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SUMMARY
This paper presents a new method of analyzing and
calculating the uncertainty configurations of parallel manip-
ulators. The main feature of the method that makes it
attractive with respect to the methods available in the
literature, is its ability to obtain simplified uncertainty
configuration equations. It’s very useful in real-time control.
The application of the proposed method is illustrated in
detail by two examples.
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1. INTRODUCTION
Parallel manipulators consist of multiple branches acting in
parallel on a common payload platform. For a parallel
manipulator to be capable of spatial motion each branch
must be able to accommodate six degrees of freedom of task
space motion. Parallel manipulators are superior to serial
manipulators, which include higher stiffness, improved
accuracy and dynamic characteristics1-3. These advantages
stem from the fact that the base-distal joints of parallel
manipulators do not have to be actuated, thereby reducing
the manipulated mass; that the actuators of the branches act
in parallel, sharing a common payload; and that errors due
to inaccurate device manufacture or sensing act in parallel
rather than in serial, thereby improving accuracy.

The special configurations of parallel manipulators can be
classified as degeneracies related to the branches and
uncertainty configurations of the parallel architecture4. In
branch degeneracy a serial branch, and hence, the entire
parallel manipulator is not capable of providing a required
end effector motion. In an uncertainty configuration a
parallel manipulator is not able to resist or apply a required
end effector force. Near degenerate configurations a serial
branch, and hence, the entire parallel manipulator has a very
poor motion performance, i.e. the manipulator becomes
incapable of producing end effector motion in the direction
of a lost degree of freedom. Similarly, the force transmis-
sion performance of a parallel manipulator is very poor near
uncertainty configurations, i.e. the manipulator cannot
effectively resist or apply forces at the end effector in
certain directions.

The degeneracy related to the branches can be identified

by finding the roots of the determinant of the Jacobian
matrices of the individual branches. For kinematically
simple branches this reduces to a simple problem. Similarly,
the uncertainty configurations of a parallel manipulator may
be determined from the roots of the determinant of the
matrix of the wrenches associated with the actuated joints of
the parallel devices. However, for a parallel manipulator the
matrix of wrenches is complex and it is not easy to find
these roots.

Gosselin and Angeles5 classified special configurations of
closed-chain manipulators based on the singularities of
Jacobian matrices obtained from differentiating the relation-
ship between input and output coordinates and analyzed
parallel manipulator singularities using the Jacobian of its
constraint equations. They identified singular configurations
of the platform as those that lead to a singular Jacobian
matrix. The goal is to determine the location of all singular
configurations in the workspace of the manipulator. Later,
Ma and Angeles6 examined architecture singularities of
linear actuated fully parallel manipulators. Zlantanov,
Fenton and Benhabib7 presented a novel method for finding
and classifying all the singularities of an arbitrary non-
redundant mechanism.

The proposed technique is based on the velocity-equation
formulation of kinematic singularity and the singularity
classification introduced earlier by the authors. Criteria for
singularity are derived and used to formulate a method for
computing the singularity set and revealing its devision into
singularity classes. The uncertainty configurations of paral-
lel manipulators can be investigated by examining potential
actuated-joint associated wrench system degeneracies using
screw theory. For particular device classes line geometry
considerations can be utilized. Hunt3 utilized the principles
of reciprocity and linear dependence of screws to classify
the screw systems and studied special configurations of a
variety of mechanisms. Merlet8 and Hao and Mccarthy9

utilized line geometry to identify the uncertainty configura-
tions of parallel manipulators. Basu and Ghosal10 present a
geometric condition for platform-type, multi-loop, mechan-
isms and parallel manipulators, containing spherical joints
on the platform, whose existence ensures singularitie in
such mechanisms. The geometric condition is based on the
concept of a common tangent. They show that this condition
also implies that the determinants of certain matrices,
formed by the differentiation of the loop-closure equations,
are zero.

The aim of this paper is to present a new method for
analyzing and calculating the uncertainty configurations of
parallel manipulators. Based on the instantaneous motion of
the moving platform, the uncertainty configuration condi-
tions and simplified uncertainty configuration equations are
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obtained for the 6-sps triangular platform and three-branch
parallel manipulators.

2. UNCERTAINTY CONFIGURATIONS OF A 6-SPS
TRIANGULAR PLATFORM PARALLEL
MANIPULATOR
The triangular platform parallel manipulator is illustrated in
Figure 1. The coordinate system O-XYZ is fixed to the base
frame.

In uncertainty configurations the end effector of a parallel
manipulator is instantaneously movable even when all of the
actuated joints are locked. The instantaneous motion is
restrained by structure constraints, i.e. velocity directions of
points A, B and C are perpendicular to planes AA1A2, BB1B2

and CC1C2 respectively. Let vA, vA and V be the velocity
vector of point A, its norm and the angular velocity vector
of the moving platform, respectively.

vA =nAdA (1)

V=[vx vy vz ]T (2)

where

dA =
A1A23 A1A

iA1A23 A1Ai
(3)

The velocities of point B and C are given as follows

vB =vA +V3 AB
vC =vA +V3 AC

(4)

When the constraints are satisfied, we have the following
equations

vB·B1B=0
vB·B1B2 =0
vC·C1C=0
vC·C1C2 =0

(5)

Substituting (1), (2) and (4) into (5), we obtain 

[nAdA +V3 AB] · B1B=0
[nAdA +V3 AB] · B1B2 =0

[nAdA +V3 AC] · C1C=0
[nAdA +V3 AC] · C1C2 =0

(6)

Substituting (3) into (6), the following equation can be
derived

JX=0 (7)

where 0 is a zerovector and 

X=[nA vx vy vz]
T (8)

J =

(A1A23 A1A) · B1B (AB3 B1B)T

(A1A23 A1A) · B1B2 (AB3 B1B2)
T

(A1A23 A1A) · C1C (AC3 C1C)T

(A1A23 A1A) · C1C2 (AC3 C1C2)
T

(9)

In equation (7), X is a nonzero vector, than we have

det(J) = 0 (10)

where J is a 43 4 matrix, and hence the determination of the
uncertainty configurations is greatly simplified.

3. UNCERTAINTY CONFIGURATIONS OF A
THREE-BRANCH PARALLEL MANIPULATOR
The three-branch parallel manipulator is illustrated in
Figure 2. The coordinate system O-XYZ is fixed to the base
frame. The end effector is the moving platform ABC; the six
input joints are A1, A2, A3, B2, B3 and C3.

In uncertainty configurations the end effector of the
manipulator is instantaneously movable even when all of the
input joints are locked. The instantaneous motion must
satisfy structure constraints, i.e. velocity direction of point
B is perpendicular to B2B and B2B1 and velocity direction of
point C is perpendicular to C2C respectively. Let V be the
angular velocity vector of the moving platform, the
velocities of points B and C are derived as follows

vB = V3 AB
vC = V3 AC

(11)

where

V = [vx vy vz]
T (12)

When the constraints are satisfied, we have the following
equations

vB · B2B = 0
vB · B2B1 = 0
vC · C2C = 0

(13)

Substituting (11) and (12) into (13), we obtain

JX = 0 (14)

Fig. 1. 6-sps triangular platform parallel manipulator.

Fig. 2. Three-branch parallel manipulator.
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where 0 is a zerovector and 

X = [vx vy vz ]T (15)

J =
AB3 B2B
AB3 B2B1

AC3 C2C
(16)

In equation (14), X is a nonzero vector, then we have 

det(J) = 0 (17)

where J is a 33 3 matrix, and hence the determination of the
uncertainty configurations is greatly simplified.

4. CONCLUSIONS
Based on the instantaneous motion of the moving platform,
uncertainty configuration conditions and simplified uncer-
tainty configuration equations are obtained. In the 6-sps
triangular platform parallel manipulator and three-branch
parallel manipulator, the matrices, which are used to
determine the uncertainty configurations are 43 4 and 33 3
matrices, respectively, and hence the determinations of the
uncertainty configurations, are greatly simplified.
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