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MORE ZFC INEQUALITIES BETWEEN CARDINAL INVARIANTS

VERA FISCHER AND DÁNIEL T. SOUKUP

Abstract. Motivated by recent results and questions of Raghavan and Shelah, we present ZFC
theorems on the bounding and various almost disjointness numbers, as well as on reaping and dominating
families on uncountable, regular cardinals. We show that if κ = �+ for some � ≥ � and b(κ) = κ+

then ae(κ) = ap(κ) = κ+. If, additionally, 2<� = � then ag (κ) = κ+ as well. Furthermore, we prove a
variety of new bounds for d(κ) in terms of r(κ), including d(κ) ≤ r� (κ) ≤ cf([r(κ)]�), and d(κ) ≤ r(κ)
whenever r(κ) < b(κ)+κ or cf(r(κ)) ≤ κ holds .

§1. Introduction. In this article, we focus on unbounded, dominating and
eventually different families of functions in κκ, and unsplit families of sets from
[κ]κ for an uncountable, regular cardinal κ. There is a great history of such studies
for κ = ℵ0, which later sparked significant interest in the case of κ > ℵ0. Especially
so, that some long unresolved questions for cardinal characteristics on ℵ0 have
been answered for uncountable cardinals (e.g., Roitman’s problem [4]). The goal
of our paper is to present new ZFC relations between cardinal invariants on an
uncountable, regular κ, many that fail to hold in the countable case.

First, in Section 2, we show that if κ is a successor cardinal and there is a ≤∗-
unbounded family of functions in κκ of size κ+, then there is a maximal family
of eventually different functions/permutations of size κ+ as well. If, additionally,
2<� = � holds where κ = �+, then there is a maximal group of eventually
different permutations of κ of size κ+ as well. These results generalize recent
work of Raghavan and Shelah [14], and provide strengthening of certain results
from [4, 11].

Next, in Section 3, we bound the minimal size of a ≤∗-dominating family by the
minimal size of an unsplit family under various conditions. Raghavan and Shelah
proved that d(κ) ≤ r(κ) whenever κ ≥ �� . Our main result here is Theorem 3.7 that
provides a variety of new bounds for d(κ) in terms of r(κ), and a new characterization
of the dominating number (see Corollaries 3.6, 3.9, and 3.10). In an independent
argument, we next show that cf(r(κ)) ≤ κ implies d(κ) ≤ r(κ) as well (see
Theorem 3.11).

Finally, we summarize the relations between these invariants in three diagrams,
and end our article by emphasizing the most important open problems in the
area. In particular, it remains open if d(κ) ≤ r(κ) holds for all uncountable,
regular κ.
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We aimed our paper to be self contained, and to collect most of the known results
on related cardinal invariants. Let us also refer the new reader to Blass’ [3] as a
classical reference on cardinal characteristics on ℵ0.

§2. Unbounded and mad families of functions. Let us start by recalling some well
known definitions. The bounding number b(κ) is the minimal size of a family F ⊂ κκ
so that there is no single function g ∈ κκ so that {α < κ : g(α) < f(α)} has size
< κ for all f ∈ F . In other words, F is unbounded in the relation ≤∗ of almost
everywhere dominance. We use the fact that bcl (κ) = b(κ) for any uncountable,
regular κ [8]: there is F ⊂ κκ of size b(κ) so that for any g ∈ κκ there is somef ∈ F
with {α < κ : g(α) < f(α)} stationary. I.e., F is ≤cl -unbounded where f ≤cl g iff
{α < κ : f(α) ≤ g(α)} contains a club1 subset of κ.

We also remind the reader of the usual almost disjointness numbers; in our
context almost disjoint (eventually different) means that the intersection of the sets
(functions) has size < κ.

(i) a(κ) is the minimal size of a maximal almost disjoint family A ⊂ [κ]κ that is
of size ≥ κ (the latter rules out trivialities like A = {κ}).

(ii) ae(κ) is the minimal size of a maximal, eventually different family of functions
in κκ.

(iii) ap(κ) is the minimal size of a maximal, eventually different family of
functions in S(κ), the set of bijective members of κκ.

(iv) ag(κ) is the minimal size of an almost disjoint subgroup of S(κ), that is
maximal among such subgroups.

Raghavan and Shelah [15] recently proved that b(κ) = κ+ implies a(κ) = κ+ for
any regular, uncountable κ, by an elegant, and surprisingly elementary application
of Fodor’s pressing down lemma. Building on their momentum, we extend this result
to related cardinal invariants on maximal families of eventually different functions
and permutations (see [4, 11] for a detailed background).

Theorem 2.1. Suppose that κ = �+ for some � ≥ � and b(κ) = κ+. Then ae(κ) =
ap(κ) = κ+. If, additionally, 2<� = � then ag(κ) = κ+ as well.

This is a strengthening of [4, Theorem 2.2], where d(κ) = κ+ implies ae(κ) = κ+

was proved for successor κ, and also of [11, Theorem 4] where b(κ) = κ+ implies
ae(κ) = κ+ was proved using additional assumptions.

Proof. Let {f� : � < κ+} witness bcl (κ) = κ+. Also, fix bijections e� : κ → �
where κ ≤ � < κ+ and bijections dα : α → � where � ≤ α < κ. The latter will allow
us, given some H ⊆ α < κ with |H | = � and � < �, to select the �th element of H
with respect to dα ; that is, to pick 	 ∈ H so that dα(	) ∩ dα[H ] has order type � .

Let us start with ae(κ) = κ+. We will define functions h�,� ∈ κκ for κ ≤ � <
κ+, � < � that will form our maximal eventually different family.

We go by induction on � < κ+. For each 
 < κ, let H�(
) = {h�′,�′ : �′ ∈ ran(e� �

), � ′ < �}. Note that

H�(
) = {h(
) : h ∈ H�(
)}

1I.e., closed and unbounded.
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has size < κ, so we can define

f∗
� (
) = max{f�(
),min{α < κ : |α \H�(
)| = �}}.

We define h�,�(
) to be the �th element of f∗
� (
) \H�(
) with respect to df∗

�
(
).

Claim 2.2. H = {h�,� : � < κ+, � < �} ⊂ κκ is eventually different.

Proof. For a fixed � and � < � ′ < �, h�,�(
) 
= h�,�′(
) by definition for all
 < κ.
Given �′ < �, and �, � ′ < �, whenever �′ ∈ ran(e� � 
), then h�′,�′ ∈ H�(
) and so

h�′,�′(
) 
= h�,�(
), since h�,� /∈ H�(
). �
Claim 2.3. H is maximal.

Proof. Fix some h ∈ κκ, and find � < κ+ so that

S = {
 < κ : h(
) < f�(
)}
is stationary. Now, there is a stationary S0 ⊂ S so that either

(1) h(
) ∈ H�(
) for all 
 ∈ S0, or
(2) h(
) /∈ H�(
) for all 
 ∈ S0.

In the first case, for each
, we can find some �′ = e�(�
) with �
 < 
 and � ′ = � ′
 < �
so that h(
) = h�′,�′(
). In turn, by Fodor’s lemma, we can find a stationary S1 ⊂ S0

and single �′ = e�(�) and � ′ < � so that h(
) = h�′,�′(
) for all 
 ∈ S1; hence,
h ∩ h�′,�′ has size κ.

In the second case, h(
) ∈ f∗
� (
) \H�(
) must hold too, and so there is a �
 < �

so that h(
) is the �th
 element of f∗
� (
) \H�(
) with respect to df∗

�
(
). Again, we

can find a single � < � and stationary S1 ⊂ S0 so that �
 = � for all 
 ∈ S1 and so
h ∩ h�,� has size κ. �

This shows that H is the desired maximal eventually different family.

Now, we proceed with ap(κ) = κ+. We will modify the previous argument to ensure
h�,� ∈ S(κ) and to keep the family maximal inS(κ). Let ē = {e� : κ ≤ � < κ+}, d̄ =
{dα : � ≤ α < κ}, f̄ = {f� : � < κ+}. We will need some elementary submodels:
for each � < κ+, we fix a continuous, increasing sequence of elementary submodels
N̄ � = (N�� )�<κ of some H (�) so that

(i) |N�� | = �, and N�� ∩ κ ∈ κ,
(ii) �, ē, d̄ , f̄ ∈ N�� , and

(iii) 〈N̄ �′ : �′ < �〉 ∈ N�0 .

Let E� = {N�� ∩ κ : � < κ} ∪ {0} which is a club in κ.
Again, we proceed by induction on �, but use the notation H�(
) and H�(
)

with minor modifications: H�(
) = {h�′,�′ : �′ ∈ ran(e� � 
), � ′ < �} where 
 =
sup(E� ∩ 
) ≤ 
, and

H�(
) = {h(
) : h ∈ H�(
)}.
In the following, we will use the notation: sE� (
) = min{� ∈ E� : � < 
}.
We construct h�,� for � < � so that

(1) h�,� � [
, SE� (
)) ∈ S([
, sE� (
))) for any 
 in E� ,
(2) h�,� ∩ h�,�′ = ∅ for � ′ < � ,
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(3) h�,�(
) ∈ κ \H�(
),
(4) h�,�(
) is the �th element off∗

� (
) \ (H�(
) ∪ 
) with respect to df∗
�

(
), where

f∗
� (
) = max{f�(
),min{α < κ : |α \ (H�(
) ∪ 
)| = �}},

(5) (h�,�)�<� is uniquely definable from N̄ � .

These conditions clearly ensure that h�,� ∈ S(κ), and as before, the family {h�′,�′ :
�′ ≤ �, � ′ < �} remains eventually different by Conditions (2) and (3). Maximality,
just as before, follows from Condition (4) and Fodor’s lemma.

Let us show that we can actually construct functions with the above properties.
Fix successive elements 
 < sE� (
) of E� , and we define h�,� � [
, sEΔ(
)) ∈
S([
, sE� (
))) by an induction in � steps. We list all triples from �× [
, sE� (
)) × 2
as (��, 
�, i�) for � < �.

First of all, let 
 = κ ∩N�� and sE� (
) = κ ∩N��+1; we will write N for N��+1
temporarily.

Claim 2.4. sE� (
) \ (H�(
) ∪ 
) has size � for all 
 ∈ sE�(
) \ 
.

Proof. Note that e� � 
 ∈ N and so ran(e� � 
) is an element and subset of N.
Furthermore, we can apply (5) to see that H�(
) ∈ N and so H�(
) ∈ N for any

 < sE� (
). Moreover, N |= |H�(
)| < κ so sE�(
) \ (H�(
) ∪ 
) has size �.

In turn, since f�(
) ∈ N as well, the value f∗
� (
) in Condition (4) is well defined

and < sE�(
).
Now, we can start our induction on � < � by partial functions h�,� , each defined

only at 
 to satisfy Condition (4). At step �, we do the following. Let � = ��, 
 = 
� ;
if i� = 0 then we make sure that 
 gets into the domain of h�,� , and if i� = 1 then we
make sure that 
 is in the range of h�,� .

Suppose i� = 0. We need to find a value for h�,�(
) which is in sE�(
) \ (H�(
) ∪ 
)
and which also avoids h�,�′(
) where � ′ = ��′ for some �′ < �. The set sE� (
) \
(H�(
) ∪ 
) has size � (using that H�(
) ∈ N as before), and we only defined < �
many functions so far, hence we can find a (minimal) good choice.

Next, if i� = 1 then we need to find some ϑ ∈ sE� (
) \ 
 so that h(ϑ) 
= 
 for
h ∈ H�(
) and h�,�′(ϑ) 
= 
 for all � ′ = ��′ for some �′ < �. First, H�(
) ∈ N and
has size < κ so the set of good choices

sEΔ(
) \ (
 ∪ {ϑ < κ : h(ϑ) = 
, h ∈ H�(
)}
still has size �by elementarity. Each h�,�′ introduces≤ 1 badϑ, and we have≤ |�| < �
many of these, so we can find a good (minimal) ϑ.

If we carry out all this work in N��+2, always taking minimal choices, then in the
end Condition (5) is preserved as well.

Finally, we turn to the proof of ag(κ) = κ+. We use the additional assumption that
2<� = �. We keep the notations H�(
), H�(
) from the previous section, as well as
the elementary submodels. However, we can now assume that each successor model
N��+1 is < �-closed. This will help us when we are constructing the functions h�,� in
the induction of length �, because at each intermediate step �, the model N��+1 will
contain all the functions which we constructed so far (there was no reason for this
to hold before).
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So, our aim now is to construct H = {h�,� : � < κ+, � < �} ⊂ S(κ), so that in the
generated subgroup G = 〈H〉, only the identity has κ fixed points and G is maximal.
We use the notation

G�(
) = 〈H�(
)〉 and G�(
) = {g(
) : g ∈ G�(
)}
for � < κ+ and 
 < κ.

We go by induction on � as before, and construct h�,� so that

(1) h�,� � [
, sE� (
)) ∈ S([
, sE� (
))) for any 
 in E� ,
(2) any fixed point of a non identity function h ∈ 〈H�(
) ∪ {h�,� � sE� (
) : � <
�}〉 is below 
, and

(3) (h�,�)�<� is uniquely definable from N̄ � .

These conditions ensure that only the identity in G has κ fixed points. Indeed,
suppose g ∈ G is not the identity and write it as a finite product of h�,� functions.
Let �1 be the maximal � that occurs; if no other � is in this product then g has no
fixed points by (2). If �0 is the maximum of all other �’s that occur then we can
find a 
 < κ so that �0 ∈ ran(e� � 
) and so (2) implies that all fixed points of g are
below 
.

As before, we fixed some 
, and h�,� is constructed by an induction of length �,
using an enumeration of all triples from �× [
, sE�(
)) × 2 as (��, 
�, i�) for � < �.

We start by empty functions now, and at step �, we either need to put 
 = 
� into
the domain of h�,� or into the range of h�,� (where � = ��).

Lets look at the first case: in order to preserve (2), it suffices to ensure that
h�,�(
) 
= h(
) for any

h ∈ Z = 〈H�(
) ∪ {h�,�′ : � ′ = ��′ , �
′ < �}〉,

whenever h(
) can be computed.
The maps h�,�′ are some partial functions on sE� (
) that extend h�,�′ � 
 by < �

many new values. Since N = N��+1 now contains these functions as well as the set
{h�,�′ : � ′ = ��′ , �′ < �}, it also contains the set Z (we applied that N is < �-closed
and the inductive hypothesis (3)). So, since

N |= |{h(
) : h ∈ Z}| < κ,
we can take h�,�(
) = min sE� (
) \ ({h(
) : h ∈ Z} ∪ 
).

To ensure maximality in the end, we consider the case 
 = 
 separately. Now, we
don’t just take a minimal good choice but look at the minimal α ≥ f�(
) so that
α \ ({h(
) : h ∈ Z} ∪ 
) has size �. Since Z ∈ N and N |= |Z| < κ, α ∈ N too.
Now, we define h�,�(
) to be the �th element of α \ {h(
) : h ∈ Z} with respect to
dα .

Second, to put 
 in the range of h�,� : we need some ϑ ∈ sE� (
) \ 
 so that h(ϑ) 
= 

for any h ∈ Z (and then we can set h�,�(�) = 
). Again, N |= |Z| < κ and each
h ∈ Z contributes with at most one bad ϑ so we can pick a minimal ϑ that works.

It is left to check that we constructed a maximal G. Fix any g ∈ S(κ) \G and find
� < κ+ so that S = {
 < κ : g(
) < f�(
)} is stationary. Now, there is a stationary
S0 ⊂ S so that either

(1) g(
) = h(
) for some 〈H�(
) ∪ {h�,� : � < �}〉 for all 
 ∈ S0 or
(2) g(
) 
= h(
) for all 〈H�(
) ∪ {h�,� : � < �}〉 for all 
 ∈ S0.
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In the first case, we can use Fodor’s theorem to fix a single h ∈ G so that g ∩ h has
size κ. In the latter, there is some � < � so that g ∩ h�,� has size κ (just as in the
previous proofs). �

We do not know at this point if our theorem is true without the assumption of κ
being successor, nor how to remove 2<� = � from the last part of the result.

§3. Reaping and dominating numbers.

Some background. Let us recall a few more invariants, first the dual of the
bounding number:

(i) the dominating number d(κ) is the minimal size of a family F ⊂ κκ which is
≤∗-dominating and

(ii) the club-dominating number dcl (κ) is the minimal size of a family F ⊂ κκ
which is ≤cl -dominating.2

Second, we will look at the reaping and splitting numbers. We say that B splits A if
|A ∩ B | = |A \ B | = κ.

(i) r(κ) is the minimal size of a family F ⊂ [κ]κ so that no single B ⊂ κ splits all
A ∈ F and

(ii) s(κ) is the minimal size of a family F ⊂ [κ]κ so that any A ∈ [κ]κ is split by
some B ∈ F .

It was proved by Cummings and Shelah that

dcl (κ) ≤ d(κ) ≤ cf([dcl (κ)]�),

and d(κ) = dcl (κ) whenever κ ≥ �� [8]. It is not known if the latter assumption is
necessary.

To the surprise of many, Raghavan and Shelah [14] proved that s(κ) ≤ b(κ) for
any uncountable, regular κ (a result that consistently fails for κ = �).3 In fact, they
prove that

s(κ) ≤ pcl (κ) ≤ b(κ),

where pcl (κ) is the minimal size of a family of clubs D in κ without a pseudo
intersection i.e., no A ∈ [κ]κ satisfies A ⊆∗ D for all D ∈ D. We remark that

κ+ ≤ p(κ) ≤ t(κ) ≤ b(κ),

where p(κ) is the minimal size of a family with the κ-intersection property (i.e., any
subfamily of size< κ has an intersection of sizeκ) but without a pseudo intersection,
and t(κ) is the minimal size of a ⊆∗-chain with the κ-intersection property in [κ]κ

without a pseudo intersection [7].4 While p(κ) ≤ pcl (κ) clearly holds by definition,
we are not aware of results separating these invariants.

2Recall that f ≤cl g if {α < κ : f(α) ≤ g(α)} contains a club.
3Even before this result, it was known that s(κ) behaves very interestingly for an uncountable κ.

s(κ) ≥ κ iff κ is weakly inaccessible, s(κ) > κ iff κ is weakly compact, and s(κ) > κ+ is equiconsistent
with the existence of a measurable cardinal 
 with Mitchell order at least 
++ [2, 17, 18].

4Garti proved that p(κ) = t(κ) if p(κ) = κ+ and κ<κ = κ [10]. Given the recent breakthrough of
M. Malliaris and Shelah [13] proving p(�) = t(�), it would be interesting to see how much of that
machinary can be generalized to uncountable cardinals.
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Most recently, Raghavan and Shelah [15] showed the dual inequality

d(κ) ≤ r(κ),

whenever κ ≥ �� , and this is where our interest lies. Especially so, that it is not
known at this point if the assumption κ ≥ �� can be removed from their result.

Raghavan and Shelah’s argument is surprisingly short, and goes as follows. For a
set E ⊂ κ and � ∈ κ, we let sE(�) = minE \ (� + 1).

Take an arbitrary F ⊂ [κ]κ. First, if there is a clubE1 so that for any clubE2 ⊂ E1

there is some A ∈ F so that A ⊂∗ ⋃
�∈E2

[�, sE1 (�)) then d(κ) ≤ |F |. Indeed, the
functions gA(�) = sA(sE1(�)) for A ∈ F must ≤∗-dominate.

So, suppose that F has size r(κ), and by the previous observation, we can assume
the following: for any clubE1, there is a clubE2 ⊂ E1 so thatA 
⊂∗ ⋃

�∈E2
[�, sE1 (�))

for all A ∈ F . In this case we say that F has property RS (for Raghavan–Shelah).
Let us emphasize this definition.

Definition 3.1. We say that F ⊂ [κ]κ has property RS if for any club E1, there
is a club E2 ⊂ E1 so that A 
⊂∗ ⋃

�∈E2
[�, sE1 (�)) for all A ∈ F .

Now, the next observation follows by definition.

Observation 3.2. If F is unsplit and has property RS then for any club E1 ⊂ κ,
there is a club E2 ⊂ E1 and some A ∈ F so that A ⊂∗ κ \

⋃
�∈E2

[�, sE1 (�)).

Proof. Indeed, given E1 we find E2 using property RS so that A 
⊂∗
⋃
�∈E2

[�, sE1 (�)) for allA ∈ F . IfA ∩
⋃
�∈E2

[�, sE1 (�)) has size κ for allA ∈ F then⋃
�∈E2

[�, sE1 (�)) would split F, which contradicts that F is unsplit. �

Now, we claim that {sA : A ∈ F } is ≤cl -dominating for an unsplit RS-family.
Givenf ∈ κκ, take an f -closed clubE1 and findE2 ⊂ E1 andA ∈ F using property
RS so that A \ � ⊂ κ \

⋃
�∈E2

[�, sE1 (�)) for some � < κ. Now, we claim that f �
E2 \ � ≤ sA � E2 \ �. Indeed, � ∈ E2 \ � implies that f(�) < sE1(�) ≤ sA(�) since
sA(�) ∈ A and A ∩ [�, sE1 (�)) = ∅.

This proves

dcl (κ) ≤ r(κ),

and in turn, d(κ) = dcl (κ) ≤ r(κ) follows if κ ≥ �� by the Cummings–Shelah result
above.

New results. Recall that r�(κ) is the minimal size of a family F ⊂ [κ]κ so that
there is no countable family {Bn : n < �} so that any A ∈ F is split by some Bn. It
is easy to see that r�(ℵ0) exists, however this is not so obvious for an uncountable κ.

Observation 3.3. [18, Lemma 3] If ℵ0 < κ ≤ 2ℵ0 then there is a countable B that
splits all A ∈ [κ]κ.

In turn, r�(κ) does not exist if ℵ0 < κ ≤ 2ℵ0 .

Proof. Take an injection f : κ → 2� and let Bs = {α < κ : s ⊂ f(α)} for s ∈
2<� . We claim that {Bs : s ∈ 2<�} splits all A ∈ [κ]κ. Indeed, this follows from
the fact that any uncountable set of reals has at least two complete accumulation
points. In detail, assume that some A ⊂ κ is not split by any Bs . Then the set
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S = {s ∈ 2<� : |A ∩ Bs | = κ} cannot contain incompatible elements (as Bs ∩ Bt =
∅ whenever s, t are incompatible), and so there is at most one α such that s ∈ S
implies s ⊂ f(α). In turn,

A ⊂ {α} ∪
⋃

s∈2<�\S
A ∩ Bs

and the latter set has size < κ. �
Proposition 3.4. If cf(κ) > 2ℵ0 then r�(κ) exists, and r(κ) ≤ r�(κ) ≤

cf([r(κ)]�).
Proof. Given a countable family B = {Bn : n < �}, we can look at the map gB :

κ → [�]� defined by gB(α) = {n ∈ � : α ∈ Bn}. For any A ∈ [κ]κ, it is equivalent
that

(1) no element of B splits A and
(2) gB is eventually constant on A.

Suppose that F ⊂ [κ]κ is a reaping family of size r(κ), and {B� : � < �} is cofinal in
[r(κ)]� of size � = cf([r(κ)]�). Find A� ∈ [κ]κ so that gB� � A� is constant, which
can be done by cf(κ) > 2ℵ0 .

We claim that {A� : � < �} cannot be split by any countable family B, and so
r�(κ) ≤ cf([r(κ)]�). Indeed, given B, find � < � so that B ⊂ B� , and so A� is not
split by any member of B (since gB is constant on A�).

Note that once r�(κ) exists, r(κ) ≤ r�(κ) trivially holds by definition. �
For κ = �, we know that r� ≤ max{cf([r]�), non(M)} (see [5, Theorem 3.6]),

and it is a long standing open problem whether r(�) < r�(�) is possible [5].
Proposition 3.5. d(κ) ≤ r�(κ) for any uncountable, regular κ > 2ℵ0 .
Proof. Take a family F which is not split by countably many sets and has size

r�(κ). Again, we can suppose that F is RS (otherwise d(κ) ≤ |F |holds); we will show
that {sA : A ∈ F } is dominating. Pick any f ∈ κκ, and we may assume α ≤ f(α)
for all α < κ. Starting form an f -closed club E0, build E0 ⊇ E1 ⊇ ··· clubs in κ so
that

A 
⊂∗ Bn =
⋃

�∈En+1

[�, sEn (�))

for all A ∈ F and n ∈ � (this is simply by applying that F is RS inductively). The
family {Bn}n∈� cannot split F so there is a single A ∈ F unsplit by all the Bn. This
means that

A \ � ⊂ κ \ Bn,
some � < κ and for all n < �. We claim that f ≤∗ sA.

Indeed, for any α ∈ κ \ �, we can find n < � so that sup(En ∩ (α + 1)) =
sup(En+1 ∩ (α + 1)) and let � denote this common value. Now

� ≤ α ≤ f(α) < sEn (�) < sA(α)

as desired. �
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Next, we use this result to present a new characterization of d(κ) for uncountable
κ. For κ = �, the value of min{r, d} is actually equal to the minimal size of a
family of partitions I of � into finite sets (equivalently, partitions to intervals) so
that there is no single A ∈ [�]� that splits all (In)n∈� ∈ I in the sense that both
{n ∈ � : In ⊂ A} and {n ∈ � : In ∩ A = ∅} are infinite. This invariant, the finitely
reaping number, is denoted by fr [5].

Now, the equivalent of this invariant for an uncountable and regular κ, which we
denote by fr(κ), is the following: the minimal size of a family of clubs E so that there
is no singleA ⊂ κ such that both {� ∈ E : [�, sE(�)) ⊂ A} and {� ∈ E : [�, sE(�)) ∩
A = ∅} have size κ for all E ∈ E . We say that A interval-splits E. It is easily shown,
just like the above cited [5, Proposition 3.1], that fr(κ) = min{d(κ), r(κ)} still holds.

Similarly, one proves that fr�(κ) = min{d(κ), r�(κ)}, and so we actually get
fr�(κ) = d(κ) by Proposition 3.5 for an uncountable, regular κ. In other words:

Corollary 3.6. Suppose that κ is regular and uncountable. Then d(κ) is the
minimal size of a family of clubs E so that there is no countable family A of subsets
of κ such that both {� ∈ E : [�, sE(�)) ⊂ A} and {� ∈ E : [�, sE(�)) ∩ A = ∅} have
size κ for all E ∈ E and some A ∈ A.

For the sake of completeness, we sketch the argument:

Proof. First, we prove fr�(κ) ≤ d(κ): given a dominating family F ⊂ κκ, take
some f -closed club Ef for each f ∈ F and let E = {Ef : f ∈ F}. We claim that
there is no countable family A such that each Ef is split by some A ∈ A. Indeed, let
g = sup{sA : A ∈ A} and find f ∈ F so that g ≤∗ f. It is easy to see that almost
all intervals of Ef meet all A ∈ A.

Now, suppose that we are given a family of clubs E of size < d(κ). First, we can
find a single f ∈ κκ so that {α < κ : sE ◦ sE(α) < f(α)} has size κ for all E ∈ E .
So, if D is an f -closed club in κ then XE = {� ∈ D : [�, sE(�)) ⊂ [�, sD(�)) for some
� ∈ E} has sizeκ. Since |E| < d(κ) ≤ r�(κ), there is a countable family {Bn : n ∈ �}
so that any XE is split by some Bn. So, we define

An =
⋃

{[�, sD(�)) : � ∈ D ∩ Bn}

for n < �. Now, any E ∈ E must be interval-split by some element of
{An : n ∈ �}. �

Returning to the question whether d(κ) ≤ r(κ) for any uncountable κ, we present
the following new results.

Theorem 3.7. Suppose that κ is uncountable and regular. Then

(1) d(κ) ≤ sup
�<r(κ)

cf([�]�) ≤ cf([r(κ)]�) ≤ r(κ)� ,

(2) d(κ) ≤ cf([r(κ)]�) for any � ≤ � < b(κ), and
(3) if r(κ) < b(κ)+κ then d(κ) ≤ r(κ).

In fact, the proof of Theorem 3.7 will follow from a closer analysis of Raghavan
and Shelah’s arguments in [14], given in the next lemma.
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Lemma 3.8. Suppose that κ is uncountable and regular, and F ⊂ [κ]κ is an RS
family. Also, assume that G ⊂ κκ and for any F0 ∈ [F ]κ there is some g ∈ G such that

|{A ∈ F0 : sA ≤∗ g}| ≥ ℵ0.

Then G is ≤∗-dominating in κκ as well.

First, let us show how the theorem is deduced from this lemma.

Proof of Theorem 3.7. Assume thatF = {A� : � < 
} ⊂ [κ]κ is an RS family of
size
 = r(κ), and letF � � = {A� : � < �} for � < 
. Observe that for anyF0 ∈ [F ]κ

there is some � < 
 so that F0 ∩ F � � is infinite.
(1) Suppose that B� ⊂ [F � �]� is cofinal in [F � �]� for � < 
. If now F0 ∈ [F ]κ

then there is some � < 
 andX ∈ B� so that F0 ∩ X is infinite. Hence, if we let gX ∈
κκ dominate {sA : A ∈ X}, thenG = {gX : X ∈ B�, � < 
} satisfies the assumptions
of Lemma 3.8. In turn, the first inequality of (1) holds (and the rest trivially follows).

(2) As before, if B ⊂ [F ]� cofinal and gX ∈ κκ dominates {sA : A ∈ X} forX ∈ B
then G = {gX : X ∈ B} satisfies the assumptions of Lemma 3.8.

(3) We claim that for any F ⊂ [κ]κ of size < b(κ)+κ there is some G of size |F |
that satisfies the assumptions of Lemma 3.8. We still use 
 for the size of F and keep
the notation F � �.

Assume first that 
 = b(κ). We can find G = {g� : � < 
} so that g� dominates
{sA : A ∈ F � �}. By the above observation, G satisfies the assumptions of Lemma
3.8 and we are done.

In general, we proceed by induction. Suppose that the claim is proved for 
 =
b(κ)+� for � < � where � < κ. Since cf(�) < κ, for anyF0 ∈ [F ]κ there is some � < 

so that |F0 ∩ F � �| = κ. So, if G� is the family provided by the inductive hypothesis
that satisfies the assumptions of Lemma 3.8 forF � �, thenG = ∪{G� : � < 
}works
for F.

This, in turn, implies d(κ) ≤ r(κ) whenever r(κ) < b(κ)+κ by Lemma 3.8. �
Now, we prove the lemma:

Proof of Lemma 3.8. This statement is essentially proved in [15], but let us
reiterate: fix an f ∈ κκ, and we construct clubs Ei2 ⊂ Ei1 ⊂ κ and Ai ∈ F for i < κ
so that Ei1 ⊂

⋂
j<i E

j
2 and

Ai \ �i ⊂ κ \
⋃

�∈Ei2

[�, sEi1
(�))

for some �i < κ. Moreover, we assume that E0
0 is f -closed.

Now, apply the assumption on G and the set F0 = {Ai : i < κ} to find g ∈ G and
increasing i0 < i1 < i2 < ··· < κ so that sAin ≤∗ g for all n < �. We claim thatf ≤∗

g; indeed, fix some large enough α ∈ κ \ sup
n<�
�in that also satisfies sup

n<�
sAin (α) <

g(α). We will show that f(α) < g(α).
There is an n < � so that sup(Ein1 ∩ (α + 1)) = sup(Ein+1

1 ∩ (α + 1)) and let �
denote this common value. Then � ∈ Ein2 as well and

� ≤ α ≤ f(α) < s
Ein1

(�) < sAin (α) < g(α)

as desired. �
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3.1. On cofinalities. A particular case of Theorem 3.7 addresses [14, Question
15]:

Corollary 3.9. d(ℵn) ≤ r(ℵn) unless ℵ�n ≤ r(ℵn) for n < �.

Furthermore, one can use Theorem 3.7 with PCF-theoretic bounds for cofinalities
to relate d(κ) and r(κ).

Corollary 3.10. If r(ℵ1) < ℵ�2 then d(ℵ1) < ℵ�5 .

Proof. Recall that

cf([ℵ� ]|�|) < ℵ|�|+4

for any � < ℵ� [1, Theorem 7.2]. Suppose that r(ℵ1) = ℵ�+n for some limit�1 ≤ � <
�2 and n ∈ �. In turn, by Theorem 3.7 (2) applied with � = ℵ1 < b(ℵ1),

d(ℵ1) ≤ cf([ℵ�+n]�1) ≤ ℵ�+n · cf([ℵ� ]�1) < ℵ�5

as desired. �
The above results point us to the following interesting question: what can the

cofinality of r(κ) be? Indeed, it is famously open whether cf(r) = � is consistent,5

however cf(r) = � does imply d ≤ r [16].

Theorem 3.11. If cf(r(κ)) ≤ κ then d(κ) ≤ r(κ) for any uncountable, regular κ.

We mention that our proof is very specific to the uncountable case (and does not
use Raghavan and Shelah’s recent work).

Proof. Let us assume that
 = r(κ) < d(κ) and cf(
) ≤ κ. Given someF ⊂ [κ]κ

of size 
, we construct a set B which splits each A ∈ F .
We can write F as an increasing union ∪{F� : � < �} where � = cf(
), so that

|F� | < 
 and find B� that splits each A ∈ F� . Our job is to glue together the sets
{B� : � < �} into a single set B which splits all A ∈ F at once.

Let us consider the � = κ case first: we would like to find a fast enough club
E ⊂ κ so that

B =
⋃

{[�, sE(�)) ∩ B� : � ∈ E}

works. So, take an elementary submodel M ≺ H (Θ) of size 
 such that
F ∪ {Bα : α < κ} ⊂M . By assumptionM ∩ κκ is not dominating, so we can find
a single f ∈ κκ so that for any g ∈M ∩ κκ, the set

Ig = {α < κ : g(α) < f(α)}
has size κ. Now let E be a club of f -closed ordinals in κ, and we claim that the above
defined B splits each A ∈ F .

Fix some A ∈ F such that A ∈ F� and note that

g(α) = sup{min(A ∩ Bα′ \ (α + 1)) : α′ ≤ α}

5Here r, d denote r(ℵ0) and d(ℵ0), respectively.
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is well defined for α ≥ � , and g(α) < κ. The crucial property of g we use is that

(α, g(α)) ∩ A ∩ Bα′ 
= ∅
for any α′ ≤ α. Since g ∈M , the set Ig has size κ.

Now, given α ∈ Ig \ � , find the interval from E that contains α: let �α = sup(E ∩
(α + 1)) and note that

�α ≤ α < g(α) < f(α) < sE(�α)

since E was f -closed. In particular,

[�α, sE(�α)) ∩ A ∩ B = [�α, sE(�α)) ∩ A ∩ B�α 
= ∅
and so |B ∩ A| ≥ |{�α : α ∈ Ig \ �}| = κ as desired.

We can similarly prove |A \ B | = κ by looking at the function

g ′(α) = sup{min(A \ (Bα′ ∪ (α + 1))) : α′ ≤ α}
and noting that

[�α, sE(�α)) ∩ A \ B = [�α, sE(�α)) ∩ A \ B�α 
= ∅
for any α ∈ Ig′ \ � .

Now, suppose � = cf(
) < κ: this case will be handled similarly although the
arguments are a bit more involved. We take an increasing sequence of elementary
submodels (M
)
<� and sequence of functions (f
)
<� such that

(1) eachM
 has size 
, and (M�)�<
 ∈M
 ,
(2) f
 ∈ κκ ∩M
+1 and � < 
 implies f� < f
 , and
(3) f
 is not ≤∗-dominated by any g ∈ κκ ∩M
 .

Construct clubsE
 ⊂ κ and functions s
 ∈ κκ for 
 < � as follows: s0 is the identity
function on κ, and E0 is an f0-closed club. In general, s
+1 = sE
 ◦ s
 and s
 =
sup�<
 s

� for limit 
 < �. We pick

E
 ⊂
⋂

�<


E�,

so that each � ∈ E
 is closed under f
 and s
 . Moreover, we pick each E
 ∈M
+1

canonically which ensures s
+1 ∈M
+1 as well.
Now, we construct a club E = {�� : � < κ} ⊂ κ. Let us outline the first � steps

and then describe the general construction: �0 = 0, �1 = sE0(�0), �2 = sE1(�1) and
so on. At limit steps 
 we take supremum: �
 = sup�<
 ��, and let �
+1 = sE
 (�
) in
successor steps. In other words, �
 = s
(0) for 
 < �. This defines the first � many
elements of E. In general, any � < κ can be written as � = � · �0 + 
 for a unique

 = 
(�) < � and we set

��+1 = sE
 (��) = s
(��·�0 ).

This defines the club E, and we set

B =
⋃

{[�� , ��+1) ∩ B
(�) : � < κ}.

We would like to show that B works: fix some A ∈ F , and we need that both
A ∩ B and A \ B have size κ.
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E

E0

B0 B0B1 B1

E0E1 E1

x

x

x

xλxλ

xλ+1 λ+2x

Figure 1. Defining B from {B� : � < �}.

Now, fix some 
0 < � so that A ∈ F
0 . Note that A ∩ B
 and A \ B
 are both of
size κ for 
0 ≤ 
 < � so the set of accumulation points acc(A ∩ B
) and acc(A \ B
)
are clubs in κ. In, particular we can define a function gA by setting

gA(α) = min
⋂


∈�\
0

(
acc(A ∩ B
) ∩ acc(A \ B
)

)
\ (s
0+1(α) + 1). (3.1)

The important fact here is that g(α) is an accumulation point of all the setsA ∩ B

andA \ B
 (where 
 ∈ � \ 
0) above s
0+1(α). Moreover, since gA ∈ κκ ∩M
0+1, the
set

I = {α < κ : gA(α) < f
0+1(α)}

must have size κ.
We can find a single 
 < � so that there are κmany � < κ of the form � = � · �0 + 


such that [�� , ��+1) ∩ I 
= ∅. Fix such anα ∈ [�� , ��+1) ∩ I and recall that ��+1 ∈ E
 .
So if 
0 < 
 then ��+1 is s
0+1-closed and so s
0+1(α) < ��+1. In turn,

�� ≤ α < gA(α) < f
0+1(α) ≤ f
(α) < ��+1, (3.2)

since ��+1 was closed under f
 . Since gA(α) was an accumulation point of both
A ∩ B
(�) and A \ B
(�) (see the definition in (3.1)) and by equation (3.2), we must
have

[�� , ��+1) ∩ A ∩ B
(�) 
= ∅,

and

[�� , ��+1) ∩ A \ B
(�) 
= ∅.

Now, consider the case when 
 ≤ 
0. It still holds that α < s
(α) < ��+1 since
��+1 is s
 -closed and so s
+1(α) = sE
 ◦ s
(α) = ��+1. In turn,

s
0+1(α) = ��·�0+
0+1 =: � ∈ E
0 .

The next point in our club E is sE(�) := ��·�0+
0+2 ∈ E
0+1 which isf
0+1-closed. So

� < gA(α) < f
0+1(α) < sE(�).

As gA(α) is an accumulation point of A ∩ B
0+1 and A \ B
0+1 above �, we see that
both

[�, sE(�)) ∩ A ∩ B
0+1 
= ∅,
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min max noncf

cf

Figure 2. The case of κ = ℵ0.

min cf

cf

cl cl

cl

Figure 3. The case of κ = cf(κ) > ℵ0.

and

[�, sE(�)) ∩ A \ B
0+1 
= ∅

holds.
All in all, we proved that there are κ many � < κ so that both

[�� , ��+1) ∩ A ∩ B = [�� , ��+1) ∩ A ∩ B
(�) 
= ∅

and

[�� , ��+1) ∩ A \ B = [�� , ��+1) ∩ A \ B
(�) 
= ∅

holds. In turn, B ∩ A and A \ B both have size κ. �

Hence d(ℵ1) ≤ r(ℵ1) unless r(ℵ1) > ℵ�1 . It is still open if the inequality r(ℵ1) <
2ℵ1 is consistent, and hence we don’t know whether cf r(κ) ≤ κ is consistent at all.

The inequalities known to us are summarized in Figures 2–4, where arrows point
to cardinals greater or equal. First, the most studied case when κ is ℵ0, with plenty
of independence between the characteristics:

Next, note how the picture simplifies between the splitting and reaping numbers
as we move to uncountable values of κ:

The dashed arrows adjacent to r�(κ) hold whenever r�(κ) exists (that is, for
κ > 2ℵ0). Furthermore, the dashed arrow between r(κ) and d(κ) is valid also when
cf(r(κ)) ≤ κ.
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cf

cf

cl

cl

cl

Figure 4. The case of κ = cf(κ) ≥ �� .

Finally, an even more linear diagram above �� :

§4. Questions. Finally, let us emphasize a few fascinating open problems about
combinatorial cardinal characteristics; we would also like to refer the interested
reader to [6, 7, 12] for further reading and questions on the generalized Baire space
and Cichon’s diagram.

Problem 4.1. [8] Does d(κ) = dcl (κ) hold for all uncountable, regular κ?

Problem 4.2. [14] Does d(κ) ≤ r(κ) hold for all uncountable, regular κ?

Recall that if d(κ) = dcl (κ) then d(κ) ≤ r(κ) follows.

Problem 4.3. Can r(κ) have cofinality at most κ?

In particular, is r(ℵ1) = ℵ� possible?

Problem 4.4. [14] Is it consistent that r(ℵ1) < 2ℵ1 ?

Given that s(κ) = κ unless κ is quite large (i.e., weakly compact), one might
conjecture a dual result: r(κ) < 2κ implies that κ is large [14].

Problem 4.5. [2] Is it consistent that s(κ) is singular for some uncountable, regular
κ?

Problem 4.6. Does p(κ) = t(κ) for all uncountable, regular κ?

The last two problems have a positive answer for κ = ℵ0 [9, 13].
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