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Abstract. The method of matched asymptotic approximations is used to examine
an ordering of the physical quantities in a collisional plasma–collisional sheath
model that has not been previously explored, namely in the constant ion mean
free path model with high electric field. The asymptotic theory for a collision-
dominated space-charge sheath at a negative surface is developed for the case when
the ions interact with neutral particles as rigid spheres while the electric field is high
both in the sheath and in the quasineutral plasma. The ion mobility is inversely
proportional to the square root of the electric field in such a case. The ratio λD/L
of the Debye length at the center of the quasineutral plasma to a characteristic
dimension of the plasma is considered as a small asymptotic parameter. The general
structure of the asymptotic solution obtained is similar to that in the case of low
electric field (or in the framework of the model of constant collision frequency),
considered by previous workers; however, the scalings are different. In particular,
the thickness of the sheath is found to have the order λ4/5

D L1/5, while the respective
order in the case of low electric field is λ2/3

D L1/3.

1. Introduction
The asymptotic theory of a collision-dominated space-charge sheath at a negative
surface in a weakly ionized plasma was first described in the classical papers [1, 2]
for the cases of large and moderate surface potentials, respectively; refined treat-
ments have been given in [3, 4]. The theory in the above-cited works was developed
with reference to electric probes in high-pressure plasmas. In [5], a treatment simi-
lar to that in [2] was applied to the problem of distribution of parameters in a cross
section of a DC glow discharge.

Designate by L a length scale characterizing the region of quasineutral plasma.
(Typically, L can be set equal to the probe radius or to the radius of the glow
discharge tube.) If the surface potential is moderate, which is the case that will be
considered in this work, the space-charge sheath has no internal structure and can
be characterized by a single length scale, which has the meaning of a scale of sheath
thickness and will be designated δ. The continuum asymptotic approach employed
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in the above papers applies in the case

λi� δ�L, (1)

where λi is the mean free path of ions in the gas of neutral particles. This case will
be considered also in this work.

If the energy gained in the electric field in a collision-dominated plasma over an
ion mean free path is much smaller than the mean thermal energy of the neutral
particles,

eEλi� kTa, (2)

then the diffusion coefficient and the mobility of the ions may be considered as given
constants, regardless of the model of the ion–atom interaction being considered.
(Here Ta is the temperature of neutral particles; it is assumed for simplicity that
the masses of the ions and of the neutral particles are comparable; the temperature
and density of the neutral particles are assumed to be constant.) This case is usually
referred to as the case of low electric field; see, e.g., [6]. If condition (2) is not
satisfied, the dependence of the diffusion coefficient and mobility of the ions on the
local electric field should be taken into account, an exception being the case when
the interaction of the ions with neutral particles can be approximated by the model
of constant collision frequency and the ion mobility is constant. Note that the case
when the inequality (2) is reversed is usually referred to as the case of high electric
field; see, e.g., [6].

The electric field in the quasineutral region and (provided that the surface poten-
tial is moderate) in the space-charge sheath may be estimated as E = O(kTe/el),
where Te is the electron temperature and l is the local length scale (l = L in the
quasineutral region and l = δ in the sheath). It follows that the inequality (2)
amounts to

λi� l
Ta
Te

. (3)

If Ta is comparable to Te, the inequality (3) for a collision-dominated plasma
(λi� l) is always satisfied. However, in many situations of practical interest, Ta�
Te; in particular, under conditions of a glow discharge, the ratio Ta/Te may be of the
order of 10−2. Assuming a collision-dominated sheath (λi� δ), one can distinguish
the following three limiting cases in such situations:

λi� δ
Ta
Te

; δ
Ta
Te
' λi�L

Ta
Te
, δ; L

Ta
Te
' λi� δ. (4)

In the first case, the inequality (3) holds both in the quasineutral region and in the
sheath, and the diffusion coefficient and the mobility of the ions may be considered
as given constants. In the second case, the diffusion coefficient and the mobility of
the ions may be considered as given constants in the quasineutral plasma; the de-
pendence of these coefficients on the local electric field should be taken into account
in the sheath. In the third case, the dependence of the ion transport coefficients
on the local electric field must be taken into account both in the sheath and in the
quasineutral region. Obviously, the third case can be realized only if δ/L� Ta/Te.

The treatment in [2, 4, 5] refers to the first case. It is the third case that will be
(asymptotically) analyzed in this work. For definiteness, the theory will be devel-
oped with reference to a planar column of a DC glow discharge. Apart from being of
independent interest, such an analysis can provide a useful check on computations
similar to [7], just as [5] did for the computations given in [8]. The results obtained
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are complementary to those with different ordering of the physical quantities. The
case δ�L� λi was considered in [9] and δ� λi�L more recently in [10], where
in both cases the powerful technique of matched asymptotic approximations shows
that the Bohm criterion applies and that there is necessarily a structure of plasma–
transition layer–collisionless sheath. In the present case, just as in [5], the structure
is collisional plasma–collisional sheath, with plasma and sheath joining smoothly
and the Bohm criterion has no relevance. We conclude, as did Riemann and Meyer
[11], that there is no such thing as a collisionally modified Bohm criterion.

The use of the technique of matched asymptotic approximations went through
an initial phase in the 1960s, of which [1, 2, 5, 9] are examples, but it is only now
being used regularly in the analysis of different and complex plasma situations.
Recent examples include the variation of ion temperature [12], dusty plasmas [13],
fusion plasmas [14], electronegative plasmas [15], and flowing plasmas [16].

2. The model
We consider a plane collision-dominated column of a low-pressure DC glow dis-
charge. The column is confined by two (planar) walls and has width 2L. In accord
with the estimates of the preceding section, the average ionic energy is of the order
of kTeλi/L in the quasineutral region and of the order of kTeλi/δ in the sheath.
In either case, this energy is much smaller than kTe and the flux of ions caused by
diffusion is much smaller than the (drift) flux caused by the electric field. The dis-
tribution of parameters in a cross-section of the column is governed by the system
of equations including the continuity equation for the ions, the equation describ-
ing their drift, the Boltzmann distribution for the electron density, and Poisson’s
equation:

d

dx
(nivi) = −αne. vi = µi

dφ

dx
, (5)

ne = ne0 exp
(
eφ

kTe

)
, ε0

d2φ

dx2 = e(ne − ni). (6)

Here the x axis is directed from the wall into the plasma, ni and ne are the number
densities of the ions and the electrons, vi is the mean velocity of the motion of
the ions in the direction to the wall, α is the ionization rate (the eigenvalue), φ is
the electrostatic potential, and µi is the ion mobility. For definiteness, one can set
the value of the potential at the plane of symmetry equal to zero; then ne0 is the
electron density at the plane of symmetry.

It will be assumed that the ions interact with the atoms as rigid spheres (the
model of constant mean free path). Furthermore, we restrict consideration to the
case when the third inequality in (4) is satisfied in a somewhat stronger form:
LTa/Te � λi � δ. In this case, the high-electric field regime occurs in the whole
calculation domain, i.e., both in the quasineutral plasma and in the space-charge
sheath. The mobility of the ions in this regime in the framework of the model of
rigid spheres is inversely proportional to the square root of the electric field, and
one can write

vi = A

√
dφ

dx
, (7)

where A is a given positive constant. Note that this constant is equal, to the accu-
racy of a factor, to

√
eλi/mi, where λi is the (constant) mean free path of the ions
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in the gas of neutral atoms and mi is the mass of an ion. This can be seen, e.g.,
from equation (12) of [17]; a similar result can be obtained from equation (5-2-23)
of [6]. Note that the above-mentioned factor depends on the ratio of the mass of
an ion to the mass of a neutral particle and is of order unity if the two masses are
comparable.

Boundary conditions for the above equations are as follows. Since the net electric
current density to an (insulating) wall is zero, one can write (see, e.g., [18])

x = 0 : 1
4neC̄e = nivi. (8)

Here C̄ = (8kTe/πme)1/2 is the electron mean thermal speed (me is the mass of the
electron). At the axis of symmetry of the discharge, one can write

x = L : φ = 0, vi = 0,
dni
dx

= 0. (9)

We introduce dimensionless variables

X =
x

L
, N =

ni
ne0

, Φ =
eφ

kTe
. (10)

The problem assumes the form

d

dX

(
N

√
dΦ
dX

)
= −ZeΦ, ε

d2Φ
dX2 = eΦ −N, (11)

X = 0 : BeΦ = N

√
dΦ
dX

, (12)

X = 1 : Φ = 0,
dΦ
dX

= 0,
dN

dX
= 0, (13)

where

ε =
(
λD
L

)2

, Z =
αL

A

√
eL

kTe
, B =

C̄e
4Λ

√
eL

kTe
. (14)

Here λD =
√
ε0kTe/ne0e2 is the Debye length at the center of the quasineutral

plasma.
The stated problem involves two dimensionless control parameters: ε and B. ε is

the squared ratio of the Debye length to the characteristic dimension, and is usually
much smaller than unity. B is equal, to the accuracy of a factor, to

√
miL/meλi;

since mi/me� 1 and (in the conditions considered in this work) L� λi, B� 1. It
is the aim of this work to develop an asymptotic solution in which ε is considered
as a small parameter and B as a large parameter. Use will be made of the method
of matched asymptotic expansions (see, e.g., [19–23]).

Analysis shows that the asymptotic structure of the solution depends on the
relative orders of magnitude of B and ε−1/5. In the next section, a solution will be
obtained for the case B = O(ε−1/5). As is shown in Sec. 4, a solution describing the
space-charge sheath in this limiting case applies also to the case B� ε−1/5. Results
for the case 1� B � ε−1/5 are given in the Appendix, but this ordering requires
smaller Debye lengths than usually occur.
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3. Asymptotic treatment
We seek an asymptotic expansion of the (dimensionless) eigenvalue in the form

Z(ε,B) = Z1 + . . . . (15)

The straightforward (outer) expansion of the unknown functions has the form

N (X; ε,B) = N1(X) + . . . , Φ(X; ε,B) = Φ1(X) + . . . , (16)

and applies at 0 < X 6 1. Substituting this expansion into (11) and (13), expanding
and retaining leading terms, one arrives at

d

dX

(
N1

√
dΦ1

dX

)
= −Z1e

Φ1 , N1 = eΦ1 . (17)

X = 1 : Φ1 = 0,
dN1

dX
= 0. (18)

Taking into account the second equation in (17), one can see that the second bound-
ary condition in (13) is a consequence of the last one, and may therefore be dropped.

The boundary condition at X = 0 should be formulated is such a way as to make
possible matching with an inner expansion. By analogy with the treatment for the
case of low field [2, 4, 5], one can expect that this condition is (see also the discussion
in [24])

X = 0 : N1 = 0. (19)

Now the problem (17)–(19) is closed and may be solved. Eliminating the potential
from (17) gives

d

dX

(√
N1

dN1

dX

)
= −Z1N1. (20)

This equation may be transformed to a first-order equation:

N1Y
1/2 dY

dN1
+ Y 3/2 + 2Z1N

3/2
1 = 0, (21)

where Y = dN1/dX. The solution to this equation, subject to the boundary condi-
tion Y |N1=1 = 0, is

Y = Z
2/3
1 (N−3/2

1 −N 3/2
1 )2/3. (22)

Applying the boundary condition (19), one finds

X =
∫ N1

0

N1 dN1

Z
2/3
1 (1−N 3

1 )2/3
. (23)

Furthermore the first boundary condition (18) now gives

Z1 = (2π)3/23−9/4. (24)

Thus, the first term of the straightforward expansion has been found. Its asymp-
totic behavior at X → 0 may be found to be

N1 = Z
1/3
1

√
2X + . . . , Φ1 = 1

2 lnX + ln(
√

2Z1/3
1 ) + . . . . (25)

Since the function Φ1 has a singularity at the point X = 0, the straightforward
expansion (16) does not apply in the vicinity of this point. In order to describe a
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solution in this vicinity, one should consider another (inner) expansion. The form
of this expansion may be found out as follows. The term on the left-hand side
of the second equation in (11) increases proportionally to 1/X2 as X → 0, while
the terms on the right-hand side decrease proportionally to

√
X. It follows that

at X = O(ε2/5), the term on the left-hand side of the second equation in (11),
which has been dropped in the above analysis, becomes comparable to the terms
on the right-hand side, and therefore the above analysis breaks down. Thus, one
should introduce an inner expansion associated with the variable X2 = X/ε2/5 and
applicable at X2 > 0. (This implies that the scale of the sheath region is ε2/5L, i.e.,
λ

4/5
D L1/5.) Taking (25) into account, one should seek this expansion in the form

N (X; ε,B) = ε1/5N2(X2;B1) + . . . , Φ(X; ε,B) = 1
5 ln ε + Φ2(X2;B1) + . . . , (26)

where B1 = ε1/5B = O(1).
To a first approximation, (11) assumes the form

d

dX2

(
N2

√
dΦ2

dX2

)
= 0,

d2Φ2

dX2
2

= eΦ2 −N2. (27)

A boundary condition at the surface is supplied by (12):

X2 = 0 : B1e
Φ2 = N2

√
dΦ2

dX2
. (28)

Boundary conditions at X2 →∞ are obtained by matching with the outer expan-
sion, and read

N2 = Z
1/3
1

√
2X2 + . . . , (29)

Φ2 = 1
2 lnX2 + ln(

√
2Z1/3

1 ) + . . . . (30)

Integrating the first equation in (27) and making use of the boundary conditions
(29) and (30), one finds

N2 = Z
1/3
1

(
dΦ2

dX2

)−1/2

. (31)

Substituting this expression into the second equation in (27), one obtains an
equation for the potential:

d2Φ2

dX2
2

= eΦ2 − Z1/3
1

(
dΦ2

dX2

)−1/2

. (32)

The boundary condition at X2 →∞ is supplied by (30); the boundary condition at
the wall follows from (28):

X2 = 0 : Φ2 = ln
Z

1/3
1

B1
. (33)

Now the boundary-value problem for the function Φ2 is closed and may be solved.
Since no analytical solution exists, numerical calculations are necessary. Before
applying a numerical treatment, it is convenient to introduce new variables:

X3 = (2Z2/3
1 )1/5(X2 + 2C), Φ3 = Φ2 − 2

5 ln(2Z2/3
1 ), (34)

where C is a constant that will be specified at a later stage. Equation (32) assumes
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the form

d2Φ3

dX2
3

= eΦ3 −
(

2
dΦ3

dX3

)−1/2

. (35)

In order to derive a convenient initial condition for numerical calculations, we
find higher-order terms in the expansion (30), thus giving results analogous to those
for the case of a constant collision frequency given in the appendix of [5] and in
[25]. We shall seek the asymptotic expansion of the function Φ3(X3) at X3 →∞ in
the form

Φ3 = 1
2 lnX3 +

C1

Xp1
3

+
C2

Xp2
3

+ . . . , (36)

where C1, p1, C2, p2, . . . are constants to be determined, 1 < p1 < p2 < . . . . Note
that (35) is invariant with respect to a shift of the independent variable, and such
a shift results, in a general case, in appearance of a term in 1/X3 in this expansion.
We assume that the constant C is chosen in such a way that this term is absent
(i.e., p1 > 1).

Substituting the expansion (36) into (35), one readily finds that p1 = 5
2 , p2 = 5,

p3 = 15
2 , etc. Note that the analogous quantities in [5, 25] were 3, 6, 9, etc. This

difference stems from the fact that the exponent of the second term on the right-
hand side of (35) is − 1

2 rather than −1, as in [5, 25].
After considerable manipulation one finds that

C1 =
1
3
, C2 = −281

288
, C3 =

82 733
33 696

. (37)

Using (36) and (37), one can find, to any desired accuracy, values of Φ3 and of
dΦ3/dX3 at large enough X3. After that, one can numerically integrate (35) in
the direction of decreasing X3. The integration stops when Φ3 reaches the value
ln(Z1/15

1 /22/5B1), which determines the value of X3 at the wall and hence the con-
stant C in (34).

Within this approach, the sheath is described by the same curve Φ3(X3) for all
B1, the effect of B1 manifesting itself only through the position of the wall. This
generic solution is given in Fig. 1, along with the generic solutions for dΦ3/dX3,
N3 = (2 dΦ3/dX3)−1/2 and Ne3 = exp(Φ3). At large distances from the wall, the
charged particle densities from (25) are proportional to X1/2, and this is seen to be
so in Fig. 1. In other words, the behavior for large X3 matches the ‘plasma edge’
behavior of the plasma solution given by (25). Note that Fig. 1 is analogous to Fig.
2 of [25] and has the same general properties. It conforms also to the results of
numerical treatment [7].

4. Discussion
The asymptotic structure of the solution obtained is similar to that in the case of
a low electric field [2, 4, 5]: there is a region of the quasineutral plasma, which
occupies the bulk of the tube and is described by the asymptotic expansion (16),
and an asymptotically thin space-charge sheath, which is adjacent to the wall and
is described by the expansion (26), the charged-particle density and the electric
field in the sheath being, respectively, much lower and much higher than those in
the quasineutral plasma. On the other hand, it follows from (25) that the density
of the charged particles in the quasineutral plasma approaches the wall with an
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Figure 1. Generic solution describing the space-charge sheath. Φ3 is the (normalized) poten-
tial, dΦ3/dX3 is the electric field, N3 is the ion density, and Ne3 is the electron density. The
wall is located at the point where Φ3 = ln(Z1/5

1 /22/5B1) i.e. its position in terms of X3 varies
with the mass ratio of ions and electrons and the ratio of the plasma dimension to the ion
mean free path. The densities tend to a common value for large X3, with a parabolic increase
with distance into the plasma. The electric field goes to zero in the plasma and increases
linearly near the wall.

infinite derivative. This asymptotic behavior is different from that in the case of a
low electric field, and results in different scalings of parameters in the sheath (see
the paragraph after (25)): while the sheath thickness, the charged-particle density,
and the electric field in the sheath in the case of low field are of the orders of,
respectively, ε1/3, ε1/3, and ε−1/3 [2, 4, 5], in the case considered in this work, the
respective orders are ε2/5, ε1/5, and ε−2/5. Note that the dimensional scale of sheath
thickness is δ = λ

2/3
D L1/3 in the case of low electric field and δ = λ

4/5
D L1/5 in the case

considered in this work.
The third term of the expansion (30) is C/X2. This term will generate a term

of the order of ε2/5 in the outer expansion. It follows that the second term of the
outer asymptotic expansion (16) is of the order of ε2/5.

The expansion of the dimensionless eigenvalue is

Z(ε,B) = (2π)3/23−9/4 +O(ε2/5). (38)

A second approximation may be found from analysis of the second term of the
outer expansion; cf. the calculation of the current–voltage characteristic of an elec-
trostatic probe [4]. Alternatively, the eigenvalue in the second approximation can
be determined as follows. Replacing the independent variable in the outer expan-
sion by the variable X̃ = X + 2ε2/5C, one can eliminate from this expansion a term
of the order of ε2/5. The resulting expansion breaks down at X̃ = 0 or, which is
the same, at X = −2ε2/5C. It follows that the region of the quasineutral plasma,
while having thickness L in the first approximation, has thickness L(1 + 2ε2/5C) in
the second approximation. Hence, in order to find a second-approximation formula
for the dimensional eigenvalue, it is sufficient to write the respective formula in the
first approximation,

α =
(2π)3/2A

39/4L

√
kTe
eL

, (39)

and to replace L in the obtained relationship by L(1 + 2ε2/5C).
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The relationship (39) is the plasma balance equation relating the volume gener-
ation rate to the wall loss rate [26]. This is equivalent to the result obtained by
Schottky [27] for the constant-mobility case, namely, α = (π2/L2)µikTe/e.

The above asymptotic analysis refers to the case LTa/Te � λi � δ, when the
electric field is high and (7) is applicable both in the region of quasineutral plasma
and in the sheath. If a less restrictive inequality holds, δTa/Te � λi � δ, the
electric field in the region of quasineutral plasma is not necessarily high, and the
solution (23), (24) is, generally speaking, invalid. However, the electric field is still
high and (7) is applicable in the sheath; hence the solution obtained above for
the sheath remains applicable, the difference being that Z1 is no longer given by
(24). Similarly, the sheath solution remains applicable to a cylindrical (rather than
planar) discharge column.

The above results refer to the caseB = O(ε−1/5). In the caseB� ε−1/5, the space-
charge sheath becomes non-uniform and includes the ion–electron layer, which is
an outer section of the sheath where the ion and electron densities are compa-
rable, and the ion layer, where the electron density is much smaller than the ion
density. The ion–electron layer has an asymptotic structure similar to that of the
(uniform) space-charge sheath considered above. In particular, the ionization in the
ion–electron layer is a minor effect due to the thinness of the layer. The ion layer is
not necessarily asymptotically thin; however, the ionization is still a minor effect in
it due to the very low values of the electron density. Since the only approximation
made when writing (27) was the neglect of the ionization, one may conclude that
the above-obtained sheath solution remains applicable also in the case B� ε−1/5,
when the sheath is non-uniform.

Results for the case 1 � B � ε−1/5 follow from the analysis given in the Ap-
pendix. In particular, it follows that the plasma remains quasineutral right up to
the wall, i.e., there is no space-charge sheath in this case. The eigenvalue to a first ap-
proximation equals (2π)3/23−9/4. It follows that the formula Z(ε,B) = (2π)3/23−9/4

is to a first approximation uniformly valid in the whole range 1�B 6 O(ε−1/5).
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Appendix. Solution for the case O(1) 6 B < 0(ε−1/5)

The aim of this appendix is to present, a first-approximation asymptotic solution
for the limiting case ε→ 0, B →∞, provided that Bε1/5 → 0. The simplest way to
do this is to first treat the limiting case ε→ 0, B fixed and then set in the obtained
solution B →∞.

Equations (15)–(18) in the limiting case ε→ 0, B fixed remain valid, the differ-
ence being that Z1 = Z1(B), N1 = N1(X;B), and Φ1 = Φ1(X;B) in this case. The
boundary condition for the straightforward expansion at X = 0 can be obtained
from (12), and reads

X = 0 :
dΦ1

dX
= B2. (A 1)
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Equations (20)–(22) remain valid. The solution (23) is replaced by

X =
∫ N1

N1w

N1 dN1

Z
2/3
1 (1−N 3

1 )2/3
, (A 2)

where N1w = N1(0;B) is defined by the equation

N 3
1w =

Z1

B3 + Z1
. (A 3)

The eigenvalue Z1 = Z1(B) is defined by the equation

Z
2/3
1 =

∫ 1

N1w

N1 dN1

(1−N 3
1 )2/3

, (A 4)

which should be solved jointly with (A3).
Thus, a first-approximation straightforward asymptotic solution for the limiting

case ε → 0, B fixed has been completed. This solution has no singularity at the
surface, and therefore remains applicable in the whole calculation domain. In other
words, the plasma remains quasineutral in the whole discharge vessel right up to
the walls.

Now one can setB →∞ in the obtained solution. The expansion of the eigenvalue
Z1 may be found to be

Z1(B) =
(2π)3/2

39/4

(
1− 3

4B2 + . . .

)
. (A 5)

Furthermore, one finds

N1w = O

(
1
B

)
,

d2Φ1

dX2 (0;B) = O(B4). (A 6)

It follows that the term on the left-hand side of the second equation in (11) remains
small at the wall as compared with the terms on the right-hand side, provided that
εB5� 1. In other words, the above analysis performed for the limiting case ε→ 0,
B fixed remains applicable, (at least to a first approximation) to the case ε → 0,
B →∞, provided that B tends to infinity slower than ε−1/5.
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