuitionistic logic.

(A ∨ B) → ((B → C) → (A ∨ C)) (∗)

Recall then that we have both A → (((A → B) → A) → A) and (A → B) → (((A →
B) → A) → A) as theses of positive intuitionistic logic. Thus, by another application of
(∗), we obtain Peirce’s law.

§3. Semantics, soundness, and completeness.

3.1. Semantics. We first introduce the semantics for IP, and then turn to the semantics
for CP by considering a special case.

DEFINITION 3.1. An IP-model for the language L is a triple 〈W, ≤, V 〉, where W is
a nonempty set (of states); ≤ is a partial order on W ; and V : W × Prop −→
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{∅, {0}, {1}, {0, 1}} is an assignment of truth values to state-variable pairs with the con-
dition that i ∈ V (w1, p) and w1 ≤ w2 only if i ∈ V (w2, p) for all p ∈ Prop, all
w1, w2 ∈ W and i ∈ {0, 1}. Valuations V are then extended to interpretations I to state-
formula pairs by the following conditions:

• I (w, p) = V (w, p),
• 1 ∈ I (w, ∼A) iff 0 ∈ I (w, A),
• 0 ∈ I (w, ∼A) iff for all x ∈ W such that w ≤ x : 1 �∈ I (x, A),
• 1 ∈ I (w, A ∧ B) iff 1 ∈ I (w, A) and 1 ∈ I (w, B),
• 0 ∈ I (w, A ∧ B) iff 0 ∈ I (w, A) or 0 ∈ I (w, B),
• 1 ∈ I (w, A ∨ B) iff 1 ∈ I (w, A) or 1 ∈ I (w, B),
• 0 ∈ I (w, A ∨ B) iff 0 ∈ I (w, A) and 0 ∈ I (w, B),
• 1 ∈ I (w, A → B) iff for all x ∈ W such that w ≤ x : 1 �∈ I (x, A) or 1 ∈ I (x, B),
• 0 ∈ I (w, A → B) iff 1 ∈ I (w, A) and 0 ∈ I (w, B).

Finally, semantic consequence is now defined as follows:

� |�IP A iff for all IP-models 〈W, ≤, I 〉, and for all w ∈ W : 1 ∈ I (w, A) if 1 ∈ I (w, B) for all B ∈ �.

REMARK 3.2. If we replace the falsity condition for the negation by the following
clause, then we obtain the semantics for N4:

0 ∈ I (w, ∼A) iff 1 ∈ I (w, A).

Note also that the following holds for all formulas A ∈ Form, all w1, w2 ∈ W and i ∈
{0, 1}:

i ∈ V (w1, A) and w1 ≤ w2 only if i ∈ V (w2, A).

Now, by considering the special case of IP-models in which W is a singleton, we obtain
the following four-valued semantics. Note that t, b, n and f in the following definition
correspond to {1}, {0, 1}, ∅ and {0}, respectively, in the above definition.

DEFINITION 3.3. A CP-valuation is a function from the set Form to the set V of truth
values, induced by the following matrix 〈〈V,O〉,D〉, where

• V = {t, b, n, f},
• D = {t, b},
• O consists of the following truth functions:

x ∼ x x ∧y t b n f x ∨y t b n f x → y t b n f
t n t t b n f t t t t t t t b n f
b t b b b f f b t b t b b t b n f
n f n n f n f n t t n n n t t t t
f b f f f f f f t b n f f t t t t

Based on this, we define the semantic consequence relation in the usual manner: � |�CP
A iff for all CP-valuations v , if v(B) ∈ D for all B ∈ � then v(A) ∈ D.

REMARK 3.4. First, if we replace the above truth table for ∼ by that for the usual de
Morgan negation in FDE, then we obtain the matrix semantics for B→

4 . Second, note that
∼∼ is one of the sixteen classical negations (cf. [6, §2]) which corresponds to the Boolean
complement operation from an algebraic perspective. Third, ∼ here rotates the “diamond”
the other way around compared to Paul Ruet’s unary operation �, introduced in [18], which
has the following truth table:
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x � x
t b
b f
n t
f n

Finally, note that in [8] Lloyd Humberstone introduces “demi-negation” which satisfies,
among other things, that two application of demi-negation are equivalent to classical nega-
tion or intuitionistic negation.

3.2. Soundness and completeness. We now establish the soundness and completeness
of HIP and HCP with respect to the semantics presented in the previous section. We take
the strategy to first prove the results for HIP, and the result for HCP will be a corollary by
considering a special case.

THEOREM 3.5 (Soundness). For any � ∪ {A} ⊆ Form, if � �hi A then � |�IP A.

Proof. By a straightforward verification that each instance of each axiom schema always
takes a designated value, and that (MP) preserves designated values. �

We now turn to completeness. First, we introduce some standard terminologies.

DEFINITION 3.6. A set of formulas, �, is deductively closed if the following holds:

if � � A then A ∈ �.

And � is prime if the following holds:

if A ∨ B ∈ � then A ∈ � or B ∈ �.

� is prime deductively closed (pdc) if it is both. Finally, � is nontrivial if A �∈ � for
some A.

Then the following lemmas are well-known, and thus we will omit the details of the
proofs.

LEMMA 3.7 (Lindenbaum). If � �� A then there is a pdc set, �, such that � ⊆ � and
� �� A.

LEMMA 3.8. If � is pdc and A → B �∈ �, there is a pdc set � such that � ⊆ �,
A ∈ � and B �∈ �.

We are now ready to prove the completeness.

THEOREM 3.9 (Completeness). For � ∪ {A} ⊆ Form, if � |�IP A then � �hi A.

Proof. We prove the contrapositive. Suppose that � ��hi A. Then by Lemma 3.7, there
is a � ⊇ � such that � is pdc and A �∈ �. Define the interpretation A = 〈X, ≤, I 〉, where
X = {� : � is a nontrivial pdc set}, � ≤ � iff � ⊆ � and I is defined thus. For every
state � and propositional parameter, p:

1 ∈ I (�, p) iff p ∈ � and 0 ∈ I (�, p) iff ∼p ∈ �.

We show that this condition holds for any arbitrary formula, B:

1 ∈ I (�, B) iff B ∈ � and 0 ∈ I (�, B) iff ∼B ∈ �. (∗)
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It then follows that A is a counter-model for the inference, and hence that � �|�IP A. The
proof of (∗) is by a simultaneous induction on the complexity of B with respect to the
positive and the negative clause.
For negation: We begin with the positive clause.

1 ∈ I (�, ∼C) iff 0 ∈ I (�, C)

iff ∼C ∈ � IH

The negative clause is also straightforward.

0 ∈ I (�, ∼C) iff for all � s.t. � ⊆ �, 1 �∈ I (�, C)

iff for all � s.t. � ⊆ �, C �∈ � IH

iff ∼∼C ∈ �

For the last equivalence, assume ∼∼C ∈ � and for reductio that C ∈ �0 for some �0
such that � ⊆ �0. Then by � ⊆ �0 and ∼∼C ∈ �, we obtain ∼∼C ∈ �0. Therefore, we
have �0 � C ∧∼∼C , and by (Ax10), we obtain that �0 is trivial which is a contradiction.
For the other direction, suppose that for all � s.t. � ⊆ �, C �∈ �. Then, by Lemma 3.8, it
follows that C → ∼∼C ∈ �. Thus, in view of (Ax9), we obtain ∼∼C ∈ �.
For disjunction: We begin with the positive clause.

1 ∈ I (�, C ∨ D) iff 1 ∈ I (�, C) or 1 ∈ I (�, D)

iff C ∈ � or D ∈ � IH

iff C ∨ D ∈ � � is a prime theory

The negative clause is also straightforward.

0 ∈ I (�, C ∨ D) iff 0 ∈ I (�, C) and 0 ∈ I (�, D)

iff ∼C ∈ � and ∼D ∈ � IH

iff ∼C ∧ ∼D ∈ � � is a theory

iff ∼(C ∨ D) ∈ � (Ax12)

For conjunction: Similar to the case for disjunction, and thus we leave the details to the
reader.
For implication: We begin with the positive clause.

1 ∈ I (�, C → D) iff for all � s.t. � ⊆ �, if 1 ∈ I (�, C) then 1 ∈ I (�, D)

iff for all � s.t. � ⊆ �, if C ∈ � then D ∈ � IH

iff C → D ∈ �

For the last equivalence, assume C → D ∈ � and C ∈ � for any � such that � ⊆ �.
Then by � ⊆ � and C → D ∈ �, we obtain C → D ∈ �. Therefore, we have
� � C → D, so by (MP), we obtain � � D, i.e., D ∈ �, as desired. On the other hand,
suppose C → D �∈ �. Then by Lemma 3.8, there is a �′ ⊇ � such that C ∈ �′, D �∈ �′
and �′ is pdc. Furthermore, nontriviality of �′ is obvious by D �∈ �′.

As for the negative clause, it is straightforward.

0 ∈ I (�, C → D) iff 1 ∈ I (�, C) and 0 ∈ I (�, D)

iff C ∈ � and ∼D ∈ � IH

iff C ∧ ∼D ∈ � � is a theory

iff ∼(C → D) ∈ � (Ax13)
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Thus, we obtain the desired result. �
The soundness and completeness for CP follows immediately by considering a special

case for IP.

THEOREM 3.10 (Soundness and completeness). For any � ∪ {A} ⊆ Form, � �hc A iff
� |�CP A.

Proof. For soundness, just note that every one-element model validates (Ax9’). For
completeness, note first that the presence of (Ax9’) makes the partial order on the canonical
model trivial. More specifically, for two nontrivial pdcs � and �, we obtain the following:

� ⊆ � only if � ⊆ �.

Indeed, suppose for reductio that � ⊆ � and that for some A0, A0 ∈ � but A0 �∈ �. Then,
by Remark 2.9, we have A0 ∨ (A0 → B) ∈ � for arbitrary B. In view of A0 �∈ � and that
� is prime, we obtain (A0 → B) ∈ �. This together with � ⊆ � implies (A0 → B) ∈ �,
and with A0 ∈ �, we obtain B ∈ �. But since B is arbitrary, � will be trivial and this
contradicts the assumption that � is nontrivial.

We can then consider the submodel of the canonical model with X = {�} where � ⊇
� such that � is pdc and A �∈ �, obtained in view of Lemma 3.7. This completes the
proof. �

3.3. Equivalence of Gentzen and Hilbert systems. By making use of the above com-
pleteness results, we establish the equivalence of the Gentzen and Hilbert systems.

PROPOSITION 3.11. For any finite set (� ∪ {A}) ⊆ Form, if � �hi A then
GIP � � ⇒ A.

Proof. The proof is by induction on the length of derivations in HIP. �

PROPOSITION 3.12. For any finite set (� ∪ {A}) ⊆ Form, if GIP � � ⇒ A then
� �hi A.

Proof. Let τ (� ⇒ �) = ∧
� → ∨

�, where
∧

∅ = (p → p) and
∨

∅ = (p ∧∼∼p)
for some fixed p ∈ Prop. We first note that GIP � � ⇒ A iff GIP � ∅ ⇒ τ (� ⇒ A).
In view of the completeness of HIP w.r.t. the semantics from Definition 3.1, it is enough
to show that for every sequent rule S1...Sn

S of GIP, we have {τ (S1), . . . , τ (Sn)} |�IP τ (S).
For axiomatic sequents, this is obvious, and since (cut) is eliminable, (cut) need not be
considered. Here we present two of the remaining cases.

• Case (∼∼left): Suppose 1 ∈ I (w, τ(� ⇒ A)), 1 ∈ I (w, ∼∼A), and 1 ∈ I (w,
∧

�).
Then: 1 ∈ I (w, ∼∼A) iff 0 ∈ I (w, ∼A) iff for all x ∈ W such that w ≤ x :
1 �∈ I (x, A). Since w ≤ w, we have 1 ∈ I (w,

∧
�) and 1 �∈ I (w, A), which

contradicts 1 ∈ I (w,
∧

� → A). Thus, 1 ∈ I (w, τ(∼∼A, � ⇒)).
• Case (∼∼right): We reason by contraposition. Suppose that 1 �∈ I (w, τ(� ⇒

∼∼A)). Then 1 ∈ I (w,
∧

�) and 1 �∈ I (w, ∼∼A). But then 1 �∈ I (w, ∼∼A) iff
0 �∈ I (w, ∼A) iff there exists x ∈ W with w ≤ x and 1 ∈ I (x, A). By heredity,
1 ∈ I (x,

∧
�), which contradicts 1 ∈ I (w, τ(A, � ⇒)).

This completes the proof. �

PROPOSITION 3.13. For any finite set (� ∪ {A}) ⊆ Form, if � �hc A then
GCP � � ⇒ A.
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Proof. The proof is by induction on the length of derivations in HCP. �

PROPOSITION 3.14. For any finite set (� ∪ {A}) ⊆ Form, if GCP � � ⇒ A then
� �hc A.

Proof. Note that GCP � � ⇒ A iff GCP � ∅ ⇒ τ (� ⇒ A). By the completeness
of HCP w.r.t. its truth table semantics from Definition 3.3, it is enough to show that for
every sequent rule S1...Sn

S of GCP, we have {τ (S1), . . . , τ (Sn)} |�CP τ (S). Since (cut) is
eliminable, (cut) need not be considered. For the axiomatic sequents the proof is obvious,
and for the remaining sequent rules of GCP one may use the truth tables. �

§4. Technical reflections. Here are a few more results related to CP and IP.

4.1. Inconsistency. We first observe that there is a contradictory pair of formulas being
provable in both CP and IP. To this end, the following lemma is useful.

LEMMA 4.1. The following formulas are derivable in IP.

(A → B) → (∼∼B → ∼∼A) (1)

∼∼(A ∨ B) → (∼∼A ∧ ∼∼B) (2)

A → ∼∼∼∼A (3)

Proof. We only need to recall the axioms (Ax9) and (Ax10). The details are left to
interested readers. �

PROPOSITION 4.2. The following formulas are derivable in IP, and therefore in CP as
well.

∼∼(A → A) → B (4)

∼∼∼∼∼(A ∧ ∼∼A) (5)

∼∼∼∼∼∼(A ∧ ∼∼A) (6)

Proof. For (4), just note that we have ((A → A) ∧ ∼∼(A → A)) → B as an instance
of (Ax10). For (5), the proof runs as follows:

1 ∼(A ∧ ∼∼A) ↔ (∼A ∨ ∼∼∼A) [(Ax11)]
2 ∼∼∼(A ∧ ∼∼A) ↔ ∼∼(∼A ∨ ∼∼∼A) [1, (1)]
3 ∼∼(∼A ∨ ∼∼∼A) ↔ (∼∼∼A ∧ ∼∼∼∼∼A) [2, (2)]
4 (∼∼∼A ∧ ∼∼∼∼∼A) → ∼∼∼(A ∧ ∼∼A) [(Ax10), taking ∼∼∼(A ∧ ∼∼A) for B]

5 ∼∼∼(A ∧ ∼∼A) → ∼∼∼∼∼(A ∧ ∼∼A) [2, 3, 4]
6 ∼∼∼∼∼(A ∧ ∼∼A) [5, (Ax9)]

Finally, for (6), note first that we obtain ∼∼(A ∧ ∼∼A) by making use of (Ax9’) and
(Ax10). Therefore, in view of (3), we obtain the desired result. �

REMARK 4.3. (4) implies that CP is not a subsystem of classical logic, but is orthogonal
to it like systems of connexive logic (cf. [24]).1 Moreover, (5) and (6) show that CP and
IP are inconsistent.2 Note finally that we have a more simple instance in the case of CP,

1 We here assume that ∼ is a negation. More on this is discussed in §5.1.
2 An anonymous reviewer correctly pointed out to us that we have both ∼(A ∧ B) and ∼∼(A ∧ B)

as theses if we have that ∼A is a thesis and that B is like a bottom, namely that B ⇒ is derivable
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namely ∼(A ∧ ∼∼A) and ∼∼(A ∧ ∼∼A). The latter is already provable in IP, as we
observed above, and the former is immediate in view of (Ax11) and (Ax9’).

4.2. Functional completeness. We now turn to show that the matrix that characterizes
CP is functionally complete as a corollary of a general characterization of functional
completeness. To this end, we first introduce some related notions.

DEFINITION 4.4 (Functional completeness). An algebra A = 〈A, f1, . . . , fn〉, is said to
be functionally complete provided that every finitary function f : Am → A is definable by
superpositions of the functions f1, . . . , fn alone. A matrix 〈A,D〉 is functionally complete
if A is functionally complete.

DEFINITION 4.5 (Definitional completeness). A logic L is definitionally complete if there
exists a functionally complete matrix that is strongly adequate for L.

For the characterization of the functional completeness, the following theorem of Jerzy
Słupecki is useful. In order to state the result, we need the following definition.

DEFINITION 4.6. Let A = 〈A, f1, . . . , fn〉 be an algebra, and f be a binary operation
defined in A. Then, f is unary reducible iff for some unary operation g definable in A,
f (x, y) = g(x) for all x, y ∈ A or f (x, y) = g(y) for all x, y ∈ A. And f is essentially
binary if f is not unary reducible.

THEOREM 4.7 (Słupecki, [19]). A = 〈〈V, f1, . . . , fn〉,D〉 (�V ≥ 3) is functionally com-
plete iff in 〈V, f1, . . . , fn〉

(i) all unary functions on V are definable and
(ii) at least one surjective and essentially binary function on V is definable.

Based on this elegant characterization by Słupecki, the desired result is obtained as
follows. In case of expansions of the algebra related to FDE, we can simplify even further.

THEOREM 4.8. Given any expansion F of the algebra 〈V, ∧, ∨〉 the following are equivalent:

(i) F is functionally complete.
(ii) All of the δas as well as Cas (a ∈ {t, b, n, f}) of the following tables are definable.

x δt(x) δb(x) δn(x) δf(x) Ca(x)
t t f f f a
b f t f f a
n f f t f a
f f f f t a

REMARK 4.9. The above result is essentially the theorem proved in [17, Theorem 3.6],
but with the simplification that we can replace 〈V, ∼, ∧, ∨〉 (where ∼ here is the de Morgan
negation) by 〈V, ∧, ∨〉. This is possible since if we have the eight unary functions, then we
can define the de Morgan negation as follows:

(δt(x) ∧ Cf) ∨ (δb(x) ∧ Cb) ∨ (δn(x) ∧ Cn) ∨ (δf(x) ∧ Ct).

THEOREM 4.10. CP is definitionally complete.

in GIP. Although it is rather easy to find a bottom, note that it is not so obvious to find a thesis of
the form ∼A, as we have a rather lengthy derivation above.
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Proof. In view of the above theorem, it suffices to prove that all of the δas as well as
Cas (a ∈ {t, b, n, f}) are definable in 〈V, ∼, ∧, ∨, →〉. And this can be done as follows.
x ¬¬(∼x∨∼∼x) ¬(∼x→∼∼x) ¬(∼∼x→∼x) ¬¬(∼x∨∼∼x) x∨∼∼x ∼(x∧∼∼x) ∼(x∨∼∼x) x∧∼∼x
t t f f f t b n f
b f t f f t b n f
n f f t f t b n f
f f f f t t b n f

Note here that ¬x is defined as x→(x ∧ ∼∼x) and has the following truth table.

x ¬x
t f
b f
n t
f t

This completes the proof. �

REMARK 4.11. If the functional completeness of CP is the only concern, then by a
result established by Arnon Avron in [3, Theorem 3.10], it suffices to show that de Morgan
negation, Cb, and Cn are definable in 〈V, ∼, ∧, ∨, →〉.3

4.3. Post completeness. Finally, we note the Post completeness of CP.

DEFINITION 4.12. The logic L is Post complete iff for every formula A such that �� A, the
extension of L by A becomes trivial, i.e., �L∪{A} B for any B.

THEOREM 4.13 (Tokarz, [20]). Definitionally complete logics are Post complete.

In view of Theorems 4.10 and 4.13, we obtain the following result.

COROLLARY 4.14. CP is Post complete.

REMARK 4.15. Given its Post completeness, we obtain that the addition of any formulas
which are not valid in CP will make the system trivial. In particular, the following formulas
can not be added without falling into triviality:

• ∼∼A → A
• A → ∼∼A
• (A ∧ ∼A) → B
• A ∨ ∼A

§5. Philosophical reflections.

5.1. Is ∼ a negation? The pressing question is probably the following: is ∼ a negation
at all? Note first that a very modest requirement for a unary connective to deserve the
classification as a negation can be found in [14, 2, 25]: a unary connective ¬ is a negation
in a logic L if there exist L-formulas A and B such that in L, A �� ¬A and ¬B �� B. This
condition is clearly satisfied by Kamide’s ∼.

Can we say something even more? We believe we can. To this end, let us first recall the
truth and falsity conditions for ∼ from Definition 3.1.4

3 We would like to thank an anonymous reviewer for pointing this out to us.
4 In the following discussion, we will not relativize the conditions with respect to worlds/states for

the sake of simplicity.
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• 1 ∈ v(∼A) iff 0 ∈ v(A)
• 0 ∈ v(∼A) iff 1 �∈ v(A)

This shows that there is a sense in which ∼ is a negation: the truth condition is exactly the
one for the negation in FDE. However, there is another sense in which ∼ is not a negation:
the falsity condition is more like that for “affirmative” operators. In the end, one’s answer
heavily depends on the account of negation one is ready to accept. In what follows, we
classify how one may answer the question.

One of the related questions that is crucial is: what is negation? We believe that the
following answer, offered in [7], will be almost universally accepted:

Negation is in the first place a phenomenon of semantical opposition.

Of course, the next question will be to ask what a semantical opposition is. In the present
context in which the two-valued relational (or Dunn) semantics is available, it seems that
there are at least two kinds of semantical opposition: one between truth and falsity, and the
other between truth and untruth.5

5.1.1. Semantic opposition in terms of truth and falsity. If one follows the idea that
semantic opposition should be understood in terms of truth and falsity, then there seem to
be three choices:

• require that ∼A is true iff A is false;
• require that ∼A is false iff A is true;
• require that ∼A is true iff A is false, and that ∼A is false iff A is true.

The first choice is considered, for example, by Arnon Avron in [4] who regards the non-
classical negation as representing “the idea of falsehood within the language” ([4, p. 160]).
The second choice seems to be not considered explicitly in the literature, but it also has
some intuitive appeal: if A is true and negation is about semantic opposition between truth
and falsity, then it seems to be quite reasonable to require that ∼A is false, and vice versa.
The third choice, combining the first and the second options, boils down to the account of
negation understood as the flip-flopping operator between truth and falsity as in FDE.

Among these three choices, only the first choice justifies to claim that the unary opera-
tion ∼ in CP is a negation. But the point to be emphasized here is that there is a way to
make sense of the rather unusual unary operation as a negation.

5.1.2. Semantic opposition in terms of truth and untruth. If one follows the idea that
semantic opposition should be understood in terms of truth and untruth, then there seems
to be only one way to go:

• require that ∼A is true iff A is untrue.

But this path will not lead us to claim that the unary operation ∼ in CP or IP is a negation.
Note, of course, that in view of Remark 3.4, ∼∼ will be counted as negation in CP, as the
title of [10] claims.

In sum, we observed that there are accounts of negation, including the one discussed by
Avron, that count the unary operation ∼ of IP and CP as a negation.

5.2. Contra-classicality. Contra-classical logics are, roughly speaking, those that are
orthogonal to classical logic. More specifically, following Humberstone, a logic is contra-

5 To be sure, there are more kinds of opposition, namely those between falsity and nonfalsity,
between nonfalsity and untruth, between truth and nonfalsity, and between falsity and untruth.
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classical “just in case not everything provable in the logic is provable in classical logic”
([9, p. 438]).6 There are a few contra-classical logics in the literature, such as connexive
logics and Abelian logics, but one might have the impression that contra-classical logics
are quite remote from the other classical and nonclassical logics.7 This is, however, not
necessarily the case in a certain context.

Indeed, let us recall the semantics for IP and CP. Then, the only deviation from the
more familiar systems is the falsity condition for the unary operation ∼. In fact, this can be
generalized in the following manner. In the context of expansions of the four-valued logic
of Belnap and Dunn, if we take the relational semantics due to Dunn, then some tweaking
on the falsity conditions of connectives will lead us to contra-classical logics. Here are a
couple of examples.

EXAMPLE 5.1. First, let us deal with the conditional, and for the sake of simplicity
assume the following truth condition:

• A → B is true iff A is not true or B is true.

Now, the most well-studied falsity condition is probably the following:

• A → B is false iff A is true and B is false.

However, if we replace this condition by the following condition, then we obtain so-called
connexive logics:

• A → B is false iff A is not true or B is false.

The resulting expansion of Belnap–Dunn logic is the system MC from [24]. Too see the
contra-classicality, we may observe that both (A ∧ ∼A) → A and its negation is
valid/derivable in MC.8

Note finally that this idea from [23] can be applied to many other contexts, not restricted
to the above simple case. Indeed, the conditional maybe constructive, or even relevant
(cf. [23, 16]).

EXAMPLE 5.2. Second, let us deal with disjunction. Then the standard truth and falsity
conditions are as follows:

• A ∨ B is true iff A is true or B is true,
• A ∨ B is false iff A is false and B is false.

Now, in the literature of bilattice logics, there is a connective ⊕, called informational join,
which shares the truth condition with the usual disjunction, but has the following falsity
condition:

• A ⊕ B is false iff A is false or B is false.

That is, the falsity condition for ⊕ is exactly the same as that of the more standard conjunc-
tion. As is well-known, this difference in the falsity condition is a result of some bilattice
theoretic considerations, not something introduced in an ad hoc manner.

The resulting expansion of Belnap–Dunn logic obtained by adding informational meet
as well as the standard, “weak” (not the connexive!) conditional is known as BL⊃ due to

6 For a much more detailed discussion on the definition of contra-classical logics, see [9].
7 Note here that there are some contra-classical modal logics discussed by Humberstone in [9].
8 Note of course that ∼ here is the more usual de Morgan negation.
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Arieli and Avron [1]. And to see the contra-classicality, we may observe that both (A⊃A)⊕
∼(A⊃A) and its negation is valid/derivable in BL⊃.

So, these are instances in which the falsity conditions for the conditional and disjunction
are involved. Repeating the earlier remark, our observations in this article show that we can
also take a somewhat unusual falsity condition for negation to obtain more contra-classical
logics.

In sum, we hope to have established that contra-classicality is not too far away if we are
already in the realm of Belnap–Dunn logic.

5.3. Applications. One may wonder whether the simulation of intuitionistic negation
and classical negation as a double paraconsistent negation is just a formal possibility
(or even curiosity), or whether treating double negation as negation could have some
interesting applications.9 It is well-known that multiple negation in natural language often
comes with a combination of different kinds of negation, as, for instance, in “not unhappy”
or “not impossible”, where the strongly (predicate term) negating prefixes “un-” and “ im-”
occur in the scope of the weaker sentential negation “not”. In [7] it is pointed out that whilst
such examples of multiple negation in natural language require a more subtle analysis
of the idea of duplex negatio affirmat, the phenomenon of negative concord exemplifies
the principle duplex negatio negat. In [5, p. 4], the phenomenon of negative concord is
introduced by explaining that in negative concord sentences, “single negative meanings
are expressed by two or more negative words.” Negative concord can be found in certain
varieties of English, for example in lyrics (“I shot the sheriff, but I didn’t shoot no deputy”,
Bob Marley; “We don’t need no education”, Pink Floyd). Some natural languages, such as
Classical Latin, seem not to display negative concord; some languages, such as German,
seem to have preserved it only in a number of dialects, whereas in lyrics it seems to work
(“Keine Macht für Niemand”, Ton Steine Scherben). In other natural languages, such as
Italian, negative concord is often obligatory.

Van der Wouden [21], distinguishes between four kinds of multiple negation in natural
language. In [26, p. 57 f.] they are presented as follows:

• Double Negation: Two negative elements cancel each other and yield an affirmative.
• Weakening Negation: One negative element weakens the negation of another neg-

ative element. The result is somewhere between a positive and a negative.
• Negative Concord: two or more negative elements yield one negation in the seman-

tics.
• Emphatic Negation: One negative element enforces another negative element. The

result is stronger than it would be the case with just the second negative element.

According to that classification, Kamide’s negations as double negations express nega-
tive concord.

§6. Concluding remarks. In [10, 11], Norihiro Kamide exploits the explicit distinc-
tion between support of truth and support of falsity conditions in the semantics on Nelson’s
paraconsistent logic N4 to simulate intuitionistic negation by double negation in a variant
IP of N4, and classical negation in a variant CP of B→

4 . We have presented both systems,
IP and CP, as Hilbert-style axiom systems, and, in particular, we have presented CP as a

9 Note that Humberstone discusses a motivation very briefly in [8, p. 2].
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four-valued logic. Although at first sight Kamide’s approach may appear to be disturbingly
unusual, the fact that it exemplifies a general method for obtaining contra-classical systems
might turn out to be useful in future investigations of contra-classicality. Moreover, systems
such as CP and IP might turn out to be useful for analyzing the phenomenon of negative
concord.
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