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1. Introduction

This paper is an attempt to generalize the results of Ax [2] on the dimension of the

intersection of an algebraic subvariety and a formal subgroup of an algebraic group (as

well as its Ax–Schanuel applications) to the case of arbitrary characteristic. Instead of

subvarieties of an algebraic group, we prefer to consider the case of a formal map between

an algebraic variety and a formal group.

For reader’s convenience, we first discuss the main theorem from [2]. Let G be an

algebraic group over the field of complex numbers C. Let A be a complex-analytic

subgroup of G(C), K an analytic subvariety of an open subset of G(C) and V the Zariski

closure of K. We assume that K ⊆ A. Ax’s theorem [2, Theorem 1] says that in such a

case A and V (C) tend to be in a general position, unless there is an obvious obstacle.

More precisely, there is an analytic subgroup B ⊆ G(C) containing V (C) and A such that

dim(K) 6 dim(A)+ dim(V )− dim(B).

Ax also states a formal version of [2, Theorem 1] in the case of characteristic 0 [2, Theorem

1F]. This formal version makes perfect sense in the case of positive characteristic case

as well, and such an arbitrary characteristic version of [2, Theorem 1F] is our desired

generalization. We state it in § 1.1.

A continuous map between Hausdorff spaces which is constant on a dense set is constant

everywhere. The same principle applies to an algebraic map between algebraic varieties

and to the Zariski topology (which is not Hausdorff). However, if we mix categories there

is no reason for this principle to hold, e.g., there are non-constant analytic maps between

algebraic varieties which are constant on a Zariski dense subset. The main theorem of

this paper roughly says that the principle above can be saved for certain formal maps

(resembling homomorphisms) between an algebraic variety and an algebraic group at

the cost of replacing the range of the map with its quotient by a formal subgroup of

the controlled dimension. We briefly formulate this theorem below. Not to overload
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this introductory part with technical details, the statement is not fully precise yet, we

postpone the actual statement till § 1.3 (it is Theorem 1.11), where we also discuss how

it is related to the mentioned above generalization of [2, Theorem 1F].

Theorem 1.1. Let V be an algebraic variety, K a Zariski dense formal subvariety of V ,

A a ‘good’ commutative algebraic group and F : V̂ → Â a ‘good’ formal map. Assume F
vanishes on K. Then there is a formal subgroup C 6 Â such that F(V̂ ) ⊆ C and

dim(C) 6 dim(V )− dim(K).

Both notions of ‘good’ will be clarified in § 1.3. In the remaining part of the introduction

we state Ax’s theorem on formal intersections [2, Theorem 1F] and formulate its

(conjectural) generalization to the case of arbitrary characteristic. We also formulate our

question about formal maps vanishing on Zariski dense formal subvarieties and clarify

its connection to Ax’s theorem.

1.1. Ax’s theorem on formal intersections

We recall the formal scheme version of Ax’s main theorem from [2] below. For background

on formal schemes we refer the reader to [11, § II.9]. Ax uses in [2, § 2] the notion of a

formal variety rather than a formal scheme. Since all our formal schemes are formal

subschemes of the formalization of an algebraic variety along a closed point, these two

approaches are basically the same.

Theorem 1.2 [2, Theorem 1F]. Let G be an algebraic group over a field C of characteristic

0, Ĝ the formalization of G at the origin and A a formal subgroup of Ĝ. Let K be a

formal subscheme of A and let V be the Zariski closure of K in G. Then there is a formal

subgroup B of Ĝ which contains A and V̂ such that

dim(B) 6 dim(V )+ dim(A)− dim(K).

In [2], Ax uses Theorem 1.2 to reprove and generalize Schanuel type transcendence

statements from [1]. We recall one such statement below, which is a power series version

of Schanuel’s conjecture.

Theorem 1.3 [1, (SP)]. Let y1, . . . , yn ∈ tCJtK be Q-linearly independent. Then

trdegQ(t)(y1, . . . , yn, exp(y1), . . . , exp(yn)) > n.

Ax formulated the above theorem in [1] for the field of complex numbers, but it is true

for any field of characteristic 0 replacing C. As it is shown in [2, Theorem 2], Theorem 1.3

follows from Theorem 1.2 by taking:

• G as Gn
a ×Gn

m ;

• A as the graph of exp : Ĝn
a → Ĝn

m ;

• V as the algebraic locus of (x, exp(x)) (i.e., V is the smallest algebraic subvariety of G
which is defined over Q and which contains the point (x, exp(x)));

• K as the formal locus of (x, exp(x)).
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1160 P. Kowalski

Ax generalizes Theorem 1.3 from the formal isomorphism exp : Ĝn
a → Ĝn

m to the formal

isomorphism of the form expA : Ĝn
a → Â, where A is an arbitrary semi-Abelian variety

of dimension n [2, Theorem 3]. It is easy then to generalize this argument further to a

wider class of ‘sufficiently non-algebraic’ formal isomorphisms F : Â→ B̂ where A, B are

commutative algebraic groups (see [15]).

One can state similar (to Theorem 1.3) Ax–Schanuel inequalities in the case of

positive characteristic. Actually, we have obtained in [16] an Ax–Schanuel statement

for a ‘sufficiently non-algebraic’ additive power series (so A = B = Gn
a) in the positive

characteristic case. The aim of this line of research is to find general geometric reasons

for such Ax–Schanuel statements (with no restrictions for the characteristic of the base

field). It is easy to see that [16, Theorem 1.1] would follow from an arbitrary characteristic

version of Theorem 1.2 (in the same way as in [2]). We formulate it as a question below.

Question 1.4. Does Theorem 1.2 hold for a field C of arbitrary characteristic?

1.2. Some reductions

Since our main theorem is about formal maps from formalizations of algebraic varieties

into commutative algebraic groups, we show that without loss of generality, one can

assume that the ambient algebraic group G (appearing in Theorem 1.2 and Question 1.4)

is commutative. Ax’s argument for such a reduction (Remark (5) in [2, p. 1196]) can be

generalized to the case of arbitrary characteristic using the following result.

Proposition 1.5. Suppose G is an algebraic group (over an arbitrary field) and A is a

formal subgroup of Ĝ. Then there is an algebraic subgroup H 6 G such that

Ĥ ′ ⊆ A ⊆ Ĥ ,

where H ′ denotes the commutator subgroup of H .

We postpone the proof till § 5.3.1, where we deal with higher tangent spaces. We obtain

the following reduction.

Theorem 1.6. A positive answer to Question 1.4 in the case of a commutative algebraic

group G implies a positive answer to Question 1.4 in general.

Proof. We can assume that G = H , where H comes from Proposition 1.5. Let π : G →
G/G ′ denote the quotient morphism. Since G/G ′ is commutative, using our assumption

we get a formal subgroup B0 6 Ĝ/G ′ such that

dim(B0) 6 dim(π(V ))+ dim(π(A))− dim(π(K)).

Since dim(A) = dim(π(A))+ dim(G ′) and

dim(K)− dim(π(K)) 6 dim(V )− dim(π(V )),

we can set B as π−1(B0).

From now on, we assume that the algebraic group G appearing in the statements of

Theorem 1.2 and Question 1.4 is commutative. We formulate below a weaker version
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of Question 1.4 which we find more convenient to work with and which still implies

Ax–Schanuel statements (see Remark 1.8).

Question 1.7. Does the arbitrary characteristic version of Theorem 1.2 hold, if we assume

that K is absolutely irreducible and Ĝ/A is isomorphic to a formalization of an algebraic

group?

Remark 1.8. (1) A formal scheme K is absolutely irreducible, if the ring OK⊗C Calg

is a domain. The assumption that K is absolutely irreducible does not affect our

Ax–Schanuel applications (i.e., Theorems 4.13 and 4.16), where K is the graph of

a formal isomorphism between absolutely irreducible algebraic groups.

(2) Since for the applications to Ax–Schanuel type problems (discussed in general at the

beginning of § 4), we have Ĝ/A ∼= B̂ (where A is the graph of F and F : Â→ B̂
is as in the comments below Theorem 1.3), a positive answer to Question 1.7 is

enough for Ax–Schanuel type applications.

(3) In the case of characteristic 0, Question 1.7 is easily logically equivalent

to Question 1.4, since any commutative formal group is isomorphic to the

formalization of a vector group (see e.g., [12, Theorem 14.2.3]).

1.3. Special formal maps

In this subsection, we formulate the question which we attempt to answer positively in

this paper, and discuss its connections to the arbitrary characteristic generalizations of

Ax’s theorem discussed above. We fix the following.

• V is an algebraic variety over a fixed field C and v ∈ V (C).

• V̂ is the formalization of V along v.

• W is an absolutely irreducible, Zariski dense formal subscheme of V̂ .

• A is a commutative algebraic group.

• F : V̂ → Â is a special formal map which vanishes on W.

Question 1.9. Is there a formal subgroup C 6 Â such that F(V̂ ) ⊆ C and

dim(C) 6 dim(V )− dim(W)?

The motivation for introducing special formal maps comes from [2, proof of Theorem 1].

The crucial property of the analytic maps considered in this proof is that they

take invariant holomorphic forms on an algebraic group to algebraic (and not merely

holomorphic) differential forms.

This observation is the defining property of special formal maps in the case of

characteristic 0. The role of holomorphic differential forms is played by the completed

module of Kähler differentials over the completion of the base ring R. Since the module

of Kähler differentials over R embeds in this completed module (see Lemma 2.6), the

definition of a formal map in the characteristic 0 case is quite straightforward (see

Definition 3.10).
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The situation is more complicated in the case of positive characteristic, since we need

all the higher differential forms and we do not want to develop the formalism of higher

invariant forms in this paper. Therefore, we use an equivalent notion (Definition 5.15)

which can be phrased in an easier way and which serves our purposes quicker. Different

equivalent formulations of the notion of a special formal map are discussed briefly in

Remark 5.18.

Morally, ‘special’ should be thought of as ‘homomorphism-like’ (even when the domain

is not a group!), since formal homomorphisms between formalizations of algebraic groups

are special (Proposition 5.19(2)). For example, in the case of characteristic 0 and a

commutative algebraic group A, the formal exponential map

expA : Lie(A)→ A

is special. In the case of the positive characteristic p, we have interesting special formal

endomorphisms of Ga of the form
∑

ci X pi , and special formal endomorphisms of Gm of

the form Xγ , where γ is a p-adic integer (see Example 4.15).

It is easy to give examples of formal maps which are not special. In the case when

V = A = Ga , a formal map corresponds to a power series F ∈ CJXK. If F is special, then

F takes invariant forms on Ga into algebraic forms on Ga . In the completed module of

differential forms over CJXK we have

F∗(d X) = F ′ d X.

Thus if the derivative of F is a not a polynomial, then F is not special (it is ‘if and only if’

in the case of characteristic 0). For an arbitrary commutative algebraic group A, we need

to replace ‘derivative of F ’ with ‘logarithmic derivative (with respect to A) of F ’ (see

Remark 5.18(1)). Hence it is very easy to construct formal maps which are not special

and actually ‘most of’ formal maps are not special. However, since the formalizations of

algebraic maps are special (Proposition 5.19(1)) and formal homomorphisms are special

(Proposition 5.19(2)), the class of special maps is still large enough for the purposes of

Ax–Schanuel type considerations.

The next result says (together with Remark 1.8) that considering Question 1.9 is enough

for Ax–Schanuel type applications.

Theorem 1.10. A positive answer to Question 1.9 implies a positive answer to

Question 1.7.

Proof. Let A be a commutative algebraic group such that Ĝ/A ∼= Â. We define F as the

composition of the inclusion morphism V̂ → Ĝ with the map Ĝ → Â given by the above

isomorphism. Since F is special by Proposition 5.19, we are in the set-up of Question 1.9.

By our assumption, there is a formal subgroup C 6 Â such that F(V̂ ) ⊆ C and

dim(C) 6 dim(V )− dim(W).

We take B as the preimage of C in Ĝ.

In this paper, we aim to answer Question 1.9 positively. We explain below to which

extend we have succeeded. In the case of characteristic 0, we give the full positive answer.
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In the case of positive characteristic, we are forced to put extra assumptions on F and A.

The theorem below is a compilation of Theorems 3.13 and 3.7.

Theorem 1.11. Assume V is an algebraic variety over a perfect field C, W is an absolutely

irreducible Zariski dense formal subscheme of V̂ , A is a commutative algebraic group and

F : V̂ → Â is a special formal map which vanishes on W.

(1) If char(C) = 0, then there is a formal subgroup C 6 Â such that F(V̂ ) ⊆ C and

dim(C) 6 dim(V )− dim(W).

(2) If char(C) > 0 and

• F is an A-limit formal map (see Definition 2.37) and

• A is an integrable algebraic group (see Definition 3.4);

then there is a formal subgroup C 6 Â such that F(V̂ ) ⊆ C and

dim(C) 6 dim(V )− dim(W).

By Proposition 5.21, any A-limit formal map V̂ → Â is special and we expect the

converse to be true. Theorem 5.22 is a partial result into this direction, since for example

this theorem implies that special maps are A-limits if A is a unipotent group (see

Remark 5.23(2)). Thus the extra assumption on F seems not to be very restrictive

and we hope that it can be eliminated in future by using the methods from § 5. But,

unfortunately, the extra integrability assumption on A is quite restrictive, and we do

not see how to avoid it using the methods of this paper (such as differential forms on

complete rings or Hasse–Schmidt derivations).
On the positive side, Theorem 1.11(2) still gives some positive characteristic

Ax–Schanuel applications, including the ones from our previous work [16]. The
applications of Theorem 1.11 are discussed in detail in § 4. In general, Theorem 1.11
allows to conclude that for a ‘sufficiently non-algebraic’ formal isomorphisms between
algebraic groups A and B the Ax–Schanuel property holds, that is if x is a rational point
of A in the ‘domain of F ’ and x is not contained in any proper algebraic subgroup of A,
then the transcendence degree of the tuple (x,F(x)) is large. In the positive characteristic
case, it covers sufficiently non-algebraic endomorphisms of vector groups and algebraic
tori (see § 4). The most interesting formal map which is still not covered by our analysis
is a formal isomorphism between the multiplicative group and an ordinary elliptic curve
(in the positive characteristic case).

This paper is organized as follows. In § 2, we gather necessary notions and facts from

commutative algebra which will be needed in the rest of the paper. In § 3, we state

and prove the main theorem. In § 4, we discuss applications of the main theorem to

Ax–Schanuel type problems. In § 5, we prove that formal maps arising from a large class

of formal homomorphisms are ‘good’ (as in Theorem 1.1).

2. Differential forms and formal maps

In this section, we collect the necessary notions and results concerning differential forms.

Differential forms appear in this paper in several ways and the interplay between these

different types of forms is crucial for the proof of the main result (Theorem 3.7).

https://doi.org/10.1017/S1474748017000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000378


1164 P. Kowalski

To be more precise, we consider: modules of Kähler forms, global forms on schemes,

complete forms and invariant forms. A more detailed analysis including the case of higher

forms of Vojta [29] will be given in [14].

The aim of this section is to prove the following results.

(1) A weak bound on the dimension of the kernel (Proposition 2.9).

(2) Homomorphisms induced by A-limit formal maps on forms coincide with homomor-

phisms induced by algebraic maps (Proposition 2.40).

(3) A characterization of vanishing of an A-limit formal map (Proposition 2.42).

(4) Being A-limit passes to a factorization through the Frobenius morphism (Propo-

sition 2.45).

The items (1)–(3) will be used in the proof of a strong bound on the dimension of the

kernel (Proposition 3.2). This strong bound together with the inductive process provided

by (4) will enable us to prove the main result (Theorem 3.7).

2.1. Notation

In this subsection we set the notation and conventions which will be used throughout the

paper.

All the rings considered here are commutative and have a unit 1 with 1 6= 0. All ring

homomorphisms preserve the unit. We fix a perfect field C and we assume that C has

characteristic p > 0, unless clearly stated otherwise. Let R be a C-algebra, I a proper

ideal of R and m ∈ N. By I m , we denote the mth power of the ideal I . We denote by

Frm
R (or just by Frm if R is clear from the context) the mth power of the Frobenius

endomorphism on R, by R pm
the image of R by Frm and by R p∞ , the intersection of all

R pm
. Since C is perfect, R pm

and R p∞ are C-subalgebras of R. We denote by Frm(I ), the

ideal of R pm
which is the image of I by the Frobenius epimorphism Frm

: R→ R pm
.

A subset {r1, . . . , rt } ⊆ R is p-independent (respectively p-basis), if the set

{rn1
1 · . . . · r

nt
t | n1, . . . , nt ∈ {0, . . . , p− 1}}

is R p-linearly independent (respectively a basis over R p).

For a local ring T , mT denotes its maximal ideal.

We say that a C-algebra homomorphism F : R→ S is a 0-map if F(R) = C , i.e., if

F factors through the structure map C → S. Since all maps of C-algebras take 1 to 1,

the constant 0-map cannot appear, so our terminology shall cause no confusion. If R is a

local C-algebra with the residue field coinciding with C , then the following are equivalent

• F is a 0-map;

• mR = ker(F);

• F is the composition of the residue map R→ C with the structure map C → S.

We call such an F as above the 0-map (it also coincides with the categorical 0-map in

this case).

We denote the R-module of Kähler forms �R/C by �R . Clearly, for a ring extension

C ⊆ T ⊆ R p we have �R ∼= �R/T and we use this identification freely. For any

multiplicative subset E ⊆ R, we also identify �RE with �R ⊗R RE .
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For a local ring R, R̂ always denotes the completion of R with respect to its maximal

ideal (even when R is an algebra over another local ring). If M is an R-module, then M̂
denotes the R̂-module which is the completion of M with respect to mR M . Finally, we

denote by �̂R the completion of �R .

2.2. Local algebras

In this subsection we clarify different issues regarding completions and the Frobenius

map. Everything is folklore but for reader’s convenience we collect the necessary facts

here.

For a ring S, an ideal I and an S-module M , by the I -adic topology on M , we mean

the topology given by the filtration (I m M)m . Let us fix a Noetherian local C-algebra R.

By the standard topology on R, we mean the mR-adic topology. Let us fix m ∈ N and let

q = pm .

Lemma 2.1. The standard topology on R coincides with the mRq -adic one.

Proof. Since the radical of mRq R coincides with mR and R is Noetherian, the two

topologies are the same.

We note below a result regarding the structure of complete C-algebras. It follows e.g.,

from the proof of [20, Theorem 29.4(iii)].

Proposition 2.2. Assume that R is a complete ring of Krull dimension r and with the

residue field coinciding with C. Then for any system {x1, . . . , xr } of local parameters of

R we have:

(1) the elements x1, . . . , xr are analytically independent over C;

(2) the extension of rings CJx1, . . . , xr K ⊆ R is finite.

We can prove now the remaining necessary properties of R under some extra

assumptions.

Proposition 2.3. Assume that the residue field of R coincides with C and the Frobenius

map is injective on R. We also assume that R is complete or R is a localization of a

C-algebra of finite type. Then we have:

(1) The ring R is finite over Rq .

(2) The standard topology on Rq coincides with the topology induced from R.

(3) The natural map 9 : (̂Rq)→ R̂ is injective and its image coincides with (R̂)q .

(4) R ∩ (R̂)q = Rq .

Proof. For (1) note that if T = C[t1, . . . , tm], then T = T q
[t1, . . . , tm]. If R = TS , then

R = T q
Sq [t1, . . . , tm] = Rq

[t1, . . . , tm],

so R is finite over Rq . In the complete case, Proposition 2.2 implies that R is finite

over Rq .
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For (2), by the Artin–Rees lemma [20, Theorem 8.6] and (1), the topology on Rq

coincides with the subspace topology induced from the mRq -adic topology on R. By

Lemma 2.1, the latter topology on R coincides with the standard topology.

For (3), by (2) and [20, Theorem 8.1], the map 9 is injective. Note also that for any

sequence (ri ) of elements of R, we have

(ri ) is a Cauchy sequence in R ⇐⇒ (rq
i ) is a Cauchy sequence in Rq .

The left-to-right implication does not use any extra assumption on R and implies that

(R̂)q is contained in the image of 9. The right-to-left implication uses the injectivity of

the Frobenius map on R and gives the reverse inclusion.

For the last part, it is enough to notice that the natural map

R⊗Rq (R̂)q → R̂

is a ring isomorphism, which follows from (1), (2) and [20, Theorem 8.7].

Definition 2.4. If R is a local ring, then by R[m] we denote the quotient ring

R/(Frm
R (mR)R).

Remark 2.5. If I = (r1, . . . , rn) is a finitely generated ideal, then the sequences (I m)m
and (rm

1 , . . . , r
m
n )m give the same topologies. Hence for a local Noetherian ring R, we have

R̂ ∼= lim
←−

R[m]. It will be more convenient for us to use the rings R[m] rather than the

rings R/mm
R , which are usually used to define the completed ring R̂.

2.3. Differential forms and a dense formal subscheme

The main result of this subsection is Proposition 2.9. A much stronger result holds in

the case of characteristic 0 (Proposition 3.8). In § 3.2, we prove a stronger version of

Proposition 2.9 under extra assumptions.

First, we need two lemmas about differential forms over complete algebras. Both are

folklore and the first one does not need our general assumption about the characteristic.

Lemma 2.6. Let R be a local C-algebra. Then we have:

(1) �̂R ∼= �̂R̂.

(2) If R is a localization of an affine C-algebra, then �̂R ∼= �R ⊗R R̂.

Proof. By the formula [10, 20.7.14.2], both R̂-modules in (1) are naturally isomorphic to

lim
←−
(�R/mm ).

Since R is a localization of an affine C-algebra, �R is a finitely generated R-module.

By [9, Theorem 7.2(a)], we get the second part.

The second lemma uses the characteristic assumption. We comment on its characteristic

zero version in § 3.4.

https://doi.org/10.1017/S1474748017000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000378


Ax–Schanuel condition in arbitrary characteristic 1167

Lemma 2.7. Let S be a Noetherian complete local C-algebra with the residue field C and

Krull dimension r . Suppose that S is a domain and let L be its fraction field. Then we

have:

(1) The S-module �S is complete i.e., �S ∼= �̂S .

(2) dimL(�L) = r .

Proof. Let x1, . . . , xr be a local system of parameters of S and A := CJx1, . . . , xr K. By

Proposition 2.2, the extension A ⊆ S is finite and A is isomorphic as a C-algebra to the

power series algebra in r variables. By [10, Lemme 21.9.4], we get that

�̂S ∼= �S/CJx p
1 ,...,x

p
r K.

Since C is perfect, we have CJx p
1 , . . . , x p

r K = Ap
⊆ S p and the first part follows.

For the second part, let K be the fraction field of A. Since K is the field of Laurent

power series in r variables, we have dimK �K = r . It is enough to show that for any finite

field extension K ⊆ L, we have dimL �L = r . By [20, Theorem 25.3], we can assume

that L = K (a1/p) for some a ∈ K \ K p. There is a p-basis (= differential basis) of K of

the form {a1, . . . , ar }, where a = a1. Then {a1/p
1 , a2, . . . , ar } is a p-basis of L, therefore

dimL(�L) = r .

Remark 2.8. For a characteristic 0 version of Lemma 2.7, we need to work with the

module of the completed forms, and we still get

dimL(�̂S ⊗S L) = dim(S).

Note that in this case, the module �S is huge and the dimension of �S ⊗S L is infinite.

We can prove now the main result of this subsection, which is the item (2) from the

beginning of this section.

Proposition 2.9. Let R be a local domain which is a localization of an affine algebra over

C and whose residue field coincides with C. Let P be a prime ideal of R̂, S = R̂/P and

L be the fraction field of S. Then S is Noetherian, complete and we have

(1) the natural map �R ⊗R S → �S is onto;

(2) if the map R→ S is injective, then

dimL ker(�R ⊗R L → �S ⊗S L) = dim(R)− dim(S).

Proof. The local ring S is complete by [20, Theorem 8.11] and Noetherian by [20,

Theorem 8.12].

By Lemmas 2.6 and 2.7, we have �R̂
∼= �R ⊗R R̂. Since the map R̂→ S is onto, the

induced map �R̂ ⊗R̂ S → �S is onto as well. By the associativity of the tensor product,

the map �R ⊗R S → �S is onto giving (1).
We proceed to show the item (2), so we assume that the map R→ S is injective. Since

the functor · ⊗S L is right-exact, the map

�R ⊗R L → �S ⊗S L
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is onto. By Lemma 2.7(2), dimL �L = dim(S). Since, �L ∼= �S ⊗S L, it is enough to show

now that dimL �R ⊗R L = dim(R).
Let K be the fraction field of R. Since the map R→ S is injective, K embeds over

R into L. Since R is a localization of an affine algebra over C , by [20, Theorem 5.6]

trdegC K = dim(R), so by [20, Theorem 26.10] we get that dimK �K = dim(R). It is enough

to see now that �R ⊗R L ∼= �K ⊗K L.

Remark 2.10. Similarly we can show that if char(C) = 0, then the map �R ⊗R S → �̂S
is onto and if the map R→ S is injective, then

dimL ker(�R ⊗R L → �̂S ⊗S L) = dim(R)− dim(S).

For the proof of the surjectivity part, we proceed as in the proof of Proposition 2.9 after

noticing that the map �̂R̂ ⊗R̂ S → �̂S is onto, since, by Lemma 2.6, we have

�̂R̂
∼= �R ⊗R R̂.

For the dimension equality, we proceed again as in the proof of Proposition 2.9 using

Remark 2.8.

2.4. Differential forms and p-normal rings

To deal with rational points over C , we need to ‘smoothen out’ our algebras a little

bit. The notion of a normal ring is too strong for us, we use a weaker version which is

discussed in this subsection. We also prove here a result about the ‘absolute constants’

of an absolutely irreducible formal scheme (Proposition 2.16).

Let R be a C-algebra which is a domain, L be its field of fractions, and Lalg a fixed

algebraic closure of L. For each m ∈ N, we denote by

• R p−m
, the preimage of R under the map Frm

: Lalg
→ Lalg;

• R p−∞ , the union of all R p−m
;

• R′, the intersection of R p−∞ and L.

Clearly R′ is a C-algebra extension of R.

Definition 2.11. We say that R is p-normal if R = R′.

Obviously, normal rings are p-normal. We observe below that p-normality behaves like

normality.

Fact 2.12. Let R be as above. Then:

(1) The ring R′ is p-normal.

(2) If R is p-normal and S is a multiplicative subset of R, then RS is p-normal.

(3) If R is of finite type over C, then R′ is of finite type over C.

Proof. The first part is obvious. For the proof of the second part, let us take α ∈ (RS)
′.

Then there is m ∈ N, x ∈ R and s ∈ S such that α pm
= r/s. Thus (sα)pm

= rs pm
−1 and

sα ∈ R′ = R, so α ∈ RS .
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For the last part, let R̄ denote the normalization of R. By [20, p. 262], R̄ is finitely

generated as an R-module. Since R is Noetherian, R̄ is Noetherian as an R-module, so R′

is finitely generated as an R-module as well. In particular, R′ is of finite type over C .

Example 2.13. It is easy to see that if p = 2 or p = 3, then the ring C[X2, X3
] is not

p-normal. Similar examples can be easily constructed for any prime p.

The next result is the reason why we have introduced the notion of a p-normal ring.

Lemma 2.14. Let f : T → R be a C-algebra homomorphism between domains, K be the

fraction field of R and assume that R is p-normal. Then the following are equivalent:

(1) for any ω ∈ �T , we have f∗(ω) = 0 in �K;

(2) f (T ) ⊆ R p.

Proof. Only the implication (1)⇒ (2) needs a proof. Take x ∈ T and let y = f (x) ∈ R.

By the assumption, dy = 0 in �K . Then y ∈ K p, since otherwise {y} could be extended

to a p-basis of K . Since R is p-normal, we get y ∈ R p.

We see now that taking the p-normalization does not affect the C-rational points,

which could be the case for the usual normalization.

Lemma 2.15. Let R be an affine C-algebra which is a domain and P be an ideal of R such

that R/P = C. Then there is an ideal P ′ in R′ such that R ∩ P ′ = P and R′/P ′ = C.

Proof. The extension R ⊆ R′ is integral, so by [20, Theorem 9.3], there is a maximal

ideal P ′ in R′ such that P ′ ∩ R = P. By the definition of R′, the field extension

C = R/P ⊆ R′/P ′

is purely inseparable. Since C is perfect, R′/P ′ = C .

We show below that for absolutely irreducible formal scheme W, the ‘absolute

constants’ of the field of fractions of OW coincide with C . This property is used in

the proof of the main theorem, see Remark 3.1.

Proposition 2.16. Assume that R is a complete C-algebra of Krull dimension r with the

residue field coinciding with C and such that R⊗C Calg is a domain. Then L p∞
= C.

Proof. Let R′ denote the domain R⊗C Calg. Then the ring L ⊗C Calg is a localization

of R′, so it is a domain as well. Hence C is relatively algebraically closed in L and it is

enough to show that the extension C ⊆ L p∞ is algebraic.

By Proposition 2.2(2), there is a finite field extension C((x1, . . . , xr )) ⊆ L. Since for any

integer n we have (L pn
)p∞
= L p∞ , we can assume that the extension C((x1, . . . , xr )) ⊆ L

is separable algebraic. For the notion of a Hasse–Schmidt derivation, the reader is referred

to [20, § 27] (where they are called higher derivations). Let ∂ be the r -tuple of the standard

Hasse–Schmidt derivations on C((x1, . . . , xr )). By [20, Theorem 27.2] (since a separable

algebraic field extension is étale), there is a unique r -tuple ∂ ′ of Hasse–Schmidt derivations
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on L extending ∂. Clearly, C is the field of the absolute constants of ∂. Let C ′ be the field

of the absolute constants of ∂ ′. Since the field extension C((x1, . . . , xr )) ⊆ L is algebraic,

the field extension C ⊆ C ′ is algebraic as well. We have L p∞
⊆ C ′ which finishes the

proof.

2.5. Factoring through Frobenius

In this subsection we collect necessary facts about the Frobenius homomorphism. Let T
and R be C-algebras and σ : C → C be an automorphism. We define

Rσ := R⊗σ C.

We present R as C[X ]/I when X is a (possibly infinite) tuple of variables. Then the

following C-algebras are isomorphic:

• Rσ;

• R with the algebra structure given by ι ◦ σ−1, where ι : C → R is the original C-algebra

structure on R;

• C[X ]/(σ (I )).

The definition of Rσ naturally extends to C-schemes and we have the isomorphisms

above, where the last item is understood as follows. If V = Spec(R) is an affine variety,

then σ(V ) (image inside the affine space) coincides with Spec(C[X ]/(σ (I ))).
Assume now that σ extends to an endomorphism σR : R→ R (usually not a C-algebra

map!). Then we have a C-algebra map

σR : Rσ → R.

If σR is a monomorphism, then there is one more isomorphism of C-algebras

σR(R) ∼= Rσ

and σR corresponds to the inclusion σR(R) ⊆ R.

We apply the considerations above to the map Fr : C → C . Clearly it extends to FrR :

R→ R. We notice below equivalent conditions which in the case of a p-normal R are

also equivalent to the ones in Lemma 2.14.

Fact 2.17. Let f : T → R be a C-algebra map. The following are equivalent:

(1) f (T ) ⊆ R p.

(2) There is a C-algebra map f(1) : T → RFr making the following diagram commutative

T
f //

f(1) ''

R

RFr

Fr

OO
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(3) There is a C-algebra map f (1) : T Fr−1
→ R making the following diagram

commutative

T Fr−1

f (1)

''T

Fr

OO

f // R

Remark 2.18. Inverting the arrows in Fact 2.17, we obtain that for any morphism of

C-schemes ϕ : V → W the following are equivalent:

(1) There is a morphism ϕ(1) : V Fr
→ W making the following diagram commutative

V
ϕ //

Fr
��

W

V Fr

ϕ(1)

77

(2) There is a morphism ϕ(1) : V → W Fr−1
making the following diagram commutative

W Fr−1

Fr
��

V

ϕ(1)
77

ϕ // W

2.6. Points and forms

The aim of this subsection is to clarify the passage from local homomorphisms to rational

points and its effect on differential forms. Throughout this subsection we fix:

• a C-algebra R;

• an absolutely irreducible C-scheme Y ;

• y ∈ Y (C);

• T := OY,y ;

• m ∈ N and q := pm .

In the applications, Y will be an irreducible algebraic group over C , so we assume later

that Y is smooth.

There is a natural morphism of C-schemes Spec(T )→ Y such that the image of the

closed point of Spec(T ) is the closed point of Y underlying the rational point y and

the image of the generic point of Spec(T ) is the generic point of Y . By composing with

Spec(T )→ Y , any C-algebra homomorphism f : T → R gives an R-rational point of Y
(i.e., a C-scheme morphism Spec(R)→ Y ) which we denote by fY ∈ Y (R). Similarly, any

C-algebra homomorphism F : T̂ → R̂ gives a point FY ∈ Y (R̂) which is the composition

of the following sequence of morphisms:

Spec(R̂) F // Spec(T̂ ) // Spec(T ) // Y.

We need the observations below about such rational points.
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Lemma 2.19. Let f : T → R be a local C-algebra homomorphism and F : T̂ → R̂ be a

C-algebra homomorphism. We have the following.

(1) The image of fY in Y (R̂) coincides with ( f̂ )Y .

(2) Suppose R satisfies the assumptions in Proposition 2.3. Then FY ∈ Y ((R̂)q) if and

only if F(T̂ ) ⊆ (R̂)q .

Proof. The first part is an easy diagram chase.

The right-to-left implication in the second part is obvious. For the remaining

implication, assume that FY ∈ Y ((R̂)q). It means that the morphism FY : Spec(R̂)→ Y
factors through a morphism F ′ : Spec((R̂)q)→ Y . Clearly, F ′ maps the closed point of

Spec((R̂)q) to y, so it factors through a morphism F ′ : Spec((R̂)q)→ Spec(T ). It means

that F(T ) ⊆ (R̂)q . Hence it remains to show that (R̂)q is complete in R̂. It follows from

Proposition 2.3(2) (the induced topology on (R̂)q coincides with the standard topology)

and Proposition 2.3(3) ((R̂)q is complete with respect to the standard topology), since,

by [20, Theorem 8.12], R̂ is Noetherian.

Abusing the notation a bit, we denote by �Y , the OY (Y )-module of global sections

of the sheaf of Kähler differential forms over C on Y (see [11, § II.8]). Clearly, �R =

�Spec(R). Any morphism of C-schemes f : W → Y functorially induces a homomorphism

of OY (Y )-modules f ∗ : �Y → �W .

Lemma 2.20. If f : W → Y factors through Frobenius as in Remark 2.18, then f ∗ : �Y →

�W is the 0-map.

Taking W = Spec(T ), we have a natural homomorphism �Y → �T . We collect the

necessary properties of this map.

Proposition 2.21. Assume that Y is irreducible and smooth (so for each t ∈ Y , the local

ring OY,t is regular). Then we have:

(1) The map �Y → �T is one-to-one.

(2) The map �T → �T̂ is one-to-one.

Proof. By [11, Theorem II.8.8], the sheaf of Kähler differential forms over C on Y is

locally free. The injectivity in (1) follows.

For (2), by Lemmas 2.6(1) and 2.7(1) it is enough to show that the map �T → �̂T is

one-to-one. By [20, Theorem 8.9], the kernel of this map is trivial.

We can regard now �Y as a OY (Y )-submodule of �T and �T as a T -submodule of �T̂ .

Having this identifications in mind, by an easy diagram chase (left to the reader), we

obtain the following.

Lemma 2.22. Assume that Y is irreducible and smooth. Let f : T → R and F : T̂ → R̂
be local C-algebra homomorphisms. Then for any ω ∈ �Y we have:

(1) F∗(ω) = F∗Y (ω).
(2) f̂∗(ω) = f∗(ω) = f ∗Y (ω) = f̂ ∗Y (ω).
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Let us now specialize the set-up to the following case:

• Y = A is a commutative connected algebraic group over C of dimension n;

• y = 0 ∈ A(C);

• T := OA,0.

There is a C-subspace �inv
A of �A consisting of invariant (see [25]) forms. We need the

following well-known results.

Proposition 2.23. We identify �A with a subspace of �T using Proposition 2.21. Then

we have:

(1) dimC �
inv
A = n;

(2) T�inv
A = �T ;

(3) for any ω ∈ �inv
A and morphisms of C-schemes f, g : V → A

( f + g)∗(ω) = f ∗(ω)+ g∗(ω).

Proof. For (1) and (3), see [25] and for (2), see [11, Theorem 8.8].

2.7. Complete Hopf algebras

In this subsection, we collect the necessary facts about complete Hopf algebras. We

consider the category of complete local C-algebras with residue fields coinciding with

C . Let R,S be such local C-algebras. The coproduct in this category is the completed

tensor product

R ⊗̂S := R̂⊗S,
where the C-algebra R⊗S is completed with respect to the ideal generated by mR⊗
S +R⊗mS .

A complete Hopf algebra is a quadruple (H,1, S, ε) such that H is a complete local

C-algebra with the residue field C and

1 : H→ H ⊗̂H, S : H→ H, ε : H→ C

are C-algebra homomorphisms such that the diagrams analogous to the diagrams from

[30, p. 8] commute. For example the ‘complete coassociativity’ is expressed by the

following commutative diagram:

H ⊗̂H ⊗̂H H ⊗̂H1 ⊗̂ idoo

H ⊗̂H

id ⊗̂1

OO

H,
1

oo

1

OO

i.e., ⊗ from the definition of a Hopf algebra is replaced with ⊗̂. The category of complete

Hopf algebras is antiequivalent to the category of formal group schemes over C , see e.g.,

[12, p. 493]. The notions of a commutative complete Hopf algebra and a commutative

formal group are clear. We need a result about quotients of complete Hopf algebras.

Recall our general assumption char(C) = p > 0, the notation from Remark 2.5 and rings

of the form A[m] which were introduced in Definition 2.4.

https://doi.org/10.1017/S1474748017000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000378


1174 P. Kowalski

Proposition 2.24 (Lemma 1.1 in [18]). Let A be a complete Hopf algebra and m ∈ N.

Then A[m] has a (complete) Hopf algebra structure such that the map A→ A[m] is a

complete Hopf algebra homomorphism.

If G is a group scheme over C and e ∈ G(C) is the identity, then ÔG,e is naturally a

complete Hopf algebra (commutative, if G is commutative), see [18, § 2.2]. We denote the

corresponding formal group scheme by Ĝ.

If H is a complete Hopf algebra over C and S is a complete C-algebra, then the set of

all local C-algebra maps from H to S has a natural structure of a commutative group

and the 0-map (as defined in § 2.1) is the identity of this group.

Let V, v be as above and A be a commutative algebraic group over C . We need the

following formal version of Proposition 2.23(3) which follows from the identifications of

Proposition 2.21 and Lemma 2.22.

Proposition 2.25. For any formal maps F1,F2 : V̂ → Â and ω ∈ �inv
A we have

(F1+F2)
∗(ω) = (F1)

∗(ω)+ (F1)
∗(ω).

We finish with an easy observation regarding the formalization of algebraic group and

points as in § 2.6. Its proof is an easy diagram chase.

Lemma 2.26. Let A be a group scheme over C and T = OA,e. Let F ,G : T̂ → R̂ be

C-algebra homomorphisms. Then

(F +G)A = FA+GA.

2.8. Formal A-limit maps

In this subsection we define the ‘good’ formal maps from the introduction and prove their

(good) properties. We fix the following:

• A local C-algebra R such that R is reduced, Noetherian and the residue field of R
coincides with C . We also assume that R is complete or a localization of a C-algebra

of finite type.

• A local C-algebra T .

• A commutative complete Hopf algebra H over C .

• A complete local C-algebra S.

We will not always use all the properties imposed on R, but for simplicity of the

presentation we make the assumptions as above. In the next definition, we use the

notation from Remark 2.5.

Definition 2.27. Let ( fm : T → R)m be a sequence of local C-algebra homomorphisms.

We say that such a sequence is strongly Cauchy if ( fm[m] : T [m] → R[m])m is a morphism

between inverse systems of rings.
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Remark 2.28. Let us fix a sequence ( fm)m as above.

(1) The following are equivalent:

(a) ( fm)m is strongly Cauchy;

(b) for each m ∈ N we have

fm[m+ 1] = fm+1[m+ 1] : T [m+ 1] → R[m+ 1];

(c) for each m ∈ N and t ∈ T we have

fm(t)− fm+1(t) ∈ Frm
R (mR)R.

Since Frm
R (mR)R ⊆ m

pm

R , a strongly Cauchy sequence is uniformly Cauchy i.e., for

each t ∈ T , the sequence ( fm(t))m is Cauchy (uniformly in t). Hence for a strongly

Cauchy sequence we obtain

lim
←−
( fm) = lim

←−
( fm[m]) : T̂ → Ŝ.

(2) Since for each m we have fm[m] = f̂m[m], the sequence ( fm : R→ S)m is strongly

Cauchy if and only if the sequence ( f̂m : R̂→ Ŝ)m is strongly Cauchy.

We need some properties of strongly Cauchy sequences.

Lemma 2.29. Let ( fm : T → R) be a strongly Cauchy sequence and assume that for almost

all m, we have fm(T ) ⊆ R pk
. Then lim

←−
( fm)(T̂ ) ⊆ (R̂)pk

.

Proof. By Propositions 2.3(2) and 2.3(3) (as in the proof of Lemma 2.19), the subring

(R̂)pk
is complete in R̂. Hence the result holds even for pointwise Cauchy sequences of

maps.

We notice below that the limits preserve homomorphisms.

Lemma 2.30. Assume S is a complete Hopf algebra and ( fm : H→ S)m is a strongly

Cauchy sequence of complete Hopf algebra homomorphisms. Then lim
←−
( fm)m is a complete

Hopf algebra homomorphism.

Proof. It is enough to notice that each fm : H[m] → S[m] is a (complete) Hopf algebra

homomorphism (see Proposition 2.24).

In the next two lemmas, we denote by + the group operation on the set of all C-algebra

homomorphisms from a complete Hopf algebra over C to a complete C-algebra.

Lemma 2.31. Let (Fm) and (Tm) be strongly Cauchy sequences of maps from H to S.

Then we have

lim
←−
(Fm + Tm) = lim

←−
(Fm)+ lim

←−
(Tm).
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Proof. For each m ∈ N we have (using Proposition 2.24 for the second equality):

lim
←−
(Fm +Gm)[m] = (Fm +Gm)[m]

= Fm[m] +Gm[m]

= lim
←−
(Fm)[m] + lim

←−
(Gm)[m]

= (lim
←−
(Fm)+ lim

←−
(Gm))[m].

By passing to the inverse limit we get the result.

Lemma 2.32. Let F , T : H→ S be local C-homomorphisms. Assume that for some m >
1, (F − T )(H) ⊆ S pm

. Then we have

F[m] = T [m] : H[m] → S[m].

Proof. Since the ideal mS is radical (and pm > m), we have mS ∩S pm
⊆ mm

S . Therefore,

(F − T )[m](H[m]) = C.

It means that (F − T )[m] is the 0-map. By Proposition 2.24, we have

0 = (F − T )[m] = F[m] − T [m],

hence F[m] = T [m].
Let us fix now a commutative algebraic group A over C and we set T := OA,0. We also

fix a C-scheme V , v ∈ V (C) and denote by V̂ the formalization of V along v. The next

definition is modeled on the case of additive power series, which can be considered as

limits (in a certain strong sense) of additive polynomials, see [16, Definition 2.2].

Definition 2.33. (1) A sequence of local C-algebra homomorphisms (ϕm : H→ S)m∈N
is called H-compatible, if for each m, we have

(ϕm+1−ϕm)(H) ∈ S pm+1
,

where ‘−’ comes from the complete Hopf algebra structure.

(2) A sequence of local C-algebra homomorphisms ( fm : T → R)m∈N is called

A-compatible, if the sequence ( f̂m : T̂ → R̂)m∈N is T̂ -compatible.

Remark 2.34. For a sequence of local C-algebra homomorphisms ( fm : T → R)m∈N the

following are equivalent:

(1) The sequence ( fm : T → R)m∈N is A-compatible.

(2) For each m, we have ( fm+1)A− ( fm)A ∈ A(R pm+1
).

(3) For each m, the morphism ( fm+1)A− ( fm)A : Spec(R)→ A factors through Frm+1
A :

AFr−m−1
→ A (similarly as in Remark 2.17).

Using Remark 2.34(3), we can extend the definition of an A-compatible sequence to any
sequence of C-scheme morphisms ( fm : V → A)m .
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Lemma 2.35. An A-compatible sequence ( fm : T → R)m is strongly Cauchy.

Proof. Let us fix m ∈ N. By the definition of an A-compatible sequence we have

( f̂m+1− f̂m)(T̂ ) ⊆ R̂ pm+1
.

By Lemma 2.32, we have

fm[m+ 1] = f̂m[m+ 1] = f̂m+1[m+ 1] = fm+1[m+ 1],

so the sequence is strongly Cauchy.

Example 2.36. The notion of an A-compatible sequence is much stronger than the notion

of a strongly Cauchy sequence. For example consider V = A1 and A = Ga . Let ( fm : V →
A)m be a sequence of morphisms. We can understand each fm as an element of C[X ].
Then we have:

• the sequence ( fm)m is strongly Cauchy if and only if for each m, X pm
divides fm+1− fm ;

• the sequence ( fm)m is Ga-compatible if and only if for each m, fm+1− fm ∈ C[X pm
].

Below we define a certain class of formal maps, which we find most convenient to work

with.

Definition 2.37. Let F : V̂ → Â be a formal map. Then F is an A-limit, if there is an

A-compatible sequence fm : T → R such that F corresponds to lim
←−
( fm).

Remark 2.38. If for any m ∈ N there is φm : V → A such that F − φ̂m : V̂ → Â factors

through Frm+1
V̂

as in (the formal version of) Remark 2.18, then F is an A-limit map.

Example 2.39. (1) For A = Ga , an A-limit is of the form

ψ0+ψ
p
1 + · · ·+ψ

pm

m + · · ·

where (ψm : V → Ga)m is a sequence of morphisms.

(2) For A = Gm an A-limit is of the form

ψ0 ·ψ
p
1 · . . . ·ψ

pm

m · . . .

where (ψm : V → Gm)m is a sequence of morphisms.

Recall from Proposition 2.21 that we can consider �inv
A as a C-subspace of �T̂ . The

following result is item (2) from the beginning of this section.

Proposition 2.40. Let ( fm : T → R)m be an A-compatible sequence and F = lim
←−
( fm).

Then for any k ∈ N, F∗ coincides with ( fk)∗ on �inv
A .

Proof. Let us fix k ∈ N. By Lemma 2.31, we have

lim
←−m

( f̂m − f̂k) = lim
←−m

( f̂m)− lim
←−m

( f̂k) = F − f̂k .
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As in the proof of Lemma 2.35, for each m ∈ N we have

( f̂m − f̂k)(T̂ ) ⊆ R̂ p.

By Lemma 2.29, we get

(F − f̂k)(T̂ ) ⊆ R̂ p.

Therefore, (F − f̂k)∗ = 0. By Lemmas 2.22 and 2.19(2), we get

0 = (F − f̂k)∗ = (F − f̂k)
∗

A = (FA− ( f̂k)A)
∗.

Take ω ∈ �inv
A . By Proposition 2.23(2) and Lemma 2.22 again, we get

0 = (FA− ( f̂k)A)
∗(ω) = F∗A(ω)− ( f̂k)

∗

A(ω) = F∗(ω)− ( f̂k)∗(ω) = F∗(ω)− ( fk)∗(ω).

Hence we get F∗(ω) = ( fk)∗(ω).

Remark 2.41. By Propositions 2.40 and 2.23(2), we can consider F∗ as a map from �T
to �R . This is the crucial property of special maps, see Definition 3.10.

We prove below the crucial condition about vanishing of an A-limit map.

Proposition 2.42. Let ( fm : T → R)m be an A-compatible sequence and F = lim
←−
( fm).

Then the map F is the 0-map if and only if for all k ∈ N we have fk(T ) ⊆ R pk+1
.

Proof. For the proof of the right-to-left implication, by Lemma 2.29 for each k ∈ N, we

have F(T̂ ) ⊆ R̂ pk+1
. By Krull’s intersection theorem [20, Theorem 8.10], we get

F(mT̂ ) ⊆

∞⋂
k=1

(mR̂)
pk
= {0},

so F is the 0-map.

Assume now that F is the 0-map and take k ∈ N. As in the proof of Proposition 2.40

we have:

f̂k = f̂k −F = lim
←−
( f̂k − f̂k+m)m .

By the definition of an A-compatible sequence, for each m we have ( f̂k − f̂k+m)(T ) ⊆
R pk+1

, so by Lemma 2.29, we have f̂k(T̂ ) ⊆ R̂ pk+1
. Finally by Proposition 2.3(4), we get

fk(T ) ⊆ R pk+1
.

Remark 2.43. The right-to-left implication in Proposition 2.42 holds even for sequences

of maps which are pointwise Cauchy. However, the left-to-right implication holds only for

A-compatible sequences and this implication is crucial in the proof of Proposition 3.2.

Lemma 2.44. Let F ,G : V̂ → Â be A-limit maps. Then the map F +G : V̂ → Â is an

A-limit map.

Proof. It is enough to use Lemma 2.31.
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Below is the last main result in this section (recall the identifications in

Proposition 2.23).

Proposition 2.45. Assume that R = OV,v is p-normal. Let F : V̂ → Â be an A-limit map

such that the following composition

�inv
A

F∗ // �R // �K

is the 0-map. Then there is an AFr−1
-limit map F (1)

: V̂ → ÂFr−1
making the following

diagram commutative

ÂFr−1

Fr
��

V̂

F (1)
77

F // Â.

Proof. Let ( fm : T → R)m be an A-compatible sequence such that F = lim
←−
( fm) (see

Remark 2.38(1)). Let us fix m ∈ N. By Proposition 2.40, we have

F∗ = ( fk)∗ : �
inv
A → �R .

Let f ′m : T → K denote the composition of fk with the inclusion R→ K . By

Proposition 2.23(2), the map ( f ′k)∗ : �T → �K is the 0-map. Since R is p-normal, by

Lemma 2.14, we get fk(T ) ⊆ R p. By Lemma 2.29 (for k = 1), we have F(T̂ ) ⊆ R̂ p.

Clearly, F , considered as a map from T̂ to R̂ p, is an A-limit which is witnessed by

the sequence ( fk : T → R p)k .

By Fact 2.17, fk factors through f (1)k : T Fr−1
→ R and similarly F factors through

F (1)
: T̂ Fr−1

→ R̂. Then the sequence ( f (1)k )k witnesses that F (1) is an AFr−1
-limit map.

The last result in this section is an easy diagram chase and we skip its proof.

Lemma 2.46. Assume (Fm : H→ R)m is a compatible sequence converging to F , ι : A→
H is a complete Hopf algebra morphism and π : R→ S is a local C-homomorphism

between complete C-algebras. Then the sequence π ◦Fm ◦ ι : A→ S is compatible and

converges to π ◦F ◦ ι.

3. The main theorem

In this section we prove the main theorem of this paper (Theorem 3.7). First we set

up the algebraic data, then prove a strong bound on the dimension of a certain kernel

(Proposition 3.2) which refines the weak bound (Proposition 2.9).

3.1. Set-up

In this subsection we fix the notation for the entire § 3. All the geometric objects are

defined over C . We consider an algebraic variety V , a commutative algebraic group A,

a formal subscheme W ⊆ V̂ Zariski dense in V and an A-limit formal map F : V̂ → Â
vanishing on W. We fix below all the necessary algebraic data. It is a rather long list,

so we divide in into three parts: a part ‘related to V ’, a part ‘related to A’ and a part

‘related to W’.
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Related to V , we fix:

• a reduced, absolutely irreducible C-scheme V of finite type;

• v ∈ V (C);

• R = OV,v (note that R satisfies the assumptions from § 2.8);

• V̂ , the formalization of V at v (i.e., the object dual to R̂);

• K , the fraction field of R.

Related to A, we fix:

• a connected commutative algebraic group A of dimension n;

• T = OA,0;

• Â, the formalization of A at 0.

Related to W, we fix:

• A prime ideal P in R̂ such that the map R→ R̂/P is one-to-one;

• An absolutely irreducible formal subscheme W ⊆ V̂ , which corresponds to S := R̂/P;

• L, the fraction field of S.

Remark 3.1. By Proposition 2.16, C is the ‘field of constants’ of W, i.e L p∞
= C , which

is necessary for the proof of the main theorem. Note that the condition L p∞
= C implies

that Calg
∩ L = C , so in particular Calg

∩ K = C .

Related to F we fix a local C-algebra map T̂ → R̂ (which we also denote by F) which is

the limit of an A-compatible sequence (see Definition 2.37) such that the composition of

F with the map R̂→ S is the 0-map.

Our main result (Theorem 3.7) says that the reason of the above vanishing is that the

image of F is contained in a formal subgroup of Â whose dimension is bounded by the

codimension of W in V̂ . Unfortunately, we need to put further restrictions on A to prove

Theorem 3.7.

3.2. Linear dependence of forms

The main and only result of this subsection is a generalization of [16, Proposition 2.5]

from the case of a vector group to the case of an arbitrary commutative algebraic group.

It is also a desired improvement of Proposition 2.9, which we are able to show only under

the A-limit assumption. We use the notation from § 3.1.

Since F denotes either a ring homomorphism or a morphism of formal schemes, we

write F∗ when it acts covariantly on forms and F∗ when it acts contravariantly on forms.

Using Proposition 2.21, we consider F∗ as a map from �T to �R and sometimes as a

map from �inv
A to �R .

Proposition 3.2. Let F∗K : �A → �K denote the composition of F∗ : �A → �R with the

map �R → �K . Then we have

dimC F∗K (�
inv
A ) 6 dim(V )− dim(W).
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Proof. Let ( fm : T → R)m be an A-compatible sequence such that F = lim
←−
( fm). We

identify R with a subring of S. Let us fix m ∈ N and let fm,S : T → S be the composition

of fm with the inclusion R ⊆ S. By Lemma 2.46, ( fm,S)m is a compatible sequence

converging to the composition of F with the map R̂→ S. By our assumptions, this

last composition is the 0-map. By Proposition 2.42, we have

fm,S(T ) ⊆ S pm+1
.

Let Rm denote S pm
∩ R. Then fm : T → R factors through f ′m : T → Rm . Let γm :

�Rm → �R denote the map induced by the inclusion Rm ⊆ R. For any ω ∈ �inv
A , by

Proposition 2.40 we have:

F∗(ω) = ( fm)∗(ω) = γm(( f ′m)∗(ω)).

Let ι : Rm+1 → Rm denote the inclusion map. Since ( fm)m is a compatible sequence, we

have ( fm+1)A− ( fm)A ∈ A(R pm+1
). We have a tower of finite extensions of rings

R pm+1
⊆ R p

m ⊆ Rm ⊆ R.

Hence the corresponding morphism of affine schemes are epimorphisms (in the category

of schemes) and we have

(ι ◦ f ′m+1)A− ( f ′m)A ∈ A(R p
m).

By Lemma 2.20 we get

�Rm 3 ((ι ◦ f ′m+1)A− ( f ′m)A)
∗(ω) = 0.

By Lemma 2.22(2) and Proposition 2.23(3), we get:

( f ′m)∗(ω) = ( f ′m)
∗

A(ω) = (ι ◦ f ′m+1)
∗

A(ω) = δm(( f ′m+1)∗(ω)),

where δm : �Rm+1 → �Rm is the map induced by ι.

The following commutative diagram illustrates the situation:

�R // �S

�inv
A

F∗
77

( f ′m )∗ //

( f ′m+1)∗ ''

�Rm

γm

OO

βm // �S pm

OO

�Rm+1

βm+1 //

δm

OO

�S pm+1 .

0

OO

Chasing this diagram, we get

( f ′m)∗(ω) ∈ ker(βm).

Clearly, �K embeds over K into �K ⊗K L ∼= �R ⊗R L, thus we work inside �R ⊗R
L from now on. We have the following commutative diagram of L pm

-linear maps
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(to ease the notation we do not put the tensor product symbol on the level of

homomorphisms):

�R ⊗R L α // �L

�Rm ⊗Rm L pm βm //

γm

OO

�L pm

OO

�R pm ⊗R pm L pm
.

OO

αm

55

By Proposition 2.9(1), α is onto. Applying the mth power of the Frobenius map, we get

that αm is onto. Hence βm is onto as well. Let c := dim(R)− dim(S). By Lemma 2.7(2),

we have dimL �L = dim(S). Applying the mth power of the Frobenius map again, we see

that

dimL pm �L pm = dimL �L .

Therefore, we obtain

dimL pm �L pm = dim(S). (∗)

Let Km be the fraction field of Rm . We have a tower of fields K pm
⊆ Km ⊆ K such that

trdegC K pm
= trdegC K = dim(R),

so we get

dimL pm �Rm ⊗Rm L pm
= dim(R). (∗∗)

By (∗) and (∗∗), we finally obtain dimL pm ker(βm) = c (since βm is onto).

Therefore, for any m ∈ N and any c+ 1 forms from �inv
A , their images by ( f ′m)∗ are

dependent over L pm
in �Rm ⊗Rm L pm

. Since F∗ = γm ◦ ( f ′m)∗, we also get that the images

of these forms by the map F∗ are dependent over L pm
in �K ⊗K L = �R ⊗R L. Since

L p∞
= C , these images are also dependent over C .

Remark 3.3. In the characteristic 0 case a much stronger result holds (Proposition 3.8),

where there is no algebraic group around and instead of invariant forms closed forms are

considered.

3.3. Main theorem

We can prove now our main theorem under some extra assumptions on the algebraic

group A. As it is discussed in § 3.4, this assumptions are not restrictive at all in the case

of characteristic 0, but are quite restrictive in the case of positive characteristic. Still

the result below generalizes [16, Proposition 3.1] from the case of A = Gn
a to the case of

A = Hn for any 1-dimensional algebraic group H defined over Fp.

Definition 3.4. We call an algebraic group A (over C) integrable, if there is a

one-dimensional algebraic group H such that we have the following (in the case of

char(C) = 0, we drop the item (3) below).
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(1) Â ∼= Ĥn .

(2) The map End(Ĥ)→ EndC (�
inv
H )(= C) is onto.

(3) H is Fp-isotrivial i.e., H ∼= HFr.

Remark 3.5. To make the item (2) in the definition above meaningful, one needs to notice

that a formal group homomorphism induces a map on invariant forms. It is well known

and follows e.g., from [28, Corollary IV.4.3]. In a more general case of higher invariant

forms, it follows from Proposition 5.19.

Example 3.6. The following algebraic groups are integrable:

• Gn
a over any C (so any commutative algebraic group, if char(C) = 0);

• Any Hn for C = Fp and a one-dimensional algebraic group H .

We can state and prove now our main theorem. Recall that we are still in the set-up

from § 3.1, i.e., F : V̂ → Â is a formal A-limit map vanishing on a Zariski dense formal

subscheme W ⊆ V̂ . We use in the proof the notation from § 3.1.

Theorem 3.7. Assume that A is integrable. Then there is a formal subgroup C 6 Â such

that F(V̂ ) ⊆ C and

dim(C) 6 dim(V )− dim(W).

Proof. Recall the notion of a p-normal domain and the notation R′ from § 2.4.

Claim (p-normalization) We can assume that R = R′.

Proof of the claim. Without loss of generality V is an affine variety over C . Let O be the

coordinate ring of V and M be the maximal ideal of O corresponding to v ∈ V (C). By

Lemma 2.15, there is a maximal ideal M ′ in O ′ such that M ′ ∩ O = M and O ′/M ′ = C .

Therefore, M ′ corresponds to v′ ∈ V ′(C) which is mapped to v by the morphism V ′→ V
corresponding to the ring extension R ⊆ R′. By Fact 2.12(3), the ring R′ still satisfies the

assumptions from § 2.8.

Let R(1) = O ′M ′ be the local ring of V ′ at v′. (We are tempted to denote this local ring

by R′, however it may be slightly bigger than the p-normalization of R.) By Fact 2.12,

(R(1))′ = R(1). We show that we can replace V with V ′ and v with v′. Let m denote the

maximal ideal of R and m′ denote the maximal ideal of R(1). The extension R ⊆ R(1) is

still integral and
√

mR(1) = m′. Since R(1) is Noetherian, there is N ∈ N such that

(m′)N
⊆ mR(1) ⊆ m′.

Therefore, we have

R̂(1) ∼= ̂(R,mR(1)) ∼= R̂⊗R R(1).

Since R̂ is flat over R [20, Theorem 8.8], the natural map R̂→ R̂(1) is an embedding,

which we regard as an inclusion. Since the extension R ⊆ R′ is integral, the extension

R̂ ⊆ R̂(1) is integral as well. Let P be the kernel of the map R̂→ S. Since P is a prime

ideal and the extension R̂ ⊆ R̂(1) is integral, by [20, Theorem 9.3] there is a prime ideal
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P ′ in R̂(1) such that P ′ ∩ R̂ = P. Let S ′ = R̂(1)/P ′ and W ′ be the corresponding formal

subscheme of V̂ ′. Denote by ϕ and ϕ′ the appropriate compositions of vertical arrows in

the commutative diagram below.

R
⊆ //

⊆

��

R(1)

⊆

��
R̂

⊆ //

��

R̂(1)

��
S ⊆ // S ′.

Since W is Zariski dense in V , ker(ϕ) = 0. Therefore, ker(ϕ′)∩ R = 0. Since, the extension

R ⊆ R(1) is integral, ker(ϕ′) = 0, so W ′ is Zariski dense in V ′. It is easy to see (since the

extension R̂ ⊆ R̂(1) is integral, S = R̂/P and S ′ = R̂(1)/P ′) that the extension S ⊆ S ′ is

integral as well, thus dim(S) = dim(S ′) (see [20, Exercise 9.2]).

Let F ′ denote the composition of F with the morphism V̂ ′→ V̂ . Since the map R̂→
R̂(1) is an embedding, any formal subgroup C of Â working for v′, V ′,W ′,F ′ also works

for v, V,W,F , hence the claim is proved.

By the claim, we can assume that R is p-normal. Let us take H from Definition 3.4 (we

have assumed that A is integrable). For any formal map T : V̂ → Â, let Ti : V̂ → Ĥ be

the composition of T with the ith coordinate morphism Â→ Ĥ . Let ω ∈ �inv
H \ {0} and

TH := OH,0. Let c = dim(R)− dim(S). We can assume that c < n. By Proposition 3.2,

without loss of generality there is 0 6 r0 6 c such that F∗1 (ω), . . . ,F
∗
r0
(ω) are linearly

independent over C in �K , and for each r0 < l 6 n, there are cl,1, . . . , cl,r0 ∈ C such that

inside �K we have

F∗l (ω) =
r0∑

i=1

cl,iF∗i (ω).

For each cl,i as above, by the integrability of H , there is γl,i : Ĥ → Ĥ such that γ ∗l,i = cl,i .

We define

(Fl)(1) = Fl −

r0∑
i=1

γl,i ◦Fi .

By Proposition 2.25, we get

(Fl)
∗

(1)(ω) = F∗l (ω)−
r0∑

i=1

(γl,i ◦Fi )
∗(ω)

= F∗l (ω)−
r0∑

i=1

cl,iF∗i (ω)

= 0.

By Proposition 2.23(2), (Fl)
∗

(1) : �TH → �K is the constant 0-map. Since R is p-normal

(see Claim), we can use Proposition 2.45 and the fact that H is Fp-isotrivial to obtain
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an H -limit map F (1)
l : V̂ → Ĥ such that the following diagram is commutative

Ĥ

Fr
��

V̂
(Fl )(1) //

(Fl )
(1)

55

Ĥ .

For 1 6 l 6 r0, let us define F (1)
l as Fl and we define an A-limit formal map

F (1)
: V̂ → Â, F (1)

= (F (1)
1 , . . . ,F (1)

n ).

There are algebraic endomorphisms φ, ι : A→ A such that:

• φ is an automorphism;

• ι is either the Frobenius map or the identity map on each coordinate;

• ι̂ ◦F (1)
= φ̂ ◦F .

Hence F (1) vanishes on W. Moreover, obtaining a ‘right C for F (1)’ gives a ‘right C for

F ’. Thus we can replace F with F (1). (Note that for r0 = 0, we just get Fr ◦F (1)
= F .)

Applying Proposition 3.2 to F (1) we get (again without loss of generality) that

there is r0 6 r1 6 c (r0 6 r1, since the maps F1, . . . ,Fr0 have not changed) such that

(F (1)
1 )∗(ω), . . . , (F (1)

r1 )
∗(ω) are linearly independent over C in �K , and for each r1 < l 6 n,

there are dl,1, . . . , dl,r0 ∈ C such that inside �K we have

(F (1)
l )∗(ω) =

r0∑
i=1

cl,i (F (1)
i )∗(ω).

As before, there are δl,i , endomorphisms of H such that if we define

(Fl)(2) = F −
r0∑

i=1

δ̂l,i ◦F (1)
i ,

then there is a formal H -limit map F (2)
l : V̂ → Ĥ such that the following diagram is

commutative:

Ĥ

Fr
��

V̂
(Fl )(2)

//

(Fl )
(2)

55

Ĥ .

Continuing as above, we get a sequence 0 6 r0 6 r1 6 r2 6 · · · 6 c. Let m ∈ N be such

that for each j > m we have rm = r j =: r . We can replace F with F (r) and assume that

r = r0.

If we continue the construction above, for each t ∈ N and r < l 6 n, we get an

endomorphism γl,i,t of Ĥ such that there is a formal map F (t+1)
l : V̂ → Ĥ making the
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following diagram commutative.

Ĥ

Fr
��

V̂

F (t+1)
l

44

F (t)
l −R

(t)
l

// Ĥ ,

where R(t)
l =

∑r
i=1 γl,i,t ◦F (t)

i and F (0)
l = Fl .

Therefore, for any t and l as above, the following diagram is commutative:

Ĥ

Frt+1

��
V̂

F (t+1)
l

33

Fl−R(0)
l −Fr ◦R(1)

l −···−Frt
◦R(t)

l

// Ĥ .

For any t as above let us define the following formal homomorphism:

ϕt : Â→ Ĥn−r ,

(
πr+1−

r∑
i=1

γr+1,i,t ◦πi , . . . , πn −

r∑
i=1

γn,i,t ◦πi

)
,

where each πi : Â→ Ĥ is the appropriate projection morphism.

We finally define:

9t : Â→ Ĥn−r , 9t = ϕ0−Fr ◦ϕ1− · · ·−Frt
◦ϕt .

Then (9̂t : Â→ Ĥn−r )t is a compatible sequence of formal group maps. Let 9 :=

lim
←−
(9t )t . By Lemma 2.30, 9 is a formal group map as well. By Lemma 2.46, we have

9 ◦F = lim
←−
(9t ◦F)t .

By the construction, for each t ∈ N, the formal map 9t ◦F : V̂ → Ĥn−r factors through

Frt+1
: Ĥn−r

→ Ĥn−r . By Proposition 2.42, we get that 9 ◦F = 0. Hence if we take C
as ker(9) (for the existence of kernels in the category of commutative formal groups, see

[18, Proposition 1.3]), then F(V̂ ) ⊆ C.

It remains to check the codimension condition. Let α : Ĥn−r
→ Ĥn be the inclusion

map on the last n− r coordinates. Since for each t , the map 9t ◦α is the identity map,

the map 9 ◦α is the identity map as well. In particular, 9 is an epimorphism and we get

dim(C) = n− (n− r) 6 c,

so the result follows.

3.4. The case of characteristic 0

In this subsection we drop our assumption on the characteristic of C . We keep the set-up

from § 3.1 with the following two changes:
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• the A-limit assumption on F is dropped;

• we denote by C ′ the relative algebraic closure of C in K (note that the assumption

L p∞
= C in § 3.1 implies C ′ = C).

We prove a very strong characteristic 0 improvement of the weak bound on kernel

(Proposition 2.9(2)). It will easily imply (see Proposition 3.11) a characteristic 0 version

of the strong bound on kernel (Proposition 3.2). The idea of the proof comes from Ax’s

proof of [2, Theorem 1]. Let �closed
K denote the C-subspace of �K consisting of closed

differential forms. Below, we identify �K with a subspace of �R ⊗R L = �K ⊗K L.

Proposition 3.8. If char(C) = 0, then we have:

dimC ′(�
closed
K ∩ ker(�R ⊗R L → �̂S ⊗S L)) 6 dim(R)− dim(S).

Proof. For any derivation ∂ : S → S let ∂L denote its extension to L. Since S is complete,

∂∗ : �S → S factors through ∂̂∗ : �̂S → S and we have a commutative diagram:

�̂S ⊗S L
∂̂∗⊗idL

))
�R ⊗R L

γ //

β
55

�L = �S ⊗S L

OO

∂∗L // L .

After identifying �R ⊗R L with �K ⊗K L, we have γ : �K ⊗K L → �L . Since char(C) =
0, γ is an embedding.

Let r := dim(R), s := dim(S), n := r − s+ 1 and

ω1, . . . , ωn ∈ �
closed
K ∩ ker(�R ⊗R L → �̂S ⊗S L).

By Remark 2.10, dimL(ker(β)) = r − s and ω1, . . . , ωn are L-dependent. Let ξi := γ (ωi ).

Since γ is a C ′-linear embedding, it is enough to show that ξ1, . . . , ξn are C ′-dependent.

By Proposition 2.2, S is a finite extension of the ring of power series in s variables.

Hence, there are derivations ∂1, . . . , ∂s on L (extending the standard partial derivations

on the field of Laurent series) such that their common constant field coincides with C ′.
By the diagram above, we have ∂∗i (ξ j ) = 0 for each i, j . Since each ξ j is closed, we can use

the Lie derivative trick as in [2, p. 1198], to conclude that ξ1, . . . , ξn are C ′-dependent.

We briefly recall the Lie derivative argument below. For any C-derivation ∂ on L, one

defines the Lie derivative L∂ on the module �L by the following formula:

L∂ : �L → �L , L∂(a db) := ∂(a) db+ a d(∂(b)).

If ω ∈ �L is a closed form such that ∂∗(ω) = 0, then L∂(ω) = 0 (see [2, lines 4 and 5

on p. 1199]). In particular, we get L∂i (ξ j ) = 0 for each i, j . Therefore, if we apply the

Lie derivatives L∂1 , . . . , L∂s to a (minimal) L-linear combination of ξ1, . . . , ξn witnessing

their L-dependence, then we get that ξ1, . . . , ξn are linearly dependent over the common

constant field of ∂1, . . . , ∂s , which is exactly C ′.

Remark 3.9. It is not clear whether the result above holds for C of positive characteristic.

The proof breaks at ‘Since char(C) = 0, γ is an embedding.’. We have replaced Proposi-

tion 3.8 with Proposition 3.2 to handle the positive characteristic case.
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We define below a class of formal maps for which we can state in the characteristic

0 case, a very general version of Theorem 3.7. This version also includes Ax’s theorem

[2, Theorem 1F] which will be discussed in § 4. This definition makes sense in arbitrary

characteristic, however in the case of positive characteristic it needs to be corrected to

include higher differential forms (see § 5.3).

Definition 3.10. We consider �R as an R-submodule of �̂R ∼= �̂R̂ (see Lemma 2.6(1)). A

formal map F : V̂ → A is special, if

F∗(�inv
A ) ⊆ �R .

Proposition 3.11. Assume that F is special and let F∗K denote the composition of F∗ with

the map �R → �K . We have

dimC ′ F∗K (�
inv
A ) 6 dim(V )− dim(W).

Proof. Let r, s, n be as in the proof of Proposition 3.8 and take η1, . . . , ηn ∈ �
inv
A . For

each i , let ωi := F∗K (ηi ). Since η1, . . . , ηn are closed forms, we get by our assumptions

that

ω1, . . . , ωn ∈ �
closed
K ∩ ker(�R ⊗R L → �̂S ⊗S L).

By Proposition 3.8, ω1, . . . , ωn are C ′-dependent.

Example 3.12. The composition of special formal maps is special. The following classes

of formal maps are special.

(1) Formalizations of algebraic maps (clear).

(2) Formal group homomorphisms (see [28, Corollary IV.4.3]).

Theorem 3.13. Assume that C has characteristic 0 and that F is special. Then there is

a formal subgroup C 6 Â such that F(V̂ ) ⊆ C and

dim(C) 6 dim(V )− dim(W).

Proof. The proof is similar to the first step of the proof of Theorem 3.7 (and to the proof

of [2, Theorem 1]), so we will be brief. Since char(C) = 0, we get Â ∼= Ĝa
n

and we can

assume A = Gn
a . For i ∈ {1, . . . , n}, let Fi : V̂ → Ĝa be the composition of F with the

appropriate projection.

As in the proof of Theorem 3.7 (using now Proposition 3.11), we get

0 6 r0 6 dim(V )− dim(W) < n

and cl,i ∈ C ′ such that for each l ∈ {r + 1, . . . , n} the formal map

fl := F ×C C ′−
r0∑

i=1

cl,i (Fi ×C C ′) : V̂ ×C C ′→ Â×C C ′

induces the 0-map from �inv
Ga

to �K (note that cl,i = γl,i for H = Ga). Since C ′ is relatively

algebraically closed in K , we get that each fl is the 0-map. Thus F(V̂ ) ⊆ D̂, where D
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is an algebraic subgroup of Gn
a of dimension smaller than dim(V )− dim(W) and which is

defined over C ′. We can take C as the formalization of
⋂
σ σ(D), where σ runs over the

absolute Galois group of C .

Example 3.14. We give an example of a formal map which does not satisfy the conclusion

of Theorem 3.13. Let E : C→ C be an analytic function whose graph is Zariski dense in

C2 and such that E(0) = 0. Let us define

F : C2
→ C2, F(x, y) = (y− E(x), E(y− E(x))).

We denote also by E the corresponding formal map Â1 → Â1. Let us take V = A2, A =
G2

a and consider F as a formal map V̂ → Â. We take W as the graph of E . Then dim(V )−
dim(W) = 1, but the image of F (which is the graph of E as well) is not contained in

any proper formal subgroup of Â (since all the formal subgroups of G2
a are also algebraic

being just linear subspaces).

This example can be easily modified to work in the positive characteristic case: we just

need an extra assumption (automatically satisfied above) that E is non-additive.

Remark 3.15. (1) It is easy to formulate and prove a complex-analytic version of

Theorem 3.13.

(2) Proposition 3.2 is still not enough to tackle Question 1.9 without imposing extra

assumptions on A. One may need a proper notion of a compatible sequences of

higher invariant forms to prove a positive characteristic version of Remark 4.6(1).

Unfortunately, all our attempts to define such a notion were just leading into a

system of forms coming from a formal endomorphism (see Remark 4.6(3)).

4. Applications to Ax–Schanuel inequalities

In this section we apply Theorems 3.7 and 3.13 to get a version of Ax’s theorem [2,

Theorem 1] as well as some Ax–Schanuel type transcendental statements. In this section

C is a perfect field of an arbitrary characteristic.

We start with chronological remarks about the circle of topics around Schanuel’s

Conjecture. The reader is referred to Pila’s notes [24] for a comprehensive survey.

• In 1960’s Schanuel stated his famous conjecture [1, (S)] (see [17, pp. 30–31]) as well as

its function field (or formal) [1, (SP)] and differential [1, (SD)] versions.

• The last two conjectures were proved by Ax [1, Theorem 3]. We use the phrase

‘Ax–Schanuel’ referring to results of the type [1, (SP)] and [1, (SD)].

• Shortly after, Ax generalized [1, Theorem 1] (a multivariable version of [1, (SP)]) from

the case of the exponential map on an algebraic torus to the case of the exponential map

on a semi-Abelian variety [2, Theorem 3]. This generalization follows from the result

[2, Theorem 1F] about intersections of algebraic subvarieties and formal subgroups of

an algebraic group.

• Bertrand [3] extended [2, Theorem 3] to commutative algebraic groups not having

vector quotients (e.g., a maximal non-split vectorial extensions of a semi-Abelian

variety).

https://doi.org/10.1017/S1474748017000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000378


1190 P. Kowalski

• Kirby [13] generalized [1, (SD)] to arbitrary semi-Abelian varieties. This generalization

was not included in [2], however it is closely related.

• The differential Schanuel conjecture [1, (SD)] is generalized further to ‘very

non-algebraic formal maps’ in [15, Theorem 5.5]. This generalization includes a

differential version of Bertrand’s result and a differential Ax–Schanuel type result about

raising to a non-algebraic power on an algebraic torus.

• The first (to my knowledge) positive characteristic version of [1, (SP)] is [16, Theorem

1.1], where the exponential map is replaced with a non-algebraic additive power series.

• There is a variety of Ax–Schanuel type results for additive maps coming from Drinfeld

modules, see [5]. However (to my knowledge), such results never include a version of

the full Ax–Schanuel statement.

• The original Schanuel conjecture [1, (S)] remains wide open. For example it is still

unknown whether π + e is irrational.

We discuss now different applications of the Ax–Schanuel type. Schanuel’s Conjecture [1,

(S)] regards the exponential map on an algebraic torus and more generally the exponential

map on a semi-Abelian variety. Such maps do not exists in the positive characteristic

case, but the most natural replacement (as in [15]) is a formal isomorphism which is

‘very non-algebraic’. In practice, it is a formal isomorphism between two ‘very different’

algebraic groups or a formal endomorphism ‘far’ from algebraic endomorphisms. As our

transcendental statements will concern images of rational points of algebraic groups under

formal maps, we need to specify to what kind of rational points formal maps may be

applied.

Let us fix C-schemes V and W , and rational points (for simplicity with the same names)

0 ∈ V (C), 0 ∈ W (C). By V̂ and Ŵ we mean the formalizations at these fixed C-rational

points. For a morphism of C-schemes x : W → V , let locusC (x) denote the Zariski closure

of the image of x and let

trdegC (x) := dim locusC (x).

If W is the spectrum of a field, then the definition above corresponds to the classical

notions of the algebraic locus and the transcendental degree of a rational point. If W, V
are affine and x corresponds to the morphism of C-algebras f , then locusC (x) coincides

with the closed subscheme of V given by ker( f ).
For a local C-algebra U , we denote by V (U )∗ the set of morphisms x : Spec(U )→ V

which take the closed point of Spec(U ) to 0. It is easy to see that V (U )∗ corresponds

exactly to the set of local C-algebra homomorphisms OV,0 → U . Clearly, for any x ∈
V (U )∗, we have 0 ∈ locusC (x).

Assume now that R is a complete C-algebra. Then V (R)∗ corresponds to the set

of local C-algebra homomorphisms ÔV,0 → R being completions of local C-algebra

homomorphisms OV,0 → R.

Remark 4.1. Any formal map F : V̂ → Ŵ naturally induces a map

FR : V (R)∗→ W (R)∗.
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Proof. Let us take x ∈ V (R)∗ and consider the following diagram

Spec(R)
FR(x)

''
x

xx
x̄

��

V W

Spec(ÔV,0)
F //

OO

Spec(ÔW,0),

OO

where FR(x) is the obvious composition map.

Example 4.2. Let us take C = Q, R = QJX1, . . . , Xr K, x ∈ Ga(R)∗ and

F = exp : Ĝa → Ĝm .

Then x corresponds to a power series f without the constant term and F(x) corresponds

to

exp( f ) = 1+ f +
f 2

2!
+

f 3

3!
+ · · · ,

which makes sense, since f has no constant term. Thus the map

FR : Ga(R)∗→ Gm(R)∗
is the same as the exponential map evaluated at the maximal ideal of R.

We need the notion of the formal locus of a point.

Definition 4.3. For x ∈ V (R)∗ we define.

(1) The formal locus of x over C as the formal subscheme of V̂ corresponding to the

image of the map ÔV,0 → R.

(2) The number andeg(x) denoting the dimension of the formal locus of x over C .

Remark 4.4. (1) It is easy to see that for x ∈ V (R)∗, the formal locus of x is contained

in (the formalization at 0 of) the algebraic locus of x . Hence we have

andegC (x) 6 trdegC (x).

(2) If R is a power series algebra and V is an affine space, then andeg(x) coincides with

the rank of the Jacobian of x in the case of char(C) = 0.

The result below is a generalization (from the case of a vector group to an arbitrary

algebraic group) of [16, Proposition 4.4]. The proof is an easy adaptation of the proof

from [16], so we skip it.

Proposition 4.5. Assume G is an algebraic group, V a subvariety containing the identity

element of G and H a formal subgroup of Ĝ. If V̂ ⊆ H, then Ĥ ⊆ H, where H is the

algebraic subgroup of G generated by V .

https://doi.org/10.1017/S1474748017000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000378


1192 P. Kowalski

Remark 4.6. (1) In the case of characteristic 0, Proposition 4.5, maybe restated in the

following form: if ω ∈ �inv
G and ω|V = 0, then ω|H = 0 (see [15, Proposition 2.5]).

(2) The above restatement does not hold in the positive characteristic case, e.g., one

can take C = F3, ω = d X ∈ �inv
G2

a
and V given by X2

− Y 3.

(3) One could imagine proving a weaker version of Theorem 3.7 for a ‘right’ (i.e.,

satisfying item (1) above) system of higher invariant forms in place of a formal

subgroup. Unfortunately (as already mentioned in Remark 3.15) all the notions

of ‘right’ higher invariant forms we could come up with reduced to collections of

higher forms coming from a formal subscheme.

We set now the notation for the remainder of this section. We fix the following.

• A complete C-algebra R with the residue field C such that R is linearly disjoint from

Calg over C and in the case of characteristic p such that L p∞
= C , where L is the

fraction field of R (e.g., R may be the power series algebra).

• Commutative algebraic groups A, B of dimension n over C .

• A formal isomorphism E : Â→ B̂ defined over C .

Moreover we assume that

• B̂ ∼= Ĥn , where H is an integrable 1-dimensional algebraic group (see Definition 3.4

and note that this assumption is restrictive only in the positive characteristic case);

• if char(C) > 0, then E is a B-limit map.

There will be a common independence condition implying transcendence (as linear

dependence over Q in the statement of Schanuel’s Conjecture). We define this notion

below.

Definition 4.7. Take x ∈ A(R) and assume that for any proper algebraic subgroup A0 < A
defined over C , we have x /∈ A0(R). Then we call x subgroup independent.

Remark 4.8. In [23], an element satisfying a similar condition as above is called

geodesically independent.

Example 4.9. (1) For A = Gn
a , the subgroup independence coincides with the C-linear

independence if char(C) = 0, and with the C[Fr]-linear independence if char(C) > 0.

(2) For A = Gn
m , the subgroup independence coincides with the Z-linear independence

(in the commutative group Gn
m(R)).

4.1. Ax–Schanuel type I

In this part we deal with the case of formal isomorphism between two ‘very different’

algebraic groups. We recall a definition from [15].

Definition 4.10. We say that A and B are essentially different, if any connected algebraic

subgroup of A× B is of the form A0× B0, where A0 is an algebraic subgroup of A and

B0 is an algebraic subgroup of B.
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Remark 4.11. It is easy to see that A and B are essentially different if and only if they do

not have infinite algebraic isomorphic sections, where an algebraic section of an algebraic

group is a quotient of its algebraic subgroup by a Zariski closed normal subgroup.

Example 4.12. The following A, B are essentially different. In the case of char(C) = 0,

there is always a formal isomorphism E : Â→ B̂.

(1) A = Gn
a and B is a semi-Abelian variety. No formal isomorphism exists for char(C) >

0.

(2) A = Gn
m and B is a vectorial extension of an Abelian variety. In some cases there

is a formal isomorphism for char(C) > 0, for example if B is a Cartesian power of

an ordinary elliptic curve.

The theorem below is a mild generalization of [2, Theorem 3], where E is the formal

inverse of the exponential map on a semi-Abelian variety in characteristic 0.

Theorem 4.13. Assume that A, B are essentially different. Then for any subgroup

independent x ∈ A(R)∗ we have

trdegC (x, ER(x)) > n+ andegC (x).

Proof. The proof goes basically as in [2, Theorem 3]. Let g := (x, ER(x)), G := A× B,

V ⊆ G be the algebraic locus of g over C and W be the formal one. By our assumptions

on R, V and W satisfy the assumption from Theorem 1.11 (see Remark 4.4(1)). Let us

define

T : Ĝ → B̂, T = E ◦π1−π2,

where π1, π2 are the appropriate coordinate projections. Let A = ker(T ) be the ‘graph

of E ’. By Theorem 1.10, there is B, a formal subgroup of G such that V,A ⊆ B and

dim(B) 6 dim(A)+ dim(V )− dim(W) = n+ trdegC (g)− andegC (x).

By Proposition 4.5, there is a connected algebraic subgroup H 6 G containing V such

that Ĥ ⊆ B. By our assumptions, H = HA× HB , where HA, HB denote the appropriate

projections of H . Since x is subgroup independent and x ∈ HA(R), we get HA = A.

Therefore, Â,A ⊆ B, hence B = Ĝ. Thus dim(B) = 2n giving the desired inequality.

Remark 4.14. Unfortunately, the positive characteristic restrictions we were forced to put

in Theorem 3.7 eliminate all the positive characteristic cases here (the most important

one being Example 4.12(2)).

4.2. Ax–Schanuel type II

In this part we consider a case rather opposite to the Ax–Schanuel type I situation. Our

algebraic groups are not ‘very different’ (being identical!) but the formal endomorphism

is ‘very non-algebraic’. Such a case was first considered in [15, Theorem 6.12] for a

characteristic 0 torus (differential version, i.e., corresponding to [1, (SD)]) and then in [16]

for positive characteristic vector group (formal version, i.e., corresponding to [1, (SP)]).
Defining the right notion of non-algebraicity is very easy and natural here. Let us fix:
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• a positive integer n;

• a one-dimensional algebraic group H over C and A = B = Hn .

We introduce the following notation.

• Let R denote the ring of algebraic endomorphisms of H .

• Let S denote the ring of formal endomorphisms of Ĥ . We restrict our attention to

algebraic groups H such that S is a commutative domain. We regard R as a subring

of S.

• Let K denote the field of fractions of R and L be the field of fractions of S. We regard

K as a subfield of L.

Example 4.15. Note that in the case of the characteristic 0, we always have S = C , so we

can consider any one-dimensional algebraic groups as H . We give examples of possible

H,R,S,K,L below.

(1) If H = Ga and characteristic is 0, then R = S = C .

(2) If H = Ga and characteristic is p > 0, then R = C[Fr] and S = CJFrK. Thus we need

to take C = Fp to guarantee that S is commutative. This case is analyzed in [16].

(3) If H = Gm , then R = Z. The case of characteristic 0 was analyzed in [15, Theorem

6.12]. In the case of characteristic p > 0, we have S = Zp (p-adic integers, see

Example 2.39) and new interesting non-algebraic maps.

Below is our transcendental statement about formal endomorphisms.

Theorem 4.16. Take γ ∈ S such that [K[γ ] : K] > n and γ : Ĥ → Ĥ is an H -limit map.

Let E : Â→ Â be the nth cartesian power of γ . Then for any subgroup independent x ∈
A(R)∗ we have

trdegC (x, EK (x)) > n+ andegC (x).

Proof. Let us denote (as in the proof of Theorem 4.13)

g := (x, ER(x)) ∈ H2n(R)∗.

Let V be the algebraic locus of g over C and W the formal one.

We have

dim(V ) = trdegC (g), dim(W) = andegC (x).

Let F : V̂ → Ĥn be the restriction to V̂ of the following formal map

F̃ := E ◦π1−π2 : Ĥn
× Ĥn

→ Ĥn,

where π1, π2 are the appropriate coordinate projections. As in the proof of Theorem 4.13,

V and W satisfy the assumptions from Theorem 3.7.

By Theorem 3.7, there is a formal subgroup A ⊆ Ĥn containing F(V̂ ) such that

dim(A) 6 dim(V )− dim(W) = trdegC (g)− andegC (x).

Assume now that trdegC (g) < n+ andegC (x), which implies that A is proper. We reach a

contradiction.
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Since A is proper, there are α1, . . . , αn ∈ S not all zero, such that

h := α ◦ F̃ : Ĥ2n
→ Ĥ

vanishes on V , where α : Ĥn
→ Ĥ is given by (α1, . . . , αn).

Let VH be the algebraic subgroup of H2n generated by V . By Proposition 4.5, h
vanishes on VH . For any i 6 2n, let πi : H2n

→ H i denote the projection map on the

first i coordinates. Since x does not belong to any proper algebraic subgroup of Hn , we

get πn(VH ) = Hn . Let 0 6 m < n be such that dim(VH ) = n+m.

Since H2n/VH ∼= Hn−m , there is a matrix M ∈ M2n,n−m(R) of rank n−m such that

H = ker(M : H2n
→ Hn−m).

We replace now the object H acted on by R and S (in the appropriate categories), by L
acted on by R and S in the obvious way. Let W be ker(M : L2n

→ Ln−m). We have the

following sequence of maps whose composition is the 0-map:

W ⊂ // L2n f // Ln a // L,

where f is given by the matrix over S coming from F̃ and a is given by the matrix

over S coming from α. Since πn(VH ) = Hn and W is a vector subspace defined over K,

there is a matrix N ∈ Mn+m,2n(K) such that the diagram below is commutative and the

composition of the upper row is the 0-map

Ln
×Lm N //

π1 $$

Ln
×Ln

π1{{

f // Ln a // L

Ln ,

where both maps denoted by π1 are projections on the first (multi)coordinate. Thus for

all l̄ = (l1, . . . , ln+m) ∈ Ln+m we have

m∑
k=1

αk(ln+k − γ lk)+
n∑

k=m+1

αk(N (l̄)k− γ lk) = 0,

where N (l̄)k denotes the kth coordinate of N (l̄). Since α 6= 0, there is m < k 6 n such

that αk 6= 0. Putting l1 = ln+1 = · · · = lm = ln+m = 0, we get

(αm+1, . . . , αn)N ′ = (γ αm+1, . . . , γ αn),

where N ′ ∈ Mn−m(K) is an appropriate block (the ‘middle square’) of N . Hence γ is a

characteristic value of N ′. By the Cayley–Hamilton theorem, γ is algebraic over K of

degree at most n, which gives a contradiction.

Remark 4.17. The H -limit assumption from Theorem 4.16 is not very restrictive, since

in all the cases considered in Example 4.15, a corresponding formal map is an H -limit

map if and only if it is a special map (see Remark 5.23(2)).
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5. Special formal maps and A-limit maps

In this section we aim to find a general criterion for a formal map V̂ → Â to be an A-limit

map. Our aim is to show that any formal homomorphism B̂ → Â is an A-limit map, but

we fall a little short of it, i.e., we need to put some restrictions on A. Our set-up for this

section is as follows:

• Let C be a perfect field of characteristic p > 0.

• Let A be a commutative algebraic group over C .

• Let V be an absolutely irreducible scheme over C and dim(V ) = t .

• Let v ∈ V (C) be a smooth point and R be the local ring of V at v.

• Let K be the fraction field of R.

• Let L be the fraction field of R̂.

Unlike in the previous sections, we assume now that v is a smooth point. We can do it,

since we want to apply the main result of this section (Theorem 5.22) in the case when

v is the neutral element of an algebraic group.

In the following lemma, we notice a property of the rings defined above which will be

crucial later. We consider R as a subring of both R̂ and K . We also consider R̂ and K as

subrings of L. For the notion of a p-basis, see § 2.1.

Lemma 5.1. Any system of regular parameters of R is a p-basis of each of R, K , R̂ and L.

Proof. Let {r1, . . . , rt } be a system of regular parameters of R. Since R̂ is isomorphic to

the power series C-algebra in {r1, . . . , rt }, the result is clear for R̂ and L.

It is well known that the set {dr1, . . . , drt } is a basis of �R (as an R-module): this set

clearly generates �R over R and it is R-independent, since it is R̂-independent in �R̂ (see

also [11, Theorem II.8.8]). Thus the set {dr1, . . . , drt } is also a basis of �K (as a K -vector

space). By [20, Theorem 26.5], {r1, . . . , rt } is a p-basis of K .

It remains to check that {r1, . . . , rt } is a p-basis of R. We have the following:

R = K ∩ R̂

= (K pC[r1, . . . , rt ])∩ R̂

= (K p
∩ R̂ p)C[r1, . . . , rt ]

= R pC[r1, . . . , rt ].

The first equality and the last equality follow from the fact that the extension R ⊂ R̂ is

faithfully flat [19, Theorem 56 p. 172]. The second equality follows from the fact that

{r1, . . . , rt } is a p-basis of K and the third one follows from the fact that {r1, . . . , rt }

is a p-basis of R̂. Since the p-independence of {r1, . . . , rt } in R is clear (by e.g., the

p-independence in K ), we get that {r1, . . . , rt } is a p-basis of R.

5.1. Weil restriction

In this subsection, we collect the properties of the Weil restriction, which will be needed

in the sequel.
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5.1.1. General facts about the Weil restriction. Everything in this section

(except representability) is ‘abstract nonsense’, i.e., works in any category with products

(replacing the category of schemes). We consider schemes as covariant functors from the

category of algebras (over a fixed ring) to the category of sets.

Let us fix a ring r and an r-algebra s. We define a functor

5s : Func(Algr,Set)→ Func(Algr,Set)

as follows. For a functor F : Algr → Set and an r-algebra r′ let

(5s F)(r′) := F(s⊗r r′).

The functor 5s is the composition of the base change functor from r to s with the Weil

restriction functor from s to r (see [4, § 7.6] for a discussion about the Weil restriction).

It is clear that the assignment s 7→ 5s is a functor itself (from the category Algr to the

category of endofunctors on the category Func(Algr,Set)).
Let Schf

r denote the full subcategory of the category of schemes over r consisting of

schemes V such that each finite set of points of V is contained in an affine open subscheme

of V (e.g., a quasi-projective scheme satisfies this condition). We collect below (from [4])

the properties of the functor 5 which will be needed.

Theorem 5.2. Suppose r ⊆ s is a finite ring extension and V ∈ Schf
r.

(1) If a functor F : Algr → Set is representable by a scheme from Schf
r, then the functor

5s F is representable by a scheme from Schf
r, so we get a functor:

5s : Schf
r → Schf

r.

(2) There is a natural transformation of functors

ιV : V → 5sV,

which is a closed embedding.

(3) There is a section of ιV defined over s i.e., a natural transformation

sV : 5s(V )×r s→ V ×r s

such that sV ◦ (ιV ×r s) is the identity map.

(4) The items (1)–(3) above hold also in the category of groups in Schf
r.

Proof. For (1), we quote [4, p. 194 (Theorem 4)].

For (2), we quote [4, p. 197 (bottom)].

For (3) and (4), we quote [4, p. 192 (top)].

Remark 5.3. Note that the natural morphism ιV : V → 5sV coincides with 5ιV , where

the morphism ι : r→ s is the inclusion map (clearly, 5rV = V ).
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5.1.2. Specific facts about Weil restriction. Let us fix k := C[X1, . . . , X t ]. The

role of the ring r from § 5.1.1 will be played by the C-algebra kp.

First we note a crucial correspondence between pth powers and tensor products.

Lemma 5.4. Let W be a C-algebra having a p-basis of cardinality t and let V be a

kp-scheme. Then we have:

(1) A choice of a p-basis gives W a k-algebra structure and the natural map

W p
⊗kp k→ W

is both a k-algebra isomorphism and a W p-algebra isomorphism. This isomorphism

is natural with respect to C-algebra extensions which preserve p-bases.

(2) There is a natural (in the above sense on W and without restrictions on V ) bijection

5kV (W p)→ V (W ) such that the following diagram is commutative

V (W p)
ιV //

⊆ ))

5kV (W p)

��
V (W ).

Proof. By an argument as in [20, Theorem 26.8], any p-basis of W is algebraically

independent over C , hence a choice of a p-basis gives W a k-algebra structure. Since k
contains a p-basis of W , the natural map W p

⊗kp k→ W is onto. By comparing the ranks

over W p, we see that this map is an isomorphism proving (1). The item (2) follows.

Let us introduce a new ring

k[ε] := k[Y1]/(Y 2
1 )×k · · · ×k k[Yt ]/(Y 2

t ).

Clearly, a k-algebra homomorphism k→ k[ε] corresponds to a t-tuple of derivations

(∂1, . . . , ∂t ) on k. Since we are not interested in the interactions between ∂1, . . . , ∂t ,

we prefer to use the ring k[ε] rather than the bigger (tensor product) ring

k[Y1, . . . , Yt ]/(Y 2
1 , . . . , Y 2

t ).

Let us assume that A is a commutative algebraic group scheme over kp (in the

applications we take A = A×C kp). We use the group schemes 5kA and 5k[ε]A to

understand the cokernel of the map A(R p)→ A(R). See § 5.3.1 for the interpretation

of 5k[ε]A in terms of tangent spaces.

Any t-tuple ∂ of derivations on k gives a kp-algebra map (denoted by the same symbol)

∂ : k→ k[ε].

By Theorem 5.2(1,4), we also get a group scheme homomorphism

5∂A : 5kA→ 5k[ε]A.

We consider the tuple of 0-derivations ∂0 on k and the tuple of standard partial derivations

∂k on k. For the notion of a principal homogeneous space (PHS) of a group scheme over

a ring, the reader is advised to consult [21, § III.4].
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Proposition 5.5. Let W be a C-algebra as in Lemma 5.4. We define

fA := 5∂0A−5∂k A : 5kA→ 5k[ε]A.

Then we have:

(1) fA ◦ ιA = 0;

(2) for any v ∈ fA(5k(A)(W p)), the fiber f −1(v) is a PHS of A over W p;

(3) (5k[ε]A→ A) ◦ fA = 0.

Proof. For (1) it is enough to see that

5∂0A ◦ ιA = 5∂k A ◦ ιA.

By Remark 5.3, ιA = 5ιA, where ι : kp
→ k is the inclusion map. Hence we get

5∂0A ◦ ιA = 5∂0◦ιA, 5∂k A ◦ ιA = 5∂k◦ιA.

Since ∂k is trivial on kp, we get fA ◦ ιA = 0.

For the proof of (2), note that the item (1) gives an action of A×kp W p on f −1(v) (a

group scheme action). Since kp is the field of constants of ∂k, the inclusion kp
→ k is the

equalizer of the maps ∂0, ∂k : k→ k[ε]. Since the equalizer functor commutes with the

flat base change (tensoring with a flat module commutes with equalizers), we get that

for any flat affine covering of Spec(W p) the scheme action above satisfies the conditions

from [21, Proposition 4.1] (note that A×kp W p is flat over W p). Hence the fiber f −1(v)

is a PHS of A over W p.

For the proof of (3) (similarly as in the proof of (1)), it is enough to notice that

πk ◦ ∂0 = idk = πk ◦ ∂k,

where πk : k[ε] → k is the projection map.

5.2. The (∗)-property

In this section we prove a general fact about rational points of commutative algebraic

groups. It will be used in the proof of the main result of this section (step 2 of the proof of

Theorem 5.22). The proof of this result requires the Weil restriction techniques developed

in § 5.1.2 and étale cohomology.

Proposition 5.6. Assume that the maximal algebraic torus in A is diagonalizable. Let

x ∈ A(R̂) and y ∈ A(K ) be such that x − y ∈ A(L p). If A is affine or dim(R) = 1, then

there is z ∈ A(R) such that x − z ∈ A(R̂ p).

Proof. Assume that the maximal algebraic torus in A is diagonalizable. Let us say that

such an A satisfies the (∗)-property if the proposition above is true for A. We see first that

if A is affine, then A satisfies the (∗)-property. For any C-algebra W as in Lemma 5.4

and any t ∈ A(W ), let t ′ ∈ 5A(W p) denote the element obtained using the bijection

from Lemma 5.4(2). Let us take x and y as in the assumptions of the (∗)-property. By

Lemma 5.4(2) and Proposition 5.5(1), we get that f (x ′) = f (y′). Let us denote

v := f (x ′) = f (y′) ∈ βA(K p
∩ R̂ p).
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Since the extension R ⊂ R̂ is faithfully flat [19, Theorem 56 p. 172], we have K p
∩ R̂ p

=

R p. Therefore, v ∈ A(R p).

Let P = f −1(v) (the schemetheoretic fiber). By Proposition 5.5(2), P is a PHS of A
over R p. By [21, Remark 4.8(a)], the isomorphism classes of such principal homogeneous

spaces are classified by the elements of the group H1(Spec(R p)et,A), where A is the sheaf

of commutative groups on Spec(R p)et given by A. We see below that H1(Spec(R p)et,A)
is trivial (which should be folklore), hence there is z′ ∈ P(R p) giving our z ∈ A(R) as

required.

By our assumption about maximal torus and structure theorems about commutative

affine algebraic groups (see e.g., [27, Chapter III, 2.1]), the group A has a composition

series over C with factors Ga or Gm . By the long exact sequence of sheaf cohomology [21,

Proposition III.4.5], we can assume that A = Ga or A = Gm . If A = Ga , then we have

H1(Spec(R p)et,A) = H1(Spec(R p)et,OSpec(R p)et).

By [21, Remark III.3.8], we have

H1(Spec(R p)et,OSpec(R p)et)
∼= H1(Spec(R p),OSpec(R p)).

The latter group vanishes for any Noetherian ring (playing the role of R p) and any

quasi-coherent sheaf [26].

If A = Gm , then by [21, Proposition III.4.9]

H1(Spec(R p)et,A) ∼= Pic(R p).

But the Picard group of any local ring is trivial [21, Lemma III.4.10].

Let us take now an arbitrary commutative algebraic group A (with a split maximal

torus) and assume that dim(R) = 1 (note that then R and R̂ p are PID). By Chevalley’s

theorem (see [6, 7]), there is an exact sequence of algebraic groups over C

0 // N ι // A π // H // 0,

where N is affine and H is an Abelian variety. Let us take x and y as in the assumptions

of the (∗)-property. Since H is projective and R, R̂ p are PID, by [11, Theorem II.7.1]

we get π(y) ∈ H(R) and π(x − y) ∈ H(R̂ p). Since π is smooth and N is affine, we can

use the fact that an appropriate cohomology group is trivial (as in the affine case above)

to obtain v ∈ A(R) and w ∈ A(R̂ p) such that π(y) = π(v) and π(x − y) = π(w). By the

exactness of our sequence again, there are yN ∈ N (K ) and wN ∈ N (L p) such that

ι(yN ) = y− v, ι(wN ) = x − y−w.

Let xN := wN + yN . Since ι(xN ) = x − v−w ∈ A(R̂) and ι is a closed embedding, we

have xN ∈ N (R̂). Clearly, xN − yN = wN ∈ N (L p). Since N is affine, it satisfies the

(∗)-property, so there is zN ∈ N (R) such that xN − zN ∈ N (R̂ p). We can define now

z := v+ ι(zN ) ∈ A(R). Then we have

x − z = x − v− ι(zN ) = ι(xN )+w− ι(zN ) ∈ A(R̂ p),

since ι(xN )− ι(zN ) ∈ A(R̂ p) (by the choice of zN ) and w ∈ A(R̂ p).

Conjecture 5.7. We believe that the result above is true for an arbitrary A and for R of

an arbitrary dimension, but we do not know how to show it.
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5.3. Special formal maps and the 5-functor

In this subsection we introduce the notion of a special formal map in arbitrary

characteristic, generalizing Definition 3.10. We also prove Proposition 1.5. The notion

of a special map is supposed to capture the properties of formal homomorphisms which

are necessary for Schanuel type results. We need the notions of higher derivations, higher

tangent spaces and logarithmic derivative.

5.3.1. Higher tangent spaces. In this part we focus on the Weil restriction from

C[ε] into C (recall that C[ε] := C[Y1]/(Y 2
1 )×C · · · ×C C[Yt ]/(Y 2

t )). We define a similar

functor as in § 5.1.1.

5C[ε] : Schf
C → Schf

C

such that for any V ∈ Schf
C and any C-algebra W , there is a natural bijection

5C[ε]V (W )→ V (W [ε]).

It is easy to see that

5C[ε]V ∼= T×t V,

where T×t V is the fibered (over V ) tth Cartesian power of the tangent bundle of V (we

will not need this observation).

We need now to generalize derivations (m = 1) to higher derivations (arbitrary m > 0).

This is rather straightforward, we just replace the ring C[ε] with the ring C[ε(m)], where

C[ε(m)] := C[Y1]/(Y
pm

1 )×C · · · ×C C[Yt ]/(Y
pm

t ).

Remark 5.8. For notational reasons we prefer to consider derivations of order pm
− 1

rather than m. In particular C[ε(1)] 6= C[ε]. However, since any derivation ∂ gives a

derivation of order p− 1 using the formula (∂i = ∂
(i)/ i !)i<p, by considering derivations

of order p− 1 we also cover the case of usual derivations and we may work with rings of

the form C[ε(m)].

We again get a functor

5C[ε(m)] : SchC → SchC .

It is easy to see that

5C[ε(m)]V ∼= (Arc(m))×t V,

where the Arc(m) is the (pm
− 1)th arc space functor (see [8]) and we consider the tth

fibered Cartesian power over V .

If V = Spec(W ), then we have

5C[ε(m)]V = Spec(HS(m)W ).

Here

HS(m)W := HSpm
−1

W/C ⊗W · · · ⊗W HSpm
−1

W/C ,

where HSpm
−1

W/C is the space of higher Vojta’s forms of order pm
− 1 (see [29]) and the

tensor product is taken t times. We use the fact (following from [29, Corollary 1.8]) that
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the functor W 7→ HS(m)W is left-adjoint to the functor W 7→ W [ε(m)]. In particular, any

t-tuple of higher derivations ∂ of order pm
− 1 on W corresponds to a W -linear map

∂∗ : HS(m)W → W.

Remark 5.9. By [29, Proposition 5.1] and [29, Lemma 5.7], we have

HS(m)k
∼= k[X (m)1 , . . . , X (m)t ],

where each X (m)i is a (pm
− 1)-tuple of variables corresponding to (d1ti , . . . , dpm−1ti ). Thus

there is a canonical tuple of ‘partial’ higher derivations ∂
(m)
k of order pm

− 1 on k. Assume

that W is a C-algebra as in Lemma 5.4. Then we have

W ∼= W pm
⊗kpm k.

By [29, Lemma 5.5] we get

HS(m)W
∼= W [X (m)1 , . . . , X (m)t ].

Hence there is also a canonical tuple of higher derivations ∂
(m)
W of order pm

− 1 on W .

They can be explicitly defined as

∂
(m)
W := idW pm ⊗kpm ∂

(m)
k .

For an algebraic group G, we focus on the following kernel

U (m)
G := ker(5C[ε(m)]G → G).

From now on we denote OG,e by OG . We define the following G-algebras

U (m)
OG
:= HS(m)OG

⊗OG C, U (m)
ÔG
:= HS(m)ÔG

⊗ÔG
C.

Remark 5.10. Each of the C-algebras above has a natural structure of a Hopf algebra

over C . We see it in the case of U (m)
OG

(see the lemma below for the other C-algebra). The

multiplication morphism on G induces a C-algebra map

µ : OG → OG×G ∼= (OG ⊗C OG)I ,

where I is the ideal generated by mOG ⊗ 1+ 1⊗mOG . Hence we get a map

HS(m)µ : HS(m)OG
→ HS(m)OG×G

∼= (HS(m)OG⊗COG
)I ,

where the last isomorphism follows from [29, Lemma 4.2]. Finally, we get a map

U (m)
µ : U (m)

OG
→ (HS(m)OG⊗COG

)I ⊗OG×G C ∼= U (m)
OG
⊗C U (m)

OG
.

(using [29, Lemma 4.2] again and [29, Lemma 5.7]) which is a Hopf algebra comul-

tiplication.
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We need the following.

Lemma 5.11. (1) We have natural isomorphisms

Spec(U (m)
ÔG
) ∼= Spec(U (m)

OG
) ∼= U (m)

G .

(2) If G = A is commutative, then there are natural ‘Hopf algebra’ splitting maps

5C[ε(m)]A→ U (m)
A , U (m)

OA
→ HS(m)OA

, U (m)
ÔA
→ HS(m)ÔA

.

(3) If G = A is commutative, then there is a commutative diagram

U (m)
OA

��

// HS(m)OA

∂∗0

��
C // OA.

(4) For each formal subgroup A 6 Ĝ, U (m)
A is an algebraic subgroup of U (m)

G .

(5) For each formal subgroups A,B 6 Ĝ, we have A = B if and only if for each m, we

have U (m)
A = U (m)

B .

Proof. By Remark 5.10, we get

HS(m)OG
∼= OG[X̄ ], HS(m)ÔG

∼= ÔG[X̄ ].

Hence we get the first isomorphism in (1). For the second one, we notice first that for

any open neighborhood V of 0 in G, we have U (m)
G
∼= U (m)

V . Now it is enough to pass to

the limit with respect to affine open neighborhoods of 0 in G.

For (2), we just want to follow (and dualize) the elementary argument regarding

commutative groups. If A1 = ker( f : A2 → A3), then any section s : A3 → A2 gives a

section A2 → A1, which comes from a map A2 → A2 given by s ◦ f − id. There is no

problem to write this argument in terms of diagrams which gives the first splitting map.

In the Hopf algebra case, there is a little problem, since the C-algebras HS(m)OA
,HS(m)ÔA

are

not exactly Hopf algebras. Nevertheless, we will show below (just in the case of HS(m)OA
)

that the splitting argument still works. The corresponding map HS(m)OA
→ HS(m)OA

is the

composition of the sequence below:

HS(m)OA

HSµ // HS(m)OA×A

((π◦s)⊗id)I // HS(m)OA×A

(·)I // HS(m)OA
,

where we use the fact that HS(m)OA×A
is isomorphic to the localization of HS(m)OA

⊗HS(m)OA
with

respect to the ideal I (as in Remark 5.10). From the construction, the splitting map is

natural with respect to group scheme morphisms A→ B (and respectively formal group

morphisms Â→ B̂).

Item (3) follows from the construction of the splitting map.

Item (4) follows from item (1), and item (5) follows by inspection.

We can prove now Proposition 1.5, which was needed for the reduction of Question 1.4

to the commutative case.
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Proof of Proposition 1.5. By Proposition 4.5, we can assume that A is Zariski dense in

G. We show that we can take H = G. Let m > 0.

The algebraic group G acts on G[m] = ker(Frm
G) by conjugation which is a group scheme

action. Let H be the complete Hopf algebra corresponding to A. By Proposition 2.24,

H[m] is a Hopf algebra and a complete Hopf algebra. Let A[m] be the finite group scheme

(being also a formal group) corresponding to H[m] and Hm be the ‘setwise’ stabilizer of

A[m] with respect to the above action. Then Hm is a group scheme such that A ⊆ Ĥm ,

so by the density of A in G, we get Hm = G for all m. Therefore, A is a normal formal

subgroup of Ĝ.

Let G ′ be the commutator subgroup of G. We need to show that Ĝ ′ 6 A. We do it in

three steps, following the idea of Ax’s argument from [2].

We consider an algebraic group action ad(m) of G on U (m)
G by conjugation (‘higher

adjoint action’). By Lemma 5.11(4), U (m)
A is an algebraic subgroup of U (m)

G , hence the

following group

W :=
{

x ∈ G
∣∣∣∣ ad(m)x = idU (m)

G

(
mod U (m)

A

)}
is an algebraic subgroup of G. We also have A 6 Ŵ , since A is normal in Ĝ. Hence

W = G.

It is easy to see that Ĝ ′ 6 A if and only if for each x ∈ G we have

αx = idĜ (mod A),
where αx is the conjugation automorphism.

It is enough to notice now that

∀x αx = idĜ (mod A)
if and only if

∀m ad(m)x = idU (m)
G

(
mod U (m)

A

)
,

and this equivalence follows from Lemma 5.11(5).

Remark 5.12. The real difference between the above proof and Ax’s proof from [2] is in

the last step. In the case of characteristic 0, one needs to check only the case of m = 1, so

it is enough to look at the Lie algebra of G and the (standard) adjoint action. However,

in the case of positive characteristic, we need to consider all positive integers m, since

Lemma 5.11(5) does not hold just on the level of Lie algebras (i.e., on U (1)
G ).

5.3.2. Special maps. We extend (in an obvious way) the results and definitions of

§ 5.1.2 from the case of kp to the case of kpm
for an arbitrary m > 0.

• By 5(m) we mean the functor 5 but for kpm
playing the role of kp.

• Similarly, we get a morphism

f (m)A : 5
(m)
k (A×C kpm

)→ 5
(m)
k[ε(m)](A×C kpm

)

such that f (1)A coincides with f A from Proposition 5.5.

•We have obvious higher order analogues of Lemma 5.4 and Proposition 5.5.
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Remark 5.13. Let us specify what do we mean by the ‘higher order analogue’ of

Proposition 5.5(3) from the last item above. It means that(
5
(m)
k[ε(m)](A×C kpm

)→ A
)
◦ f (m)A = 0,

for the functor 5(m) and the map f (m)A defined as above.

We often just write ‘A’ in place of ‘A×C kpm
’. We need one more lemma.

Lemma 5.14. Let W be as in Lemma 5.4. There is a commutative diagram

U (m)
A (W )

ker(π) //

∼=

��

A(W [ε(m)])

��
∼=

��

π // A(W )

∼=

��
5
(m)
k U (m)

A (W pm
)

ker(π̃) // 5(m)k[ε(m)]A(W
pm
)

π̃ // 5(m)k A(W pm
),

where π̃ = 5
(m)
k→k[ε(m)] and π is induced by W [ε(m)] → W .

Proof. It is enough to notice a natural isomorphism

5
(m)
k[ε(m)]A

∼= 5
(m)
k[ε(m)](5C[ε(m)]A)

and use the definition of U (m)
A .

We define below our ‘well behaved’ class of formal maps.

Definition 5.15. We say that a formal map F : V̂ → Â is special if for each m > 0 we

have f (m)A (vm) ∈ 5
(m)
k[ε(m)]A(R

pm
), where vm ∈ 5

(m)
k[ε(m)]A(R̂

pm
) corresponds to FA ∈ A(R̂).

We see later that the definition above generalizes Definition 3.10. First we need to

understand it in terms of the logarithmic derivative.

Proposition 5.16. Suppose W is as in Lemma 5.4. Then for each m > 0, there is a closed

embedding

h A : 5
(m)
k U (m)

A → 5
(m)
k[ε(m)]A,

such that the morphism f (m)A factors (by 9) as in the following commutative diagram:

A(W pm
)

=

��

⊆ // A(W )

∼=

��

// U (m)
A (W )

∼=

��
A(W pm

)
ιA // 5(m)k A(W pm

)

f (m)A ))

9 // 5(m)k U (m)
A (W pm

)

h A
��

5
(m)
k[ε(m)]A(W

pm
),

where the map A(W )→ U (m)
A (W ) is induced by 9.
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Moreover, if W is local and v ∈ A(W )∗ corresponds to the map v : OA → W , then the

image of v under the map A(W )→ U (m)
A (W ) corresponds to the map which is given by

the following composition

U (m)
OA

// // HS(m)OA

HS(m)v // HS(m)W

(∂
(m)
W )∗

// W,

where ∂
(m)
W comes from Remark 5.9.

Proof. Using Lemma 5.14 and a higher order analogue of Proposition 5.5(3) (see

Remark 5.13), we observe that the morphism f (m)A factors through a closed embedding

9 : 5
(m)
k A→ ker(5(m)k[ε(m)]A→ A) ∼= 5(m)k U (m)

A .

Hence we can take h A as the kernel of the morphism 5
(m)
k[ε(m)]A→ A.

For the moreover part, by Remark 5.9 we see first that the following diagram is

commutative:

A(W )

∼=

��

∂W−∂0 // A(W [ε(m)])

∼=

��
5
(m)
k A(W pm

)
f (m)A // 5(m)k[ε(m)]A(W

pm
).

From Lemma 5.14 again, the upper arrow factors through

ker(A(W [ε(m)])→ A(W )) = U (m)
A (W ).

For v : OA → W corresponding to an element of A(W )∗, we need to understand the image

of v under the map A(W )→ U (m)
A (W ). The image of v by ∂W − ∂0 corresponds to the

map

∂∗W ◦HS(m)v −∂
∗

0 ◦HS(m)v : HS(m)OA
→ W

restricted to U (m)
OA

(see Lemma 5.11(1)). It is enough to see that the map above coincides

with ∂∗W ◦HS(m)v after restricting to U (m)
OA

. In other words, we need to see that the map

∂∗0 ◦HS(m)v is the 0-map after restricting to U (m)
OA

. It is enough to consider the following

diagram

U (m)
OA

//

��

HS(m)OA

(∂
OA
0 )∗

��

HS(m)v // HS(m)W

(∂W
0 )
∗

��
C // OA

v // W,

which is commutative by Lemma 5.11(3) and the naturality of the 0-derivation.

Definition 5.17. We denote the map A(W )→ U (m)
A (W ) (from the proposition above) by

lA∂
(m)
W .
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Remark 5.18. (1) The map lA∂
(m)
W coincides with the logarithmic derivative map with

respect to ∂
(m)
W (for a positive characteristic version of the logarithmic derivative

map, see e.g., [22]).

(2) Let F : V̂ → Â be a formal map. The following are equivalent:

(a) for each m, we have lA∂
(m)
R̂
(FA) ∈ U (m)

A (R);

(b) the formal map F is special.

(3) The condition (a) above is equivalent (even for any formal group A in place of Â)

to the following

F∗(HSinv
A ) ⊆ HSR .

The reason is that the (properly defined) ring of higher invariant forms HSinv
A

coincides with UOA .

(4) We also have �inv
A ⊆ HSinv

A (such issues will be discussed in the forthcoming paper

[14]). Hence the notion of a special formal map from this section generalizes

Definition 3.10.

We show below that the formal maps we are interested in are special. In the most

important case of formal homomorphisms, the main reason is (as I see it) that the ‘higher

Lie algebra’ of an algebraic group (that is U (m)
OA

) coincides with the ‘higher Lie algebra’

of its formalization (that is U (m)
ÔA

) by Lemma 5.11(1).

Proposition 5.19. The following classes of formal maps consist of special maps:

(1) Formalizations of algebraic maps.

(2) Formal homomorphisms between formalizations of algebraic groups.

Proof. The first item is clear, since for each m > 0, we have vm ∈ 5
(m)
k[ε(m)]A(R

pm
) where

vm comes from Definition 5.15.

Let F : B̂ → Â be a formal homomorphism which we identify with a C-algebra map

F : ÔA → ÔB . Let ∂ be the tuple of derivations on OB from Remark 5.9 and ∂̂ its natural

extension to ÔB . To prove the second item, for any m > 0 let us consider the following

commutative diagram below (given by Proposition 5.16 and Lemma 5.11(1))

HS(m)ÔA

HS(m)F // HS(m)ÔB

∂̂∗B

��
U (m)
ÔA

OO

lA∂
(m)
R̂
(FA)

// ÔB HS(m)OB

ff

∂∗B

��
OB .

gg

By Remark 5.18(2), it is enough to find a map 9 : U (m)
ÔA
→ OB which completes the

commutative diagram above. We find this map using the following commutative diagram
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of C-algebra maps

HS(m)ÔA

HS(m)F // HS(m)ÔB

∂̂∗ //

∂̂∗

��

ÔB

U (m)
ÔA

OO

U (m)
F // U (m)

ÔB

OO

HS(m)OB

∂∗ //

aa

OB

^^

U (m)
OB
.

ι

OO

f

bb

The fact that F is a formal homomorphism is used only for the commutativity of the

left-upper square above, see Lemma 5.11(2). By Lemma 5.11(1), f is an isomorphism.

We define

9 := ∂∗ ◦ ι ◦ f −1
◦UF ,

which completes the first diagram.

For the inductive step of the proof of the main result (Theorem 5.22) of this section, we

need one more property of special formal maps which is analogous to Proposition 2.45.

Proposition 5.20. Let F : V̂ → Â be a special formal map and assume that there is a

formal map F ′ : V̂ Fr
→ Â such that the following diagram commutes

V̂ F //

Fr
��

Â

V̂ Fr.

F ′

88

Then F ′ is special.

Proof. We consider R as a k-algebra by a choice of a p-basis of R. Such a k-algebra will be

denoted by Rk. Similarly for any m > 0, we have the kpm
-algebra R pm

kpm . We also consider

R p as a k-algebra twisting the kp-algebra R p
kp by Frk. We denote the last k-algebra by

R p
k . Clearly, the map FrR : Rk → R p

k is an isomorphism of k-algebras. Similarly, we also

have the kpm−1
-algebra R pm

kpm−1 . The same notation will apply to R̂ in place of R.

For each m > 0, consider the map

fk/kpm := f (m)A : 5k/kpm A→ 5k[ε(m)]/kpm A.

Since F is special, we know that

fk/kpm (F (m)
A ) ∈ 5k[ε(m)]/kpm A(R pm

kpm ),

where F (m)
A ∈ 5k/kpm A(R pm

kpm ) corresponds to FA ∈ A(Rk) under the natural bijection.
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By our assumption, FA ∈ A(R p
kp ). We have a natural isomorphism coming from FrR

A(Rk) ∼= A(R p
k )

and FA corresponds to F ′A under this isomorphism. We need to show that

fk/kpm−1 ((F ′A)
(m−1)) ∈ 5k[ε(m−1)]/kpm−1 A(R pm

kpm−1 ). (♣)

Let us consider the following commutative diagram

A(R̂ p
k )

∼=

��

∼= // A(R̂ p
kp )

∼=

��

⊆ // A(R̂k)

∼=

��
5k/kpm−1 A(R̂ pm

kpm−1 )

f
k/kpm−1

��

∼= // 5kp/kpm A(R̂ pm

kpm )

fkp /kpm

��

↪→ // 5k/kpm A(R̂ pm

kpm )

fk/kpm

��
5k[ε(m−1) ]/kpm−1 A(R̂ pm

kpm−1 )
∼= // 5kp [ε(m−1) ]/kpm A(R̂ pm

kpm )
↪→ // 5k[ε(m−1) ]/kpm A(R̂ pm

kpm )

5k[ε(m−1) ]/kpm−1 A(R pm

kpm−1 )

⊆

OO

∼= // 5kp [ε(m−1) ]/kpm A(R pm

kpm )

⊆

OO

↪→ // 5k[ε(m−1) ]/kpm A(R pm

kpm ),

⊆

OO

where each ↪→ denotes a closed embedding. We obtain (♣) chasing the diagram above.

5.4. Special maps and A-limits

In this part we prove below the main result of § 5 which is Theorem 5.22. We notice first

an obvious consequence of Proposition 5.19(1).

Proposition 5.21. Any A-limit map is special.

Proof. Let us fix a positive integer m and assume that F : V̂ → Â is an A-limit formal

map. Let ϕ : OA → R be such that FA−ϕA ∈ A((R̂)pm
) (see Remark 2.38). Let

vm ∈ 5
(m)
k[ε(m)]A(R

pm
)

correspond to FA and similarly for wm and ϕA. By Proposition 5.19(1), we have

f (m)A (wm) ∈ 5
(m)
k[ε(m)]A(R

pm
).

Since FA−ϕA ∈ A((R̂)pm
), by the ‘degree m version of Proposition 5.5(1)’, we have

f (m)A (vm −wm) = 0. Hence we get

f (m)A (FA) ∈ 5
(m)
k[ε(m)]A(R

pm
),

so F is special.

https://doi.org/10.1017/S1474748017000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000378


1210 P. Kowalski

Theorem 5.22. Assume that

• the maximal torus of A splits;

• dim V = 1 or A is affine;

• for any tower of fields C ⊆ K1 ⊆ K2, if K1 ⊆ K2 is purely inseparable, then the induced

map H1(K1, A)→ H1(K2, A) has a trivial kernel.

Let F : V̂ → Â be a special formal map. Then F is an A-limit map.

The proof is divided into four steps.

Step 1. There is a ∈ A(K ) such that FA− a ∈ A(L p).

Let F ′A ∈ 5k A(R̂ p) be the image of FA ∈ A(R̂ p) under the bijection from Lemma 5.4(2).

In this step we just consider F ′A as an L p-rational point. Let y := f A(F ′A). By the

definition of a special map, y ∈ 5k[ε]A(K p). To complete the proof of Step 1, it is enough

to find x ∈ 5k(A)(K p) such that f A(x) = y.

Let P := f −1
A (y) be the schematic fiber (a scheme over K p). As in the proof of

Proposition 5.6, P is an PHS of A over K p. It is enough to show that P has a K p-rational

point, i.e., that P corresponds to the zero element of H1(K p, A) (see again [21, Remark

4.8(a)] for the necessary identifications). By our trivial kernel assumption, it is enough

to show that

H1(K p, A) 3 [P] 7→ 0 ∈ H1(M, A),

where M = K p−∞ .

By Theorem 5.2(3,4), the morphism ι : A×C K → 5k(A)×kp K has a section s. Let us

consider

Ps := ker(s)∩ (P ×K p K ),

which is a scheme over K . Let M̄ denote the algebraic closure of M . Since

Ps(M̄) = ker(s)(M̄)∩ P(M̄),

the set Ps(M̄) is a singleton {x ′}. On the other hand, Ps(M̄) is invariant under the action

of the absolute Galois group of M , so x ′ ∈ P(M). Hence indeed the class of P is mapped

to 0 in the group H1(M, A).

Step 2. There is b ∈ A(R) such that FA− b ∈ A(R̂ p).

This is exactly Proposition 5.6.

Step 3. There is a local C-algebra homomorphism φ : OA → R such that

(F − φ̂)(ÔA) ⊆ R̂ p.

Let us consider b ∈ A(R) obtained in Step 2. By composing b : Spec(R)→ A with our

fixed C-rational point v : Spec(C)→ Spec(R) we get a point bv ∈ A(C). If we consider bv
as an element of A(R), then b and bv map the closed point of Spec(R) to the same point

of A. Therefore, b− bv ∈ A(R)∗ (see the notation and comments before Remark 4.1), so

b− bv factors through a morphism φ : Spec(R)→ Spec(OA). By Step 2 we have

FA−φA = FA− b+ bv ∈ A(R̂ p),
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since bv ∈ A(C). We also have

FA−φA = FA− φ̂A = (F − φ̂)A,

where the first equality is obvious and the second follows from Lemma 2.26. By

Lemma 2.19(ii), we get (F − φ̂)(ÔA) ⊆ R̂ p.

After completing this step we actually have made the very first step to find a compatible

sequence witnessing that F is an A-limit. In the final step below we show that we have

an inductive procedure at hand.

Step 4. F is an A-limit.

Let us take φ0 := φ from Step 3. By Corollary 2.18, F − φ̂0 : V̂ → Â factors through

F1 : V̂ Fr
→ Â i.e., there is a commutative diagram

V̂
F−φ̂0 //

Fr
��

Â

V̂ Fr.

F1

88

By Lemma 5.20, F1 is a special formal map. Applying Step 3 to F1 and using

Corollary 2.18 again, we get a morphism φ1 : V̂ Fr−1
→ Â such that F1− φ̂1 factors through

a morphism F2 : V̂ Fr−2
→ Â i.e., we have a bigger commutative diagram as below

V̂
F1◦Fr−φ̂1◦Fr

))

Fr
��

V̂ Fr F1−φ̂1 //

Fr
��

Â

V̂ Fr2
.

F2

55

Hence we get

F2 ◦Fr2
= F1 ◦Fr−φ̂1 ◦Fr = F − φ̂− φ̂1 ◦Fr .

If we continue like this, we get a sequence φm : V̂ Fr−m
→ Â. We set

gm := φ0+φ1 ◦Fr+ · · ·+φm ◦Frm .

Similarly as in the proof of Theorem 3.7, we conclude that gm is a compatible sequence

converging to F , hence F is an A-limit.

Remark 5.23. (1) It is possible that the map

H1(K1, A)→ H1(K2, A)

is always injective (or even an isomorphism) for a purely inseparable extension

K1 ⊆ K2, but we were not able to show it.

(2) Clearly, the injectivity condition above is satisfied if the first cohomology group

is trivial. In particular, any special map into an affine commutative group A with

split torus (e.g., into a unipotent group) is necessarily an A-limit map.

https://doi.org/10.1017/S1474748017000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000378


1212 P. Kowalski

Acknowledgement. I would like to thank the referee for her/his comments which

helped to improve the presentation of this paper.

References

1. J. Ax, On Schanuel’s conjectures, Ann. of Math. 93(2) (1971), 252–268.
2. J. Ax, Some topics in differential algebraic geometry. I. Analytic subgroups of algebraic

groups, Amer. J. Math. 94 (1972), 1195–1204.
3. D. Bertrand, Schanuels conjecture for non-isoconstant elliptic curves over function fields,

in Model Theory with Applications to Algebra and Analysis, Vol. 1, (ed. Z. Chatzidakis,
D. Macpherson, A. Pillay and A. Wilkie), LMS Lecture Note Series, Volume 349,
(Cambridge University Press, Cambridge, UK, 2008).

4. S. Bosch, W. Lütkebohmert and M. Raynaud, Néron Models, A Series of Modern
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