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This paper studies fundamental connections between profunctors (that is, distributors, or

bimodules), open maps and bisimulation. In particular, it proves that a colimit preserving

functor between presheaf categories (corresponding to a profunctor) preserves open maps

and open map bisimulation. Consequently, the composition of profunctors preserves open

maps as 2-cells. A guiding idea is the view that profunctors, and colimit preserving functors,

are linear maps in a model of classical linear logic. But profunctors, and colimit preserving

functors, as linear maps, are too restrictive for many applications. This leads to a study of a

range of pseudo-comonads and of how non-linear maps in their co-Kleisli bicategories

preserve open maps and bisimulation. The pseudo-comonads considered are based on finite

colimit completion, ‘lifting’, and indexed families. The paper includes an appendix

summarising the key results on coends, left Kan extensions and the preservation of colimits.

One motivation for this work is that it provides a mathematical framework for extending

domain theory and denotational semantics of programming languages to the more intricate

models, languages and equivalences found in concurrent computation, but the results are

likely to have more general applicability because of the ubiquitous nature of profunctors.

1. Introduction

At first sight, it is perhaps surprising that profunctors†, a categorical generalisation of

relations (Bénabou 1973; Lawvere 1973), and bisimulation (Milner 1989; Park 1981), a

central equivalence in the study of processes, are intimately related. Briefly, the chain of

connections runs:

— Non-deterministic processes can be represented as presheaves. A presheaf over a

category � can be thought of as a form of transition system whose computation paths

have shapes objects in �; the objects of � are paths and the arrows of � express how

one computation path can extend to another. A presheaf category �̂ = [�op, Set] is

the free colimit completion of �, so its objects, presheaves, as colimits, are collections

of paths identified along subpaths. Familiar models of processes, such as the known

categories of synchronisation trees and event structures, and many others, can be

realised as presheaf categories �̂ for some suitable choice of category � (Joyal et al.

1996).

† Also called distributors and bimodules.
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— Bisimulation between processes is caught via spans of open maps. An open map

between presheaves is a generalisation of a functional bismulation between transition

systems (that is, a bisimulation whose underlying relation on states happens to be

a function). In many, though not all, cases the bisimulation obtained coincides with

familiar definitions (Joyal et al. 1996).

— Profunctors correspond to colimit preserving functors between presheaf categories,

which somewhat remarkably preserve open maps and so bisimulation (see Theo-

rem 3.3).

The concept of a bisimulation was invented by Milner and Park as a relation between the

states of labelled transition systems to express when two states have essentially the same

communication capabilities (Milner 1989; Park 1981). Showing processes to be bisimilar

(an equivalence given as a maximum fixed point) amounts to exhibiting a bisimulation (a

postfixed point) relating them. This coinductive method comes from a direct reading of

Tarski’s fixed point theorem (Tarski 1955).

Subsequently, the idea of bisimulation has been extended and generalised to a range

of languages and models, most often based on a transition system obtained from an

operational semantics. Though a pattern has emerged, bisimulation is most often defined

in an ad hoc manner for the language at hand, and sometimes can be a matter of great

subtlety (Merro and Nardelli 2003).

Broadly speaking, there are two lines of development in making the definition of

bisimulation more systematic; so that the variety of bisimulation is determined by the

denotational semantics given to a language. One approach is based on the recognition that

bisimulation arises from final coalgebras. This line is very fruitful in a range of categories

of process models and domain theories, and often furnishes useful proof principles of

coinduction, echoing the technique promoted by Milner and Park (Jacobs and Rutten

1997). The other approach is based on open maps.

Open maps have a prehistory in pure mathematics (Joyal and Moerdijk 1994), but

first appeared in computer science in Joyal et al. (1996). Their initial role was in giving

a unified approach to a range of models for concurrent computation, from interleaving

models like transition systems to independence (or causal) models such as Petri nets and

event structures. As summarised in the handbook chapter (Winskel and Nielsen 1995;

Winskel and Nielsen 1997a), it had become useful to regard models for concurrency as

categories (for example, as a category of transition systems, or a category of Petri nets).

Then the constructions being used to model processes in a variety of models could be

understood in a uniform way, as being the same categorical constructions, and different

models were often related by adjunctions. The diagrammatic definition of open maps,

expressing a path-lifting property, made sense in a range of categories of models for

concurrency.

The landscape of models was, however, somewhat arbitrary and patchy. The categories

of traditional models were not sufficient in themselves to provide semantics to higher

order processes, or even CCS with late value passing. The fact that open maps were based

on paths suggested building models for processes directly on the computation paths of

which the processes were capable. Given a category of computation paths �, the presheaf
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category [�op, Set] is its colimit completion. An individual presheaf X : �op → Set consists

of a collection of computation paths glued together at the shared subpaths, from which

they branch non-deterministically.

Presheaf categories fill in the landscape of models to provide a range of models for

concurrency. They are as versatile as the notion of computation path. With suitable choices

of computation path, presheaves subsume traditional models such as synchronisation trees

(where paths are finite sequences) and event structures (where paths are finite partial orders

of events). (This is one place where a traditional use of powerdomains based on domains

of resumptions (Plotkin 1976) can fall short; being based on a non-deterministic choice

of actions one at a time, it cannot accommodate the potentially complex structure of

computation paths.)

Profunctors are maps relating presheaf categories. As such, profunctors can play a

fundamental role in understanding the semantics of interacting processes, and suggest

a new form of domain theory for concurrency. According to this view, objects of the

bicategory of profunctors Prof , which are small categories �, �, · · ·, stand for types

of processes. A process having type � means that the process performs computation

paths that lie in �. The arrows of Prof are profunctors F : � + �, and thus functors

F : �×� op → Set, and so correspond to functors F : �→ �̂. Because presheaf categories

are free colimit completions, this means that profunctors from � to � correspond to colimit

preserving functors between presheaf categories from �̂ to �̂, and map processes of type

� to processes of type �. The bicategory Prof can be endowed with a rich type discipline

guided by the view of Prof as a model of classical linear logic. In particular, there are

function spaces � � �, the type of higher order processes that take a process of type �
as argument and deliver a process of type � as result. Recursive domain equations can

also be treated in this generalised setting (Cattani et al. 1998).

It is sensible to view a profunctor F : � + � as a linear map that on input of a

process of type � yields a process of type �. Linearity is about how to manage without

a presumed ability to copy or discard, and, accordingly, a linear map uses exactly one

copy of the input process. Although it can be hard or impossible for processes to copy

processes, which may be highly distributed, it is generally easy for processes to ignore

other processes. So, for many applications linearity is too stringent a general requirement

on maps. For example, a profunctor, regarded as a colimit preserving functor between

presheaf categories, will necessarily send the empty presheaf to the empty presheaf; input

of the inactive nil process will always yield the nil process. In linear logic the standard way

around this stringency is to take maps from � to � to be linear maps from F(�) to �
whereF is an operation on types obeying laws including those of a comonad. A choice of

F that allows an input to be discarded, but not copied, will lead to affine maps, while other

choices can support various regimes of copying. This methodology can be followed for

profunctors when different choices ofF determine maps that are linear/affine/continuous

according to whether they use (exactly one)/(at most one)/(finitely many) copies of the

input process.

Whether a map is linear/affine/continuous is reflected in whether a path of its output

is determined by (exactly one)/(at most one)/(finitely many) paths of the input process.

Accordingly, an object ofF(�) can be thought of as a form of compound path consisting
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of an assembly of paths (that is, objects) of �. One interesting case we shall study is when

F(�) is �⊥ consisting of � to which an initial empty path has been freely adjoined. From

this choice we obtain a form of affine linear map, and, accordingly, a model of affine

linear logic. Another interesting case is when F(�) is the free finite colimit completion

of �. An object of F(�) can then be thought of as a finite collection of paths, objects

from �, glued together along subpaths. The associated (continuous) maps correspond to

filtered colimit preserving functors between presheaf categories; the category is cartesian

closed, and a model of intuitionistic logic. This example is fairly well known. But, as we

shall see, there are several other interesting possible choices for F, and they can behave

better with respect to open maps.

Linearity underpins distributed processes. Although we cannot expect all maps to be

linear, it is useful when they are (linear maps preserve colimits, and thus non-deterministic

sums) and, in the standard fashion, we can moderate the strictness of linearity by explicitly

allowing the discarding and copying of processes. The bicategory of profunctors is one

place where all this can be made precise†, while at the same time being rich enough

in structure to subsume a range of models and support bisimulation. The references,

especially those in Section 10, Conclusions, provide the beginnings of a bibliography of its

applications to the semantics of process languages.

Applications and examples

Where appropriate, we will point out applications to process models and the semantics

and equivalences of existing process languages. To a large extent the mathematics has

been developed in order to interpret processes as presheaves. However, we do not see our

primary business as being in chasing up the latest process syntax to give it mathematical

meaning. The mathematics has a curious life of its own, exhibiting much more structure

than is currently reflected in process languages. A role of the mathematics is to suggest

new connections and insights, as well as new process languages and models, operational

semantics and equivalences.

Outline

We start in Section 2 by recalling, for later use, the fundamental definitions and properties

of presheaf categories, open maps and bisimulation, including preservation properties of

open maps across adjunctions. Section 3 is devoted to the proof of a major result: that

colimit preserving functors between presheaf categories preserve open maps. In Section 4

the bicategory of profunctors Prof is introduced alongside the equivalent 2-category

in which arrows are colimit preserving functors between presheaf categories. Section 5

† Another place is in the work of Matthew Hennessy(Hennessy 1994), who in developing a domain theory

for concurrency used a direct analogue of Prof , which was, essentially, based on relations F : �×� op → 2

where the role of the category Set in defining a profunctor has been replaced by the partial order comprising

0 < 1. See, too, the more recent work of Nygaard and Winskel on a domain theory for concurrency based

on this view (Nygaard and Winskel 2004). A semantics based on such relations is not sufficiently sensitive to

the branching behaviour of processes to support bisimulation.
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exhibits the rich structure of the bicategory Prof , explaining the sense in which it can be

made into a model of classical linear logic once a choice of (pseudo) comonad for the

exponential is made. The result on preservation of open maps in Section 3 is extended

to preservation results for Prof in Section 6, showing that composition of profunctors

preserves open maps. Our first candidate for an exponential on Prof is motivated by an

analogy with domain theory. This analogy is pursued in Section 7; the construction of a

presheaf category is shown to be analogous to the construction of a powerdomain, and

the bicategory of profunctors to be analogous to a category of non-deterministic domains.

The continuous maps induced between presheaf categories do not preserve open maps

and bisimulation in general. So, in Sections 8 and 9, we look more broadly at other ways

to moderate the linear maps that are profunctors in order to obtain affine and continuous

maps suitable for denotational semantics. This can be achieved in a uniform way via

pseudo-comonads based on families of paths, with results emphasising the preservation

of open maps. Section 10, Conclusions, points to the current status of presheaf models for

concurrency, which is one of the major application areas.

Some remarks on category theory

We rely heavily on coend notation and left Kan extensions, the main results concerning

which are summarised in the Appendix, along with further references. It is extremely

helpful to make use of naturality to simplify proofs that functors expressed as coends

preserve colimits – see Section A.3. The results of the Appendix are perhaps best referred to

in a demand driven way. We have tried to be as light handed as possible in our treatment

of 2-categorical and bicategorical issues. The use in this paper of pseudo-comonads

predated, and to some extent motivated, Cheng, Hyland and Power’s systematic definition

and study of pseudo monads, and their attendant constructions (Cheng et al. 2003).

We refer the reader to that work and the recent work of Power and Tanaka (Power

and Tanaka 2004; Tanaka 2004) for the definitions and results of pseudo-monads and

pseudo-comonads on a 2-category, and to legitimise the terminology here. We will use

their concepts for bicategories, as they transfer via biequivalences of the bicategories with

specific 2-categories. Finally, the reader is warned that for us a category being small means

that it is equivalent to a category of which the objects and arrows form sets (what others

often call ‘essentially small’).

2. Presheaves, open maps and bisimulation

In this section we recall the definition and main properties of presheaf categories, and

introduce the definition of bisimulation on presheaves via open maps. The original

motivation for viewing processes as presheaves and basic results can be found in Joyal

et al. (1996).

Let � be a small category. The category of presheaves over �, often denoted by �̂
or by Set�

op

, is the functor category [�op, Set] whose objects are contravariant functors

from � to Set (the category of sets and functions) and whose arrows are the natural

transformations between such functors.
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A category of presheaves, �̂, is accompanied by the Yoneda embedding, a functor

y� : � → �̂ that fully and faithfully embeds � in the category of presheaves. For every

object P of �, the Yoneda embedding yields y�(P ) = �(−, P ). Presheaves isomorphic to

images of objects of � under the Yoneda embedding are called representables.

Through the Yoneda embedding, we can regard � as, essentially, a full subcategory of

�̂. Moreover, �̂ is characterised (up to equivalence) as the free colimit completion of �.

In other words, the Yoneda embedding y� satisfies the universal property that for any

functor F : �→ E, where E is a cocomplete category, there is a colimit preserving functor

G : �̂→ E, determined to within isomorphism such that F ∼= G ◦ y�:

�
y�

F

∼=
�̂

G

E

We may choose G such that F = G ◦ y�. Observe that G is the functor part of the left

Kan extension of F along y�, Lany�(F) – see Section A.4.3 in the Appendix. Notice also

that the functor Lany� (F) above always has a right adjoint F∗ : E → �̂, which is given by

F∗(E) = E(F(−), E).

In applications to the semantics of concurrent processes, the category � is to be thought

of as consisting of path objects, or computation-path shapes. The Yoneda Lemma (Mac

Lane 1971), by providing a natural bijection between �̂(y�(P ), X) and X(P ), justifies the

intuition that a presheaf X : �op → Set can be thought of as specifying, for a typical

path object P , the set X(P ) of computation paths of shape P . The presheaf X acts on a

morphism m : P → Q in � to give a function Xm : X(Q) → X(P ) saying how Q-paths

restrict to P -paths. A presheaf being a colimit of path objects can be thought of as a

collection of computation paths glued together by identifying sub-paths.

Bisimulation on presheaves is derived from the notion of open map (Joyal and Moerdijk

1994).

Definition 2.1. A morphism f : X → Y , between presheaves X,Y , is �-open if for all

morphisms m : P → Q in �, the square of functions

X(P )

fP

X(Q)
Xm

fQ

Y (P ) Y (Q)
Y m

is a quasi-pullback, that is, whenever x ∈ X(P ) and y ∈ Y (Q) satisfy fP (x) = (Y m)(y),

there exists x′ ∈ X(Q) such that (Xm)(x′) = x and fQ(x′) = y.

Joyal et al. (1996) presented the following, broader notion of open map, which is based

on a path lifting property.

https://doi.org/10.1017/S0960129505004718 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004718


Profunctors, open maps and bisimulation 559

Definition 2.2. Let M be a category and I : � →M be a functor. An arrow f : X → Y

is said to be I-open if for every commuting square

I(P )
p

Im

X

f

I(Q)
q Y

there exists an arrow r : I(Q)→ X such that r(Im) = p and fr = q.

Let I : � → M. Note that any isomorphism is I-open and that I-open maps form a

subcategory. Another useful and direct consequence of the definition of openness is the

following. Suppose I ′ : �′ → M and that I ′ factors through I in the sense that I ′ ∼= I ◦ J
for some functor J : �′ → �. Then I-open maps are necessarily I ′-open. In particular, if

I and I ′ are naturally isomorphic, then an arrow is I-open iff it is I ′-open.

In the case of presheaves, the definition of open map translates via the Yoneda Lemma

to an equivalent path-lifting property of f.

Proposition 2.3. A morphism between presheaves is �-open iff it is y�-open.

In the main we shall work with open maps in presheaf categories; only rarely shall we

need to make explicit which notion of openness is intended.

Open maps generalise functional bisimulations of process algebra (that is, where the

bisimulation relation is a function). A symmetric relation of bisimilarity is obtained

through the presence of spans of surjective open maps†. (Because presheaves may lack

unique elements corresponding to initial states, we insist on the surjectivity condition;

otherwise any two presheaves would be related by a span of open maps from the empty

presheaf.)

Definition 2.4. We say that presheaves X,Y in �̂ are �-bisimilar iff there is a span

of surjective open maps between them. This is equivalent to there being a subobject

R ↪→ X × Y such that the compositions with the projections

R ↪→ X × Y
π1→ X and R ↪→ X × Y

π2→ Y

are surjective open.

The following preservation property of open maps along adjunctions will be useful in

Section 9 (see Fiore et al. (1999) and Joyal et al. (1996) for other applications and a

related result).

Lemma 2.5. If �
H A

L

	 B,
R

are three functors with L left adjoint to R, we have

for every arrow g in B, that Rg is H-open iff g is LH-open.

† Surjective maps in a presheaf category are those natural transformations between presheaves whose

components are always surjective functions; surjective maps coincide with epimorphisms in presheaf

categories.
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Proof.

— Only if : Suppose

LH(P )
p

LHm

B

g

LH(Q)
q C

commutes. Then the following commutes as well:

H(P )
p

Hm

R(B)

Rg

H(Q)
q

R(C)

where p and q are the transpositions of p and q along the adjoint pair L 
 R (Mac Lane

1971). So, let r : H(Q)→ R(B) be such that r(Hm) = p and (Rg)r = q. Transposing r

gives r : LH(Q)→ B such that (see Mac Lane (1971))

r(LHm) = (r(Hm) = p = p

and

gr = (Rg)r = q = q.

— If : This uses the reverse argument, starting from a commuting square in A.

In this paper the above proposition will often be applied in the context of presheaf

categories; it then takes the form of the following lemma.

Lemma 2.6. If I : �→ �̂ is a functor, then an arrow h in �̂ is I-open iff I∗(h) is y�-open.

Proof. We have the following situation:

�
y�

�̂
Lany�

(I)

	 �̂ .
I∗

By Lemma 2.5 above, we have h is Lany�(I)y�-open iff I∗(h) is y�-open. However, since

y� is full and faithful, Lany� (I)y�
∼= I , so I-openness and Lany� (I)y�-openness coincide.

Note that categories of process models often fit the situation described in Lemma 2.5.

For example, A might be the category of labelled event structures, B the category of

Petri nets, related by an adjunction with right adjoint R ‘unfolding’ a net to an event

structure. Appropriate computation paths � are then finite labelled partial orders of

events (pomsets) in event structures, with H the inclusion of pomsets. The lemma then

says that open maps, and so bisimulation, are preserved by the unfolding of nets. (See

Joyal et al. (1996) and Winskel and Nielsen (1997a) for more detail and further examples.)
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3. A result on open map preservation

We are about to prove a key result, that colimit preserving functors, the mathematically

natural maps between presheaf categories, preserve open maps and open map bisimulation.

In preparation, it is helpful to think of a category of elements of a presheaf over � (see

Definition A.13) as a transition system in the which the computation paths have shapes

in �. This point of view, in which the objects of the category of elements are regarded

as states and its arrows as transitions, is emphasised in Winskel and Nielsen (1997b).

We will examine how properties of maps between presheaves correspond to well-known

properties of morphisms of transition systems (Winskel and Nielsen 1995).

Proposition 3.1. Let f : X → Y be a map in �̂.

(i) Suppose (El(f))(x) = y and x e→ x′ in El(X). Then, there is y′ such that (El(f))(x′) =

y′ and y e→ y′ in El(Y ):

x
e

x′

y e
y′

(ii) Suppose (El(f))(x′) = y′ and y e→ y′ in El(Y ). Then, there is x such that (El(f))(x) =

y and x e→ x′ in El(X):

x
e

x′

y e
y′

(iii) Assume f is an open map. Then, El(f) satisfies the condition that if (El(f))(x) = y

and y e→ y′ in El(Y ), then there is x′ such that (El(f))(x′) = y′ and x e→ x′ in

El(X):

x
e

x′

y e
y′

Conversely, if El(f) satisfies this condition, then f is an open map.

Proof.

(i) This part follows directly from the functoriality of El(f).

(ii) This part follows directly from the naturality of f.

(iii) This part follows directly from the quasi-pullback condition expressing the openness

of f.

The property (iii) says that a map f : X → Y between presheaves is open exactly

when El(f) : El(X)→ El(Y ) is a ‘functional bisimulation’ between categories of elements

viewed as transition systems (a functional bisimulation is a bisimulation (Milner 1989;

Park 1981) whose graph is a function). From the point of view of transition systems,
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condition (ii) is expected when the transition systems are unfoldings (condition (ii) holds,

for instance, in the categories of label-preserving morphisms of synchronisation trees and

event structures (Winskel and Nielsen 1995; Joyal et al. 1996)).

By combining properties (ii) and (iii), we immediately get that open maps reflect

‘zig-zags’ in the following sense.

Corollary 3.2. Assume f is an open map. Suppose (El(f))(x0) = y0 and that

y0 y2 . . . . . . yn

y1
e0

e1

y3
e2

y2k+1
e2k

e2k+1

yn−1
en−2 en−1

which is a ‘zig-zag’ in El(Y ). Then there is a corresponding ‘zig-zag’

x0 x2 . . . . . . xn

x1
e0

e1

x3
e2

x2k+1
e2k

e2k+1

xn−1
en−2 en−1

in El(X) with (El(f))(xi) = yi whenever 0 � i � n.

Proof. We lift the en-arrows: by Proposition 3.1.(ii) when n is even; and by Proposi-

tion 3.1.(iii) when n is odd.

The next theorem, a major result of this paper, was first announced in Cattani and

Winskel (1997).

Theorem 3.3. A colimit preserving functor between presheaf categories preserves open

maps.

Proof. As �̂, y� is a free colimit completion, to within isomorphism, any colimit

preserving functor from �̂ to �̂ can be obtained as a left Kan extension Lany�F of a

functor F : � → �̂. Clearly, if a functor preserves open maps, then so does any functor

naturally isomorphic to it. So, without loss of generality, it suffices to show that, assuming

a functor F : �→ �̂, its left Kan extension L = Lany�F : �̂→ �̂ preserves open maps.

Let Y be a presheaf in �̂. Recall from Section A.4.2 in the Appendix that

L(Y ) = colim (El(Y ) πY→ � F→ �̂).

Taking advantage of the concrete presentation of colimits in Set (see Proposition A.4 in

the Appendix), we can express (L(Y ))(Q), where Q is an object of �, as a set of equivalence

classes:

(L(Y ))(Q) =
∑

(P ,y)∈|El(Y )|(FP )(Q)/ ∼

where ∼ is the least equivalence relation such that ((P , y), u) ∼ ((P ′, y′), u′) if

∃e : (P , y)→ (P ′, y′) in El(Y ). (Fe)Q(u) = u′.
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Thus, ((P , y), u) ∼ ((P ′, y′), u′) iff there is a ‘zig-zag’ in El(Y ), viz.

(P0, y0) (P2, y2) . . . (Pn, yn)

(P1, y1)
e0

e1

(P3, y3)
e2 e3

(Pn−1, yn−1)
en−2

en−1

with

u0 u2 . . . un

u1
(Fe0)Q

(Fe1)Q

u3
(Fe2)Q (Fe3)Q un−1

(Fen−2)Q

(Fen−1)Q

where y = y0, y
′ = yn, and u = u0, u

′ = un.

For a presheaf Y in �̂, the components of the colimiting cone

〈FP (Q)
γP ,y→ LY (Q)〉(P ,y)∈|El(Y )|

are given explicitly by

γP ,y(u) = {((P , y), u)}∼.

It will be useful to understand the functorial actions of Lh and LY on representatives

of ∼-equivalence classes.

For m : Q→ Q′ in �,

LY (m)({((P ′, y′), w)}∼) = {((P ′, y′), FP ′(m)(w))}∼.

The map LY (m) is the unique function mediating between the colimiting cones

〈FP (Q)
γP ,y→ LY (Q)〉(P ,y)∈|El(Y )|

and

〈FP (Q′)
γ′P ,y→ LY (Q′)〉(P ,y)∈|El(Y )|

such that

FP (Q′)
γ′P ,y

FP (m)

LY (Q′)

LY (m)

FP (Q)
γP ,y

LY (Q).

For h : X → Y in �̂, the component of Lh at an object Q is a function (Lh)Q : LX(Q)→
LY (Q) such that

(Lh)Q({((P , x), u)}∼) = {((P , hP (x)), u)}∼

(see the definition of Lh = Lany�F(h) in Section A.4.3 in the Appendix).
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Suppose now that h : X → Y is an open map in �̂. In order to show that Lh is open,

we require that each naturality square

LX(Q)

(Lh)Q

LX(Q′)
LX(m)

(Lh)Q′

LY (Q) LY (Q′)
LY (m)

associated with m : Q→ Q′ is a quasi-pullback.

To this end, suppose that

LY (m)({((P ′, y′), w)}∼) = (Lh)Q({((P , x), u)}∼).

Then, from the action of LY (m) and (Lh)Q on representatives noted above,

((P , hP (x)), u) ∼ ((P ′, y′), FP ′(m)(w)).

Hence ((P , hP (x)), u) and ((P ′, y′), FP ′(m)(w)) are connected via a ‘zig-zag’ in El(Y ), viz.

(P , hP (x)) (P2, y2) . . . (P ′, y′)

(P1, y1)
e0

e1

(P3, y3)
e2 e3

(Pn−1, yn−1)
en−2 en−1

with

u u2 . . . FP ′(m)(w).

u1

(Fe0)Q

(Fe1)Q

u3

(Fe2)Q (Fe3)Q
un−1

(Fen−2)Q (Fen−1)Q

But, by Corollary 3.2, this ‘zig-zag’ is reflected by a ‘zig-zag’ in El(X), viz.

(P , x) (P2, x2) . . . (P ′, x′)

(P1, y1)
e0

e1

(P3, y3)
e2 e3

(Pn−1, yn−1)
en−2 en−1

where we still have

u u2 . . . FP ′(m)(w)

u1

(Fe0)Q

(Fe1)Q

u3

(Fe2)Q (Fe3)Q
un−1

(Fen−2)Q (Fen−1)Q

with hP ′ (x
′) = y′. Thus,

((P , x), u) ∼ ((P ′, x′), FP ′(m)(w)).

Recalling the action of LX(m) and (Lh)Q′ on representatives,

LX(m)({((P ′, x′), w)}∼) = {((P ′, x′), FP ′(m)(w))}∼ = {((P , x), u)}∼,

and

(Lh)Q′ ({((P ′, x′), w)}∼) = {((P ′, hP ′ (x′)), w)}∼ = {((P ′, y′), w)}∼.
Hence, we fulfill the quasi-pullback condition, thus ensuring that Lh : LX → LY is open

in �̂.
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Colimit preserving functors between presheaf categories preserve open map bisimula-

tion.

Corollary 3.4. If presheaves X and Y are �-bisimilar and F : �̂ → �̂ is a colimit

preserving functor, then F(X) is �-bisimilar to F(Y ).

Proof. If X Z
f g

Y is a span of �-open maps, then, by Corollary 3.3,

F(X) F(Z)
F(f) F(g)

F(Y )

is a span of �-open maps. Moreover, if f and g are surjective, so are F(f) and F(g). In

fact, in any category an arrow e : C → D is an epimorphism iff the following diagram is

a pushout

C
e

e

D

1D

D
1D

D.

Since F preserves colimits it preserves pushouts in particular.

Theorem 3.3 and Corollary 3.4 have many applications. For now, recall from Sec-

tion A.4.6 in the Appendix that a functor F : �→ � between small categories � and �
induces a triple of adjoints

F! 
 F∗ 
 F∗ : �̂→ �̂.

Both F! and F∗ are colimit preserving since they are left adjoints. Hence, F! sends �-open

maps to �-open maps, and thus bisimilar presheaves in �̂ to bisimilar presheaves in �̂.

In the other direction, F∗ sends �-open maps to �-open maps, and bisimilar presheaves

in �̂ to bisimilar presheaves in �̂. We might, for example, take � to be the partial order

category of non-empty strings over some alphabet L, and � to be the category of non-

empty, finite pomsets with labels in L. See Joyal et al. (1996) for a detailed description of

these categories, and an explanation of the presheaf categories �̂ as synchronisation trees,

with �-bisimulation being strong bisimulation, and �̂ as including event structures with

labels in L, with �-bisimulation being hereditary history preserving bisimulation. There

is an obvious inclusion of strings into pomsets giving rise to a functor F : �→ �. In this

case, F! is the inclusion of synchronisation trees in event structures, and its right adjoint

F∗ the operation that serialises an event structure to produce a tree. That, for example, F∗

preserves open map bisimulation implies that two hereditary history preserving bisimilar

event structures are sent to strongly bisimilar synchronisation trees. The papers Cattani

and Winskel (1997; 2003) contain several examples using this result directly, including a

characterisation of a well-known refinement operation on event structures (Glabbeek and

Goltz 1989) as an instance of F!.
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4. The bicategory Prof and the 2-category Cocont

Presheaf categories are free colimit completions. Morphisms between them are naturally

taken to be colimit preserving functors. In order to study the relation between presheaf

categories we consider the following 2-category.

Definition 4.1. Define Cocont to consist of

— Objects: small categories, �,�,�, . . .

— Arrows: colimit preserving functors between the corresponding presheaf categories,

that is, F is an arrow from � to �, if it is a colimit preserving functor F : �̂→ �̂.

— 2-cells: natural transformations between such functors.

The composition of arrows is the usual composition of functors. The vertical and

horizontal composition of 2-cells are those of natural transformations (Mac Lane 1971).

As we saw, to within isomorphism, colimit preserving functors �̂ → �̂ correspond to

functors �→ �̂, which correspond by ‘uncurrying’ to functors �×� op → Set. Functors

of this latter kind are often called profunctors (or bimodules or distributors) (Borceux 1994;

Lawvere 1973; Bénabou 1973). For a functor F : �×� op → Set, we write F : � + � to

signify the fact that F is a profunctor from � to �. Often operations are best described

on profunctors, which provide an alternative (bicategorical) presentation of Cocont.

Definition 4.2. The bicategory Prof of profunctors is defined to consist of

— Objects: small categories, �,�,� . . .

— Arrows: profunctors F : � + �
— 2-cells: α : F ⇒ G, natural transformations between profunctors.

The vertical composition of 2-cells is the usual (vertical) composition of natural trans-

formations. Horizontal composition of both arrows and 2-cells is described in terms of

coend formulae. Given two arrows � +
F

� +
G

�, consider the functor

�×�op ×�×�op F×G−→ Set× Set
×−→ Set

that to each 4-tuple of objects P ,Q,Q′, R associates the set F(P ,Q) × G(Q′, R), with the

obvious actions on morphisms derived from those of F and G. Using coends (see the

Appendix), we define the composition of F and G as arrows of Prof as

GF(P , R) =

∫ Q

F(P ,Q)× G(Q,R),

and for any f : P → P ′ and g : R′ → R, we define

GF(f, g) =

∫ Q

F(f, Q)× G(Q, g) : GF(P , R)→ GF(P ′, R′).

To specify the horizontal composition of 2-cells, suppose we have the following situation:

�
|

F

|

F ′

α �
|

G

|

G′

β �.
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Define βα : GF ⇒ G′F ′, the horizontal composition of the two cells α and β, to be the

natural transformation with components

(βα)〈P ,R〉 =

∫ Q

α〈P ,Q〉 × β〈Q,R〉.

As for identities, these are just the hom-functors. Given any small category �, define

1� : �× �op → Set so that (P , P ′) �→ �(P ′, P ).

Obviously, ‘currying’ 1� yields the Yoneda embedding y�. The associativity morphisms

and those for the left and right identities are derived from the universal property that

defines coends.

Profunctors subsume presheaves.

Proposition 4.3. A presheaf category �̂ is isomorphic to the category Prof (1,�) of

profunctors from the terminal category to the category �. The terminal category 1
consists of one object ∗ and its identity arrow 1∗. Under the isomorphism, a presheaf X

in �̂ corresponds to a profunctor X ′ where X ′(∗, P ) = X(P ) and X ′(1∗, f) = X(f) for any

arrow f : P → Q in �. A natural transformation α between presheaves corresponds to a

2-cell α′ where α′〈∗,P 〉 = αP .

Notation. It is often useful to identify profunctors with functors �→ �̂ (after ‘currying’)

via the isomorphism

[�×� op, Set] ∼= [�, [� op, Set]]

between functor categories. Profunctors F : � + � correspond to functors F : � →
�̂, by ‘currying’, where F(P )(Q) = F(P ,Q). We will use the same notation for the

inverse ‘uncurrying’ operation; for a functor G : � → �̂ we will write G : � + �
for the corresponding profunctor. The same notation will be used for the action of the

isomorphism on natural transformations between such functors; when α : F ⇒ F ′ between

profunctors, we write α : F ⇒ F
′
for the corresponding natural transformation between

their curried forms, and vice versa.

The composition of profunctors F : � + � and G : � + � can be expressed in terms

of left Kan extensions. Using a choice of left Kan extension,

GF ∼= LanyQ (G) ◦ F,
where the second composition is the usual composition of functors. In fact, since colimits

in presheaf categories are computed pointwise, we have from Appendix A.4.2 that for any

object P of � and object R of �,

(LanyQ(G) ◦ F)(P , R) = ((LanyQ (G) ◦ F)(P ))(R)

∼=
( ∫ Q

F(P )(Q).G(Q)

)
(R)

=

∫ Q

F(P )(Q)× G(Q)(R)

=

∫ Q

F(P ,Q)× G(Q,R).
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Prof and Cocont are equivalent as bicategories. In defining the biequivalence Λ from

Prof to Cocont, we assume for every profunctor F : � + � a choice (Lany� (F), θF ) of left

Kan extension; we will write F† for Lany�(F). Define Λ(�,�) : Prof (�,�)→ Cocont(�,�)

to be the functor that maps F to F† and α : F ⇒ G to the unique α† such that

(α†y�) ·θF = θG ·α, given by the universal property of Kan extensions. Notice that Λ is the

identity on objects. Since (1�̂, 1y� ) is a left Kan extension of y� along itself, we can further

assume that Λ(�,�)(1�) = 1�̂. In the converse direction, from Cocont to Prof , define Ξ(�,�)

simply by precomposing with y�, followed by ‘uncurrying’. We then have the following

proposition.

Proposition 4.4. Λ and Ξ are bicategorical homomorphisms (Street 1980),

Prof
Λ

Cocont,
Ξ

that are the identity on objects, send identity arrows to identity arrows and are such

that for any two small categories �,�, the functors Λ(�,�) and Ξ(�,�) are equivalences of

categories, and are pseudo inverses to each other.

With the view of Prof and Cocont as ‘categories’ of domains of non-deterministic

processes, the techniques required to solve recursive domain equations are explored in

Cattani et al. (1998).

5. The structure of Prof

It has been remarked, for example, in Kelly and Laplaza (1980), that Prof has enough

structure to be what might be called a compact closed bicategory. To see this, we first need

to define certain bicategorical limits explicitly.

5.1. Pseudo-products and pseudo-coproducts

Definition 5.1 (Pseudo-products and pseudo-coproducts). In a bicategory B, a pseudo-

product of two objects B,C , is given by an object D and an equivalence of categories

B(E,B)×B(E,C) � B(E,D)

pseudo-natural in E; more explicitly, a pseudo-product is given by a span of arrows

B
π1←− D

π2−→ C

such that:

1 For any other span, B
f
←− E

g
−→ C , there exists an h : E → D and isomorphic 2-cells

Φ : π1h
∼⇒ f and Γ : π2h

∼⇒ g.

2 For any two arrows h, k : E → D and 2-cells, σi : πih⇒ πik, for i = 1, 2, there exists a

unique σ : h⇒ k, such that σi = πiσ.

If the equivalences are isomorphisms, we shall say that the product is strict .

Pseudo-coproducts are defined in a dual fashion.
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Remark. Observe that our terminology for bicategorical limits clashes with that often

employed in the literature, for example, Street (1980) uses the term ‘bilimits’ for our

‘pseudo-limits’, and reserves ‘pseudo-limits’ to denote a stricter notion. We follow the

practice of Cheng et al. (2003).

Prof has strict pseudo-products (&) and coproducts (⊕), and they coincide on objects.

Let � and � be two small categories, and define

�&�
def
= � + �

def
= �⊕�,

where � + � is the usual disjoint union of small categories with inclusions in� and in�.

Further, define π� : �&� + � by π�(in�(P ), P ′) = �(P ′, P ) and π�(in�(Q), P ′) = �
and, symmetrically, π�. The profunctor i� : � + � ⊕ � is defined as the uncurrying of

y�+�in�.

Note that �̂&� is isomorphic to �̂× �̂ ; a presheaf Z in ̂� + � restricts to presheaves

X over � and Y over � , and thus splits into a pair (X,Y ). (We will often present

a presheaf in �̂&� as a pair (X,Y ).) This accounts for the strictness of product and

coproduct.

Definition 5.2 (Pseudo-initial, pseudo-terminal and pseudo-zero object). In a bicategory B,

a pseudo-initial object 0 is an object such that B(0, B) � 1 for every object B of B.

A pseudo-terminal object is defined dually.

An object is a pseudo-zero object if it is both pseudo-initial and pseudo-terminal.

If the equivalences are isomorphisms, one talks of strict pseudo-initial, pseudo-terminal

and pseudo-zero objects.

Prof has a (strict) pseudo-zero object. Take the initial category � with no objects and no

arrows. Of course, the zero object is the unit for the product/coproduct bifunctor.

5.2. Tensor

We define a tensor ⊗ : Prof × Prof → Prof in Prof as follows:

— On objects: �⊗�
def
= �×�, the product of categories.

— On arrows: If F : � + �′ and G : � + �′,

F ⊗ G : �×�× �′op ×�′op → Set

(P ,Q, P ′, Q′) �→ F(P , P ′)× G(Q,Q′).

— On 2-cells: If α : F ⇒ F ′ and β : G⇒ G′,

(α⊗ β)(P ,Q,P ′ ,Q′) = α(P ,P ′) × β(Q,Q′).

The terminal category 1 is a neutral element for ⊗.

Tensor classifies ‘bilinear’ maps. For small categories �,�,�, a functor G : �̂&�→ �̂
is bilinear if it is ‘linear’ in each argument, that is, G(−, Y ) and G(X,−) are colimit

preserving for any X ∈ �̂ and Y ∈ �̂. Let Bilin(�&�,�) be the category of bilinear

functors from �̂&� to �̂ related by natural transformations.
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Proposition 5.3. There is an equivalence of categories:

Prof (�⊗�,�) � Bilin(�&�,�).

The equivalence is given by composition with a functor J∗, which is obtained in the

following way.

Let J : � ⊗ � → �̂&� be the full and faithful functor taking (P ,Q) to the pair of

presheaves (y�P , y�Q). For profunctors F : �⊗� + � , consider their left Kan extensions

along J:

�⊗�
J

F

∼=

�̂&�

LanJ (F)

�̂.

Note that by Proposition A.14 in the Appendix, we can factor the left Kan extension as

LanJ(F) ∼= Lany�⊗� (F) ◦ J∗,

where J∗ : �̂&�→ ̂�⊗� is given by

(J∗(X,Y ))(P ,Q) = �̂&�(J(P ,Q), (X,Y )) ∼= X(P )× Y (Q).

Because product in Set preserves colimits in each argument separately, it is easy to see that

any functor LanJ(F) is bilinear. Moreover, as presheaves are colimits of representables,

any bilinear functor G is determined by its restriction G ◦ J and so can be obtained up to

isomorphism as such a left Kan extension. The equivalence between Prof (�⊗�,�) and

Bilin(�&�,�) now follows by Proposition A.12 in the Appendix.

5.3. Dualiser

We now define a dualiser in Prof . We write Profop for the opposite bicategory , which

reverses the direction of the 1-cells but not that of the 2-cells in Prof . Define the dualiser

(−)⊥ : Prof → Profop as follows:

— On objects: �⊥ = �op.

— On arrows: Given F : � + �, define F⊥ : �⊥ + �⊥ as F⊥(Q, P ) = F(P ,Q).

— On 2-cells: If α : F ⇒ F ′, then α⊥ : F⊥ ⇒ F
′⊥, with α⊥〈Q,P 〉 = α〈P ,Q〉.

This definition of dualiser is straightforward and direct in contrast to the definition of

the corresponding pseudo-functor on Cocont. The bicategory Prof might reasonably be

called a ∗-autonomous bicategory (Barr 1979).

5.4. Function space

Combining tensor and dualiser yields a ‘linear function space’. Define the pseudo-functor

�: Profop × Prof → Prof as �= ⊗ ◦ ((−)⊥ × 1), so � � � = �op × �, for any small

categories � and �.
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There is the following chain of natural isomorphisms for any small categories, �,�,�:

Prof (�⊗� ,�)
def
= CAT(�×�×� op, Set)

∼= CAT(�, ̂� op ×�)
def
= CAT(�, ̂� ⊥ ⊗�)

∼= CAT(�× (� ⊥ ⊗�)op, Set)
def
= Prof (�,� ⊥ ⊗�)
def
= Prof (�,� � �).

The resultant isomorphism

Prof (�⊗�,�) ∼= Prof (�,� � �)

simply sets up a correspondence between profunctors H : (�×�)×�op → Set on the left

and profunctors H : �×(�op×�)op → Set on the right, where H(P , (Q,R)) = H((P ,Q), R).

The isomorphism is pseudo-natural (or a strong transformation) in � and �, making a

pseudo-adjunction (or biadjunction) between two copies of Prof (Street 1980; Power

1998):

Proposition 5.4. For any small category �, the pseudo-functor − ⊗ � is a left pseudo-

adjoint to � � −.

5.5. Linear logic

We might summarise, informally and imprecisely, by saying that Prof is a compact closed

bicategory.

From a logical point of view, Prof forms an interpretation of classical linear logic

(Girard 1987) once it is equipped with a suitable exponential, and thus provides a

basis for a rich linear type discipline. Though, as a model of classical linear logic, Prof

is somewhat degenerate; the operations

&

(‘par’) and ⊗ (‘tensor’) coincide, as do &

(‘product’) and ⊕ (‘sum’).

Looking ahead, the pseudo-comonad ! of Section 7, freely adjoining finite colimits, can

play the role of the linear logic exponential. Its co-Kleisli bicategory in which the arrows

of Prof are expanded to profunctors of the kind !� + � is equivalent (as bicategories)

to the 2-category of filtered colimit preserving functors between presheaf categories. This

2-category is cartesian closed with function spaces constructed as !� � � for small

categories �, �; the key fact here is that ! satisfies the Seely condition (Seely 1989)

requiring that there is an isomorphism of categories

!(�&�) ∼=!�⊗!�;

a presheaf over �&� that is a finite colimit of representables splits into a pair of

presheaves one over � and one over �, each of which is a finite colimit of representables.

Other candidates for exponentials are presented in Section 9.
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6. Open map bisimulation in Prof

For any categories �,� , the category Prof (�,�) is identical to the presheaf categorŷ�op ×� ; the 2-cells in Prof are identical to arrows between presheaves. We inherit from

presheaf categories a definition of open 2-cells in Prof . We will show that the horizontal

composition in Prof of open 2-cells gives an open 2-cell, and, consequently, that horizontal

composition preserves bisimulation. We saw a special case of this in Section 3, where we

showed that colimit preserving functors between presheaf categories preserve open maps,

and thus open map bisimulation.

Definition 6.1. Let α : F ⇒ F ′ be a 2-cell between two profunctors F, F ′ : � + �. Define

α to be open if it is open as an arrow of ̂� op ×� .

We can unpack this definition. Since α is regarded as a natural transformation between

two presheaves, its being open amounts to it satisfying the quasi-pullback condition of

Definition 2.1. Suppose that 〈fop, g〉 : 〈P ,Q〉 → 〈P ′, Q′〉 is an arrow in �op ×� . Then the

following square must be a quasi-pullback in Set:

F(P ′, Q′)
F(fop ,g)

α〈P ′ ,Q′ 〉

F(P ,Q)

α〈P ,Q〉

F ′(P ′, Q′)
F ′(fop ,g)

F ′(P ,Q).

(1)

If we instantiate one of the two arguments f or g to be the identity arrow on P and Q,

respectively, this immediately implies that the corresponding natural transformations,

αP : F(P ,−)⇒ F ′(P ,−) and

α⊥Q : F(−, Q)⇒ F ′(−, Q),

are �-open and �op-open, respectively. The following proposition shows that the converse

holds too.

Proposition 6.2. Let α : F ⇒ F ′ be a natural transformation between two presheaves

F, F ′ ∈ ̂�op ×� . Then α is (�op × �)-open iff for any object P of � and Q of � , the

corresponding natural transformations αP and α⊥Q are �-open and �op-open, respectively.

Proof. The discussion above shows the ‘only if’ direction.

For the converse, observe that, via the functoriality of F , the diagram (1) above can be

rewritten as

F(P ′, Q′)
F(fop ,1Q′ )

α〈P ′ ,Q′ 〉

F(P ,Q′)

α〈P ,Q′ 〉

F(1P ,g)
F(P ,Q)

α〈P ,Q〉

F ′(P ′, Q′)
F ′(fop ,1Q′ )

F ′(P ,Q′)
F ′(1P ,g)

F ′(P ,Q).

It is now easy to verify that the composition of the two quasi-pullback squares is a

quasi-pullback square.
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Consequently, we get the following proposition.

Proposition 6.3. Let α : F ⇒ F ′ be a 2-cell in Prof . The 2-cell α is open in Prof iff the

2-cell α⊥ is open.

Proof. The statement follows from Proposition 6.2 by dualising.

Proposition 6.4. According to the isomorphism between a presheaf category �̂ and

the hom-category Prof (1,�) (cf. Proposition 4.3), a natural transformation between

presheaves is open iff it is open as a 2-cell between the corresponding profunctors.

Proof. The statement follows by specialising Proposition 6.2 to the case when �
is 1.

Since open maps compose, and epimorphisms obviously compose, it is clear that the

vertical composition of two (surjective) open 2-cells is a (surjective) open 2-cell. Our next

goal is to show that the horizontal composition of 2-cells preserves (surjective) open maps,

and thus bisimulation.

Theorem 6.5.

(i) If

�
|

F

|

F ′

α �
|

G

|

G′

β �

are two consecutive open 2-cells of Prof , then their horizontal composition βα is an

open 2-cell.

(ii) Suppose profunctors F, F ′ : � + � are open map bisimilar and that profunctors

G,G′ : � + � are open map bisimilar. Then, the compositions GF,G′F ′ : � + � are

open map bisimilar.

Proof. A direct proof can be found in Cattani (1999). In fact, both these results follow

from the seemingly weaker Theorem 3.3 and Corollary 3.4 once we observe that the

composition of profunctors preserves colimits in each argument.

(i) This can be seen by considering the coend formula for the composition of profunctors

F : � + � and G : � + �:

GF(P , R) =

∫ Q

F(P ,Q)× G(Q,R).

The coend expression is functorial in P and R. We might write

GF = λP , R.

∫ Q

F(P ,Q)× G(Q,R),

which is a lambda expression describing GF as a functor belonging to [�×�op, Set],

and is just another way to write Prof (�,�). The lambda expression exhibits the

functoriality of the composition GF in F ranging over the category Prof (�,�) , and in

G over the category Prof (�,�). By inspecting the expression of the composition of F
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and G as a coend, we can see that, when regarded as a functor in F (and analogously

as a functor in G), it must preserve colimits. This is because colimits of functors to

cocomplete categories are obtained pointwise, coends preserve colimits (see Section A.3

in the Appendix), and, fixing one argument, products in Set are left adjoints, and thus

preserve colimits. In detail, we have the following chain of isomorphisms that are

natural in a diagram F : �→ ̂�op ×�:

G

( ∫ I

F(I)

)
∼= λP , R.

∫ Q( ∫ I

F(I)

)
(P ,Q)× G(Q,R)

∼= λP , R.

∫ Q( ∫ I

F(I)(P ,Q)

)
× G(Q,R)

(the colimit of F is obtained pointwise)

∼= λP , R.

∫ Q∫ I

(F(I)(P ,Q)× G(Q,R))

(as Set-product is a left adjoint)

∼= λP , R.

∫ I ∫ Q

(F(I)(P ,Q)× G(Q,R))

(by the Fubini Theorem A.2.4)

∼=
∫ I

λP , R.

∫ Q

(F(I)(P ,Q)× G(Q,R))

(the colimit is obtained pointwise)

∼=
∫ I

(GF(I)).

Hence, by Lemma A.10, the composition of profunctors GF preserves colimits

regarded as a functor in F (and similarly as a functor in G). Consequently, horizontal

composition of 2-cells preserves openness by Theorem 3.3.

(ii) This now follows directly from Corollary 3.4.

Thus, composition of profunctors preserves open maps and bisimulation in each argument.

We can recover Theorem 3.3 as a special instance of Theorem 6.5. Recall the equivalence

between Prof and Cocont (Proposition 4.4). To within isomorphism, a colimit preserving

functor can be obtained as a left Kan extension

F† : �̂→ �̂

from a profunctor F : � + �. As observed in Propositions 4.3 and 6.4, there is an open

map respecting correspondence between natural transformations α : X ⇒ Y in �̂ and

2-cells α′ : X ′ ⇒ Y ′ in Prof (1,�). The coend definition of the horizontal composition Fα′,

1
|
X ′

|

Y ′

α′ � +
F

�,
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equals that of the application F†α – both amount to
∫ P

αP . F(P ). In this case, the fact

that the composition of profunctors preserves open maps and bisimulation amounts to

saying that F† preserves open maps and bisimulation.

From Theorem 6.5, we obtain a characterisation of open maps between profunctors.

Recall, from Proposition 4.4, the correspondence, to within isomorphism, between 2-cells

of Prof and 2-cells of Cocont; a 2-cell α : F ⇒ F ′ of Prof corresponds to a natural

transformation α† : F† ⇒ F ′† between colimit preserving functors.

Corollary 6.6. Let α : F ⇒ F ′ be a 2-cell between profunctors F, F ′ : � + �. Then, α is

open iff:

(i) the component α†X is a �-open map for each X ∈ �̂; and

(ii) the component (α⊥)†Y is a �op-open map for each Y ∈ �̂ op.

Proof.

— If : Assume α
†
X and (α⊥)†Y are open for any X ∈ �̂ and Y ∈ �̂ op. The correspondence

(−)† is with respect to choices of left Kan extensions, which are assumed to be (F†, θ)

and (F ′†, θ′) in the cases of the profunctors F and F ′. From the definition of α†,

α†y�
θ = θ′α.

Hence

αP = θ′P
−1
α
†
y�(P )θP

for any P ∈ �. Because α
†
y�(P ) is open, it follows that αP is open for any P ∈ �. By a

similar argument, from (ii) we can show that α⊥Q is open for any Q ∈ �. Hence α is

open by Proposition 6.2.

— Only if : We consider the horizontal compositions expressed by the pictures

1 +
X ′

�
|

F

|

F ′

α � 1 +
Y ′

�op
|

F⊥

|

F
′⊥

α⊥ �op.

Assume α is open. Then α⊥ is also. An application α
†
X , where X ∈ �̂, equals the

horizontal composition αX ′ – both are given by the coend formula
∫ P

X(P ) . αP . But

the horizontal composition αX ′ is open by Theorem 6.5. Similarly, the application of

the dual α⊥ to Y ∈ �̂op equals the horizontal composition α⊥Y ′, which is again open

by Theorem 6.5.

7. Prof and ω-accessible categories

It is often said that profunctors are to categories what relations are to sets (see, for

example, Borceux (1994)). In this section we pursue another analogy relating presheaf

categories to non-deterministic domains, in which the presheaf construction corresponds

to a powerdomain construction (Hennessy and Plotkin 1979; Plotkin 1976). With presheaf

categories as analogues of powerdomains, Prof can be regarded as a bicategory of non-

deterministic domains (Hennessy and Plotkin 1979).
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7.1. ω-accessible categories

The operation of ideal completion, which is familiar in domain theory, produces an

algebraic domain from a preorder (see, for example, Plotkin (1983)). We start with its

generalisation to categories, in which a category is completed with all filtered colimits (see

Mac Lane (1971) for a discussion of filtered categories and colimits).

Definition 7.1 (Completion by filtered colimits). (Makkai and Paré 1989; Adámek and

Rosický 1994) Let � be a small category. We write �̃ for the full subcategory of �̂
consisting of presheaves whose categories of elements (see Definition A.13) are filtered.

As the category of elements of each representable has a terminal object and is therefore

filtered, we are justified in writing i� : � → �̃ for the functor that coincides with the

Yoneda embedding.

Proposition 7.2. For a small category �, the category �̃ and embedding i� are a free filtered

colimit completion of �. That is, �̃ has colimits of filtered diagrams and i� : � ↪→ �̃ is

a functor such that any functor F : � → C, where C is a category with filtered colimits,

extends to a filtered colimit preserving functor F+ : �̃→ C such that F+ ◦ i� ∼= F , and is

unique up to a natural isomorphism:

�
i�

F

∼=
�̃

F+

C.

Moreover, F+ is the left Kan extension Lani�(F) of F along i�.

The category Filt(�̃,C) of filtered colimit preserving functors and natural transforma-

tions is equivalent to the functor category CAT(�,C).

Proof. The proof is essentially that of Adámek and Rosický (1994, Theorem 2.26). It

is included here for convenience, and because it sets a pattern that will recur when we

consider other free completions.

The category �̃, as a subcategory of �̂, is closed under filtered colimits; the category

of elements of a filtered colimit of presheaves in �̃ may be checked to have a category of

elements that is filtered.

Suppose F : �→ C is a functor to a category C with all filtered colimits. Define F+ to

be the functor Lani�(F) that takes X in �̃ to the filtered colimit

F+(X) = colim (El(X)
πX−→ �

F−→ C)

in C. Because i�, which coincides with the Yoneda embedding, is full and faithful, we

obtain a natural isomorphism F+ ◦ i� ∼= F , where without loss of generality we may

assume that F+i�(P ) = F(P ).

Because colimits of presheaves are obtained pointwise, via the Yoneda Lemma, a

functor �̂(y�(P ),−) preserves colimits. Consequently, a functor �̃(i�(P ),−) preserves

filtered colimits. (In other words, an object i�(P ) is finitely presentable in �̃.) Thus,

supposing that a cone 〈Xi
ki→ X〉i∈� is a filtered colimit, any arrow i�(P ) x→ X,
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corresponding via Yoneda to an element x ∈ X(P ), will factor through some component

of the cone:

Xi
ki

X

i�(P )

h
x

for some i in �. Hence

F+(Xi)
F+(ki)

F+(X)

F(P ).

F+(h)
F+(x)

But the cone

〈F(P ) F+(x)→ F+(X)〉(P ,x)∈El(X)

is colimiting by definition, whence the cone

〈F+(Xi)
F+(ki)→ F+(X)〉i∈�

must also be colimiting. This shows that F+ preserves filtered colimits.

Any presheaf X in �̃ can be expressed as a filtered colimit:

X ∼= colim (El(X) πX→ � i�→ �̃).

Supposing G : �̃→ C is a filtered colimit preserving functor such that G ◦ i� ∼= F ensures

that

G(X) ∼= G(colim (i� ◦ πX) ∼= colim (G ◦ i� ◦ πX) ∼= colim (F ◦ πX) ∼= F+(X),

which is natural in X in �̃.

The equivalence between the categories Filt(�̃,C) and CAT(�,C) is a consequence of

Proposition A.12.

The 2-category of ω-accessible categories is analogous to the category of algebraic

domains and continuous functions. An ω-accessible category is a free filtered colimit

completion of a small category.

Definition 7.3. The 2-category ω-Acc consists of

— Objects: small categories, �,�,�, . . .

— Arrows: filtered colimit preserving functors between the respective filtered colimit

completions, that is, F is an arrow from � to � if it is a filtered colimit preserving

functor F : �̃→ �̃.

— 2-cells: natural transformations between such functors.
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Thus ω-Acc(�,�) is the category Filt(�̃, �̃) of filtered colimit preserving functors and

natural transformations†.

We could have given an equivalent bicategorical presentation of ω-Acc in terms of functors

from � to �̃ as arrows, and then used the freeness property to determine the composition

of arrows (just as we did for profunctors).

7.2. Finite colimit completion

We can exhibit Prof as a Kleisli bicategory with respect to a pseudo-monad on ω-Acc. The

pseudo-monad adjoins non-determinism (it is based on the free finite colimit completion of

a category) and is thus analogous to a powerdomain construction, and Prof is analogous

to a category of non-deterministic domains. Turning the pseudo-monad around to get a

pseudo-comonad, we will obtain a model of linear logic.

The constructions are based on the free completion of a (small) category under finite

colimits. With the exponential of linear logic in mind (Girard 1987), we write !� for the

free finite colimit completion of �. More exactly, we get the following definition.

Definition 7.4. Let � be a small category. Define !� to be the full subcategory of �̂
consisting of all finite colimits of representables. Write I� :!� ↪→ �̂ for the associated

inclusion functor. Since any representable is a finite colimit of representables in an obvious

way, we can write y!
� : �→!� for the Yoneda embedding with its codomain restricted to

!�.

Lemma 7.5. The subcategory !� of �̂ is closed under all finite colimits. The category !�
with y!

� : �→!� is a free finite colimit completion of �.

Proof. The closure of !� under finite colimits is shown in Kelly (1982, Theorem 5.8).

The proof of freeness is straightforward.

We now show that (�̂, I�) is a free filtered colimit completion of !� (see also Kelly (1982,

Proposition 5.41)).

Theorem 7.6. The presheaf category �̂, with I� :!� → �̂, is a free filtered colimit

completion of !�.

Proof. First note two facts concerning the presheaf images of I�.

(i) Any object I�(D) of �̂ is finitely presentable, that is, �̂(I�(D),−) preserves filtered

colimits. To see this, suppose that D is a finite colimit
∫ K

y�PK and that
∫ I∈�

X(I) is a

filtered colimit. Because finite limits commute with filtered colimits in Set (Mac Lane

† The ω in ω-Acc refers to the fact that filtered colimits are specified in terms of finite subdiagrams. For

more on the notion of κ-accessible category (for κ any regular cardinal) see Adámek and Rosický (1994) or

Makkai and Paré (1989).
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1971), using simple coend manipulations (see Appendix 10), we deduce

�̂

(
I�(D),

∫ I

X(I)

)
= �̂

( ∫ K

y�PK,

∫ I

X(I)

)

∼=
∫
K

�̂(y�PK,

∫ I

X(I))

∼=
∫
K

∫ I

�̂(y�PK,X(I))

∼=
∫ I ∫

K

�̂(y�PK,X(I))

∼=
∫ I

�̂(

∫ K

y�PK,X(I)

=

∫ I

�̂(I�(D), X(I)),

natural in X : � → �̂. Hence, �̂(I�(D),−) preserves filtered colimits by Lemma A.8 -

clearly, filtered colimits are connected.

(ii) For X in �̂, the category of elements El(�̂(I�(−), X)) is filtered with X the colimit of

El(�̂(I�(−), X))
π−→!�

I�−→ �̂.

This follows because, by Lemma 7.5, objects of !� include the representables and are

closed under finite coproducts and coequalisers.

We now show freeness by an argument analogous to that of Proposition 7.2. The

presheaf category �̂ is closed under all colimits, so certainly under filtered colimits.

Suppose F :!�→ C is a functor to a category with all filtered colimits. We can define the

functor F+ by taking F+(X), for X in �̂, to be (LanI�F)(X), the colimit

colim (El(�̂(I�(−), X))
πX−→!�

F−→ C)

(the colimit is filtered by (ii)).

The functor F+ is such that the triangle

!�
I�

F

�̂

F+

C
commutes up to isomorphism because I� is full and faithful. Without loss of generality,

we may assume that F+(I�(D)) = F(D) for all D in !�.

The functor F+ will preserve filtered colimits because each I�(D) is finitely presentable.

Supposing 〈Xi
ki→ X〉i∈� is a colimiting cone with � filtered, any I�(D) x→ X factors

Xi
ki

X

I�(D)

h
x
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for some i in �. Hence

F+(Xi)
F+(ki)

F+(X).

F(D)

F+(h)
F+(x)

But the cone

〈F(P ) F+(x)→ F+(X)〉
(D,x)∈El(�̂(I�(−),X))

is colimiting by definition, so the cone

〈F+Xi
F+ki→ F+X〉i∈�

must also be colimiting.

A filtered colimit preserving functor from �̂ to C is determined to within natural

isomorphism by its restriction to !� because, by (ii) above, every presheaf can be expressed

as a filtered colimit.

Because both !̃�, i!� and �̂, I� are free filtered colimit completions, we obtain an

equivalence of categories.

Proposition 7.7. For any small category �, there is an equivalence of categories

!̃� � �̂

given by the functors

Lani!�(I�) : !̃�→ �̂

and

LanI�(i!�) : �̂→ !̃�.

The functor Lani!�(I�) is naturally isomorphic to the functor Y �→
∫ D

Y (D).I�(D). The

functor LanI�(i!�) is naturally isomorphic to the functor I∗� : X �→ �̂(I�(−), X).

Proof. The equivalence and functors establishing the statement are given by Proposi-

tion 7.2 and (the proof of) Theorem 7.6. As noted in Appendix A.4.2, the application of

a pointwise left Kan extension may be expressed as a coend. In particular, LanI�(i!�)(X),

where X is presheaf over �, may be expressed as the coend∫ D

�̂(I�(D), X).y!�(D) ∼= �̂(I�(−), X),

using the density formula (Appendix A.4.4). Similarly, for Y in !̃�,

Lani!�(I�)(Y ) ∼=
∫ D

!̃�(i!�(D), Y ).I�(D) ∼=
∫ D

Y (D).I�(D),

by the Yoneda Lemma.

The proof of Theorem 7.6 above shows us how to represent filtered colimit preserving

functors between presheaf categories as profunctors.
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Proposition 7.8. For any two small categories � and � there is an equivalence of categories

Prof (!�,�) � Filt(�̂, �̂)

given by F �→ LanI�(F) for F in Prof (!�,�), and G �→ G ◦ I� for G in Filt(�̂, �̂).

Proof. From the proof of freeness, Theorem 7.6 above, a profunctor F :!� + Q gives

rise to LanI�(F) : �̂ → �̂, which is a filtered colimit preserving functor, and unique up

to isomorphism such that LanI�(F) ◦ I� ∼= F . The equivalence is a direct consequence of

Proposition A.12 as I� is full and faithful.

Consequently, for any small categories � and � there is an equivalence

Cocont(!�,�) � ω-Acc(�,�).

This is part of a pseudo-adjunction. We recall one way of presenting a pseudo-adjunction

between 2-categories from Power (1998).

Definition 7.9. Let C and D be 2-categories. A left pseudo-adjoint to a 2-functor U :

C → D is given by, for each object X of D, a 1-cell ηX : X → UFX in D such that the

composition with ηX induces an equivalence of categories from C(FX, Y ) to D(X,UY )

for any object Y of C.

Proposition 7.10. For any two small categories � and � there is an equivalence of

categories

Cocont(!�,�) � Filt(�̂, �̂)

induced by composition with I∗� : X �→ �̂(I�(−), X).

There is a pseudo-adjunction in which ! together with I∗� : � →!� in ω-Acc is a left

pseudo-adjoint to the inclusion 2-functor from Cocont to ω-Acc.

Proof. Composing equivalences

Cocont(!�,�) � Prof (!�,�) � Filt(�̂, �̂),

and using Propositions 4.4 and 7.8, we obtain an equivalence from Cocont(!�,�) to

Filt(�̂, �̂); it takes G :!� → � in Cocont to LanI�(G ◦ I�). Moreover, it is induced by

composition with I∗� since

LanI�(G ◦ I�) ∼= Lany!�(G ◦ I�) ◦ I∗� ∼= G ◦ I∗�,

using the factorisation of left Kan extensions in Lemma A.14.

The characterisation in Proposition 7.7 of I∗� shows it to be filtered colimit preserving,

and thus a 1-cell in ω-Acc. This makes ! together with I∗� a left pseudo-adjoint to the

inclusion functor.

It follows that ! extends to a pseudo-functor in a pseudo-adjunction:

ω-Acc

!

⊥ Cocont
inclusion
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The pseudo-functor !, post-composed with the inclusion 2-functor to form a 2-functor

on ω-Acc, can be equipped with multiplication, unit and corresponding coherence

modifications to form a pseudo-monad (Cheng et al. 2003) (a doctrine in the terminology

of Street (1980)). The bicategory of its free algebras, the Kleisli bicategory for !, is

biequivalent to Prof and Cocont.

Thinking in computational terms, the effect of ! on the pseudo-monad is to adjoin non-

determinism. This is traditionally achieved in domain theory by using powerdomains;

adjoining non-determinism to a ‘domain’ �̃, with the small category � as basis, produces

the ‘non-deterministic domain’ !̃�, which is equivalent to �̂. We can view Prof as

a bicategory of ‘non-deterministic domains’ analogous to the Kleisli category of a

powerdomain.

If we ‘turn around’ the pseudo-monad (and look instead at the pre-composition of ! with

the inclusion 2-functor above), we obtain a pseudo-comonad on Cocont, and thus on Prof ,

which we also denote by !. Its coKleisli bicategory is biequivalent to the 2-category with

small categories as objects, 1-cells F : � → � being filtered colimit preserving functors

F : �̂ → �̂ and 2-cells being natural transformations. The pseudo-comonad ! can play

the role of the ‘exponential’ of linear logic and is one of several ways in which to adjoin

a pseudo-comonad to Prof , so obtaining what can be viewed as a (bi)categorical model

of Girard’s classical linear logic (Seely 1989). (It constitutes the basic prefixing operation

in the presheaf semantics of the higher order process language HOPLA (Nygaard and

Winskel 2004).)

7.2.1. Domain theoretic analogies Analogous results are familiar in domain theory. Per-

haps the closest analogue is obtained by replacing small categories �,�, . . . by partial

orders, presheaf categories by domains of downwards closed subsets ordered by inclusion,

colimits by least upper bounds (with lubs given by unions) and filtered diagrams by

directed subsets.

Then ω-Acc would be replaced by continuous functions between ideal completions

of partial orders (a category of algebraic cpos), and Cocont by additive (that is, lub

preserving) functions between domains of downwards closed subsets (a category of prime

algebraic lattices). Now, an additive function from a �̂ to a �̂ can be represented by

a monotonic function from the partial order � to �̂, or, equivalently, as a ‘relation’, a

downwards closed subset of �op ×� – this is a direct analogue of a profunctor, in which

the category Set is replaced by the partial order � ⊆ 1.

In this domain set-up we can take !� to be the finite lub completion of a partial order

� (equivalently, the order obtained by restricting �̂ to its finite elements). The analogue

of the pseudo-monad above would be the monad associated with the lower (or Hoare)

powerdomain, which given an ideal completion �̃ of a partial order � returns !̃�, the

ideal completion of !�, that is isomorphic to �̂.

The analogue of the pseudo-comonad would be the comonad on the category of

prime algebraic lattices with additive functions given by !; the co-Kleisli category of the

comonad would be equivalent to that of continuous functions between prime algebraic

lattices, expressing the well-known fact that a continuous function is determined by its

restriction to just the finite elements. (See Nygaard and Winskel (2004) for more details.)
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An attractive feature of the pseudo-comonad !, freely adjoining finite colimits, is that

it generalises a situation in traditional domain theory. However, as we shall see, there

are other considerations, to do with how well bisimulation is respected, that argue for

alternatives to this choice of comonad.

7.3. A failure of open map preservation

We have seen how Prof and the pseudo-comonad !, which on a small category yields

its finite colimit completion, are sufficiently rich in structure that they can be regarded

as a model of classical linear logic. The results of Section 6 say that the model’s linear

arrows, those in Prof , preserve open map bisimulation. A typical arrow in the co-Kleisli

bicategory of ! is a profunctor

F :!� + �.

By Proposition 7.8, this corresponds to a filtered colimit preserving functor

LanI�(F) : �̂→ �̂

between presheaf categories, where I� is the embedding of !� into �̂. Prima facie it

might be hoped that LanI�(F) preserved open map bisimulation; that an open map in

�̂ was sent to an open map in �̂. Indeed, if we weaken open maps in �̂, by convention

understood to be with respect to the Yoneda embedding y� : � ↪→ �̂, to open maps with

respect to the inclusion I� :!� ↪→ �̂, we can obtain a preservation result as a consequence

of the factorisation

LanI�(F) ∼= Lany� (F) ◦ I∗�,
which is a special case of Proposition A.14 in the Appendix. It follows that LanI� sends

I�-open maps in �̂ to open maps in �̂; this is because I∗� sends I�-open maps to y!�-open

maps (by Lemma 2.6).

But, unfortunately, I�-bisimulation degenerates to isomorphism.

Proposition 7.11. Let X and Y be presheaves in �̂. Then, X and Y are I�-bisimilar iff X

and Y are isomorphic presheaves.

Proof. We show that the isomorphisms are the only surjective I�-open maps between

presheaves over �. Let f : X → Y be a surjective I�-open map. By definition it is an

epimorphism. To show that f is an isomorphism, it is now enough to show that f is

a monomorphism as well (see Mac Lane and Moerdijk (1992)). Since f is a natural

transformation between presheaves, f is a monomorphism iff for every object P of �,

the function fP : X(P )→ Y (P ) is injective. Suppose then that x, x′ ∈ X(P ) are such that

fP (x) = fP (x′). Via the Yoneda lemma, we then have that the square

P + P
[x,x′]

[1P ,1P ]

X

f

P
fP (x)

Y
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commutes, where we have let objects of � stand for their corresponding representables,

and elements of X for the corresponding arrows to X. Since f is I�-open and P + P ,

as well as P , are in !P , there exists x′′ : P → X such that x′′ ◦ [1P , 1P ] = [x, x′]. Since

x′′ ◦ [1P , 1P ] = [x′′, x′′], we can conclude that x = x′.

The arrows in the co-Kleisli bicategory of ! are too liberal to ensure preservation of

more than the most trivial bisimulation! This negative result is backed up by examples

where bisimilarity is not preserved by arrows in the co-Kleisli bicategory, corresponding

to filtered colimit preserving functors. It is not hard to cook up an example of a filtered

colimit preserving functor that sends the domain and codomain of a surjective open map

to two non-bisimilar objects; for example, where the functor goes from 1̂, that is, Set, to

‘synchronisation trees’, that is, presheaves over the partial order category of non-empty

strings.

Remark. Observe that in order for the argument of Proposition 7.11 to go through,

it is enough to assume that the arrow [1P , 1P ] : P + P → P from the coproduct of

representables P + P lies in !�.

These results suggest that we look for alternative pseudo-comonads on Cocont and its

equivalent Prof where, when we expand the arrows to those in the co-Kleisli bicategory,

we do not lose the preservation of open map bisimulation.

8. Lifting and connected colimits

Our next example of a pseudo-comonad is provided by the lifting operation on Prof .

Its co-Kleisli bicategory provides a model of affine linear logic (Jacobs 1994). Arrows in

the co-Kleisli bicategory will correspond to connected colimit preserving functors between

presheaf categories. Such functors do not have to send the empty presheaf to the empty

presheaf, but will still preserve open map bisimulation. This relaxation makes the category

of connected colimit preserving functors between presheaf categories a suitable framework

in which to give semantics to a wide range of process languages (Winskel 1999; Cattani

1999; Nygaard and Winskel 2002).

8.1. Lifting

Definition 8.1 (Lifting). Define (−)⊥ : Prof → Prof to be the following pseudo-functor:

— On objects: �⊥ is the category � to which we add a new strict initial object, often

referred to as ⊥. The objects of �⊥ other than ⊥ are often written �P � for P an object

of �.

— On arrows: If F : � + �, F⊥ is defined by:

F⊥(P
′, Q′) =



F(P ,Q) if P ′ = �P � and Q′ = �Q�,
{∗} if Q′ = ⊥,
� otherwise.

— On 2-cells: A 2-cell α : F ⇒ G is extended with identity functions for the extra

components to cover the new cases.
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Not only is �̂, y� a free colimit completion of �, but also, as we will see shortly, �̂, j�⊥
is a free connected colimit completion of �⊥, where j�⊥ : �⊥ → �̂ is the strict Yoneda

embedding, which is defined as follows.

Definition 8.2. Writing l : � → �⊥ for the ‘inclusion’ functor P �→ �P � from a small

category � in Cat, the construction �⊥, l freely adjoins an initial object (in other words,

it is the free completion of � with the colimit of the empty diagram). This freeness yields

a unique initial-object preserving functor

j�⊥ : �⊥ → �̂

such that

j�⊥ ◦ l = y�.

The functor j�⊥ sends every non-initial object to the corresponding representable, and the

initial object ⊥ to the empty presheaf, the initial object of �̂.

Associated with j�⊥ is the functor j∗�⊥ : �̂ → �̂⊥, which takes a presheaf X in �̂ to the

presheaf �̂(j�⊥(−), X) in �̂⊥. The presheaf j∗�⊥(X) is such that

j∗�⊥(X)(�P �) = �̂(j�⊥�P �, X) = �̂(y�P ,X) ∼= X(P )

and

j∗�⊥(X)(⊥) = �̂(j�⊥⊥, X) = �̂(�, X), a singleton set.

Notation. We write �−� for the functor j∗�⊥(−).

Thus, the functor �−� : �̂→ �̂⊥ has a simple description; it adjoins a ‘root’ to a presheaf

X in �̂ in the sense that �X�(�P �) is a copy of X(P ) for any P in �, while �X�(⊥)

is the singleton set {∗}, the new root being ∗. Presheaves that, to within isomorphism,

can be obtained in this way are called rooted in Joyal et al. (1996). Any presheaf in �̂⊥
has an essentially unique decomposition as a coproduct of rooted presheaves – its rooted

decomposition.

Proposition 8.3. Let Y ∈ �̂⊥. Then,

Y ∼=
∑

i∈Y (⊥)�Yi�,

where, for i ∈ Y (⊥), the presheaf Yi in �̂ is the restriction of Y to the elements over P ,

an object of �, which Y sends to i, viz.

Yi(P ) = {x ∈ Y (�P �) | Y (u)(x) = i}

(we have written u : ⊥ → �P � for the unique map in �⊥ from the initial object).

8.2. Connected colimit preserving functors

In Section 7 we showed how to represent filtered colimit preserving functors between

presheaf categories in Prof using a comonad !. We now concentrate on another class

of functors that we have found prevalent in the semantics of processes, which this time
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are based on lifting. These are functors that preserve connected colimits. A colimit is

connected when its diagram is non-empty and connected as a graph (Paré 1990). Using

lifting, we can describe connected colimit preserving functors between presheaf categories

as certain arrows in Prof .

Proposition 8.4. The functor �−� : �̂→ �̂⊥ preserves connected colimits.

Proof. Let � be a connected category. In order to apply Lemma A.8, we should check

that

�
∫ K

X(K)�(P ′) ∼=
( ∫ K

�X(K)�
)

(P ′)

holds, and is natural in X : �→ �̂ and P ′ ∈ �⊥.
In the case where P ′ = �P � for P in �, the isomorphism and its naturality in X and P

follow by the Yoneda lemma, and because colimits of presheaves are obtained pointwise:

�
∫ K

X(K)�(�P �) = �̂

(
j�⊥�P �,

∫ K

X(K)

)

= �̂

(
y�P ,

∫ K

X(K)

)

∼=
( ∫ K

X(K)

)
(P )

∼=
∫ K

(X(K)(P ))

=

∫ K

(�X(K)�(�P �))

∼=
( ∫ K

�X(K)�
)

(�P �),

all of which isomorphisms are natural in X and P . In the case where P ′ = ⊥, the

isomorphism follows because a colimit of connected singletons is a singleton. It is then

easy to show naturality in P ′ throughout �⊥ by exhibiting the additional naturality

squares associated with arrows ⊥ → �P �.

Proposition 8.5. The presheaf category �̂, with j�⊥ : �⊥ → �̂, is a free connected colimit

completion of �⊥.

Proof. To show freeness, suppose F : �⊥ → C is a functor to a category with all

connected colimits. Define the left Kan extension Lanj�⊥
F by

(Lanj�⊥
F)(X) = colim (El(�X�) πX→ �⊥

F→ C)

for X in �̂; clearly, the category of elements of the rooted presheaf �X� has an initial

element at ⊥, and thus is connected.

Because j�⊥ is full and faithful, we have

(Lanj�⊥
F) ◦ j�⊥

∼= F.
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Abbreviate Lanj�⊥
F to F+. Then, without loss of generality, we may assume that

F+j�⊥ (P ) = F(P ) for all P in �⊥. To see that F+ preserves connected colimits, let

〈Xi
ki→ X〉i∈� be a colimiting cone with � connected. Any x : j�⊥ (P )→ X with P in �⊥

must factor

Xi
ki

X

j�⊥(P )

h
x

for some I in �. Hence

F+(Xi)
F+(ki)

F+(X).

F(P )

F+(h)
F+(x)

But the cone

〈F(P ) F+(x)→ F+(X)〉(P ,x)∈El(�X�)

is colimiting by definition, so the cone

〈F+Xi
F+ki→ F+X〉i∈�

must also be colimiting.

Thus, F+ is connected colimit preserving and satisfies F+ ◦ j�⊥
∼= F . These properties

determine F+ to within natural isomorphism, as we now show.

Any presheaf X in �̂ can be expressed as a connected colimit:

X ∼= colim (El(�X�) πX→ �⊥
j�⊥→ �̂).

Hence, supposing that G : �̂ → C is connected colimit preserving such that G ◦ j�⊥
∼= F

ensures that G(X) ∼= F+(X), natural in X.

Definition 8.6. The 2-category Conn consists of all small categories as objects, with arrows

from � to � being the connected colimit preserving functors from �̂ to �̂, and 2-cells the

natural transformations between such functors.

Proposition 8.7. There is an equivalence of categories

Prof (�⊥,�) � Conn(�,�),

for any two small categories � and �.

The functors exhibiting the equivalence are

F �→ Lanj�⊥
F

from Prof (�⊥,�) to Conn(�,�), and

G �→ G ◦ j�⊥

from Conn(�,�) to Prof (�⊥,�).
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Proof. That the two functors above are mutual inverses to within natural isomorphism

follows directly from �̂ being the free connected colimit completion of �⊥ (Proposi-

tion 8.5).

The above proposition is really part of a pseudo-adjunction, which we most easily

express using Cocont in place of Prof . The inclusion 2-functor from Cocont to Conn has

a left pseudo-adjoint, the operation of lifting (−)⊥ extended to 2-functor from Conn to

Cocont. The definition of lifting as a 2-functor relies on the rooted decomposition of

presheaves – see Proposition 8.3.

Let Y and Z be presheaves in �̂⊥ with rooted decompositions Y ∼=
∑

i∈Y (⊥)�Yi� and

Z ∼=
∑

j∈Z(⊥)�Zj�. A map of presheaves f : Y → Z in �̂⊥ also decomposes:

Y

f

∼=
∑

i∈Y (⊥)�Yi�∑
i∈Y (⊥)

�fi�

Z ∼=
∑

j∈Z(⊥)�Zj�.

By naturality, for each i ∈ Y (⊥), f restricts to a map fi : Yi → Zf⊥(i) in �̂. The function

f⊥ : Y (⊥)→ Z(⊥) expresses which components of Z the components of Y are sent to.

Via the rooted decomposition of presheaves over lifted categories, we can express lifting

as a 2-functor from Conn to Cocont.

Definition 8.8. Define the 2-functor (−)⊥ : Conn→ Cocont to act as follows.

— On objects: An object � is sent to �⊥, in which an initial object ⊥ has been adjoined

freely to �.

— On arrows: Let F : �→ � be an arrow in Conn. The functor F⊥ : �⊥ → �⊥ takes an

arrow f : Y → Z with decomposition∑
i∈Y (⊥)�fi� :

∑
i∈Y (⊥)�Yi� →

∑
j∈Z(⊥)�Zj�

to the arrow ∑
i∈Y (⊥)�F(fi)� :

∑
i∈Y (⊥)�F(Yi)� →

∑
j∈Z(⊥)�F(Zj)�.

— On 2-cells: A 2-cell α : F ⇒ G is sent to the 2-cell α⊥ : F⊥ ⇒ G⊥, which is a natural

transformation with components

(α⊥)Y =
∑

i∈Y (⊥)�αYi
� :

∑
i∈Y (⊥)�F(Yi)� →

∑
i∈Y (⊥)�G(Yi)�,

at Y a presheaf in �̂⊥.

The 2-functor (−)⊥ is a left pseudo-adjoint to the inclusion 2-functor from Cocont to

Conn.

Proposition 8.9. Composition with �−� : �̂→ �̂⊥ induces an equivalence of categories

Cocont(�⊥,�) � Conn(�,�).
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There is a pseudo-adjunction in which (−)⊥ together with �−� is a left pseudo-adjoint to

the inclusion 2-functor from Cocont to Conn:

Conn

(−)⊥

⊥ Cocont
inclusion

Proof. The proof is similar to that given for Proposition 7.10.

The pseudo-adjunction induces a pseudo-comonad on Cocont. Its coKleisli bicategory,

biequivalent to Conn, is not cartesian closed, but can be viewed as a model of affine linear

logic (Jacobs 1994; Nygaard and Winskel 2004).

8.2.1. Rooted colimits Although the results of this section are phrased in terms of

connected colimits, we could equally well have replaced their use by special connected

colimits which we call ‘rooted’.

Definition 8.10. A diagram in a category C is said to be rooted iff it is a functor �⊥ → C,

for � a small category. A colimit is rooted iff its diagram is rooted.

Proposition 8.11. A category is cocomplete iff it has an initial object and all rooted

colimits.

Proof.

— If : Any diagram � → C extends to a rooted diagram �⊥ → C in which ⊥ is sent to

the initial object. The colimiting cone for the rooted diagram restricts to a colimiting

cone for the original diagram.

— Only if : This direction is trivial.

In particular, as we have seen, the free connected colimit completion of �⊥ is �̂, which

has all colimits; because �⊥ has an initial object, the completion must also have an initial

object, in addition to all connected colimits.

Proposition 8.12. Assume that C is a cocomplete category. A functor F : C → D preserves

connected colimits iff it preserves rooted colimits.

Proof.

— Only if : This direction is trivial, as a rooted colimit is a special kind of connected

colimit.

— If : Any colimiting cone from a connected diagram K → C extends to a colimiting

cone from a rooted diagram K⊥ → C in which ⊥ is sent to the initial object. If F

preserves the rooted colimit, it will also preserve the original connected colimit.

In particular, because presheaf categories have an initial object, functors from presheaf

categories preserve connected colimits iff they preserve rooted colimits. Consequently, we

have the following corollary.

Corollary 8.13. The presheaf category �̂, with j�⊥ : �⊥ → �̂, is a free rooted colimit

completion of �⊥.
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Of course, colimit preserving functors preserve all connected colimits. Amongst the

connected colimit preserving functors between presheaf categories, we can easily pick out

those that satisfy the stronger condition of preserving all colimits; by the next proposition,

they are those functors that are strict, that is, they send the empty presheaf to the empty

presheaf.

Proposition 8.14. Assume that C and D are cocomplete categories. Suppose F : C → D is

a functor that preserves connected colimits. The following properties are equivalent:

(i) F preserves all colimits.

(ii) F preserves all coproducts.

(iii) F is strict, that is, F preserves initial objects.

Proof. The implications (i) to (ii) and (ii) to (iii) are obvious. The implication (ii) to

(i) follows because any colimit decomposes into a coproduct of connected colimits. The

implication (iii) to (ii) follows because a coproduct, whose components are indexed by

objects in the discrete category �, can also be viewed as a connected colimit: the indexing

is extended to �⊥ so that ⊥ is sent to the initial object.

8.3. Bisimulation

We now turn to consider the preservation of bisimulation by connected colimit preserving

functors. We begin with a simple but important observation.

Proposition 8.15. Let h : X → Y be a map between presheaves in �̂. The following

statements are equivalent:

(i) The map h is j�⊥-open.

(ii) The map �h� : �X� → �Y � is y�⊥ -open.

(iii) The map h is surjective y�-open.

Proof. By definition,

�h� = j∗�⊥h : j∗�⊥X → j∗�⊥Y .

That (i) and (ii) are equivalent is a direct consequence of Lemma 2.6.

To see the equivalence between (ii) and (iii), recall that j∗�⊥X = �X� and j∗�⊥Y = �Y �
are rooted presheaves, for which �X�(⊥) and �Y �(⊥) are singletons and �X�(�P �) ∼= X(P )

and �Y �(�P �) ∼= Y (P ). Clearly, the square

X(P )

hP

X(Q)
Xm

hQ

Y (P ) Y (Q)
Y m
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associated with m : P → Q is a quasipullback in �̂ iff the corresponding square

�X�(�P �)

�h�P

X(Q)
�X�(�m�)

�h�Q

Y (P ) Y (Q)
�Y �(�m�)

associated with �m� : �P � → �Q� is a quasipullback in �̂⊥. Letting P be an object of �,

the square

{∗}

h⊥

X(P )
Xe

hP

{∗} Y (P )
Ye

associated with the map e : ⊥ → �P �, is a quasipullback iff hP is surjective.

Functors �−� : �̂ → �̂⊥ are a form of prefixing operation, which are prevalent in

process calculi. (Lifting constitutes the basic prefix operation in the presheaf semantics

of affine HOPLA, the higher order affine language in Nygaard and Winskel (2004),

and underlies the semantics of many essentially affine process languages (Winskel 1996;

Cattani et al. 1997; Winskel 1999; Winskel 2004).) They also play a key role in harnessing

open map preservation in Prof to connected colimit preserving functors.

Proposition 8.16. The functor �−� : �̂→ �̂⊥ preserves surjective open maps.

Proof. In relation to Lemma 2.6, we have the following situation:

�⊥
y�⊥

�̂⊥
Lany�⊥

j�⊥

	 �̂.

j∗�⊥

Notice that Lany�⊥
j�⊥ ◦ y�⊥

∼= j�⊥ , because y�⊥ is full and faithful. Thus, by Lemma 2.6,

�−� = j∗�⊥ sends j�⊥ -open maps to y�⊥ -open maps. As observed above, j�⊥-open maps

are the same as surjective y�-open maps. Moreover, �−� preserves epimorphisms as it

preserves connected colimits (Proposition 8.4), and thus pushouts.

We can use Corollary 3.3 to deduce the preservation of surjective open maps along

connected colimit preserving functors.

Theorem 8.17. Let G : �̂→ �̂ be a connected colimit preserving functor. Then G preserves

surjective open maps and open map bisimulation.

Proof. From Proposition 8.7, we know that G ∼= Lanj�⊥
(F) for some functor F : �⊥ →

�̂. By Proposition A.14,

G ∼= Lanj�⊥
F ∼= (Lany�F) ◦ j∗�⊥ = (Lany�F) ◦ �−�.
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Now, from Proposition 8.16 we know that �−� preserves surjective open maps, and so

does Lany�F by Corollary 3.3. Hence, their composition, and thus G, preserves surjective

open maps, and consequently open map bisimulation.

Through the reflection

Cocont ⊥ Conn ,

the category Conn inherits a monoidal closed structure from Cocont, and is sufficiently

rich in operations to give semantics to a broad spectrum of process languages, including

those with a form of linear process passing. Affine HOPLA is such a linear process

passing language, and was introduced in Nygaard and Winskel (2002) and Nygaard

and Winskel (2004); its operations, which are definable within Conn, preserve open map

bisimulation, which leads automatically to congruence results (Winskel 1999; Cattani

1999). The category Conn also supports a trace operation associated with a feedback loop

in non-deterministic dataflow (Hildebrandt et al. 1998).

9. Pseudo comonads via families

9.1. Motivation

According to the discipline of linear logic, non-linear maps from � to � are introduced as

linear maps from !� to � – the exponential ! applied to � allows arguments from � to be

copied or discarded freely. We have interpreted !� as the finite-colimit completion of �.

With this understanding of !�, linear maps !� + � correspond, within isomorphism, to

filtered colimit preserving functors from �̂ to �̂. But, unfortunately, continuous functors

from �̂ to �̂ need not preserve bisimulation. This raises the question of whether other

choices of exponential fit better with open maps and bisimulation.

Observe the hopeful sign that maps that are not linear may still preserve bisimulation.

For example, a functor yielding a presheaf H(X,Y ), for presheaves X and Y over �,

that is ‘bilinear’ in the sense that it preserves colimits in each argument separately, when

diagonalised to the functor giving H(X,X) for X in �̂, will still preserve open maps

and bisimulation. A well-known example of a bilinear functor is the product operation

on presheaves (Joyal and Moerdijk 1994). For essentially the same reason, the tensor

operation in Prof is bilinear and preserves open maps.

Bear in mind the intuition that objects of � correspond to the shapes of computation

path that a process, represented as a presheaf in �̂, might perform. An object of !� should

represent a computation path of an assembly of processes each with computation-path

shapes in � – the assembly of processes can then be the collection of copies of a process,

possibly at different states. If we take !� to be the finite colimit completion of �, an object

of !� as a finite colimit would express how paths coincide initially and then branch. To

understand this object as a computation path of an assembly of processes, we can view

the assembly of processes as not being fixed once and for all. Rather, the assembly grows

as further copies are invoked, and these copies can be made from processes after they

have run for a while. The copies can then themselves be run, and the resulting processes
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copied. In this way, by keeping track of the origins of copies, we can account for the

identifications of sub-paths.

This intuition suggests exploring other less liberal ways of copying, without, for example,

being able to copy after some initial running. If we are to index different copies to

distinguish them, we are led to consider indexed families of objects in a category.

9.2. Indexed families

Definition 9.1. Let � be a subcategory of Set. Let A ∈ CAT. Define F�(A) to be the

category of �-families consisting of

— Objects: 〈Ai〉i∈I where I ∈ |�| and Ai ∈ |A|, for all i ∈ I .

— Arrows: (f, e) : 〈Ai〉i∈I → 〈A′j〉j∈J where f : I → J in � and e = 〈ei〉i∈I such that

ei : Ai → A′f(i) for all i ∈ I .

The operation F� extends to a 2-functor on CAT. Letting F : A → B, the functor

F�(F) :F�(A)→F�(B) takes

(f, 〈ei〉i∈I ) : 〈Ai〉i∈I → 〈A′j〉j∈J

to

(f, 〈Fei〉i ∈ I) : 〈FAi〉i∈I → 〈FA′j〉j∈J .
For ϕ : F ⇒ G, define F�(ϕ) :F�(F)⇒F�(G) as

F�(ϕ)〈Ai〉i∈I = (1I , 〈ϕAi
〉i∈I ) : 〈FAi〉i∈I −→ 〈GAi〉i∈I .

It is easy to see that

F�(A)(〈Aj〉j∈J , 〈A′i〉i∈I ) ∼=
∑

f∈�(J,I)

∏
j∈JA(Aj, A

′
f(j)).

Under the sufficient conditions that � is small and has singletons and dependent sums,

we can obtain a 2-monad on CAT.

Definition 9.2. A dependent sum for � is a functor
∑

:F�(�)→ � such that

— On objects: 〈Ji〉i∈I of F�(�), the object
∑

(〈Ji〉i∈I ) is a sum (disjoint union) of sets∑
i∈IJi; write [i, j] for the i-th injection of j into the sum.

— On arrows: (f, g) : 〈Ji〉i∈I → 〈J ′i′ 〉i′∈I ′ of F�(�); so f : I → I ′ and g = 〈gi〉i∈I is a

family of maps gi : Ji → J ′f(i) in �,∑
(f, g) :

∑
i∈IJi →

∑
i′∈I ′J

′
i′ ; [i, j] �→ [f(i), gi(j)].

For � with a singleton, we can define the functor ηA :A→F�(A) that sends A in A
to the singleton family with A as its single component. For � with dependent sum, we can

define the functor µA :F�F�(A)→F�(A) that takes a family of families 〈〈Ai,j〉j∈Ji〉i∈I
to the family 〈Ai,j〉[i,j]∈

∑
i∈I Ji

. Under the conditions that � has a singleton set {∗} as object,

and a dependent sum, F� becomes a 2-monad on CAT; its unit η has components ηA
and its multiplication has components µA.
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9.3. Pseudo-comonads on Prof

We will think of profunctorsF�(�) + � as generalised forms of polynomials†. Consider

the category of ‘polynomials’ Prof (F�(�),�) from � to �; the category is clearly

isomorphic to the presheaf category ̂(F�(�))op ×�, and thus has open maps, and the

functor category [F�(�), �̂]. Under the sufficient conditions that � is small and has a

singleton and dependent sums, we can compose polynomials in the manner of the co-

Kleisli construction. To do this, we use a distributive law converting a family of presheaves

into a presheaf over families of paths.

The following distributive law is used to turn F� into a pseudo functor on Prof . For

a small category � ,

d� = (F�y�)∗ :F�(�̂)→ F̂�(�).

Recall from the Appendix, A.4.3, that this means that

d�(〈Xi〉i∈I ) =F�(�̂)(F�(y�)(−), 〈Xi〉i∈I )

for 〈Xi〉i∈I in F�(�̂). It thus acts so that

d�(〈Xi〉i∈I )〈qj〉j∈J ∼=
∑

f∈�(J,I)

∏
j∈JXf(j)(qj)

for 〈Xi〉i∈I in F�(�̂) and 〈qj〉j∈J in F�(�), which is easy to show.

With the help of the distributive law, we can define a pseudo-endofunctor on Prof : on

objects it acts as F�, and sends an arrow F : � + � to d� ◦ (F�F) :F�(�) + F�(�),

and a 2-cell α : F ⇒ G to d�(F�α).

The pseudo-functor has a counit ε and comultiplication δ with components

ε� = η∗� ◦ yF�(�) :F�(�) + �,

δ� = µ∗� ◦ yF�(�) :F�(�) + F�F�(�).

With suitable coherence modifications, this turns F� into a pseudo comonad.

Notation. From now on we will use F� for the pseudo-functor on Prof .

Its convenient to write a polynomial F : F�(�) + � , which is an arrow in Prof , as

F : �→� �. The composition of two such polynomials F : �→� � and G : �→� � is

given, as in the construction of a co-Kleisli category, by the composition

F�(�) +
δ� F�F�(�) +

F�(F)F�(�) +
G F�(�).

Assume that �, the subcategory of Set, contains the empty set. Then F�(�), families

of the empty category, will be isomorphic to the category 1 consisting of a single object

and its identity arrow. A �-polynomial F : � →� � gives rise to a functor F† : �̂ → �̂
in the following way. Viewing a presheaf X in �̂ as a profunctor 1 + �, we can also see

† This view is amplified in Nygaard and Winskel (2002) and Winskel (2004). For now, note that special

profunctors of this form (viz., F�(�) + � where � is the category of finite sets and bijections) are used

in Joyal’s theory of species (Joyal 1985). A profunctor F�(�) + � corresponds to a functor F : �→ Set;

such a functor in turn corresponds to an analytic functor from Set to Set, taking a set X to
∫ n∈�

Fn ·Xn. See

Example 9.9.
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it as an arrow �
X−→� �. We define F†(X) as the presheaf obtained by the composition

of polynomials

�
X−→� �

F−→� �.

The result F†(X) is the application of the polynomial F to the presheaf X. By simplification

of the associated coend expression, the functor F† obtained in this way can be shown to

coincide with the left Kan extension LanJ�F , where J� :F�(�)→ �̂ is the functor given

on objects by

J�(〈Pi〉i∈I ) =
∑

i∈Iy�(Pi)

and on arrows (f, e) : 〈Pi〉i∈I → 〈P ′j 〉j∈J by the mediating arrow

J�(f, e) = [in′f(i) ◦ y�(ei)]i∈I :
∑

i∈Iy�(Pi)→
∑

j∈Jy�(P ′j ),

where in′j are the injections y�(�′j)→
∑

j∈Jy�(P ′j ):

F�(�)
J�

F

�̂

F†

�̂

There is the question as to whether the functor F† : �̂ → �̂ determines, to within

isomorphism, the polynomial F : � →� � from which it is derived. This property holds

for interesting special cases: when, for instance, J� is full and faithful; and the case

of analytic functors (Joyal 1985) obtained when � consists of finite sets and bijections

and � and � are both 1 – see Section 9.9. When polynomials correspond to functors

between presheaves, we have the simplification of being able to work with a 2-category

based on the composition of functors rather than a bicategory of polynomials. For �
in general, non-isomorphic polynomials can give rise to isomorphic functors between

presheaf categories.

9.4. On preservation of bisimulation

For simplicity, we only consider preservation of bisimulation by functors F† for poly-

nomials F : F�(�) + � (though corresponding results hold for the composition of

polynomials). The functor F† coincides with LanJ�F . By Proposition A.14,

F† ∼= (LanyF� (�)
(F)) ◦ J∗�. (†)

This factorisation suggests that we should examine how

J∗� : �̂→ F̂�(�)

preserves bisimulation. For this, it is important to note that

J∗�X(〈Pj〉j∈J) ∼=
∏

j∈JX(Pj),
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natural in X and 〈Pj〉j∈J . This follows from the definition of J∗�, as J∗�X = �̂(J�(−), X),

natural in X, and the chain of isomorphisms

J∗�X(〈Pj〉j∈J) ∼= �̂(
∑

j∈Jy�(Pj), X) ∼=
∏

j∈J�̂(y�(Pj), X) ∼=
∏

j∈JX(Pj),

natural in X and 〈Pj〉j∈J .
First note that J∗� preserves surjectivity.

Proposition 9.3. Suppose that h : X → Y is a surjective map in �̂. Then, J∗�h is a surjective

map in F̂�(�).

Proof. As noted above,

J∗�X(〈Pj〉j∈J) ∼=
∏

j∈JX(Pj),

natural in X and 〈Pj〉j∈J . In particular, we have the naturality square

(J∗�X)(〈Pj〉j∈J)

h◦−

∼=
∏

j∈J X(Pj)

∏
j∈J hPj

(J∗�X)(〈Pj〉j∈J) ∼=
∏

j∈J Y (Pj)

associated with h : X → Y . Clearly, if h is surjective, each function hPj
is surjective,

ensuring that the function (J∗�h)〈Pj〉j∈J = h ◦ − is surjective too.

Consider the factorisation (†) of F†. By Lemma 2.6, the functor J∗� sends J�-open maps

to yF�(�)-open maps, which are then sent by the left Kan extension LanyF� (�)
F to y�-

open maps. Furthermore, both J∗� and LanyF� (�)
(F) preserve surjectivity. The question of

preservation of bisimulation hinges on the nature of J�-open maps. This depends on the

choice of �. The next proposition deals with two important general cases.

Proposition 9.4. Let � be a subcategory of finite sets and functions that has a singleton.

(i) Suppose � contains a map 2→ 1 from a set 2 with two distinct elements to a singleton

1. Then, any surjective J�-open map in �̂ is an isomorphism.

(ii) Suppose that all maps in � are injections. A surjective map in �̂ is J�-open iff it is

y�-open.

Proof.

(i) We can copy the proof of Proposition 7.11, which, as stated in the remark accompa-

nying it, applies quite generally.

(ii) Because � has singletons, y�
∼= J� ◦ η� – the Yoneda embedding factors through J�.

Hence any J�-open map is j�-open.

Conversely, suppose that h is surjective and open. We show that J∗�h is open in F̂�(�) –

by Lemma 2.6, this is equivalent to h being J�-open. As noted earlier,

J∗�X(〈Pi〉i∈I ) ∼=
∏

i∈IX(Pi),

natural in X and 〈Pi〉i∈I .
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Consider the naturality square

∏
i∈I X(Pi)

∏
i∈I hPi

∏
j∈J X(Qj)

∏
i∈I Xmi

∏
j∈J hQj∏

i∈I Y (Pi)
∏

j∈J Y (Qj)∏
i∈I Y mi

associated with the arrow

(f, 〈mi〉i∈I ) : 〈Pi〉i∈I → 〈Qj〉j∈J

in F�(�). Note that we have, for instance, written∏
i∈IXmi :

∏
j∈JX(Qj)→

∏
i∈IY (Pi)

for the map taking 〈x′j〉j∈J to 〈Xmi(x
′
f(i))〉i∈I .

We must show that the square is a quasi-pullback. To this end, suppose that

(
∏

i∈IhPi
)(〈xi〉i∈I ) = (

∏
i∈IY mi)(〈y′j〉j∈J) = 〈yi〉i∈I .

We now describe how to produce the components of a tuple

x′ = 〈x′j〉j∈J ∈
∏

j∈JX(Qj)

such that

(
∏

i∈IXmi)(x
′) = 〈xi〉i∈I and (

∏
j∈JhQj

)(x′) = 〈y′j〉j∈J .
For each j = f(i) ∈ J , for some i ∈ I , the square

X(Pi)

hPi

X(Qf(i))
Xmi

hQf(i)

Y (Pi) Y (Qf(i))
Y mi

is a quasi-pullback in which

hPi
(xi) = (Y mi)(y

′
f(i)) = yi.

Hence there exists some x′f(i) such that

Xmi(x
′
f(i)) = xi and hQf(i)

(x′f(i)) = y′f(i).

For each j ∈ J not in the range of f, because hQj
is surjective, there is x′j such that

hQj
(x′j) = y′j .

Taking x′ = 〈x′j〉j∈J , we fulfill the quasi-pullback condition for J∗�h to be open.

If the empty set is an object in �, it need not be initial, for example, if the maps of �
are bijections. In general, J�-open maps need not be surjective. However, we do have the

following proposition.

Proposition 9.5. If � includes the function � → 1 from the empty set to a singleton,

J�-open maps are surjective open.
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Proof. In this case the functor j�⊥ : �⊥ → �̂ factors through J� via the functor

�⊥ → F�(�) taking ⊥ to the empty family and objects of � to their corresponding

singleton families.

We consider different examples of � and the families and polynomials and properties

they give rise to.

Example 9.6. Consider the subcategory of sets Ω that consists of, as objects, subsets

n = {1, · · · , n}, which is empty when n = 0, of positive natural numbers with identities as

the only maps. Then, FΩ(�) is isomorphic to

1 + � + �2 + �3 + · · ·+ �k + · · · .

Here the superscripts abbreviate repeated applications of tensor in Prof , so �k is the

product of k copies of the category �: in particular, 1 is the category consisting solely of

the empty tuple.

The category � has a singleton, viz. 1 = {1}. Its dependent sum is given by∑
i∈kji = j1 + · · ·+ jk.

Clearly, all the maps of Ω are injections, so, by Proposition 9.4(ii), maps that are

JΩ-open are surjective open. It follows that application (and, in fact, composition) of

Ω-polynomials preserves surjective open maps, and thus bisimulation.

However, there is no reasonable sense in which taking Ω-polynomials as maps yields a

cartesian-closed bicategory. It is easy to see that there is an isomorphism of categories

Prof (FΩ(�),�&�) ∼= Prof (FΩ(�),�)× Prof (FΩ(�),�),

which is, in fact, pseudo-natural in �, showing the sense in which �&� , given by

juxtaposition, remains a product with polynomials as maps. There is also clearly an

isomorphism of functor categories:

Prof (FΩ(�)×FΩ(�),�) ∼= Prof (FΩ(�), ((FΩ(�))op ×�)).

But, in general, FΩ(�&�) and FΩ(�)×FΩ(�) are not isomorphic (the analogue of the

Seely condition (Seely 1989) is not met), so (FΩ(�))op×� is not a function space for the

polynomials with respect to −&−. (This example is dealt with in more detail in Nygaard

and Winskel (2002) and Winskel (2004).)

Example 9.7. Now consider the full subcategory of sets 	 consisting of all finite sets

with functions as arrows. (Alternatively, we can work with the equivalent category in

which the objects are natural numbers understood as sets, as in Ω above, but this time

allowing all functions as maps.) In this case, F	(�) is the finite coproduct completion of

a small category � (a construction dual to the categorical powerdomain (Lehmann 1976;

Abramsky 1983)).

Clearly, 	 has singletons. It has a dependent sum given by disjoint union.

There is an isomorphism

F	(�)⊗F	(�) ∼=F	(�&�)
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expressing how a family in F	(�&�) can be broken down into a pair of families, with

one component from F	(�) and the other from F	(�). So the analogue of the Seely

condition is met, and (F	(�))op ×� is a reasonable function space.

But, by Proposition 9.4.(i), in this case J	-bisimulation is degenerate and coincides with

isomorphism. Application (and composition) of 	-polynomials does not, in general, pre-

serve open map bisimulation. Because the functors 
	 are full and faithful, 	-polynomials

correspond, within isomorphism, to special functors between presheaf categories (under

suitable conditions, they are exact functors (Carboni 1995)).

Example 9.8. The category � consists of finite sets and injections. (Alternatively, we can

work with the equivalent category with objects natural numbers understood as sets with

injections.)

There is an isomorphism

F�(�)⊗F�(�) ∼=F�(�&�)

expressing how a family in F�(�&�) can be broken down into a pair of families – the

Seely condition. This ensures an isomorphism of functor categories

Prof (F�(�&�),�) ∼= Prof (F�(�), ((F�(�))op ×�)),

which is the sense in which (F�(�))op×� is a function space when maps are �-polynomials.

By Propositions 9.4.(ii) and 9.5, the maps that are J�-open are precisely the surjective

open maps, so that application (and, in fact, composition) of �-polynomials preserves

surjective open maps and bisimulation.

It is possible for two non-isomorphic �-polynomials F,G : F�(1) + 1 to give rise to

isomorphic functors F† ∼= G† : Set → Set. (Our counterexample relies on one of the

functors not preserving pullbacks.)

F� seems a sensible choice of exponential. With F�, processes may be copied some

arbitrary and extensible number of times, the copies being assembled as tuples with shape

an object in �.
If we restrict families to the full subcategory �0 of � consisting of just two objects, the

empty and singleton sets, we obtain F�0
(�) ∼= �⊥. With �0-polynomials (a form of ‘affine’

polynomial), we obtain a biequivalence with Conn:

Prof (F�0
(�),�) � Conn(�,�).

Example 9.9. The category � consists of finite sets and bijections. (Alternatively, we get

a category equivalent to � by taking as objects the natural numbers understood as sets

with permutations as maps.)

We have the Seely condition

F�(�)⊗F�(�) ∼=F�(�&�),

and, accordingly, a function space (F�(�))op ×�.
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By Proposition 9.4.(ii), maps that are surjective J�-open are surjective open, so

application (and, in fact, composition) of �-polynomials preserves surjective open maps

and bisimulation.

With F� as the choice of exponential, processes may be copied some arbitrary but

non-extensible number of times. We obtain another form of ‘affine’ polynomial if we

restrict families to the full subcategory of �0 of � consisting of just two objects, the

empty and singleton sets; in this case, F�0
(�) ∼= � + 1.

In general, we can specialise �-polynomials to polynomials F : 1 →� 1. AsFU(1) ∼= �,

such �-polynomials are functors F : � → Set. In particular, special �-polynomials,

which are functors F : � → Set, correspond up to isomorphism to analytic functors

F† : Set→ Set (Joyal 1985).

10. Conclusions

This paper lays down the basic mathematics underlying a theory of processes at the level

of intricacy found in concurrent computation. We have found the mathematics essential

in developing a domain theory for concurrency.

The mathematics has a life of its own, which is only patchily covered and understood

in terms of existing process languages and their operational semantics. There have

been successes in applying the mathematics: in connecting with process languages and

operational semantics (Nygaard and Winskel 2002; Nygaard and Winskel 2004); the

semantics of non-deterministic dataflow (Hildebrandt et al. 1998); independence/causal

models (Hildebrandt 2000; Nygaard 2001); fairness (Hildebrandt 1999); pi-Calculus and

name generation for higher order processes (Cattani et al. 1997; Winskel and Zappa

Nardelli 2004); and weak bisimulation (Fiore et al. 1999). These are all examples of

how we can bring categorical reasoning to bear on issues of concurrent computation.

(Much of this work is summarised, along with the present limitations, in Nygaard and

Winskel (2004).) But there is still some way to go in making this mathematics operational.

For example, a full operational understanding of open map bisimulation for higher order

processes would seem to require a syntax and operational reading of the duality between

input and output given by (−)⊥ in the bicategory of profunctors.

One way forward is to build operational semantics from the presheaf semantics; a

guiding principle has been that elements of presheaves should correspond to deriv-

ations in an operational semantics. Another possible approach is via representations

of presheaf denotations in terms of more traditional process models, such as event

structures; these can give a more detailed understanding of elements of presheaves

(and thus derivations in an operational semantics) as configurations of an event

structure.

Such work is likely to take us to refinements of profunctors and open map bisimula-

tion, and to other (bi)categories. But we believe the results of this paper argue strongly

that the links between non-deterministic processes and profunctors, operations on pro-

cesses and categorical constructions, and open maps and bisimulation are truly funda-

mental.
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Appendix. A primer on coends and left Kan extensions

We introduce here the key categorical notions and results that we make use of in the paper.

We refer the reader to Mac Lane (1971) and Borceux (1994) for further background†.

(For the newly worked-out notions of pseudo-comonad and pseudo-distributive law, we

rely on Cheng et al. (2003), Power and Tanaka (2004) and Tanaka (2004).)

Terminology and notation. We say a category C is small when it is equivalent to a category

whose objects and arrows form sets. We say it is locally small when, for each pair of

objects C and D, the hom-class C(C,D) is a set.

Correspondingly, we say that a 2-category or bicategory C is locally small when for

each pair of objects C,D the category C(C,D) is small.

Small categories will be indicated with symbols such as � , � , �, �, . . . , while C, D, . . .
will be used for general categories, which will usually be locally small.

If C is a category, we write |C| for the class of objects of C.

We write Cat for the 2-category of small categories and CAT for the 2-category of

locally small categories.

A.1. Representations, universality and parametricity

Let C be a category. A representation for a functor H : C → Set consists of R, θ, comprising

an object R of C together with an isomorphism

θ : C(R,−) ∼= H.

A universal element of H consists of R, u, comprising an object R of C and an element

u ∈ H(R), such that for any object C of C and element x ∈ H(C) there is a unique

f : R → C for which x = H(f)(u). A representation for H determines a universal element

of H , viz. the object R with the element u = θR(1R). Conversely, a universal element R, u

of H determines the representation R, θ in which the component of isomorphism θ at an

object C sends f ∈ C(R,C) to θC (f) = Hf(u).

Parametrised representability Assume a functor H : C × B → Set such that for every

(parameter) B an object of B,

θB : C(R(B),−) ∼= H(−, B) (∗)

is a representation. From the full and faithfulness of the (contravariant) Yoneda embed-

ding, it follows that there is a unique extension of R(−) to a functor R(−) : B → C such

that the isomorphism (∗) is natural in B.

A representation for a functor H : Cop → Set is defined dually, and parametricity

follows similarly. Universal elements of such a functor have various names (universal

cones or limits, universal wedges or ends, universal arrows, · · ·) according to the nature

† Although we shall not be so formal here, the constructions on categories and functors form the basis of a

term language for functors and typing judgements assigning categories as types; a correct typing judgement

will ensure the functoriality of a term in its free variables. Such judgements can be accompanied by a useful

catalogue of natural isomorphisms of the kind appearing here (Caccamo and Winskel 2001; Caccamo and

Winskel 2000).
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of the sets that H yields (cones, wedges, arrows, · · ·). Similarly, universal elements of a

functor H : C → Set have names (universal (co)cones or colimits, universal wedges or

coends, universal arrows, · · ·) according to the nature of the sets that H yields ((co)cones,

wedges, arrows, · · ·).

A.2. (Co)Ends and their properties

A.2.1. Dinatural transformations Coends and ends are generalisations of colimits and

limits to functors of mixed variance. Functors of mixed variance are related by dinatural

transformations.

Definition A.1 (Dinatural transformations). Let

F,G : Cop ×C → D

be two functors. A dinatural transformation α : F
..−→ G from F to G consists of a family

of arrows (αC : F(C,C) → G(C,C))C∈|C|, such that for every arrow of C, f : C → C ′ the

following hexagonal diagram commutes:

F(C,C)
αC

G(C,C)

G(1C ,f)

F(C ′, C)

F(f,1C )

F(1C′ ,f)

G(C,C ′)

F(C ′, C ′)
αC′

G(C ′, C ′)

G(f,1C′ )

.

We write Dinat(F,G) for the class of dinatural transformations from F to G.

We obtain special dinatural transformations by restricting natural transformations β in

[Cop × C,D] to their diagonal components, of shape βC,C . Dinatural transformations do

not compose in general. However, dinaturals do compose with dinaturals obtained from

natural transformations. For small C, this ensures that the set Dinat(F,G) is functorial in

F and G, with both ranging over the functor category [Cop ×C,D].

A.2.2. Coends Wedges are dinatural transformations to or from a constant functor. They

are thus a generalisation of cones that are natural transformations to or from a constant

functor.

Notation. Any object D of D gives rise to a constant functor ∆D : Cop × C → D that

always returns D on objects and 1D on arrows.

Definition A.2 (Wedges). Let F : Cop ×C → D be a functor and let D be an object of D.

A wedge from F to D is a dinatural transformation α : F
..−→ ∆D. In other words, such

a wedge consists of components αC : F(C,C) → ∆D such that for any f : C → C ′ the
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following diamond commutes:

F(C,C)

αC

F(C ′, C)

F(f,1C )

F(1C′ ,f)

D.

F(C ′, C ′)

αC′

Coends are universal wedges, just as colimits are universal cones.

We can describe a coend for F compactly as a representation determined by an object

coend F together with an isomorphism

D(coend F,−) ∼= Dinat(F,∆−).

Equivalently, we can define coends in terms of universal wedges.

Definition A.3 (Coends). A coend of a functor F : �op ×�→ D is a universal wedge of

F , that is, it consists of D0, ω where D0 is an object of D and ω is a wedge from F to D0

such that, given any other wedge α : F
..−→ D, there exists a unique arrow h : D0 → D

such that αC = hωC for every C ∈|� |.
As usual with colimits (and limits), by abuse of language, the object D0 itself will often

be called the coend of F , and sometimes written as coend F . More often, however, we

will use the integral notation, writing

coend F =

∫ C

F(C,C),

which should always be understood as being with respect to a particular choice of

universal wedge.

Colimits as coends Colimits amount to coends of functors in which the contravariant

argument is dummy. A colimit of a functor F : � → D can be viewed as a coend of a

functor Fπ2 : �op × � → D, where π2 : �op × � → � is the obvious projection functor.

The colimit colim F can be written as the coend∫ C

F(C)

in which the first dummy variable is not mentioned.

Natural transformations in [�,D] correspond to dinatural transformations between

functors in [�op × �,D] in which the contravariant arguments are dummy. The charac-

terisation of the colimit as a representation

D(−, colim F) ∼= [�,D](F,∆−)

of the functor giving the set of cones from F to − is a special case of the representation

for coends.
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Coends as colimits We can regard coends as special kinds of colimits. Assume F : �op×�→
D is a functor.

We construct a category �
 and a functor d
 : �
 → �op × � such that∫ I

F(I, I) ∼= colim (F ◦ d
).

The category �
 is built from the objects and arrows in the category � as follows:

— Objects: The disjoint union of the objects and arrows of �;

— Arrows: In addition to identity arrows, we have the two arrows

U

f

V

for each f : V → U in �.

The only composition in this category is with identities. The functor d
 : � → �op × � is

defined as acting on objects and arrows in the following way:

U (U,U)

f
d


(U,V )

(1U,f)

(f,1V )
V (V , V ).

Observe that cocones in [�
,D](F ◦ d
,∆D) are exactly the wedges in Dinat(F,∆D), and

that a coend (
∫ I

F(I, I), ω) is a colimit for F ◦ d
.

Consequently, a category D has all small coends iff it is cocomplete, that is, it has all

small colimits.

In particular, the calculation of small coends in Set reduces to that of a colimit in

Set. The explicit construction of colimits there (see, for example, Mac Lane (1971) or

Borceux (1994)) yields an explicit construction of coends in Set.

Proposition A.4. Let � be a small category. Let F : � → Set be a functor. Then, F

has a colimit in Set given explicitly as the cone consisting of the set X and functions

γI : F(I)→ X, for I ∈|� |, described as follows. The set X is the set of equivalence classes

X =
∑

I∈|� |F(I) / ∼

where ∼ is the least equivalence relation on the set
∑

I∈|� | F(I)
def
= {(I, x) | I ∈|� |, x ∈ F(I)}

for which

(I, x) ∼ (J, y) if F(f)(x) = y, for some f : I → J in �.

The function γI : F(I)→ X, where I ∈|� |, takes x ∈ F(I) to the equivalence class {(I, x)}∼.

A.2.3. Parametricity for coends As a special case of parametrised representability, we get

that the formation of coends maintains functoriality in parameters.
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Theorem A.5 (Parametricity for coends). If F : �op ×�×�→ D is a functor such that

for every B ∈|� |, a coend (
∫ C

F(C,C, B), ωB) exists. Then, with respect to a choice of

coend for each parameter B, the mapping

B �−→
∫ C

F(C,C, B)

extends uniquely to a functor ∫ C

F(C,C,−) : �→ D

such that

F(C,C, B)
ωB

C

F(1C ,1C ,f)

∫ C
F(C,C, B)

∫ C
F(C,C,f)

F(C,C, B′)
ωB′

C

∫ C
F(C,C, B′)

commutes for all arrows f : B → B′.

In a more compact form, the assignment B �→
∫ C

F(C,C, B) extends uniquely to a functor

in the parameter B such that the isomorphism

D
( ∫ C

F(C,C, B), D

)
∼= Dinat(F(−,+, B),∆D)

natural in D, determined by the choice of universal wedge ωB , is also natural in B.

In line with the notation of the Theorem A.5 above, we shall write∫ C

F(C,C, f) :

∫ C

F(C,C, B)→
∫ C

F(C,C, B′)

for the action of the functor above on the arrows f : B → B′ of �.

In practice, parametricity often allows us to specify functors without treating objects

and arrows separately. For example, with an implicit reference to parametricity, we can

describe the functor above as the functor that acts so that

X �→
∫ C

F(C,C,X)

where X can be understood to range over both objects and arrows. This relies on F being

a functor, and, implicitly, on a choice of coend for each object X.

In particular, colim F , which we can regard as the coend
∫ C

F(C), for diagrams F in

[�,D] where D is cocomplete, extends to a functor colim from diagrams [�,D] to D.

Again, this assumes a choice of colimit for each diagram F .

A.2.4. The Fubini theorem for coends In the manipulation of coends the interchange of

‘integrals’ is often important, and is justified by the following theorem.
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Theorem A.6 (Fubini). Given a functor F : �op×�×
op×
→ D, where D is a cocomplete

category, ∫ I ∫ J

F(I, I, J, J) ∼=
∫ (I,J)

F(I, I, J, J) ∼=
∫ J∫ I

F(I, I, J, J).

Moreover, the isomorphisms are natural in F .

The Fubini theorem is usually stated in greater generality to allow for the category D not

having all colimits. However, the simpler version suffices here.

A.2.5. Ends Ends are defined in a dual way to coends, as universal wedges from an

object to a functor of mixed variance.

Just as colimits are special kinds of coends, we can regard limits as special ends in

which the contravariant argument is dummy, and, given a functor F : C → D, we can

write both
∫
C
F(C) and limF for the limit.

We can calculate ends as limits, by dualising the construction shown above for coends.

In particular, we can regard an end in Set as a limit in Set from which we obtain the

following explicit construction.

Proposition A.7. Let F : �op × � → Set be a functor. Then F has an end in Set given

explicitly as the wedge consisting of the set

X = {x ∈
∏

I∈|� |F(I, I) | F(I, f)(xI ) = F(f, J)(xJ ) for all f : I → J in �}

and functions γI : X → F(I, I), where I ∈|� |, projecting x to its components xI .

A.2.6. End and coend formulae Through the explicit construction of ends in Set, we can

express the set of dinatural transformations between appropriate functors as an end.

Letting F,G : �op × �→ D,

Dinat(F,G) =

∫
I

D(F(I, I), G(I, I)).

By specialising to particular kinds of functors, we obtain an end expression for the set of

natural transformations between functors F,G : �→ D:

[�,D](F,G) =

∫
I

D(F(I), G(I)).

Recalling the compact presentation of coends and ends, we obtain the following natural

isomorphisms, characterising coends and ends:

D
( ∫ I

F(I, I), D

)
∼=

∫
I

D(F(I, I), D),

natural in D, and

D
(
D,

∫
I

F(I, I)

)
∼=

∫
I

D(D, F(I, I)),

natural in D.
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A.3. Preservation of colimits

A functor G : C → D is said to preserve colimits of a diagram d : � → C if it sends any

universal (that is, colimiting) cone from d to X to a universal cone from G ◦ d to G(X).

Clearly, when G preserves colimits of a diagram d this entails G(colim d) ∼= colim G ◦ d.
In general, such an isomorphism alone is not sufficient to ensure that G preserves the

colimit. However, with minor side conditions, naturality of the isomorphism in d does

ensure the colimit is preserved. Proofs of the following lemmas may be found in Caccamo

and Winskel (2004) and Caccamo and Winskel (2000).

Lemma A.8. Suppose the category � is small and connected. Suppose categories C,D
have initial objects and all �-colimits.

A functor G : C → D preserves �-colimits iff there are isomorphisms

θd : G(colim d) ∼= colim (G ◦ d)

natural in d in [�,C].

Lemma A.9. Suppose the category � is small, that categories C,D have all �-colimits, and

that G sends initial objects to initial objects.

A functor G : C → D preserves �-colimits iff there are isomorphisms

θd : G(colim d) ∼= colim (G ◦ d)

natural in d in [�,C].

If we are interested in all colimits, we obtain the following simple statement.

Lemma A.10. Suppose categories C,D are cocomplete.

A functor G : C → D preserves all colimits iff for all small � there are isomorphisms

θd : G(colim d) ∼= colim (G ◦ d)

natural in d in [�,C].

From the Fubini theorem for coends, we see a sense in which the operation of formation

of coends preserves colimits. More precisely, suppose D is cocomplete. For any functor

F : 
op × 
 → D, we can form the coend
∫ J

F(J, J), and this operation is functorial in

F . Call this resulting functor G – we might, alternatively, describe the functor G using

lambda notation as λF.
∫ J

F(J, J). Now, G preserves colimits. In other words,
∫ J

F(J, J)

preserves colimits in the parameter F . By Lemma A.10, it is sufficient to observe that the

following chain of isomorphisms are all natural in d : �→ [
op × 
,D]:

G

( ∫ I

d(I)

)
∼=

∫ J( ∫ I

d(I)

)
(J, J)

∼=
∫ J( ∫ I

d(I)(J, J)

)
(as coends of functors are computed pointwise)

∼=
∫ I ( ∫ J

d(I)(J, J)

)
(by Fubini)

∼=
∫ I

G(d(I)).
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A.4. Kan extensions and their properties

A.4.1. Left Kan extensions

Definition A.11 (Left Kan extensions). For functors C G←− A F−→ B, we say that a pair

K, α is a left Kan extension of G along F if

— K : B → C is a functor

— α : G⇒ KF is a natural transformation satisfying the following universal property:

for every other pair H, β with H : B → C and β : G ⇒ HF , there exists a unique

γ : K ⇒ H such that β = γF · α.
By the usual abuse of language, we will often call the functor K the left Kan extension

of G along F and write it as LanF (G).

We can summarise the data provided by the definition of left Kan extension in the diagram

A F

G

α⇒
B

LanF (G)

C

We can, alternatively, present such a left Kan extension as a representation, consisting

of the object LanF (G) and an isomorphism

[B,C](LanF (G),−) ∼= [A,C](G,− ◦ F).

However, note that for [A,C] to be locally small, so that we always get a set on the right,

we need to assume that A is small ([B,C] need not be locally small).

Suppose that every G :A→ C has a left Kan extension LanF (G), αG. As a special case

of parametrised representability, the operation of forming a left Kan extension on objects

G of [A,C] extends uniquely to a functor LanF (−) : [A,C]→ [B,C] such that

((LanFγ)F).αG = αG′ .γ

for all γ : G→ G′.

Note that the triangle above need not commute, not even up to natural isomorphism.

Still, this happens in many cases of interest.

Proposition A.12. Suppose F is full and faithful.

— If (LanF (G), α) exists, then α is a natural isomorphism.

— If (LanF (G), α) exists for all G : A → C, then the functors LanF (−) : [A,C] →
Im[B,C] and − ◦ F : Im[B,C] → [A,C], form an equivalence of categories between

the functor category [A,C] and Im[B,C], the full subcategory of [B,C] consisting of

functors naturally isomorphic to LanF (G) for some G :A→ C.

A.4.2. Pointwise left Kan extensions As we will see shortly, if C is cocomplete and � is

small, then LanF (G) always exists for any F and G. The proof of this fact relies on an

important general construction – the category of elements of a presheaf.
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Definition A.13. Let X : �op → Set be a presheaf. Define El(X) to be the category

consisting of

— Objects: Pairs (P , x), where P ∈ |�| and x ∈ X(P )

— Arrows: f : (P , x)→ (P ′, x′) if f : P → P ′ is an arrow of � and Xf(x′) = x.

The composition of arrows is given by the composition in �.

The construction extends to a functor El(−) from �̂ to the category of small categories.

Let h : X → Y be a map in �̂, that is, a natural transformation between presheaves. The

naturality of h ensures that we can define the functor El(h) : El(X) → El(Y ) by sending

an object (P , x) in El(X) to (P , hP (x)), and an arrow f : (P , x) → (P ′, x′) in El(X) to the

arrow f : (P , hP (x))→ (P ′, hP (x′)) in El(Y ).

Assuming that C is cocomplete and A is small, we can compute the left Kan extension

LanF (G) ‘pointwise’ at any object B ∈ B by taking

LanF (G)(B) = colim (El(B(F(−), B))
π−→A G−→ C)

using the category of elements of the presheaf B(F(−), B) : Aop → Set. With the

understanding that (A, x) ranges over this category of elements, we can abbreviate this

colimit expression to

LanF (G)(B) =

∫ (A,x)

GA.

On an arrow h : B → B′, the left Kan extension produces a unique arrow LanF (G)(h) :

LanF (G)(B)→ LanF (G)(B′), mediating between the two colimiting cones

〈GA γA,x→〉(A,x)∈|El(B(F(−),B))| and 〈GA γ′A,y→〉(A,y)∈|El(B(F(−),B′))|

such that

GA
γA,x

γ′A,h◦x

LanF (G)(B)

LanF (G)(h)

LanF (G)(B′)

commutes for all (A, x) ∈ |El(B(F(−), B))|. (See Borceux (1994, Volume 1) for a detailed

proof that this construction yields a left Kan extension.)

Still assuming that C is cocomplete and A is small, there is also a useful description of

(pointwise) left Kan extensions in terms of coends (Mac Lane 1971, Exercise 4, page 239):

LanF (G)(B) ∼=
∫ a

B(F(A), B) . G(A),

where by a copower S . C we mean the coproduct
∑

s∈S C of as many copies of C as there

are members of the set S .

A.4.3. Left Kan extensions along Yoneda Of special interest is the case of left Kan

extensions along the Yoneda embedding y� : � → �̂, where � is a small category, and
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the category C is cocomplete:

�
y�

G

�̂

Lany�
(G)

C

In this case, Lany� (G) will always have a right adjoint G∗ : C → �̂ given by

G∗(C) = C(G(−), C).

When extending along Yoneda, we can use the Yoneda lemma to simplify the colimit

and coend formulations of the left Kan extension given above in Section A.4.2.

For X a presheaf in �̂,

Lany�(G)(X) = colim (El(X))
π−→ �

G−→ C).

Let X and X ′ be presheaves in �̂ associated with the colimiting cones

〈GP γP,x→ Lany�(G)(X)〉(P ,x)∈|El(X)|

〈GP γ′P ,x→ Lany�(G)(X ′)〉(P ,x′)∈|El(X ′)|.

For a map h : X → X ′, we can define Lany� (G)(h) to be the unique arrow in C such that

GP
γP,x

γ′P ,hP (x)

Lany� (G)(X)

Lany�
(G)(h)

Lany� (G)(X ′)

commutes for all (P , x) ∈ |El(X)|.
From the coend expression for left Kan extensions and by the Yoneda lemma,

Lany� (G)(X) ∼=
∫ P

X(P ) . G(P ).

A.4.4. The density formulae The left Kan extension of a Yoneda embedding along itself

always exists and is naturally isomorphic to the identity. From the two ways of describing

pointwise left Kan extensions, we get two forms of the density formula. One form expresses

a presheaf X as a a colimit of representables:

X ∼=
∫ (P ,x)

y�(P ),

where (P , x) ranges over the category of elements El(X). The other exhibits a presheaf as

a coend:

X ∼=
∫ P

X(P ) . y�(P ).

A.4.5. A factorisation lemma It is often useful to observe that pointwise left Kan

extensions can be factored into a composition described by the following lemma.
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Lemma A.14. Let I : � → �̂ and G : � → C be functors, where the category C is

assumed cocomplete. Then,

LanI (G) ∼= Lany� (G) ◦ I∗,

where I∗ : �̂→ �̂ is given by I∗(X) = �̂(I(−), X):

�
I

G

�̂
I∗

LanI (G) ∼= �̂

Lany�
(G)

C

Proof. By considering the coend expressions for left Kan extensions, we see that

(LanIG)(X) ∼=
∫ R

�̂(I(R), X) . GR =

∫ R

(I∗X)R .GR ∼= (Lany�G) ◦ I∗(X),

natural in X ∈ �̂.

A.4.6. Extensions of functors A functor F : � → �, between small categories � and �,

extends to a functor

Lany�(y� ◦ F) : �̂→ �̂,

which is traditionally denoted by F!.

As we have just seen, this left Kan extension has a right adjoint (y� ◦ F)∗ : �̂ → �̂,

which, overloading notation, we will also write as F∗.

In fact, the functor F∗ is itself a left Kan extension along y� of the functor � → �̂
taking Q to the presheaf �(F(−), Q). So F∗ has a right adjoint, traditionally written as

F∗ : �̂→ �̂.

Summarising, in the special case where F is a functor from � to � (as distinct from

�̂), there is a triple of adjoints

F! 
 F∗ 
 F∗ : �̂→ �̂.

Further discussion on such adjoints, which form an essential geometric morphism, can be

found, for example, in Mac Lane and Moerdijk (1992).
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