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SUMMARY
This paper addresses the swing-free transport of simply
suspended objects which cannot be grasped by robot
manipulators, and therefore, must be carried by a hook or a
similar device attached to the manipulator endpoint. Two
methods are presented to stop the suspended object in a
swing-free state at the end of a move/gross motion; (1)
limiting transportation time, thus stopping the manipulator
at the instant when the object completes one or more full
cycle(s), and (2) adjusting traveling time of each section of
a three-piece continuous trajectory provided that a given
transportation time is unchanged. A hydraulically actuated
robot manipulator carrying a compound pendulum was
employed as an experimental system to test the methods.
Simulation and experimental results are presented to
demonstrate the feasibility of both methods. It is concluded
that while limiting transportation time is not a preferred way
to eliminate swing at the end of the move as it depends on
the period of oscillation of the suspended object, the latter is
a more practical and applicable method and is valid for
moves of any length. The results reveal that by properly
planning the acceleration of the transporting device, a robot
manipulator or a similar device such as a crane, a swing-free
stop is obtainable. The proposed approaches are simple and
easy to implement.

KEYWORDS: Suspended objects; Swing-free transportation;
Motion design; Acceleration planning; Robots; Crane.

1. INTRODUCTION
In most robotic applications, the load carried by a robot
manipulator is held firmly and not allowed to move relative
to the gripper. In such a case, the load may be assumed to be
a part of the last link. Many researchers consider the load
like this and assume it to do the same motion as the last link
of the manipulator. But, in some cases, the load may be able
to move or swing, and thus displays a motion separate from
the manipulator. Such applications can be typified by an
object suspended from the manipulator end point via a
hook-like device,1 the transport of large objects in a factory
environment by the use of a bridge crane by which the
object is raised, transported and lowered on a target
location,2 and a molten-metal filled container carried by a
manipulator in a foundry where the molten-metal should not
splash at the end of the transportation where pouring the

metal into the molds takes place. The transport of such
objects generally result in undesired swing at the end of a
move.

In order to stop a suspended object in a swing-free state,
Starr,1 has suggested a trajectory consisting of an accelera-
tion part, where the suspension point is accelerated stepwise
until half the desired transportation velocity is reached and
then is further stepwise accelerated to the specified final
velocity which is attained at a point roughly at one-fourth of
the transportation velocity times the period of natural
oscillation of the suspended object, and a deceleration part,
where the same process is applied in reverse. Later, Strip,2

has reported on the swing-free transportation of suspended
objects that the suspension point begins to be decelerated at
the same rate as it is accelerated, starting at a distance from
its goal equal to the distance travelled while accelerating.
This distance is reported to be one-half the acceleration of
the suspension point times the square of the natural period
of oscillation of the object.

In this study, two methods are presented to eliminate
swing at the end of any move provided that the transporta-
tion device has zero initial and final velocities and
accelerations, based on choosing an appropriate trajectory
for the suspension point. Trajectories employed are different
than those reported before.1–5 It is therefore believed that
this study contributes to the efforts to eliminate swinging of
suspended objects. We assume that the compliance existing
in the transmission and structural elements does not cause
considerable vibration of the manipulator endpoint during
and at the end of the move, and the suspension point follows
a pre-determined path with a certain velocity and accelera-
tion. This is verified by the experimental results presented in
Section 4, the prismatic joint following a commanded
trajectory without any vibration. Employing a preshaped
desired input strengthens this assumption.3,4,6 To demon-
strate the feasibility of both methods, we consider two
trajectories based on a cycloidal motion which is commonly
used as a high-speed cam profile, continuous throughout
one cycle. This does not introduce any high frequency
inputs to the system and hence reduces unwanted dynamic
effects. A full cycloid is proposed for the first method, and
a three-piece trajectory which consists of a half cycle
accelerating cycloid, a ramp (a constant velocity) and a half
cycle decelerating cycloid for the second. Note that both
trajectories for the transportation device are continuous to
the first order. Any other trajectory which has no abrupt
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changes in position, velocity and acceleration from the
beginning to the end of the motion also can be employed.

This study proves that the method of limiting transporta-
tion time restricts the transportation time to the period of
natural oscillations of the suspended object and is not a
versatile method. On the other hand, the method of using a
three-piece trajectory is valid for moves of any length and is
a versatile method to prevent swing at the end of a move.
Note that the traveling time for each piece of the three-piece
continuous trajectory are adjusted such that a given
transportation time and continuity of velocities at the
junctions are satisfied, and there is no swing at the end of
the move. As given in section 3.2, the traveling times for the
accelerating and decelerating eras are selected in order to
prevent accelerations and decelerations out of the capability
of the transporting device, and the traveling time for the
constant velocity or zero acceleration era are calculated. An
object suspended at the end of a robot manipulator by a
hook-like device is considered and its equation of motion is
solved on a digital computer for the acceleration profile of
the suspension point. Simulation results have been verified
on a hydraulically actuated robot manipulator whose
translational link carrying a compound pendulum. Simula-
tion and experimental results reveal that both methods are
applicable and easy to implement on a real system.

2. MODELLING AND ANALYSIS OF SUSPENDED
OBJECT
Consider an object suspended from the end of a robot
manipulator by a hook, as depicted in Figure 1, where “O”
is the point of suspension, “x” is the horizontal displace-
ment of point “O”, u is the angular displacement of the
object with the vertical, m is the mass of the object, IG is the
mass moment of inertia about the center of gravity of the
object, r is the radial distance from the center of gravity to
the point of suspension “O”. We assume that the manip-

ulator endpoint moves and accelerates in one direction, say
in x direction. The mathematical model of the suspended
object can be derived by employing Lagrangian equation
defined as follows7

d
dt S ­L

­q̇i
D2

­L
­qi

=Fi, i=1, 2, 3, ......n (1)

where L is the Lagrangian defined as L=T2V, T and V
denote respectively, the total kinetic energy and the total
potential energy of the system, qi represents the set of
generalised coordinates, and Fi is the generalised force
acting along the i-th generalised coordinate. For this work,
there are no generalised forces Fi explicitly acting on the
object and the generalised coordinate is the angle u made by
the axis of symmetry of the object with the vertical.

The total  kinetic energy of the suspended object with
mass m and mass moment of inertia IG is;

T=
1
2

mV2
G +

1
2

IGu̇2 =
1
2

m(ẋ2 +r2u̇2 +2rẋu̇ cos u )+
1
2

IGu̇2

(2)

where vG is the linear absolute velocity of the mass center of
the object, and u̇ is the time derivative of the angle u. The
gravitational potential energy of the suspended object with
respect to the resting position of the mass center is;

V =mgr(12cosu) (3)

Employing Lagrange formulation defined by Eq. 1 for the
generalised coordinate u gives the following differential
equation of motion;

ü +
mgr

Io

sinu=2
mr
Io

ẍcosu, where Io =IG +mr2 (4)

Eq. 4 is a nonlinear differential equation which can be
linearised by substituting sin u=u and cos u=1 into Eq. 4
with an error less than 1%, if u<5.5° of its motion.8 Eq. 4,
then becomes:

ü+v2
nu=Kẍ, where v2

n =
mgr

Io

, K=2
vn

g
(5)

vn being the natural frequency, note that the motion of the
suspended object is a simple-periodic motion while the
point of suspension “O” is accelerating with ẍ which is the
forcing function exciting the suspended object. Depending
on the form of ẍ, the solution for Eq. 5 is obtained.

3. ELIMINATION OF SWING
The acceleration profile for the suspension point “O” is
assumed to be known and can be mathematically defined.
The acceleration trajectory of a full cycloid, and a three-
piece trajectory are employed for the first and the second
approaches, respectively.

3.1 Limiting Transportation Time
A full cycloidal motion profile for the pre-determined path
of the suspension point which has continuous derivatives at

Fig. 1. An object suspended from a manipulator endpoint via a
hook.
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the beginning and at the end of a move is expressed as;

x=
X
2p F 2pt

t
2sin 2p

t
t G (6)

where X is the total distance to be travelled, t is time into
motion, and t is the total traveling time. So, the correspond-
ing acceleration profile is;

ẍ=R sin v t where R=
2pX

t2 , v=
2p

t
(7)

This acceleration profile is employed to demonstrate the
feasibility of the method of limiting traveling time to
eliminate swing. Any other end point trajectory which has
no abrupt changes in position, velocity and acceleration
from the beginning to the end of the motion can be similarly
employed.

The solution of Eq. 5 under the acceleration profile
defined by Eq. 7 for zero initial conditions is

u(t)=
KR

v2
n 2v2 Fsinvt2

v

vn

sin vnt G
= DFsinvt2

v

vn

sinvntG (8)

This solution is valid until t=t. After that time, ẍ=0, and
the solution of Eq. 5 becomes;

u=A sin vn(t2t)+B cos vn(t2t) (9)

The arbitrary constants A and B are evaluated from the final

value of Eq. 8 and its time derivative at t=t. They are found
as

A=D
v

vn

(cos vt2cos vnt)

B=D S sin vt2
v

vn

sin vnt D (10)

It is essential to set A and B to zero simultaneously to have
no swing after t>t. This yields the following solution for
the total traveling time t;

t=
n2p

vn

=n2pÎ Io

mgr
, n=2, 3, 4 ..... (11)

Note that Eq. 11 gives the second and higher harmonics of
the natural period of oscillation of the suspended object.
The differential equation of motion of the suspended object
is solved on a digital computer for the cycloidal motion
profile for the given duration determined from Eq. 11,
using the MATLAB function “ode45” based on fourth and
fifth-order Runge-Kutta numerical integration algorithms.9

The period of oscillation of the compound pendulum
considered is  taken as 1.4 seconds or the natural frequency
4.4867 rad/sec. The distance X to be covered is arbitrarily
taken as 0.292 m in the simulation. The same data is used in
Section 4 for experimental verification. The simulation
result is depicted in Figure 2. Note that there is no swing
when t>t. When the duration is provided without consider-
ing Eq. 11, the suspended object keeps swinging at the end
of the move, as seen in Figure 3.

Fig. 2. Swing-free response of the suspended object for n=2.
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3.2 Adjusting Traveling Time for Each Piece of a Three-
piece Trajectory
Rather than accelerating and then decelerating the trans-
portation device consecutively, it might be advantageous to
have a constant velocity period after an acceleration period,
and then a deceleration period in order to stop at the end of
any desired distance. A trajectory consisting of a half
cycloid accelerating, a ramp (constant velocity) and another
half cycloid decelerating, which is depicted in Figure 4, is

employed to satisfy those requirements. This is widely used
in the design of cam contours.10 The swing generated by a
dynamic load at the end of the move can be eliminated by
adjusting the traveling duration for each profile, as in that of
the follower of a cam mechanism.

The problem set forth now is to determine the amplitude
and the duration of each half cycloid motion segment such
that the total distance covered is the desired distance of
travel and the total time elapsing is equal to the traveling

Fig. 3. Swinging response of the suspended object for n=2.5.

Fig. 4. A trejectory consisting of a cycloid, a constant velocity, and a cycloid.
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time. Also, the velocities of all profiles at the junction must
be equal. This provides a first order continuity in the motion
of the transporting device. For high speed applications, a
second order continuity may be sought for by using double
harmonic motion profiles. Each part of the three-piece
trajectory and their second time derivatives are given as

x1 =X1F t
t1

2
1
p

sin p
t
t1
G , ẍ1 =

pX1

t2
1

sin
p

t1

t=R1 sin v1t

x2 =
X2

t2

t, ẍ2 =0, (12)

x3 =X3F t
t3

+
1
p

sin p
t
t3
G ,

ẍ3 = 2
pX3

t2
3

sin
p

t3

t=2R3 sin v3t,

where X1, X2, X3 are the distances covered and t1, t2, t3, are
the elapsing times for the first, second and the third motion
segments, respectively, hence

X=X1 +X2 +X3 and t=t1 +t2 +t3,

R1 =
pX1

t2
11

, v1 =
p

t1

, R3 =
pX3

t2
31

, v3 =
p

t3

.

A velocity match at the junction P and Q require,
respectively

2X1

X2

=
t1

t2

and
X1

X3

=
t1

t3

(13)

We assume that the traveling time t1 and t3 are equal to each
other and therefore X1 and X3 distances covered in, the
accelerating and decelerating parts are also equal. They are
to be specified according to the acceleration and decelera-
tion capability and the maximum available velocity of the
transporting device. So, the traveling time for the constant
velocity trajectory and its amplitude are evaluated from the
conditions of zero swing at the end of the move and the
proper velocity match at the junctions P and Q.

Since Eq. 5 is a linear differential equation, it can be
solved consecutively for three forcing functions between the
specified time intervals. For zero initial conditions and the
interval of 0≤ t≤t1, the solution for the differential equation
given by Eq. 5 is

u1(t )=
KR1

v2
n 2v2

1
F sin v1t2

v1

vn

sin vnt G
=D1F sin v1t2

v1

vn

sin vnt G (14)

For the interval of t1 ≤ t≤ (t1 +t2), where ẍ of Eq. 5 is ẍ2, it
is;

u2(t)=A2 sin vn(t2t1)+B2 cos vn(t2t1) (15)

where

A2 =2D1

v1

vn

[1+cos vnt1], B2 =2D1

v1

vn

sin vnt1

For the interval of (t1 +t2)≤ t≤ (t1 +t2 +t3), where ẍ of Eq. 5
is ẍ3, it is;

u3(t)=A3 sin vn(t2t1 2t2)+B3 cos vn(t2t1 2t2)

2
KR3

v2
n 2v2

3

sin v3(t2t1 2t2) (16)

where

B3 =u2(t2), A3 =
u̇2(t2)+D3

vn

, D3 =
KR3v3

v2
n 2v2

3

For the interval of t>(t1 +t2 +t3), where ẍ of Eq. 5 is zero,
it is;

u4(t)=A4 sin vn(t2t)+B4 cos vn(t2t) (17)

where

B4 =u3(t3), A4 =
u̇3(t3)

vn

It is essential to set A4 and B4 to zero simultaneously to have
no swing after t>t. As mentioned before, the traveling
duration and amplitudes for the accelerating and decelerat-
ing sections are provided to prevent a possibility of
requiring accelerations and decelerations out of the capa-
bility of the manipulator. The only unknown is then the
constant velocity duration t2. It is evaluated such that the
total duration and the total amplitude are the desired
traveling time and the desired distance. t2 explicitly appears
in A3 and B3 of Eq. 16 from which,

B3 =A2 sin vnt2 +B2 cos vnt2

(18)

A3 2
D3

vn

=A2 cos vnt2 2B2 sin vnt2

A3 and B3 are calculated from Eq. 17 by equating A4 and B4

to zero. A2 and B2 are obtained from Eq. 15. Note that
Eq. 18 consists of two nonlinear-trigonometric equations,
and they are converted into simultaneous nonlinear polyno-
mial equations by using tangent half-angle identities;

(B2 +B3)s
2 22A2s+(B3 2B2)=0

SA3 2
D3

vn

+A2D s2 +2B2s+ SA3 2
D3

vn

2A2D=0
(19)

where

s=tanS vnt2

2 D
To give an example, Eq. 19 is simultaneously solved for
t1 =t3 =1.2 seconds, X1 =X3 =0.125 meters and vn =4.4867
rad/sec. The unknown t2 is calculated as 0.200 second, and
the corresponding amplitude X2 is determined by employing
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Eq. 13. Consequently, it is possible to have solutions
satisfying Eq. 19 simultaneously. Then by using the
specified and the calculated quantities, the differential
equation of motion given by Eq. 5 is solved on a digital
computer for each of the forcing functions again using the
MATLAB function “ode45”. The solution obtained is
depicted in Figure 5, where it is clearly seen that there is no
swing when t> (t1 +t2 +t3). When the duration for each part

is provided without considering the approach presented
above, the suspended object keeps swinging at the end of
the move, as seen in Figure 6.

4. Experimental Verification
The experimental set-up is shown in Figure 7. Key elements
of the set-up are a hydraulically actuated manipulator of
Stanford type, a compound pendulum attached to the tip of

Fig. 5. Swing-free response of the suspended object.

Fig. 6. Swinging response of the suspended object.
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the sliding link comprising the dynamic load, a conductive
plastic servo potentiometer to measure the swing of the
suspended object, and hardware to control and command
the manipulator, and read the potentiometer output. The
manipulator links are controlled by Bosch regulator valves
of 0811 404 028 type.11

The object of the experimental work has been to illustrate
the effectiveness of the methods in preventing the swing of
suspended objects. The translational link of the manipulator
was kept parallel to the ground and was given the
trajectories proposed in Section 3.

4.1 Experimental Results
Two sets of experimens have been conducted. The first set is
for the method of constraining traveling time and the second

is for that of adjusting the traveling time for each piece of a
three-piece trajectory. In all the experimental results pre-
sented in this section, the top plot is the desired position
input to the prismatic joint and the corresponding response,
and the bottom plot is the recorded swing of the compound
pendulum. Figure 8 shows the experimental result when the
traveling time is calculated from Eq. 11, i.e., t=2.8 seconds
and the distance traveled is 0.292 m. This experimental
result corresponds to the simulation result presented in
Figure 2. Figure 9 shows the experimental result when the
traveling time does not satisfy Eq. 11 i.e., t=3.5 seconds.
This experimental result corresponds to the simulation
result shown in Figure 3. Note that there is a close
correspondence between the experimental and simulation
results.

The experimental result shown in Figure 10 is for the case
when the traveling time for each piece of the three-piece
trajectory are adjusted according to the theory presented in
subsection 3.2. The data used for this result is the data in the
simulation result depicted in Figure 5, i.e., t1 =t3 =1.2
seconds, t2 =0.20 second, X1 =X3 =0.125 m X2 =0.042 m.
Figure 11 shows the experimental result when the traveling
times are not adjusted according to the theory. It is obtained
for t1 =t3 =1.0 second, t2 =0.600 second, X1 =X3 =0.091 m
and X2 =0.110 m. Note that the total traveling time and the
total distance traveled are unchanged. This experimental
result corresponds to the simulation result presented in
Figure 6.

Note that when the manipulator was commanded to
follow a given trajectory without obeying the methods of
adjusting the transportation time, the swing of the com-
pound pendulum was exceptionally high, compare Figure 8
and Figure 9, and Figure 10 and Figure 11. Comparing
Figure 2 and Figure 8, Figure 5 and Figure 10, it is clear that

Fig. 7. Configuration of the robot manipulator and experimental
set-up.

Fig. 8. Experimental swing-free response of the suspended object for t=2.8 seconds.
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the methods perform as well on a real system as illustrated
by simulation.

5. CONCLUSIONS
Two ways of eliminating the swing of suspended objects in
transportation are presented. The simulation and experi-
mental results reveal that it is possible to obtain a swing-free
motion at the end of a move by employing the method of

constraining the transportation time and the method of a
three-piece combined trajectory. Any acceleration profile
which satisfies the initial and final conditions of the move
and preferably does not excite high frequency dynamics of
the manipulator can be used as the acceleration of the
suspension point. While limiting transportation time is not a
preferred way to eliminate swing at the end of the move as
it depends on the period of oscillation of the suspended
object, the latter is a method which can find more popularity

Fig. 9. Experimental swinging response of the suspended object for t=3.5 seconds.

Fig. 10. Experimental swing-free response of the suspended object for a three-piece trajectory.
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and is valid for moves of any length in practice. This
approach contributes to previously published work from the
point of view of being simple and easy to implement, and
can be considered as a versatile way to determine a
trajectory resulting in no swing at the end of a move. We
conclude that by properly programming the acceleration of
the transporting device, a robot manipulator or a similar
device such as a crane, a swing-free stop is obtainable.
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