
Mathematical Structures in Computer Science (2020), 30, pp. 458–510
doi:10.1017/S0960129520000079

PAPER

Implicative algebras: a new foundation
for realizability and forcing†
Alexandre Miquel∗

Instituto de Matemática y Estadística Prof. Ing. Rafael Laguardia, Facultad de Ingeniería, Universidad de la República, Julio
Herrera y Reissig 565, Montevideo C.P. 11300, Uruguay
∗Corresponding author. Email: amiquel@fing.edu.uy

(Received 13 July 2019; revised 27 February 2020; accepted 9 March 2020)

Abstract
We introduce the notion of implicative algebra, a simple algebraic structure intended to factorize the
model-theoretic constructions underlying forcing and realizability (both in intuitionistic and classical
logic). The salient feature of this structure is that its elements can be seen both as truth values and as
(generalized) realizers, thus blurring the frontier between proofs and types. We show that each implicative
algebra induces a (Set-based) tripos, using a construction that is reminiscent from the construction of a
realizability tripos from a partial combinatory algebra. Relating this construction with the corresponding
constructions in forcing and realizability, we conclude that the class of implicative triposes encompasses all
forcing triposes (both intuitionistic and classical), all classical realizability triposes (in the sense of Krivine),
and all intuitionistic realizability triposes built from partial combinatory algebras.

Keywords: Realizability, Forcing, Categorical Logic

1. Introduction
In this paper, we introduce the notion of implicative algebra, a simple algebraic structure that is
intended to factorize the model-theoretic constructions underlying forcing and realizability, both
in intuitionistic and classical logic.

Historically, the method of forcing was introduced by Cohen (1963, 1964) to prove the relative
consistency of the negation of the continuum hypothesis with respect to the axioms of set theory.
Since then, forcing has been widely investigated, both from a proof-theoretic point of view and
from a model-theoretic point of view, and it now constitutes a standard item in the toolbox of set
theorists (Jech, 2002). From a model-theoretic point of view, the method of forcing can be under-
stood as a particular way to construct Boolean-valued models of the considered theory (typically:
set theory or higher order arithmetic), in which each formula φ is interpreted as an element

�φ� ∈ B

of a given complete Boolean algebra B. If one is only interested in interpreting intuitionistic the-
ories, one can replace complete Boolean algebras by complete Heyting algebras (HAs), in which

†This work was partly supported by the Uruguayan National Research & Innovation Agency (ANII) under the project
“Realizability, Forcing and Quantum Computing,” FCE_1_2014_1_104800.

© The Author(s), 2020. Published by Cambridge University Press

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079
mailto:amiquel@fing.edu.uy
https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 459

case similar construction methods give us Heyting-valued models, that are essentially equivalent
to Kripke (i.e., intuitionistic) forcing or Beth forcing.

As observed by Scott (van Oosten, 2002), there is a strong similarity between (intuitionistic or
classical) forcing and the method of realizability, that was introduced by Kleene (1945) to give a
constructive semantics to Heyting (i.e., intuitionistic) arithmetic. From a model-theoretic point
of view, the method of realizability interprets each closed formula φ as a set of realizers

�φ� ∈ P(P)
where P is a suitable algebra of “programs” (typically, a partial combinatory algebra (PCA)), fol-
lowing the Brouwer–Heyting–Kolmogorov semantics for intuitionistic logic. (Here, the symbolP
stands for the set-theoretic powerset operator.) Although the method of realizability was initially
introduced for intuitionistic first-order arithmetic, it extends to intuitionistic higher order arith-
metic and even to intuitionistic Zermelo–Fraenkel set theory (Friedman, 1973; McCarty, 1984;
Myhill, 1973).

For a long time, the method of realizability was limited to intuitionistic logic. However,
from the mid-90s, Krivine reformulated (Krivine, 2009) the principles of realizability to make
them compatible with classical logic, using the correspondence between classical reasoning and
control operators discovered by Griffin (1990). Technically, classical realizability departs from
intuitionistic realizability by interpreting each formula φ not as a set of realizers, but as a set of
counter-realizers (a.k.a., a falsity value)

�φ� ∈ P(�)

where � is the set of stacks associated to an algebra of classical programs � (Krivine, 2011;
Streicher, 2013). The corresponding set of realizers (or truth value) is then defined indirectly, as
the orthogonal �φ�‚ ⊆� of the falsity value �φ� ⊆� with respect to a particular set of processes
‚⊆�×� – the pole of the model – that parameterizes the construction. As for intuitionis-
tic realizability, classical realizability extends to higher order arithmetic and even to (classical)
Zermelo–Fraenkel set theory (Krivine 2001, 2012), possibly enriched with some weak forms of
the axiom of choice.

In spite of their similarity, there is a fundamental difference between forcing and realizability,
regarding the treatment of connectives and quantifiers. In forcing, conjunction and disjunction
are interpreted as binary meets and joins

�φ ∧ψ� = �φ�� �ψ� and �φ ∨ψ� = �φ�� �ψ�
(respectively, writing b� c and b� c the meet and the join of two elements b, c ∈ B), whereas
universal and existential quantifications are interpreted by

�∀x φ(x)� =
�
v∈M

�φ(v)� and �∃x φ(x)� =
�
v∈M

�φ(v)� .

So that from the point of view of (intuitionistic or classical) forcing, conjunction and disjunction
are just finite forms of universal and existential quantifications. This is definitely not the case
in intuitionistic realizability, where conjunctions and disjunctions are interpreted as Cartesian
products and direct sums

�φ ∧ψ� = �φ� × �ψ� and �φ ∨ψ� = �φ� + �ψ�
whereas universal and existential quantifications are still interpreted uniformly1:

�∀x φ(x)� =
⋂
v∈M

�φ(v)� and �∃x φ(x)� =
⋃
v∈M

�φ(v)� .

(The situation is slightly more complex in classical realizability, in which existential quantification
and disjunction have to be interpreted negatively. But the above picture still holds for conjunctions

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

460 A. Miquel

and universal quantifications.) In some sense, realizability is more faithful to proof theory, in
which proving a universal quantification

	 φ(x)
	 ∀x φ(x)

(i.e., providing a generic proof that holds of all instances of the variable x) is much stronger than
proving a (finitary or infinitary) conjunction:

	 φ(t0) 	 φ(t1) 	 φ(t2) · · · 	 φ(tn) · · ·
	 φ(t0)∧ φ(t1)∧ φ(t2)∧ · · · ∧ φ(tn)∧ · · ·

(i.e., providing a distinct proof for each instance of the variable x).2
But what do have in common an element of a complete HA (or Boolean algebra), a set of

realizers (taken in a combinatory algebra (CA) P) or a set of counter-realizers (taken in a set
of stacks �)? The aim of this paper is to show that all these notions of “truth value” pertain to
implicative algebras, a surprisingly simple algebraic structure whose most remarkable feature is to
use the same set to represent truth values and realizers, thus blurring the frontier between proofs
and types. As a matter of fact (Section 2.3), implicative algebras offer a fresh semantic reading of
typing and definitional ordering in terms of subtyping, that is now the primitive notion.

However, implicative algebras do not only encompass the various notions of “truth value”
underlying forcing and realizability, but they also allow us to factorize the corresponding model-
theoretic constructions. For that, we shall place ourselves in the categorical framework of
triposes (Hyland et al., 1980) that was introduced precisely to compare forcing and realizability
in the perspective of constructing categorical models of higher order logic. Intuitively, a tripos
is a Set-indexed HA of “predicates” P : Setop →HA (see Definition 4.7, p. 494) that constitutes
a (categorical) model of higher order logic. Triposes can be built from a variety of algebraic
structures, such as complete HAs (or Boolean algebra), PCAs, ordered combinatory algebras
(OCAs) (van Oosten, 2008), and even abstract Krivine structures (AKSs) (Streicher, 2013). And
each tripos can be turned into a topos (i.e., a “Set-like category”) via the standard tripos-to-topos
construction (Hyland et al., 1980).

As we shall see in Section 4, all the above tripos constructions (as well as the corresponding
topos constructions) can be factored through a unique construction, namely, the construction
of an implicative tripos from a given implicative algebra. Thanks to this factorization, we will be
able to characterize forcing in terms of non-determinism (from the point of view of generalized
realizers), and we shall prove that classical implicative triposes are equivalent to Krivine’s classical
realizability triposes.

1.1 Sources of inspiration & related works
The notion of implicative algebra emerged from so many sources of inspirations that it is almost
impossible to list them all here. Basically, implicative algebras were designed from a close analysis
of the algebraic structure underlying falsity values in Krivine realizability (Krivine, 2009), notic-
ing that this structure is very similar to the one of reducibility candidates (Girard et al., 1989;
Parigot, 1997; Tait, 1967; Werner, 1994). Other sources of inspiration are the notion of seman-
tic type in coherence spaces (Miquel, 2000) as well as the notion of fact (or behavior) in phase
semantics (Girard, 1987).

The idea of reconstructing λ-terms from implication and infinitary meets came from filter
models (Barendregt et al., 1983) that are strongly related to implicative algebras from a technical
point of view, although they are not implicative algebras. The same idea appeared implicitly in
Streicher’s reconstruction of Krivine’s tripos (Streicher, 2013) and more explicitly in Ferrer Santos
et al. (2017) that introduced many of the ideas that are presented here, but in a slightly different
framework, closer to Streicher’s. Similar ideas were developed independently by Ruyer, whose

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 461

applicative lattices (Ruyer, 2006, p. 29) are equivalent to a particular case of implicative structures,
namely, to the implicative structures that are compatible with joins (Section 3.8).

1.2 Outline of the paper
The rest of the paper is organized as follows. In Section 2, we introduce the notion of implicative
structure (as a natural generalization of the notion of complete HA) and show how the elements
of such a structure can be used to represent both truth values (or types) and realizers. In Section 3,
we introduce the fundamental notion of separator (that generalizes the usual notion of filter) as
well as the accompanying notion of implicative algebra. We show how each separator induces a
particular HA (intuitively, the corresponding algebra of propositions) and give a first account on
the relationship between forcing and non-determinism (Proposition 3.30, p. 488). Section 4 is
devoted to the construction of the implicative tripos induced by a particular implicative algebra.
We show that implicative triposes encompass many well-known triposes, namely, (intuitionistic
and classical) forcing triposes, classical realizability triposes (Streicher, 2013), intuitionistic real-
izability triposes induced by (total) CAs, and even intuitionistic realizability triposes induced by
PCAs (Section 4.7). We also characterize forcing triposes as the non-deterministic implicative tri-
poses (Theorem 4.13, p. 500), and show that classical implicative triposes are equivalent to classical
realizability triposes (Theorem 4.19, p. 503).

2. Implicative Structures
2.1 Definition
Definition 2.1 (Implicative structure). An implicative structure is a complete meet-semilattice
(A ,�) equipped with a binary operation (a, b) �→ (a→ b), called the implication ofA , that fulfills
the following two axioms:

(1) Implication is anti-monotonic with respect to its first operand and monotonic with respect to
its second operand:

if a′ � a and b� b′, then (a→ b)� (a′ → b′) (a, a′, b, b′ ∈ A)

(2) Implication commutes with arbitrary meets on its second operand:

a→
�
b∈B

b =
�
b∈B

(a→ b) (a ∈ A , B⊆ A)

Remarks 2.2. (1) By saying that (A ,�) is a complete meet-semilattice, we mean that every
subset of A has a greatest lower bound (i.e., a meet). Such a poset has always a smallest ele-
ment⊥ = �

A and a largest element� = �
∅. More generally, every subset of A has also a least

upper bound (i.e., a join), so that a complete meet-semilattice is actually the same as a complete
lattice. However, in what follows, we shall mainly be interested in the meet-semilattice structure of
implicative structures, so that it is convenient to think that implicative structures are (complete)
lattices only by accident.

(2) In the particular case where B=∅, axiom (2) states that (a→ �)= � for all a ∈ A . (Recall
that � = �

∅.) In some circumstances, it is desirable to relax this equality, by requiring that
axiom (2) holds only for the nonempty subsets B of A . Formally, we call a quasi-implicative
structure any complete meet-semilattice A equipped with a binary operation (a, b) �→ (a→ b)
that fulfills both axioms (1) and (2) of Definition 2.1, the latter being restricted to the case where
B �=∅. From this definition, we easily check that a quasi-implicative structure is an implicative
structure if and only if (� → �)= �.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

462 A. Miquel

2.2 Examples of implicative and quasi-implicative structures
2.2.1 Complete HAs
The most obvious examples of implicative structures are given by complete HAs. Recall that an
HA is a bounded lattice (H,�) equipped with a binary operation (a, b) �→ (a→ b) (Heyting’s
implication) characterized by the adjunction

(c� a)� b iff c� (a→ b) (a, b, c ∈H)

Historically, HAs have been introduced as the intuitionistic counterpart of Boolean algebras,
and they can be used to interpret intuitionistic provability the same way as Boolean algebras can
be used to interpret classical provability. In this framework, conjunction and disjunction are inter-
preted by binary meets and joins, whereas implication is interpreted by the operation a→ b. This
interpretation validates all reasoning principles of intuitionistic propositional logic, in the sense
that every propositional formula that is intuitionistically valid is denoted by the truth value �.

Boolean algebras are the HAs (H,�) in which negation is involutive, that is, ¬¬a= a for all
a ∈H, where negation is defined by ¬a := (a→ ⊥). Boolean algebras more generally validate all
classical reasoning principles, such as the law of excluded middle (a�¬a= �) or Peirce’s law
((((a→ b)→ a)→ a)= �).

An HA (or Boolean algebra) is complete when the underlying lattice is complete. In a com-
plete HA, the interpretation depicted above naturally extends to all formulas of predicate logic, by
interpreting universal and existential quantifications as meets and joins of families of truth values
indexed over a fixed nonempty set. Again, this (extended) interpretation validates all reasoning
principles of intuitionistic predicate logic. It is easy to check that in a complete HA, Heyting’s
implication fulfills both axioms (1) and (2) of Definition 2.1, so that:

Fact 2.3. Every complete HA is an implicative structure.

In what follows, we shall say that an implicative structure (A ,�,→) is a complete HAwhen the
underlying lattice (A ,�) is an (complete) HA, and when the accompanying implication (a, b) �→
(a→ b) is Heyting’s implication.

2.2.2 Dummy implicative structures
Unlike Heyting’s implication, the implication of an implicative structureA is in general not deter-
mined by the ordering ofA , and several implicative structures can be defined upon the very same
complete lattice structure:

Example 2.4 (Dummy implicative structures). Let (L,�) be a complete lattice. There are at least
two distinct ways to define a dummy implication a→ b on L that fulfills the axioms (1) and (2) of
Definition 2.1:

(1) Put (a→ b) := b for all a, b ∈ L.
(2) Put (a→ b) := � for all a, b ∈ L.

Each of these two definitions induces an implicative structure on the top of the complete lattice
(L,�). From the point of view of logic, these two examples are definitely meaningless, but they
will be useful as a source of counter examples.

2.2.3 Quasi-implicative structures induced by partial applicative structures
Another important source of examples is given by the structures underlying intuitionistic real-
izability (van Oosten, 2008). Recall that a partial applicative structure (PAS) is a nonempty set P

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 463

equipped with a partial binary operation (·) : P× P⇀ P, called application. Such an operation
naturally induces a (total) binary operation (a, b) �→ (a→ b) on the subsets of P, called Kleene’s
implication, that is defined for all a, b⊆ P by

a→ b := {z ∈ P : ∀x ∈ a, z · x ↓∈ b}
(where z · x ↓∈ bmeans that z · x is defined and belongs to b). We easily check that:

Fact 2.5. Given a PAS (P, ·):
(1) The complete lattice (P(P),⊆) equipped with Kleene’s implication a→ b is a quasi-

implicative structure (in the sense of Remark 2.2 (2)).
(2) The quasi-implicative structure (P(P),⊆,→) is an implicative structure if and only if the

underlying operation of application (x, y) �→ x · y is total.

We shall come back to this example in Section 2.7.1.

A variant of the above construction consists to replace the subsets of P by the partial equivalence
relations (PERs) over P, that is, by the binary relations on P that are both symmetric and transitive
– but not reflexive in general. The set of PERs over P, written PER(P), is clearly closed under
arbitrary intersection (in the sense of relations), so that the poset (PER(P),⊆) is a complete meet-
semilattice. Kleene’s implication naturally extends to PERs, by associating to all a, b ∈ PER(P) the
relation (a→2 b) ∈ PER(P) defined by

a→2 b := {(z1, z2) ∈ P2 : ∀(x1, x2) ∈ a, (z1 · x1, z2 · x2) ↓∈ b} .
Again

Fact 2.6. Given a PAS (P, ·):
(1) The complete lattice (PER(P),⊆) equipped with Kleene’s implication a→2 b is a quasi-

implicative structure (in the sense of Remark 2.2 (2)).
(2) The quasi-implicative structure (PER(P),⊆,→2) is an implicative structure if and only if

the underlying operation of application (x, y) �→ x · y is total.

Remark 2.7. The reader is invited to check that the last two examples of (quasi-) implicative
structures fulfill the following additional axiom:(�

a∈A
a
)

→ b =
�
a∈A

(a→ b) (for all A⊆ A and b ∈ A)

In what follows, we shall see that this axiom – that already holds in complete HAs – is characteris-
tic from the implicative structures coming from intuitionistic realizability or from (intuitionistic
or classical) forcing. (On the other hand, this axiom does not hold in the implicative structures
coming from classical realizability, except in the degenerate case of forcing.) We shall come back
to this point in Section 3.8.

2.2.4 Quasi-implicative structures of reducibility candidates
Other examples of quasi-implicative structures are given by the various notions of reducibility
candidates (Girard et al., 1989; Parigot, 1997; Tait, 1967; Werner, 1994) that are used to prove
strong normalization. Let us consider, for instance, the case of Tait’s saturated sets (Tait, 1967).

Recall that a set S of (possibly open) λ-terms is saturated (in the sense of Tait) when it fulfills
the following three criteria:

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

464 A. Miquel

(i) S⊆ SN, where SN is the set of all strongly normalizing terms.
(ii) If x is a variable and if u1, . . . , un ∈ SN, then xu1 · · · un ∈ S.
(iii) If t{x := u0}u1 · · · un ∈ S and u0 ∈ SN, then (λx . t)u0u1 · · · un ∈ S.

The set of all saturated sets, written SAT, is closed under Kleene’s implication, in the sense that for
all S, T ∈ SAT one has S→ T = {t : ∀u ∈ S, tu ∈ T} ∈ SAT. Again

Fact 2.8. The triple (SAT,⊆,→) is a quasi-implicative structure.

The reader is invited to check that the same holds if we replace Tait’s saturated sets by other
notions of reducibility candidates, such as Girard’s reducibility candidates (Girard et al., 1989) or
Parigot’s reducibility candidates (Parigot, 1997). Let us mention that in each case, we only get a
quasi-implicative structure, in which we have (� → �) �= �. The reason is that full implicative
structures (which come with the equation (� → �)= �) are actually expressive enough to inter-
pret the full λ-calculus (see Section 2.4), so that they are incompatible with the notion of (weak or
strong) normalization.

2.2.5 Implicative structures of classical realizability
The final example – which is the main motivation of this work – is given by classical realizability,
as introduced by Krivine (2001, 2003, 2009, 2011, 2012). Basically, classical realizability takes place
in a structure of the form (�,�, ·,‚) where

• � is a set whose elements are called terms or realizers;
• � is a set whose elements are called stacks or counter-realizers;
• (·) :�×�→� is a binary operation for pushing a term onto a stack;
• ‚⊆�×� is a binary relation between�×�, called the pole.

(Krivine’s classical realizability structures actually contain many other ingredients (cf.
Section 2.7.2) that we do not need for now.) From such a quadruple (�,�, ·,‚), we let

• A := P(�);
• a� b :⇔ a⊇ b (for all a, b ∈ A)
• a→ b := a‚ · b = {t · π : t ∈ a‚, π ∈ b} (for all a, b ∈ A)

writing a‚ := {t ∈� : ∀π ∈ a, (t, π) ∈‚} ∈P(�) the orthogonal of the set a ∈P(�) with respect
to the pole‚⊆�×�. Again, it is easy to check that

Fact 2.9. The triple (A ,�,→) is an implicative structure.

Remark 2.10. The reader is invited to check that Krivine’s implication a→ b= a‚ · b fulfills the
two additional axioms(�

a∈A
a
)

→ b =
�
a∈A

(a→ b) and a→
(�
b∈B

b
)

=
�
b∈B

(a→ b)

for all a, b ∈ A , A, B⊆ A , A, B �=∅. It is worth to notice that these extra properties are almost
never used in classical realizability, thus confirming that only the properties of meets really matter
in such a structure.

We shall come back to this example in Section 2.7.2.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 465

2.3 Viewing truth values as generalized realizers: a manifesto
Intuitively, an implicative structure (A ,�,→) represents a semantic type system in which the
ordering a� b expresses the relation of subtyping, whereas the operation a→ b represents the
arrow type construction. From the point of view of logic, it is convenient to think of the elements
of A as truth values according to some notion of realizability, that is, as sets of realizers enjoying
particular closure properties.

Following this intuition, we can always view an actual realizer t as a truth value, namely, as
the smallest truth value that contains t. This truth value, written as [t] and called the principal
type of the realizer t, is naturally defined as the meet of all truth values containing t as an ele-
ment. Through the correspondence t �→ [t]3, the membership relation t ∈ a rephrases in term of
subtyping as [t]� a, so that we can actually manipulate realizers as if they were truth values.

But the distinctive feature of implicative structures is that they allow us to proceed the other
way around, that is, to manipulate all truth values as if they were realizers. Technically, this is due
to the fact that the two fundamental operations of the λ-calculus – application and λ-abstraction –
can be lifted to the level of truth values (Section 2.4). Of course, such a possibility definitely blurs
the distinction between the particular truth values that represent actual realizers (the principal
types) and the other ones. So that the framework of implicative structures actually leads us to
perform a surprising identification, between the notion of truth value and the notion of realizer,
now using the latter notion in a generalized sense.

Conceptually, this identification relies on the idea that every element a ∈ A may also be viewed
as a generalized realizer, namely, as the realizer whose principal type is a itself (by convention).
In this way, the element a, when viewed as a generalized realizer, is not only a realizer of a, but
it is more generally a realizer of any truth value b such that a� b. Of course, there is something
puzzling in the idea that truth values are their own (generalized) realizers, since this implies that
any truth value is realized, at least by itself. In particular, the bottom truth value ⊥ ∈ A , when
viewed as a generalized realizer, is so strong that it actually realizes any truth value. But this para-
dox only illustrates another aspect of implicative structures, which is that they do not come with
an absolute criterion of consistency. To introduce such a “criterion of consistency,” we shall need
to introduce the notion of separator (Section 3), which plays the very same role as the notion of
filter in HA (or Boolean algebra).

Due to the identification between truth values and (generalized) realizers, the partial ordering
a� b can be given different meanings depending on whether we consider the elements a and b as
truth values or as generalized realizers. For instance, if we think of a and b both as truth values,
then the ordering a� b is simply the relation of subtyping. And if we think of a as a generalized
realizer and of b as a truth value, then the relation a� b is nothing but the realizability relation
(“a realizes b”). But if we now think of both elements a and b as generalized realizers, then the
relation a� bmeans that the (generalized) realizer a is at least as powerful as b, in the sense that a
realizes any truth value c that is realized by b. In forcing, we would express it by saying that a is
a stronger condition than b. And in domain theory, we would naturally say that a is more defined
than b, which we would write a� b.

The latter example is important, since it shows that when thinking of the elements of A as
generalized realizers rather than as truth values, then the reverse ordering a� b is conceptually
similar to the definitional ordering in the sense of Scott. Note that this point of view is consistent
with the fact that the theory of implicative structures (see Definition 2.1 and Remark 2.2 (1)) is
built around meets that precisely correspond to joins from the point of view of definitional (i.e.,
Scott) ordering. In what follows, we shall refer to the relation a� b as the logical ordering, whereas
the symmetric relation b� a (which we shall sometimes write b� a) will be called the definitional
ordering.

Using these intuitions as guidelines, it is now easy to lift all the constructions of the λ-calculus
to the level of truth values in an arbitrary implicative structure.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

466 A. Miquel

2.4 Interpreting λ-terms
From now on, A = (A ,�,→) denotes an arbitrary implicative structure.

Definition 2.11 (Application). Given two points a, b ∈ A , we call the application of a to b and
write ab the element of A that is defined by

ab :=
�{

c ∈ A : a� (b→ c)
}
.

As usual, we write ab1b2 · · · bn := ((ab1)b2) · · · bn for all a, b1, b2, . . . , bn ∈ A .

Thinking in terms of definitional ordering rather than in terms of logical ordering, this defini-
tion expresses that ab is the join of all c ∈ A such that the implication b→ c (which is analogous
to a step function) is a lower approximation of a:

ab :=
⊔{

c ∈ A : (b→ c)� a
}
.

Proposition 2.12 (Properties of application). For all a, a′, b, b′ ∈ A ,

(1) if a� a′ and b� b′, then ab� a′b′ (Monotonicity)
(2) (a→ b)a� b (β-reduction)
(3) a� (b→ ab) (η-expansion)
(4) ab=min

{
c ∈ A : a� (b→ c)

}
(Minimum)

(5) ab� c, iff a� (b→ c) (Adjunction)

Proof. For all a, b ∈ A , we write Ua,b = {c ∈ A : a� (b→ c)}, so that ab := �
Ua,b. (The set Ua,b

is upwards closed, from the variance of implication.)

(1) If a� a′ and b� b′, then Ua′,b′ ⊆Ua,b (from the variance of implication); hence, we get
ab= �

Ua,b �
�

Ua′,b′ = a′b′.
(2) It is clear that b ∈Ua→b,a, hence (a→ b)a= �

Ua→b,a � b.
(3) We have (b→ ab)= (b→ �

Ua,b)= �
c∈Ua,b

(b→ c)� a, from the definition of Ua,b.
(4) From (3), it is clear that ab ∈Ua,b, hence ab=min (Ua,b).
(5) Assuming that ab� c, we get a� (b→ ab)� (b→ c) from (3). Conversely, assuming that

a� (b→ c), we have c ∈Ua,b and thus ab= �
Ua,b � c.

Corollary 2.13 (Application in a complete HA). In a complete HA (H,�,→), application is
characterized by ab= a� b for all a, b ∈H.

Proof. For all c ∈ A , we have ab� c iff a� (b→ c) by Proposition 2.12 (5). But from Heyting’s
adjunction, we also have a� (b→ c) iff a� b� c. Hence, ab� c iff a� b� c for all c ∈ A , and
thus ab= a� b.

Corollary 2.14 (Application in a total applicative structure). In the implicative structure
(P(P),⊆,→) induced by a total applicative structure (P, ·) (cf. Fact 2.5, p. 463), application is
characterized by ab= {x · y : x ∈ a, y ∈ b} for all a, b ∈P(P).

Proof. Let a · b= {x · y : x ∈ a, y ∈ b}. It is clear that for all c ∈P(P), we have a · b⊆ c iff
a⊆ (b→ c). Therefore, a · b= ab, by adjunction.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 467

Definition 2.15 (Abstraction). Given an arbitrary function f : A → A , we write λf the element
of A defined by

λf :=
�
a∈A

(a→ f (a)) .

(Note that we do not assume that the function f is monotonic.)
Again, if we think in terms of definitional ordering rather than in terms of logical ordering,

then it is clear that this definition expresses that λf is the join of all the step functions of the form
a→ f (a), where a ∈ A :

λf :=
⊔
a∈A

(a→ f (a)) .

Proposition 2.16 (Properties of abstraction). For all f , g : A → A and a ∈ A ,

(1) if f (a)� g(a) for all a ∈ A , then λf � λg (Monotonicity)
(2) (λf)a� f (a) (β-reduction)
(3) a� λ(b �→ ab) (η-expansion)

Proof.
(1) Obvious from the variance of implication.
(2) From the definition of λf , we have λf � (a→ f (a)). Applying Proposition 2.12 (5), we get

(λf)a� f (a).
(3) Follows from Proposition 2.12 (3), taking the meet for all b ∈ A .

We call a λ-term with parameters in A any λ-term (possibly) enriched with constants taken in
the set A – the “parameters.” Such enriched λ-terms are equipped with the usual notions of β-
and η-reduction, considering parameters as inert constants.

To every closed λ-term t with parameters in A , we associate an element of A , written as tA
and defined by induction on the size of t by

aA := a
(tu)A := tA uA

(λx . t)A := λ(a �→ (t{x := a})A)

(if a ∈ A)
(application in A)
(abstraction in A)

Proposition 2.17 (Monotonicity of substitution). For each λ-term t with free variables x1, . . . , xk
and for all parameters a1 � a′

1, . . . , ak � a′
k, we have

(t{x1 := a1, . . . , xk := ak})A � (t{x1 := a′
1, . . . , xk := a′

k})A
(where t{x1 := a1, . . . , xk := ak} denotes a simultaneous substitution).

Proof. By induction on t, using Propositions 2.12 (1) and 2.16 (1).

Proposition 2.18 (β and η). For all closed λ-terms t and u with parameters in A ,

(1) if t�β u, then tA � uA ;
(2) if t�η u, then tA � uA ;

Proof. Obvious from Propositions 2.16 (2), (3) and 2.17.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

468 A. Miquel

Remark 2.19. It is important to observe that an implicative structure is in general not a deno-
tational model of the λ-calculus, since the inequalities of Proposition 2.18 are in general not
equalities, as shown in Example 2.20. Let us recall that in a denotational modelD of the λ-calculus
(where t =βη u implies tD = uD), the interpretation function t �→ tD is either trivial, or injective
on βη-normal forms. This is no longer the case in implicative structures, where some βη-normal
terms may collapse, while others do not. We shall come back to this problem in Section 2.7.

Example 2.20 (Dummy implicative structure). Let us consider the dummy implicative structure
(cf. Example 2.4 (2)) constructed on the top of a complete lattice (L,�) by putting a→ b := � for
all a, b ∈ A . In this structure, we observe that

• ab= �{c ∈ A : a� (b→ c)} = �
A = ⊥ for all a, b ∈ A ;

• λf = �
a∈A (a→ f (a))= � for all functions f : A → A .

So that for any closed λ-term t, we immediately get

tA =
{
� if t is an abstraction
⊥ if t is an application

(The reader is invited to check that the above characterization is consistent with the inequalities
of Proposition 2.18.) In particular, letting I := λx . x, we observe that

• I I→β I, but (I I)A (= ⊥) �= IA (= �);
• λx . I I x→η I I, but (λx . I I x)A (= �) �= (I I)A (= ⊥).

Proposition 2.21 (λ-terms in a complete HA). If (A ,�,→) is a complete HA, then for all (pure)
λ-terms with free variables x1, . . . , xk and for all parameters a1, . . . , ak ∈ A , we have

(t{x1 := a1, . . . , xk := ak})A � a1 � · · ·� ak .

In particular, for all closed λ-terms t, we have tA = �.

Proof. Let us write �x= x1, . . . , xk and �a= a1, . . . , ak. We reason by induction on t, distinguishing
the following cases:

• t = x (variable). This case is obvious.
• t = t1t2 (application). In this case, we have

(t{�x := �a})A = (t1{�x := �a})A (t2{�x := �a})A
= (t1{�x := �a})A � (t2{�x := �a})A
� a1 � · · ·� ak

(by Corollary 2.13)
(by IH)

• t = λx0 . t0 (abstraction). In this case, we have

(t{�x := �a})A =
�

a0∈A

(
a0 → (t0{x0 := a0, �x := �a})A)

�
�

a0∈A

(
a0 → a0 � a1 � · · ·� ak

)
� a1 � · · ·� ak

(by IH)

using the relation b� (a→ a� b) (for all a, b ∈ A) in the last inequality.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 469

Remark 2.22. The above result is reminiscent from the fact that in forcing (in the sense of Kripke
or Cohen), all (intuitionistic or classical) tautologies are interpreted by the top element (i.e., the
weakest condition). This is clearly no longer the case in (intuitionistic or classical) realizability, as
well as in implicative structures more generally.

2.5 Semantic typing
Any implicative structure A = (A ,�,→) naturally induces a semantic type system whose types
are the elements of A .

In this framework, a typing context is a finite (unordered) list � = x1 : a1, . . . , xn : an, where
x1, . . . , xn are pairwise distinct λ-variables and where a1, . . . , an ∈ A . Thinking of the elements
of A as realizers rather than as types, we may also view every typing context � = x1 : a1, . . . , xn :
an as the substitution � = x1 := a1, . . . , xn := an.

Given a typing context � = x1 : a1, . . . , xn : an, we write dom(�)= {x1, . . . , xn} its domain,
and the concatenation �, �′ of two typing contexts � and �′ is defined as expected, provided
dom(�)∩ dom(�′)=∅. Given two typing contexts � and �′, we write �′ � � when for every
declaration (x : a) ∈ �, there is a type b� a such that (x : b) ∈ �′. (Note that the relation �′ � �
implies that dom(�′)⊇ dom(�).)

Given a typing context �, a λ-term t with parameters in A , and an element a ∈ A , we define
the (semantic) typing judgment � 	 t : a as the following shorthand:

� 	 t : a :⇔ FV(t)⊆ dom(�) and (t[�])A � a

(using � as a substitution in the right-hand side inequality). From this semantic definition of
typing, we easily deduce that

Proposition 2.23 (Semantic typing rules). For all typing contexts �, �′, for all λ-terms t, u with
parameters in A and for all a, a′, b ∈ A , the following “semantic typing rules” are valid

— if (x : a) ∈ �, then � 	 x : a; (Axiom)
— � 	 a : a; (Parameter)
— if � 	 t : a and a� a′, then � 	 t : a′; (Subsumption)
— if �′ � � and � 	 t : a, then �′ 	 t : a; (Context subsumption)
— if FV(t)⊆ dom(�), then � 	 t : �; (�-intro)
— if �, x : a	 t : b, then � 	 λx . t : a→ b; (→-intro)
— if � 	 t : a→ b and � 	 u : a, then � 	 tu : b. (→-elim)

Moreover, for every family (ai)i∈I of elements of A indexed by a set (or a class) I,

if � 	 t : ai (for all i ∈ I), then � 	 t :
�
i∈I

ai (Generalization)

Proof. Axiom, Parameter, Subsumption, �-intro: Obvious.
Context subsumption: Follows from Proposition 2.17 (monotonicity of substitution).

→-intro: Let us assume that FV(t)⊆ dom(�, x := a) and (t[�, x := a])A � b. It is clear that
FV(λx . t)⊆ dom(�) and x /∈ dom(�), so that(

(λx . t)[�]
)A = (

λx . t[�]
)A =

�
a0∈A

(
a0 → (

t[�, x := a0]
)A)

� a→ (
t[�, x := a]

)A � a→ b .

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

470 A. Miquel

→-elim: Let us assume that FV(t), FV(u)⊆ dom(�), (t[�])A � a→ b, and (u[�])A � a. It is clear
that FV(tu)⊆ dom(�), and from Proposition 2.12 (2), we get(

(tu)[�]
)A = (

t[�]
)A (

u[�]
)A � (a→ b)a � b .

Generalization: Obvious, by taking the meet.

2.6 Some combinators
Let us now consider the following combinators (using Curry’s notation):

I = λx . x K = λxy . x
B = λxyz . x(yz) W = λxy . xyy
C = λxyz . xzy S = λxyz . xz(yz)

It is well known that in any polymorphic type assignment system, the above λ-terms can be given
the following (principal) types:

I : ∀α (α→ α)
B : ∀α ∀β ∀γ ((α→ β)→ (γ → α)→ γ → β)
K : ∀α ∀β (α→ β→ α)
C : ∀α ∀β ∀γ ((α→ β→ γ)→ β→ α→ γ)
W : ∀α ∀β ((α→ α→ β)→ α→ β)
S : ∀α ∀β ∀γ ((α→ β→ γ)→ (α→ β)→ α→ γ)

Turning the above syntactic type judgments into semantic type judgments (Section 2.5) using the
typing rules of Proposition 2.23, it is clear that in any implicative structure A = (A ,�,→), we
have the following inequalities:

IA �
�
a∈A

(a→ a), KA �
�

a,b∈A

(a→ b→ a),

SA �
�

a,b,c∈A

((a→ b→ c)→ (a→ b)→ a→ c), etc.

A remarkable property of implicative structures is that the above inequalities are actually
equalities, for each one of the six combinators I, B, K, C,W, and S:

Proposition 2.24. In any implicative structure (A ,�,→), we have

IA =
�
a∈A

(a→ a) BA =
�

a,b,c∈A

((a→ b)→ (c→ a)→ c→ b)

KA =
�

a,b∈A

(a→ b→ a) CA =
�

a,b,c∈A

((a→ b→ c)→ b→ a→ c)

WA =
�

a,b∈A

((a→ a→ b)→ a→ b) SA =
�

a,b,c∈A

((a→ b→ c)→ b→ a→ c)

Proof. Indeed, we have

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 471

• IA = (λx . x)A =
�
a∈A

(a→ a) (by definition)

• KA = (λxy . x)A =
�
a∈A

(
a→

�
b∈A

(b→ a)
)

=
�

a,b∈A

(a→ b→ a) (by axiom (2))

• By semantic typing, it is clear that

SA = (
λxyz . xz(yz)

)A �
�

a,b,c∈A

((a→ b→ c)→ (a→ b)→ a→ c).

Conversely, we have

�
a,b,c∈A

((a→ b→ c)→ (a→ b)→ a→ c)

�
�

a,d,e∈A

(
(a→ ea→ da(ea))→ (a→ ea)→ a→ da(ea)

)
�

�
a,d,e∈A

(
(a→ da)→ e→ a→ da(ea)

)
�

�
a,d,e∈A

(d→ e→ a→ da(ea))

=
�
d∈A

(
d→

�
e∈A

(
e→

�
a∈A

(
a→ da(ea)

)))
= (

λxyz . xz(yz)
)A = SA

(using Proposition 2.12 (3) twice)

(using Proposition 2.12 (3) again)

• The proofs for B,W, and C proceed similarly.

Remarks 2.25. (1) The above property does not generalize to typable terms that are not in
β-normal form. For instance, the term II= (λx . x)(λx . x) has the principal polymorphic type
∀α (α→ α), but in the dummy implicative structure used in Example 2.20 (where a→ b= � for
all a, b ∈ A), we have seen that

II (= ⊥) �=
�
a∈A

(a→ a) (= I= �) .

However, we conjecture that in any implicative structure (A ,�,→), the interpretation of each
closed λ-term in β-normal form is equal to the interpretation of its principal type in a polymor-
phic type system with binary intersections (Coppo et al., 1980; Ronchi della Rocca and Venneri,
1984).

(2) Combining the definitions of KA and SA with Proposition 2.18, it is clear that

KA ab � a and SA abc � ac(bc) (for all a, b, c ∈ A)

These inequalities actually mean that each implicative structure A is also an OCA (van Oosten,
2008), and even an intuitionistic OCA (IOCA) in the sense of Ferrer Santos et al. (2017).

2.6.1 Interpreting call/cc
Since Griffin’s seminal work (Griffin, 1990), it is well known that the control operator cc (“call/cc,”
for: call with current continuation) can be given the type ((α→ β)→ α)→ α that corresponds to
Peirce’s law. In classical realizability (Krivine, 2009), the control operator cc (that naturally realizes
Peirce’s law) is the key ingredient to bring the full expressiveness of classical logic into the realm
of realizability.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

472 A. Miquel

By analogy with Proposition 2.24, it is possible to interpret the control operator cc in any
implicative structure A = (A ,�,→) by identifying it with Peirce’s law, thus letting

ccA :=
�

a,b∈A

(((a→ b)→ a)→ a)

=
�
a∈A

((¬a→ a)→ a)

(Peirce’s law)

where negation is defined by ¬a := (a→ ⊥) for all a ∈ A . (The second equality easily follows
from the properties of meets and from the variance of implication.)

Of course, the fact that it is possible to interpret the control operator cc in any implicative
structure does not mean that any implicative structure is well suited for classical logic, since it
may be the case that ccA = ⊥, as shown in the following example:

Example 2.26 (Dummy implicative structure). Let us consider the dummy implicative structure
(cf. Example 2.4 (1)) constructed on the top of a complete lattice (L,�) by putting a→ b := b for
all a, b ∈ L. In this structure, we have

ccA =
�
a,b∈L

(((a→ b)→ a)→ a) =
�
a∈L

a = ⊥ .

The interpretation t �→ tA of pure λ-terms naturally extends to all λ-terms containing the
constant cc, by interpreting the latter by ccA .

Proposition 2.27 (cc in a complete HA). Let (A ,�,→) be a complete HA. Then, the following
are equivalent:

(1) (A ,�,→) is a (complete) Boolean algebra;
(2) ccA = �;
(3) tA = � for all closed λ-terms with cc.

Proof. Let us assume that (A ,�,→) is a complete HA.
(1)⇒ (2). In the case where (A ,�,→) is a Boolean algebra, Peirce’s law is valid in A , so that
((¬a→ a)→ a)= � for all a ∈ A . Hence, ccA = �, taking the meet.
(1)⇒ (3). Let us assume that ccA = �. Given a closed λ-term t with cc, we have t = t0{x := cc}
for some pure λ-term t0 such that FV(t0)⊆ {x}. From Proposition 2.21, we thus get tA = (t0{x :=
ccA })A � ccA = �, hence tA = �.
(3)⇒ (1). From (3), it is clear that ccA = �, hence ((¬a→ a)→ a)= � for all a ∈ A .
Therefore, (¬¬a→ a)= ((¬a→ ⊥)→ a)� ((¬a→ a)→ a)= �, hence (¬¬a→ a)= � for all
a ∈ A , which means that (A ,�,→) is a Boolean algebra.

2.7 The problem of consistency
Although it is possible to interpret all closed λ-terms (and even the control operator cc) in any
implicative structure (A ,�,→), the counter examples given in Examples 2.20 and 2.26 should
make clear to the reader that not all implicative structures are well suited to interpret intuitionistic
or classical logic. In what follows, we shall say that

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 473

Definition 2.28 (Consistency). An implicative structure (A ,�,→) is

— intuitionistically consistent when tA �= ⊥ for all closed λ-terms;
— classically consistent when tA �= ⊥ for all closed λ-terms with cc.

We have seen that complete HA/Boolean algebra are particular cases of implicative structures.
From Propositions 2.21 and 2.27, it is clear that

Proposition 2.29 (Consistency of complete HA/Boolean algebra). All non-degenerate complete
HAs (respectively, Boolean) are intuitionistically (respectively, classically) consistent, as implicative
structures.

2.7.1 The case of intuitionistic realizability
Let us recall (van Oosten, 2008) that

Definition 2.30 (Partial combinatory algebra).A partial combinatory algebra (or PCA, for short)
is a PAS (P, ·) (Section 2.2.3) with two elements k, s ∈ P satisfying the following properties for all
x, y, z ∈ P:

(1) (k · x)↓, (s · x)↓ and ((s · x) · y)↓;
(2) (k · x) · y� x;
(3) ((s · x) · y) · z � (x · z) · (y · z).

(As usual, the symbol � indicates that either both sides of the equation are undefined, or that they
are both defined and equal.)

Let (P, ·, k, s) be a PCA. In Section 2.2.3, we have seen (Fact 2.5) that the underlying PAS (P, ·)
induces a quasi-implicative structure (P(P),⊆,→) based on Kleene’s implication. Since we are
only interested here in full implicative structures (in which (� → �)= �), we shall now assume
that the operation of application (·) : P2 → P is total, so that the above axioms on k, s ∈ P simplify
to

(k · x) · y= x and ((s · x) · y) · z = (x · z) · (y · z) (for all x, y, z ∈ P)

The quadruple (P, ·, k, s) is then called a (total) CA.
We want to show that the implicative structure A = (P(P),⊆,→) induced by any (total)

CA (P, ·, k, s) is intuitionistically consistent, thanks to the presence of the combinators k and s.
For that, we call a closed combinatory term any closed λ-term that is either K (= λxy . x), either
S (= λxyz . xz(yz)), or the application t1t2 of two closed combinatory terms t1 and t2. Each closed
combinatory term t is naturally interpreted in the set P by an element tP ∈ P that is recursively
defined by

KP := k, SP := s, and (t1t2)P := tP1 · tP2 .
We then easily check that

Lemma 2.31. For each closed combinatory term t, we have tP ∈ tA .

Proof. By induction on t, distinguishing the following cases:

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

474 A. Miquel

• t =K. In this case, we have

KP = k ∈
⋂

a,b∈P(P)
(a→ b→ a) = KA (by Proposition 2.24)

• t = S. In this case, we have

SP = s ∈
⋂

a,b,c∈P(P)
((a→ b→ c)→ (a→ b)→ a→ c) = SA (by Proposition 2.24)

• t = t1t2, where t1, t2 are closed combinatory terms. By IH, we have tP1 ∈ tA1 and tP2 ∈ tA2 ,
hence tP = tP1 · tP2 ∈ tA1 tA2 = tA , by Corollary 2.14.

From the above observation, we immediately get that

Proposition 2.32 (Consistency). The implicative structure (P(P),⊆,→) induced by any (total)
CA (P, ·, k, s) is intuitionistically consistent.

Proof. Let t be a closed λ-term. From the theory of the λ-calculus (Barendregt, 1984, Theorem
7.3.10(i)), there is a closed combinatory term t0 such that t0 �β t. We have tP0 ∈ tA0 (by
Lemma 2.31) and tA0 ⊆ tA (by Proposition 2.18), hence tA �=∅ (= ⊥).

(The implicative structure (P(P),⊆,→) is not classically consistent, in general.)

2.7.2 The case of classical realizability
Definition 2.33 (Abstract Krivine structure). An AKS is any structure of the form K=
(�,�, @, ·, k_, K, S, cc, PL,‚), where

— � and � are nonempty sets, whose elements are, respectively, called the K-terms and the K-
stacks of the AKS K;

— @ :�×�→� (“application”) is an operation that associates to each pair ofK-terms t, u ∈�
a K-term @(t, u) ∈�, usually written tu (by juxtaposition);

— (·) :�×�→� (“push”) is an operation that associates to each K-term t ∈� and to each
K-stack π ∈� a K-stack t · π ∈�;

— k_ :�→� is a function that turns each K-stack π ∈� into a K-term kπ ∈�, called the
continuation associated to π ;

— K, S, cc ∈� are three distinguished K-terms;
— PL⊆� is a set ofK-terms, called the set of proof-likeK-terms, that contains the threeK-terms

K, S, and cc, and that is closed under application;
— ‚⊆�×� is a binary relation between K-terms and K-stacks, called the pole of the AKS K,

that fulfills the following axioms:

t ‚ u · π implies tu ‚ π

t ‚ π implies K ‚ t · u · π
t ‚ v · uv · π implies S ‚ t · u · v · π
t ‚ kπ · π implies cc ‚ t · π
t ‚ π implies kπ ‚ t · π ′

for all t, u, v ∈� and π , π ′ ∈�.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 475

Remarks 2.34. (1) The above closure conditions on the pole‚⊆�×� actually express that it
is closed by anti-evaluation, in the sense of the evaluation rules

tu � π � t � u · π
K � t · u · π � t � π
S � t · u · v · π � t � v · uv · π

cc � t · π � t � kπ · π
kπ � t · π ′ � t � π

(writing t � π = (t, π) the process formed by a K-term t and a K-stack π).
(2) The notion of AKS – which was introduced by Streicher (2013) – is very close to the notion

of realizability structure such as introduced by Krivine (2011), the main difference being that the
latter notion introduces more primitive combinators, essentially to mimic the evaluation strategy
of the λc-calculus (Krivine, 2009). However, in what follows, we shall not need such a level of
granularity, so that we shall stick to Streicher’s definition.

In Section 2.2.5, we have seen (Fact 2.9) that the quadruple (�,�, ·,‚) underlying any AKS
K= (�,�, @, ·, k_, K, S, cc, PL,‚) induces an implicative structure A = (A ,�,→) that is
defined by

• A := P(�)
• a� b :⇔ a⊇ b (for all a, b ∈ A)
• a→ b := a‚ · b = {t · π : t ∈ a‚, π ∈ b} (for all a, b ∈ A)

where a‚ := {t ∈� : ∀π ∈ a, (t, π) ∈‚} ∈P(�) is the orthogonal of the set a ∈P(�) with
respect to the pole‚⊆�×�.

Note that since the ordering of subtyping a� b is defined here as the relation of inverse inclu-
sion a⊇ b (between two sets of stacks a, b ∈P(�)), the smallest element of the induced implicative
structure A = (A ,�,→) is given by ⊥ =�.

Remark 2.35. In Streicher (2013), Streicher only considers sets of stacks a ∈P(�) such that
a‚‚ = a, thus working with a smaller set of “truth values” A ′ given by

A ′ := P‚(�) = {a ∈P(�) : a‚‚ = a} .
Technically, such a restriction requires to alter the interpretation of implication, by adding
another step of bi-orthogonal closure:

a→′ b := (
a‚ · b)‚‚ (for all a, b ∈ A ′)

However, the resulting triple (A ′,�,→′) is in general not an implicative structure, since it does
not fulfill axiom (2) of Definition 2.1.4 For this reason, we shall follow Krivine by considering all
sets of stacks as truth values in what follows.

The basic intuition underlying Krivine’s realizability is that each set of K-stacks a ∈P(�) rep-
resents the set of counter-realizers (or attackers) of a particular formula, whereas its orthogonal
a‚ ∈P(�) represents the set of realizers (or defenders) of the same formula5. In this setting, the
realizability relation is naturally defined by

t � a :⇔ t ∈ a‚ (for all t ∈�, a ∈ A)

However, when the pole‚⊆�×� is not empty, we can observe that

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

476 A. Miquel

Fact 2.36. Given a fixed (t0, π0) ∈‚, we have kπ0 t0 � a for all a ∈ A .

so that any element of the implicative structure is actually realized by some K-term (which
does not even depend on the considered element ofA). This is the reason why Krivine introduces
an extra parameter, the set of proof-like (K)-terms PL⊆�, whose elements are (by convention)
the realizers that are considered as valid certificates of the truth of a formula. (The terminology
“proof-like” comes from the fact that all realizers that come from actual proofs belong to the subset
PL⊆�.)

Following Krivine, we say that a truth value a ∈ A is realized when it is realized by a proof-like
term, that is

a realized :⇔ ∃t ∈ PL, t � a
⇔ a‚ ∩ PL �=∅

More generally, we say that the AKS K= (�,�, . . . , PL,‚) is consistent when the smallest truth
value ⊥ =� is not realized, that is

K consistent :⇔ �‚ ∩ PL=∅ .

We now need to check that Krivine’s notion of consistency is consistent with the one that
comes with implicative structures (Definition 2.28). For that, we call a closed classical combina-
tory term any closed λ-term with cc that is either K (= λxy . x), either S (= λxyz . xz(yz)), either
the constant cc, or the application t1t2 of two closed classical combinatory terms t1 and t2. Each
closed classical combinatory term t is naturally interpreted by an element t� ∈� that is recursively
defined by

K� := K, S� := S, cc� := cc, and (t1t2)� := t�1 t
�
2 .

From the closure properties of the set PL of proof-like terms, it is clear that t� ∈ PL for each closed
classical combinatory term t. Moreover,

Lemma 2.37. For each closed classical combinatory term t, we have t� � tA .

Proof. By induction on t, distinguishing the following cases:

• t =K, S, cc. In this case, combining standard results of classical realizability (Krivine, 2011)
with the properties of implicative structures, we get

K� = K �
�

a,b∈A

(a→ b→ a) = KA

S� = S �
�

a,b,c∈A

((a→ b→ c)→ (a→ b)→ a→ c) = SA

cc� = cc �
�

a,b∈A

(((a→ b)→ a)→ a) = ccA

(by Proposition 2.24)

(by Proposition 2.24)

(by definition)

• t = t1t2, where t1 are t2 are closed classical combinatory terms. In this case, we have t�1 �
tA1 and t�2 � tA2 by IH. And since tA1 � (tA2 → tA1 tA2) (from Proposition 2.12 (3)), we also
have t�1 � tA2 → tA1 tA2 (by subtyping), so that we get t� = t�1 t

�
2 � tA1 tA2 = tA (by modus

ponens).

We can now conclude

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 477

Proposition 2.38. If an AKS K= (�,�, . . . , PL,‚) is consistent (in the sense that �‚ ∩
PL=∅), then the induced implicative structure A = (P(�),⊇,→) is classically consistent (in the
sense of Definition 2.28).

Proof. Let us assume that�‚ ∩ PL=∅. Given a closed λ-term t with cc, there exists a closed clas-
sical combinatory term t0 such that t0 �β t. So that we have t�0 � tA0 (by Lemma 2.37) and tA0 �
tA (by Proposition 2.18), hence t�0 � tA (by subtyping). But this implies that tA �= ⊥ (= �),
since t� ∈ (tA)‚ ∩ PL �=∅.

Note that the converse implication does not hold in general. The reason is that the criterion
of consistency for the considered AKS depends both on the pole ‚ and on the conventional set
PL of proof-like terms. (In particular, it should be clear to the reader that the larger the set PL,
the stronger the corresponding criterion of consistency.) On the other hand, the construction of
the induced implicative structure A = (P(�),⊇,→) does not depend on the set PL, so that the
criterion of classical consistency of Definition 2.28 – which does not depend on PL either – can
only be regarded as a minimal criterion of consistency.

In order to reflect more faithfully Krivine’s notion of consistency at the level of the induced
implicative structure, it is now time to introduce the last ingredient of implicative algebras: the
notion of separator.

3. Separation
3.1 Separators and implicative algebras
Let A = (A ,�,→) be an implicative structure.

Definition 3.1 (Separator).We call a separator of A any subset S⊆ A that fulfills the following
conditions for all a, b ∈ A :

(1) if a ∈ S and a� b, then b ∈ S (S is upwards closed)
(2) KA = (λxy . x)A ∈ S and SA = (λxyz . xz(yz))A ∈ S (S contains K and S)
(3) if (a→ b) ∈ S and a ∈ S, then b ∈ S (S is closed under modus ponens).

A separator S⊆ A is said to be

— consistent when ⊥ /∈ S;
— classical when ccA ∈ S.

Remark 3.2. In the presence of condition (1) (upwards closure), condition (3) (closure under
modus ponens) is actually equivalent to

(3′) If a, b ∈ S, then ab ∈ S (closure under application)

Proof. Let S⊆ A be an upwards closed subset of A .

• (3)⇒ (3′) Suppose that a, b ∈ S. Since a� (b→ ab) (from Proposition 2.12 (3)), we get
(b→ ab) ∈ S by upwards closure, hence ab ∈ S by (3).

• (3′)⇒ (3) Suppose that (a→ b), a ∈ S. By (3′), we have (a→ b)a ∈ S, and since (a→ b)a�
b (from Proposition 2.12 (2)), we get b ∈ S by upwards closure.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

478 A. Miquel

Intuitively, each separator S⊆ A defines a particular “criterion of truth” within the implicative
structure A = (A ,�,→). In implicative structures, separators play the very same role as filters
in HAs, and it is easy to check that

Proposition 3.3 (Separators in a complete HA). If A = (A ,�,→) is a complete HA, then a
subset S⊆ A is a separator (in the sense of implicative structures) if and only if S is a filter (in the
sense of HAs).

Proof. Indeed, when the implicative structure A = (A ,�,→) is a complete HA, the conditions
(1), (2), and (3′) defining separators simplify to

(1) if a ∈ S and a� b, then b ∈ S (upwards closure)
(2) � (= KA = SA) ∈ S (from Proposition 2.21)
(3′) if a, b ∈ S, then a� b (= ab) ∈ S (from Corollary 2.13)

which is precisely the definition of the notion of a filter.

However, separators are in general not filters, since they are not closed under binary meets
(i.e., a ∈ S and b ∈ S do not necessarily imply that a� b ∈ S). Actually, one of the key ideas we
shall develop in the rest of this paper is that the difference between (intuitionistic or classical)
realizability and forcing (in the sense of Kripke or Cohen) lies precisely in the difference between
separators and filters.

Proposition 3.4. If S⊆ A is a separator, then for all λ-terms t with free variables x1, . . . , xn and
for all parameters a1, . . . , an ∈ S, we have

(t{x1 := a1, . . . , xn := an})A ∈ S .
In particular, for all closed λ-terms t, we have tA ∈ S.

Proof. Let t be a λ-term with free variables x1, . . . , xn, and let a1, . . . , an be parameters taken
in S. From the theory of the λ-calculus, there exists a closed combinatory term t0 such that t0 �β

λx1 · · · xn . t. It is clear that tA0 a1 · · · an ∈ S from the conditions (2) and (3′) on the separator S.
Moreover, by Proposition 2.18, we have

tA0 a1 · · · an � (λx1 · · · xn . t)A a1 · · · an � (t{x1 := a1, . . . , xn := an})A ,

so that we get (t{x1 := a1, . . . , xn := an})A ∈ S, by upwards closure.

Definition 3.5 (Implicative algebra). We call an implicative algebra any implicative structure
(A ,�,→) equipped with a separator S⊆ A . An implicative algebra (A ,�,→, S) is said to be
consistent (respectively, classical) when the underlying separator S⊆ A is consistent (respectively,
classical).

3.2 Examples
3.2.1 Complete HAs.
We have seen that a complete HA (H,�) can be seen as an implicative structure (H,�,→) where
implication is defined by

a→ b := max{c ∈H : (c� a)� b} (for all a, b ∈H)
The complete HA (H,�) can also be seen as an implicative algebra, by endowing it with the trivial
separator S= {�} (i.e., the smallest filter of H).

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 479

3.2.2 Implicative algebras of intuitionistic realizability
Let (P, ·, k, s) be a (total) CA. In Section 2.7.1, we have seen that such a structure induces an
implicative structure (P(P),⊆ →), whose implication is defined by

a→ b := {z ∈ P : ∀x ∈ a, z · x ∈ b} (for all a, b ∈P(P))
The above implicative structure is naturally turned into an implicative algebra by endowing it with
the separator S=P(P) \ {∅} formed by all truth values that contain at least a realizer. In this case,
the separator S=P(P) \ {∅} is not only consistent (in the sense of Definition 3.1), but it is also a
maximal separator (see Section 3.6).

Remark 3.6. In an arbitrary implicative structure (A ,�,→), we can observe that the subset
A \ {⊥} ⊂ A is in general not a separator. (Counter example: consider the Boolean algebra
with four elements.) The property that A \ {⊥} is a separator is thus a specific property of the
implicative structures induced by (total) CAs, and the existence of such a separator that is trivially
consistent explains why there is no need to introduce a notion of proof-like term in intuitionistic
realizability.

3.2.3 Implicative algebras of classical realizability
Let

K = (�,�, @, ·, k_, K, S, cc, PL,‚)
be an AKS (Definition 2.33, p. 474). We have seen (Section 2.7.2) that such a structure induces an
implicative structure (A ,�,→) where

• A := P(�);
• a� b :⇔ a⊇ b (for all a, b ∈ A);
• a→ b := a‚ · b = {t · π : t ∈ a‚, π ∈ b} (for all a, b ∈ A);

Using the set PL of proof-like terms, we can now turn the former implicative structure into an
implicative algebra (A ,�,→, S), letting

S := {a ∈ A : a‚ ∩ PL �=∅} .

Proposition 3.7. The subset S= {a ∈ A : a‚ ∩ PL �=∅} ⊆ A is a classical separator of the
implicative structure (A ,�,→).

Proof. By construction, we have S= {a ∈ A : ∃t ∈ PL, t � a}.
(1) Upwards closure: obvious, by subtyping.
(2) We have seen in Section 2.7.2 (Proof of Lemma 2.37) that K�KA , S� SA and cc� ccA ,

and since K, S, cc ∈ PL, we get KA , SA , ccA ∈ S.
(3) Suppose that (a→ b), a ∈ S. From the definition of S, we have t � a→ b and u� a for some

t, u ∈ PL, so that tu� b, where tu ∈ PL. Hence, b ∈ S.

Moreover, it is obvious that

Proposition 3.8 (Consistency).The classical implicative algebra (A ,�,→, S) induced by the AKS
K= (�,�, . . . , PL,‚) is consistent (in the sense of Definition 3.5) if and only if K is consistent (in
the sense that�‚ ∩ PL=∅).

Proof. Indeed, we have ⊥ /∈ S iff ⊥‚ ∩ PL=∅, that is, iff�‚ ∩ PL=∅.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

480 A. Miquel

3.3 Generating separators
Let A = (A ,�,→) be an implicative structure. For each subset X ⊆ A , we write

• ↑X = {a ∈ A : ∃a0 ∈ X, a0 � a} the upwards closure of X in A ;
• @(X) the applicative closure of X, defined as the smallest subset of A containing X (as a
subset) and closed under application;

• �(X) the λ-closure of X, formed by all elements a ∈ A that can be written a= (t{x1 :=
a1, . . . , xn := an})A for some pure λ-term t with free variables x1, . . . , xn and for some
parameters a1, . . . , an ∈ X.

Note that in general, the sets @(X) and �(X) are not upwards closed, but we obviously have the
inclusion @(X)⊆�(X).

Proposition 3.9 (Generated separator). Given any subset X ⊆ A , we have

↑�(X) = ↑@(X ∪ {KA , SA }) .
By construction, the above set is the smallest separator of A that contains X as a subset; it is called
the separator generated by X, and written Sep(X).

Proof. The inclusion ↑@(X ∪ {KA , SA })⊆ ↑�(X) is obvious, and the converse inclusion follows
from Proposition 2.18 using the fact each λ-term is the β-contracted of some combinatory term
constructed from variables, K, S, and application. The set ↑�(X) is clearly a separator (closure
under application follows from Proposition 2.12 (1)), and from Proposition 3.4, it is included in
any separator containing X as a subset.

An important property of first-order logic is the deduction lemma, which states that an impli-
cation φ⇒ψ is provable in a theory T if and only if the formula ψ is provable in the theory
T + φ that is obtained by enriching T with the axiom φ. Viewing separators S⊆ A as theories,
this naturally suggests the following semantic counterpart:

Lemma 3.10 (Deduction in a separator). For each separator S⊆ A , we have

(a→ b) ∈ S iff b ∈ Sep(S∪ {a}) (for all a, b ∈ A)

Proof. Suppose that (a→ b) ∈ S. Then, (a→ b) ∈ Sep(S∪ {a}) (by inclusion), and since a ∈
Sep(S∪ {a}) (by construction), we get b ∈ Sep(S∪ {a}) (by modus ponens). Conversely, let us
suppose that b ∈ Sep(S∪ {a}). From the definition of the separator Sep(S∪ {a}), this means that
there are a λ-term t with free variables x1, . . . , xn and parameters a1, . . . , an ∈ S∪ {a} such
that (t{x1 := a1, . . . , xn := an})A � b. Without loss of generality, we can assume that a1 = a
and a2, . . . , an ∈ S (with n≥ 1). Letting c := (λx1 . t{x2 := a2, . . . , xn := an})A , we observe that
c ∈ S, by Proposition 3.4. Moreover, we have ca� (t{x1 := a1, x2 := a2, . . . , xn := an})A � b by
Proposition 2.18. And by adjunction, we deduce that c� (a→ b), hence (a→ b) ∈ S.

In what follows, we shall say that a separator S⊆ A is finitely generated when S= Sep(X)
for some finite subset X ⊆ A . Two important examples of finitely generated separators of an
implicative structure A = (A ,�,→) are

— the intuitionistic core of A , defined by S0J (A) := Sep(∅);
— the classical core of A , defined by S0K(A) := Sep({ccA }).

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 481

By definition, the set S0J (A) (respectively, S0K(A)) is the smallest separator (respectively, the small-
est classical separator) of A ; and from Proposition 3.9, it is clear that the implicative structure
A = (A ,�,→) is intuitionistically consistent (respectively, classically consistent) in the sense of
Definition 2.28 if and only if ⊥ /∈ S0J (A) (respectively, ⊥ /∈ S0K(A)).

3.4 Interpreting first-order logic
3.4.1 Conjunction and disjunction
Each implicative structure A = (A ,�,→) describes a particular logic from the interaction
between implication a→ b and universal quantification, seen as a meet with respect to the order-
ing a� b of subtyping. In such a framework, conjunction (notation: a× b) and disjunction
(notation: a+ b) are naturally defined using the standard encodings of minimal second-order
logic (Girard, 1972; Girard et al., 1989):

a× b :=
�
c∈A

((a→ b→ c)→ c)

a+ b :=
�
c∈A

((a→ c)→ (b→ c)→ c)

Finally, negation and logical equivalence are defined as expected, letting ¬a := (a→ ⊥) and a↔
b := (a→ b)× (b→ a). We easily check that

Proposition 3.11. When (A ,�,→) is a complete HA:
a× b = a� b and a+ b = a� b (for all a, b ∈ A)

(The proof is left as an exercise to the reader.)

In the general case, the introduction and elimination rules of conjunction and disjunction are
naturally expressed as semantic typing rules (see Section 2.5) using the very same proof terms as
in Curry-style system F (Leivant, 1983; van Bakel et al., 1994):

Proposition 3.12 (Typing rules for× and +). The semantic typing rules
� 	 t : a � 	 u : b
� 	 λz . z t u : a× b

� 	 t : a× b
� 	 t (λxy . x) : a

� 	 t : a× b
� 	 t (λxy . y) : b

� 	 t : a
� 	 λzw . z t : a+ b

� 	 t : b
� 	 λzw .w t : a+ b

� 	 t : a+ b �, x : a	 u : c �, y : b	 v : c
� 	 t (λx . u) (λy . v) : c

are valid in any implicative structure.

(Recall that � 	 t : a means: FV(t)⊆ dom(�) and (t[�])A � a.)
Following the spirit of Proposition 2.24, we can notice that via the interpretation t �→ tA

of pure λ-terms into the implicative structure A (Section 2.4), the pairing construct 〈t, u〉 :=
λz . z t u appears to be the same as conjunction itself:

Proposition 3.13. For all a, b ∈ A : 〈a, b〉A = (λz . z a b)A = a× b.

Proof. Same proof technique as for Proposition 2.24.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

482 A. Miquel

3.4.2 Quantifiers
In any implicative structure A = (A ,�,→), the universal quantification of a family of truth
values (ai)i∈I ∈ A I is naturally defined as its meet:

∀
i∈I

ai :=
�
i∈I

ai .

It is obvious that

Proposition 3.14 (Rules for ∀). The following semantic typing rules

� 	 t : ai (for all i ∈ I)
� 	 t : ∀i∈I ai

� 	 t : ∀i∈I ai
� 	 t : ai0 (i0 ∈ I)

are valid in any implicative structure.

In such a framework, it would be quite natural to define existential quantification dually, that
is, as a join. Alas, this interpretation does not fulfill (in general) the elimination rule for ∃ –
remember that joins only exist by accident. As for conjunction and disjunction, we shall use
the corresponding encoding in second-order minimal logic (Girard, 1972; Girard et al., 1989),
letting

∃
i∈I

ai :=
�
c∈A

(�
i∈I

(ai → c) → c
)
.

Again, we easily check that

Proposition 3.15. When (A ,�,→) is a complete HA:

∃
i∈I

ai =
�
i∈I

ai (for all (ai)i∈I ∈ A I)

Coming back to the general case:

Proposition 3.16 (Rules for ∃). The following semantic typing rules

� 	 t : ai0
� 	 λz . z t : ∃i∈I ai

(i0 ∈ I)
� 	 t : ∃i∈I ai �, x : ai 	 u : c (for all i ∈ I)

� 	 t (λx . u) : c
are valid in any implicative structure.

3.4.3 Leibniz equality
Given any two objects α and β , the identity of α and β (in the sense of Leibniz) is expressed by the
truth value idA (α, β) ∈ A defined by

idA (α, β) :=
{
IA if α= β

� → ⊥ if α �= β

It is a straightforward exercise to check that when α and β belong to a given set M, the above
interpretation of Leibniz equality amounts to the usual second-order encoding:

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 483

Proposition 3.17. For all sets M and for all α, β ∈M, we have

idA (α, β) =
�

p∈A M

(p(α)→ p(β)) .

Moreover,

Proposition 3.18 (Rules for idA).Given a set M, a function p :M → A and two objects α, β ∈M,
the following semantic typing rules are valid:

� 	 λx . x : α = α

� 	 t : idA (α, β) � 	 u : p(α)
� 	 t u : p(β)

3.4.4 Interpreting a first-order language
Let A = (A ,�,→) be an implicative structure. An A -valued interpretation of a first-order
language L is defined by

— a domain of interpretationM �=∅;
— anM-valued function f M :Mk →M for each k-ary function symbol of L ;
— a truth-value function pA :Mk → A for each k-ary predicate symbol of L .

As usual, we call a term with parameters in M (respectively, a formula with parameters in M)
any first-order term (respectively, any formula) of the first-order language L enriched with con-
stant symbols taken inM. Each closed term t with parameters inM is naturally interpreted as the
element tM ∈M defined from the equations

aM = a (if a is a parameter) f (t1, . . . , tk)M = f M(tM1 , . . . , tMk)

whereas each closed formula φ with parameters in M is interpreted as the truth value φA ∈ A
defined from the equations:

(t1 = t2)A := idA (tM1 , tM2) (p(t1, . . . , tk))A := pA (tM1 , . . . , tMk)

(φ⇒ψ)A := φA →ψA (¬φ)A := φA → ⊥
(φ ∧ψ)A := φA ×ψA (φ ∨ψ)A := φA +ψA

(∀x φ(x))A := ∀
α∈M

(φ(α))A (∃x φ(x))A := ∃
α∈M

(φ(α))A

Proposition 3.19 (Soundness). If a closed formula φ of the language L is an intuitionistic
tautology (respectively, a classical tautology), then

φA ∈ S0J (A) (respectively, φA ∈ S0K(A))

where S0J (A) (respectively, S0K(A)) is the intuitionistic core (respectively, the classical core) of A .

Proof. By induction on the derivation d of the formula φ (in natural deduction), we construct a
closed λ-term t (possibly containing the constant cc when the derivation d is classical) such that
	 t : φA , using the semantic typing rules given in Propositions 2.23, 3.12, 3.14, 3.16, and 3.18. So
that tA � φA . We conclude by Proposition 3.4.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

484 A. Miquel

3.5 Entailment and the induced HA
Let (A ,�,→) be an implicative structure. Each separator S⊆ A induces a binary relation of
entailment, written a	S b and defined by

a	S b :⇔ (a→ b) ∈ S (for all a, b ∈ A)

Proposition 3.20. The relation a	S b is a preorder on A .

Proof. Reflexivity: given a ∈ A , we have IA � (a→ a) ∈ S. Transitivity: given a, b, c ∈ A such
that (a→ b) ∈ S and (b→ c) ∈ S, we observe that BA = (λxyz . x(yz))A � (b→ c)→ (a→ b)→
a→ c ∈ S, hence (a→ c) ∈ S, by modus ponens.

In what follows, we shall write A /S= (A /S,≤S) the poset reflection of the preordered set
(A ,	S), where

• A /S := A /"	S is the quotient of A by the equivalence relation a"	S b induced by the
preorder a	S b, which is defined by

a"	S b :⇔ (a→ b) ∈ S∧ (b→ a) ∈ S (for all a, b ∈ A)

• α ≤S β is the order induced by the preorder a	S b in the quotient set A /S, which is
characterized by

[a]≤S [b] ⇔ a	S b (for all a, b ∈ A)

writing [a], [b] the equivalence classes of a, b ∈ A in the quotient A /S.

Proposition 3.21 (Induced HA). For each separator S⊆ A , the poset reflection H := (A /S,≤S)
of the preordered set (A ,	S) is an HA whose operations are given for all a, b ∈ A by

[a]→H [b] = [a→ b]
[a]∧H [b] = [a× b] �H = [�] = S
[a]∨H [b] = [a+ b] ⊥H = [⊥] = {c ∈ A : (¬c) ∈ S}

(writing [a] the equivalence class of a). If, moreover, the separator S⊆ A is classical, then the induced
HA H = (A /S,≤S) is a Boolean algebra.

In what follows, the quotient poset H := (A /S,≤S) is called the HA induced by the implicative
algebra (A ,�,→, S).

Proof. Given a, b ∈ A , we observe the following.

• For all c ∈ A , we have IA � (⊥ → c) ∈ S, hence [⊥]≤S [c].
• For all c ∈ A , we have (c→ �)= � ∈ S, hence [c]≤S [�].
• (λz . z (λxy . x))A � (a× b→ a) ∈ S and (λz . z (λxy . y))A � (a× b→ b), hence [a× b]≤S
[a] and [a× b]≤S [b]. Conversely, if c ∈ A is such that [c]≤S [a] and [c]≤S [b],
we have (c→ a) ∈ S and (c→ b) ∈ S. From Propositions 3.4 and 2.12 (2), we get
(λzw .w ((c→ a) z) ((c→ b) z))A � (c→ a× b) ∈ S, hence [c]≤S [a× b]. Therefore, [a×
b]= infH ([a], [b])= [a]∧H [b].

• (λxzw . z x)A � (a→ a+ b) ∈ S and (λyzw .w y)A � (b→ a+ b) ∈ S, hence [a]≤S [a+ b]
and [b]≤S [a+ b]. Conversely, if c ∈ A is such that [a]≤S [c] and [b]≤S [c], we have (a→
c) ∈ S and (b→ c) ∈ S. From Proposition 3.4, we get (λz . z (a→ c) (b→ c))A � (a+ b→
c) ∈ S, hence [a+ b]≤S [c]. Therefore, [a+ b]= supH ([a], [b])= [a]∨H [b].

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 485

• For all c ∈ A , we have (λwz . z w)A � ((c→ a→ b)→ c× a→ b) ∈ S and (λwxy .
w 〈x, y〉)A � ((c× a→ b)→ c→ a→ b) ∈ S. Hence, the equivalence (c→ a→ b) ∈ S iff
(c× a→ b) ∈ S, that is, [c]≤S [a→ b] iff [c× a]≤S [b]. Therefore, [a→ b]=max{γ ∈H :
γ ∧H [a]≤S [b]} = [a]→H [b].

So that the poset (A /S,≤S) is an HA. If, moreover, the separator S⊆ A is classical, then we
have ccA � (¬¬a→ a) ∈ S for all a ∈ A , so that ¬H¬H[a]= [¬¬a]≤S [a], which means that
(A /S,≤S) is a Boolean algebra.

Remarks 3.22. (1) In the particular case where (A ,�,→) is a complete HA (Section 2.2.1), the
separator S⊆ A is a filter, and the above construction amounts to the usual construction of the
quotient A /S in HAs.

(2) Coming back to the general framework of implicative structures, it is clear that the induced
HA H = (A /S,≤S) is non-degenerate (i.e., [�] �= [⊥]) if and only if the separator S⊆ A is
consistent (i.e., ⊥ /∈ S).

(3) When the separator S⊆ A is classical (i.e., when ccA ∈ S), the induced HA is a Boolean
algebra. The converse implication does not hold in general, and we shall see a counter example in
Section 3.6 (Remark 3.26).

(4) In general, the induced HA (A /S,≤S) is not complete – so that it is not an implica-
tive structure either. A simple counter example is given by the complete Boolean algebra P(ω)
(which is also an implicative structure) equipped with the Fréchet filter F = {a ∈P(ω) : a cofinite}
(which is also a classical separator of P(ω)), since the quotient Boolean algebra P(ω)/F is not
complete (Koppelberg, 1989, Chapter 2, Section 5.5).

3.6 Ultraseparators
Let A = (A ,�,→) be an implicative structure. Although the separators of A are in general not
filters, they can be manipulated similarly to filters. By analogy with the notion of ultrafilter, we
define the notion of ultraseparator:

Definition 3.23 (Ultraseparator). We call an ultraseparator of A any separator S⊆ A that is
both consistent and maximal among consistent separators (w.r.t. ⊆).

From Zorn’s lemma, it is clear that

Lemma 3.24. For each consistent separator S0 ⊆ A , there exists an ultraseparator S⊆ A such that
S0 ⊆ S.

Proposition 3.25. For each separator S⊆ A , the following are equivalent.

(1) S is an ultraseparator of A .
(2) The induced HA (A /S,≤S) is the two-element Boolean algebra.

Proof. (1)⇒ (2) Assume that S⊆ A is an ultraseparator. Since S is consistent, we have ⊥ /∈ S
and thus [⊥] �= [�] (= S). Now, take a0 ∈ A such that [a0] �= [⊥], and let S′ = {a ∈ A : [a0]≤S
[a]} = {a ∈ A : (a0 → a) ∈ S} be the preimage of the principal filter↑[a0]⊆ A /S via the canonical
surjection [·] : A → A /S. Clearly, the subset S′ ⊆ A is a consistent separator such that S⊆ S′
and a0 ∈ S′. By maximality, we have S′ = S, so that a0 ∈ S and thus [a0]= [�]. Therefore, A /S=
{[⊥], [�]} is the two-element HA, that is also a Boolean algebra.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

486 A. Miquel

(2)⇒ (1) Let us assume that A /S is the two-element Boolean algebra (so that A /S=
{[⊥], [�]}), and consider a consistent separator S′ ⊆ A such that S⊆ S′. For all a ∈ S′, we have
¬a /∈ S (otherwise, we would have a,¬a ∈ S′, and thus⊥ ∈ S′), hence a /∈ [⊥] and thus a ∈ [�]= S.
Therefore, S′ = S.

Remark 3.26. It is important to notice that a maximal separator is not necessarily classi-
cal, although the induced HA is always the trivial Boolean algebra. Indeed, we have seen
in Section 3.2.2 that any total CA (P, ·, k, s) induces an implicative algebra (A ,�,→, S)=
(P(P),⊆,→,P(P) \ {∅}) whose separator S :=P(P) \ {∅} = A \ {⊥} is obviously an ultrasep-
arator. But when the set P has more than one element, it is easy to check that

ccA �
�
a∈A

(¬¬a→ a) = ⊥ (= ∅)

so that ccA = ⊥ /∈ S. On the other hand, the induced HAA /S is the trivial Boolean algebra, which
corresponds to the well-known fact that, in intuitionistic realizability, one of both formulas φ and
¬φ is realized for each closed formula φ. So that all the closed instances of the law of excluded
middle are actually realized. Of course, this does not imply that the law of excluded middle itself –
that holds for all open formulas – is (uniformly) realized. By the way, this example also shows that
a non-classical separator S⊆ A may induce a Boolean algebra (see Remark 3.22 (3)).

3.7 Separators, filters, and non-deterministic choice
Like filters, separators are upwards closed and nonempty, but they are not closed under binary
meets in general. In this section, we shall now study the particular case of separators that happen
to be filters.

3.7.1 Non-deterministic choice
Given an implicative structure A = (A ,�,→), we let

�A := (λxy . x)A � (λxy . y)A =
�

a,b∈A

(a→ b→ a� b) .

By construction, we have

�A a b � a and �A a b � b (for all a, b ∈ A)
so that we can think of �A as the non-deterministic choice operator (in A), that takes two
arguments a, b ∈ A and returns a or b in an non-deterministic way.6

From the point of view of logic, recall that the meet a� b of two elements a, b ∈ A can be seen
as a strong form of conjunction. Indeed, it is clear that

(λxz . z x x)A � (a� b→ a× b) ∈ S
for all separators S⊆ A and for all a, b ∈ A , so that we have a� b	S a× b. Seen as a type, the
non-deterministic choice operator �A = �

a,b (a→ b→ a� b) precisely expresses the converse
implication, and we easily check that

Proposition 3.27 (Characterizing filters). For all separators S⊆ A , the following assertions are
equivalent:

(1) �A ∈ S;
(2) [a� b]/S = [a× b]/S for all a, b ∈ A ;
(3) S is a filter (w.r.t. the ordering�).

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 487

Proof. (1)⇒ (2) For all a, b ∈ A , it is clear that [a� b]/S ≤S [a× b]/S. And from (1), we get(
λz . z �A

)A � (a× b→ a� b) ∈ S, hence [a× b]/S ≤S [a� b]/S.
(2)⇒ (3) Let us assume that a, b ∈ S. We have [a]/S = [b]/S = [�]/S, so that by (2) we get [a�
b]/S = [a× b]/S = [� × �]/S = [�]/S. Therefore, (a� b) ∈ S.

(3)⇒ (1) It is clear that (λxy . x)A ∈ S and (λxy . y)A ∈ S, so that from (3) we get �A =
(λxy . x)A � (λxy . y)A ∈ S.

3.7.2 Non-deterministic choice and induction
In second-order logic (Girard et al., 1989; Krivine, 1993), the predicate N(x) expressing that a
given individual x is a natural number7 is given by

N(x) := ∀Z (Z(0)⇒ ∀y (Z(y)⇒ Z(y+ 1))⇒ Z(x)) .

In intuitionistic realizability (Krivine, 1993; van Oosten, 2008) as in classical realizability (Krivine,
2009), it is well known that the (unrelativized) induction principle IND := ∀x N(x) is not realized
in general, even when individuals are interpreted by natural numbers in the model. (Technically,
this is the reason why uniform quantifications over the set of natural numbers need to be replaced
by quantifications relativized to the predicate N(x).)

In any implicative structure A = (A ,�,→), the syntactic predicate N(x) is naturally inter-
preted by the semantic predicate NA :ω→ A defined by

NA (n) :=
�

a∈A ω

(
a0 →

�
i∈ω

(
ai → ai+1

)
→ an

)
(for all n ∈ω)

while the (unrelativized) induction scheme is interpreted by the truth value

INDA :=
�
n∈ω

NA (n) .

The following proposition states that the unrelativized induction scheme INDA and the non-
deterministic choice operator �A are intuitionistically equivalent in A :

Proposition 3.28. INDA "	S0J (A) �A (where S0J (A) is the intuitionistic core of A).

Proof. (INDA 	S0J (A) �A) Given a, b ∈ A , we let c0 = a and cn = b for all n≥ 1. From an
obvious argument of subtyping, we get

INDA �
�
n∈ω

(
c0 →

�
i∈ω

(
ci → ci+1

)
→ cn

)
= a→ ((a→ b)� (b→ b))→ a� b

so that (λnxy . n x (K y))A � (INDA → a→ b→ a� b). Now taking the meet for all a, b ∈ A , we
thus get (λnxy . n x (K y))A � (INDA →�A) ∈ S0J (A).

(�A 	S0J (A) INDA) Consider the following pure λ-terms:

zero := λxy . x
succ := λnxy . y (n x y)

Y := (λyf . f (y y f)) (λyf . f (y y f))
t[x] := Y (λr . x zero (succ r))

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

488 A. Miquel

(here, Y is Turing’s fixpoint combinator). From the typing rules of Proposition 2.23, we easily
check that zeroA � N(0) and succA � N(n)→ N(n+ 1) for all n ∈ω. Now, consider the element
� := (

t[�A]
)A ∈ A . From the reduction rule of Y, we get

� � �A zeroA (succA�) � zeroA � succA� .
By a straightforward induction on n, we deduce that �� N(n) for all n ∈ω, hence �� INDA .
Therefore, (λx . t[x])A � (�A →�)� (�A → INDA) ∈ S0J (A).

3.7.3 Non-deterministic choice and the parallel-or
A variant of the non-deterministic choice operator is the parallel “or,” that is defined by

p-orA := (⊥ → � → ⊥)� (� → ⊥ → ⊥) .
Intuitively, the parallel “or” is a function that takes two arguments – one totally defined and the
other one totally undefined – and returns the most defined of both, independently from the order
in which both arguments were passed to the function. (Recall that according to the definitional
ordering a� b :⇔ a� b, the element⊥ represents the totally defined object, whereas� represents
the totally undefined object.)

We observe that
�A =

�
a,b∈A

(a→ b→ a� b) � (⊥ → � → ⊥)� (� → ⊥ → ⊥) ,

which means that the parallel “or” p-orA is a super-type of the non-deterministic choice operator
�A . However, both operators are classically equivalent.

Proposition 3.29. p-orA "	S0K (A) �A (where S0K(A) is the classical core of A).

Proof. (�A 	S0K (A) p-orA) Obvious, by subtyping.

(p-orA 	S0K (A) �A) Let t := λzxy . cc (λk . z (k x) (k y)). From the semantic typing rules of
Proposition 2.23 (and from the type of cc), we easily check that

tA � (p-orA → a→ b→ a) and tA � (p-orA → a→ b→ b)

for all a, b ∈ A , hence tA � (p-orA →�A) ∈ S0K(A).

3.7.4 The case of finitely generated separators
In Proposition 3.27, we have seen that a separator S⊆ A is a filter if and only if it contains the
non-deterministic choice operator�A . In the particular case where the separator S⊆ A is finitely
generated (see Section 3.3), the situation is even more dramatic:

Proposition 3.30. Given a separator S⊆ A , the following are equivalent.

(1) S is finitely generated and �A ∈ S.
(2) S is a principal filter of A : S= ↑{�} for some� ∈ S.
(3) The induced HA (A /S,≤S) is complete, and the canonical surjection [·]/S : A → A /S

commutes with arbitrary meets:[�
i∈I

ai
]
/S

=
∧
i∈I

[ai]/S (for all (ai)i∈I ∈ A I)

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 489

Proof. (1)⇒ (2) Let us assume that S= ↑@({g1, . . . , gn}) for some g1, . . . , gn ∈ S (see
Section 3.3, Proposition 3.9), and �A ∈ S. From the latter assumption, we know (by
Proposition 3.27) that S is closed under all finite meets, so that for all k≥ 1, we have

�A
k :=

k�
i=1

(λx1 · · · xk . xi)A =
�

a1,...,ak∈A

(a1 → · · · → ak → a1 � · · ·� ak) ∈ S .

Let � := (
Y (λr .�A

n+1g1 · · · gn (r r))
)A , where Y := (λyf . f (y y f)) (λyf . f (y y f)) is Turing’s fix-

point combinator. Since g1, . . . , gn,�A
n+1 ∈ S, it is clear that � ∈ S. From the evaluation rule of

Y, we have � � �A
n+1g1 · · · gn (��) � g1 � · · ·� gn ���, hence�� gi for all i ∈ {1, . . . , n}

and ����. By a straightforward induction, we deduce that �� a for all a ∈@({g1, . . . , gn})
(recall that the latter set is generated from g1, . . . , gn by application), and thus �� a for all
a ∈ ↑@({g1, . . . , gn})= S (by upwards closure). Therefore, �=min (S) and S= ↑{�} (since S is
upwards closed).

(2)⇒ (3) Let us assume that S= ↑{�} for some� ∈ S. Let (αi)i∈I ∈ (A /S)I be a family of equiv-
alence classes indexed by an arbitrary set I, and (ai)i∈I ∈ ∏

i∈I αi a system of representatives. Since(�
i∈I ai

)
� ai for all i ∈ I, we have

[�
i∈I ai

]
/S ≤S αi for all i ∈ I, hence

[�
i∈I ai

]
/S is a lower bound

of (αi)i∈I in A /S. Now, let us assume that β = [b]/S is a lower bound of (αi)i∈I in A /S, which
means that (b→ ai) ∈ S for all i ∈ I. But since S= ↑{�}, we have�� (b→ ai) for all i ∈ I, hence
��

(
b→ �

i∈I ai
)
, so that β = [b]/S ≤S

[�
i∈I ai

]
/S. Therefore,

[�
i∈I ai

]
/S is the g.l.b. of the fam-

ily (αi)i∈I =
(
[ai]/S

)
i∈I in A /S. This proves that the induced HA (A /S,≤S) is complete, as well as

the desired commutation property.

(3)⇒ (2)⇒ (1) Let us assume that the HA (A /S,≤S) is complete, and that the canon-
ical surjection [·]/S : A → A /S commutes with arbitrary meets. Letting � := �

S, we
observe that [

�
]
/S =

[�
a∈S

a
]
/S

=
∧
a∈S

[a]/S = [�]/S ,

hence, � ∈ S. Therefore, �=min (S) and S= ↑{�} (since S is upwards closed), which shows
that S is the principal filter generated by �. But this implies that S is finitely generated (we
obviously have S= Sep({�})) and that �A ∈ S (by Proposition 3.27).

Remark 3.31. From a categorical perspective, the situation described by Proposition 3.30 is par-
ticularly important, since it characterizes the collapse of realizability to forcing. Indeed, we shall
see in Section 4.5 (Theorem 4.13) that the tripos induced by an implicative algebra (A ,�,→, S)
(Section 4.4) is isomorphic to a forcing tripos (induced by some complete HA) if and only if the
separator S⊆ A is a principal filter of A , that is, if and only if the separator S is finitely generated
and contains the non-deterministic choice operator �A .

3.8 On the interpretation of existential quantification as a join
In Section 3.4, we have seen that existential quantifications cannot be interpreted by (infinitary)
joins in the general framework of implicative structures. (We shall actually present a counter
example at the end of this section.) Using the material presented in Section 3.7, we shall now
study the particular class of implicative structures where existential quantifications are naturally
interpreted by joins.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

490 A. Miquel

Formally, we say that an implicative structure A = (A ,�,→) is compatible with joins when it
fulfills the additional axiom

�
a∈A

(a→ b) =
(�
a∈A

a
)

→ b

for all subsetsA⊆ A and for all b ∈ A . (Note that the converse relation� holds in any implicative
structure, so that only the direct relation�matters.)

This axiom obviously holds in any complete HA (or Boolean algebra), as well as in any implica-
tive structure induced by a total CA (P, ·, k, s) (Section 2.7.1). On the other hand, the implicative
structures induced by classical realizability (Section 2.7.2) are in general not compatible with joins,
as we shall see below.

When an implicative structure A = (A ,�,→) is compatible with joins, the existential
quantifier can be interpreted as a join

∃
i∈I

ai :=
�
i∈I

ai

since the corresponding elimination rule is directly given by the subtyping relation
�
i∈I

(ai → b) �
(�
i∈I

ai
)

→ b .

In this situation, we can also observe many simplifications at the level of the defined connectives
× and +:

Proposition 3.32. If an implicative structure A = (A ,�,→) is compatible with joins, then for all
a ∈ A , we have

⊥ → a = � p-orA = �
a× ⊥ = � → ⊥ a+ ⊥ = (λxy . x a)A

⊥ × a = � → ⊥ ⊥ + a = (λxy . y a)A

Proof. Indeed, we have

• ⊥ → a= (
�

∅)→ a= �
∅= �, from the compatibility with joins.

• p-orA = (⊥ → � → ⊥)� (� → ⊥ → ⊥)= �� (� → �)= �.
• a× ⊥ = �

c ((a→ ⊥ → c)→ c)= �
c (� → c)= � → ⊥.

• ⊥ × a= �
c ((⊥ → a→ c)→ c)= �

c (� → c)= � → ⊥.
• By semantic typing, we have

(λxy . x a)A �
�

c ((a→ c)→ (⊥ → c)→ c) = a+ ⊥ .

And conversely,

a+ ⊥ =
�
c
((a→ c)→ (⊥ → c)→ c) =

�
c
((a→ c)→ � → c)

�
�
d,e

((a→ da)→ e→ da) �
�
d,e

(d→ e→ da) = (λxy . x a)A

• The equality ⊥ + a= (λxy . y a)A is proved similarly.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 491

In particular, we observe a trivialization of the parallel “or”: p-orA = �, so that by
Proposition 3.29, we get �A ∈ S0K(A). Therefore, by Proposition 3.27, it is clear that

Proposition 3.33. If an implicative structure A = (A ,→,�) is compatible with joins, then all its
classical separators are filters.

Of course, this situation is highly undesirable in classical realizability (see Remark 3.31 above),
and this explains why classical realizability is not and cannot be compatible with joins in general
(except in the degenerate case of forcing).

Remark 3.34 (Themodel of threads). In Krivine (2012), Krivine constructs a model of Zermelo-
Fraenkel set theory with the axiom of Dependent Choice (ZF+DC) from a particular AKS (see
Section 2.7.2), called the model of threads. This particular AKS is defined in such a way that it is
consistent, while providing a proof-like term θ ∈ PL that realizes the negation of the parallel “or”:

θ � ¬((⊥ → � → ⊥)� (� → ⊥ → ⊥)).
In the induced classical implicative algebra (A ,�,→, S) (Section 3.2.3), we thus have ⊥ /∈ S and
¬p-orA ∈ S. Hence, p-orA /∈ S and thus �A /∈ S (by Proposition 3.29), so that S is not a filter
(Proposition 3.27). From Proposition 3.33 (by contraposition), it is then clear that the underlying
implicative structure (A ,�,→) is not compatible with joins.

4. The Implicative Tripos
In Section 3.5, we have seen that any implicative algebra (A ,�,→, S) induces an HA (A /S,≤S)
that intuitively captures the corresponding logic, at least at the propositional level. In this sec-
tion, we shall see that this construction more generally gives rise to a (Set-based) tripos, called an
implicative tripos. For that, we first need to present some constructions on implicative structures
and on separators.

4.1 Product of implicative structures
Let (Ai)i∈I = (Ai,�i,→i)i∈I be a family of implicative structures indexed by an arbitrary set I.
The Cartesian product A := ∏

i∈I Ai is naturally equipped with the ordering (�)⊆ A 2 and the
implication (→) : A 2 → A that are defined componentwise:

(ai)i∈I � (bi)i∈I :⇔ ∀i ∈ I, ai �i bi

(ai)i∈I → (bi)i∈I := (ai →i bi)i∈I

(product ordering)

(product implication)

It is straightforward to check that

Proposition 4.1. The triple (A ,�,→) is an implicative structure.

In the product implicative structure (A ,�,→)= ∏
i∈I Ai, the defined constructions ¬a

(negation), a× b (conjunction), a+ b (disjunction), ab (application), ccA (Peirce’s law), and �A

(non-deterministic choice) are naturally characterized componentwise:

Proposition 4.2. For all a, b ∈ A = ∏
i∈I Ai, we have

¬a = (¬ai)i∈I a× b = (ai × bi)i∈I a+ b = (ai + bi)i∈I
ab = (aibi)i∈I ccA = (

ccAi
)
i∈I �A = (

�Ai
)
i∈I

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

492 A. Miquel

Proof. Given a, b ∈ A , we have

a× b=
�
c∈A

((a→ b→ c)→ c) =
�
c∈A

(
(ai → bi → ci)→ ci

)
i∈I

=
(�
c∈Ai

((ai → bi → c)→ c)
)
i∈I

= (
ai × bi

)
i∈I

ab=
�{

c ∈ A : a� (b→ c)
} =

� ∏
i∈I

{
c ∈ Ai : ai � (bi → c)

}
=

(�{
c ∈ Ai : ai � (bi → c)

})
i∈I = (

aibi
)
i∈I

The other equalities are proved similarly.

Proposition 4.3. For all pure λ-terms t(x1, . . . , xk) with free variables x1, . . . , xk and for all
parameters a1, . . . , ak ∈ A = ∏

i∈I Ai, we have

t(a1, . . . , ak)A =
(
t
(
a1,i, . . . , ak,i

)Ai
)
i∈I

Proof. By structural induction on the term t(x1, . . . , xk). The case of a variable is obvious, the
case of an application follows from the equality ab= (aibi)i∈I , so that we only treat the case where
t(x1, . . . , xk)= λx0 . t0(x0, x1, . . . , xk). In this case, we have

t(a1, . . . , ak)A = (
λx0 . t0(x0, a1, . . . , ak)

)A
=

�
a0∈A

(a0 → t0(a0, a1, . . . , ak)A)

=
�

a0∈A

(
a0,i →i t0

(
a0,i, a1,i, . . . , ak,i

)Ai
)
i∈I (by IH)

=
(�
a0∈Ai

(
a0 →i t0

(
a0, a1,i, . . . , ak,i

)Ai
))

i∈I

=
((
λx0 . t0(x0, a1,i, . . . , ak,i)

)Ai
)
i∈I =

(
t
(
a1,i, . . . , ak,i

)Ai
)
i∈I

4.1.1 Product of separators
Given a family of separators (Si ⊆ Ai)i∈I , it is clear that the Cartesian product S= ∏

i∈I Si is also a
separator of A = ∏

i∈I Ai. In the product separator S= ∏
i∈I Si, the relation of entailment a	S b

and the corresponding equivalence a"	S b are characterized by

a	S b ⇔ ∀i ∈ I, ai 	Si bi
a"	S b ⇔ ∀i ∈ I, ai "	Si bi

(for all a, b ∈ A)

For each index i ∈ I, the corresponding projection πi : A → Ai factors into a map

π̃i : A /S → Ai/Si
[a]/S �→ [ai]/Si

that is obviously a morphism of HAs (from Propositions 3.21 and 4.2). In this situation, we
immediately get the factorization A /S ∼= ∏

i∈I (Ai/Si), since:

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 493

Proposition 4.4. The map

〈π̃i〉i∈I : A /S →
∏
i∈I

(Ai/Si)

is an isomorphism of HAs.

Proof. For all a, b ∈ A , we have

[a]≤S [b] ⇔ (a→ b) ∈ S ⇔ (∀i ∈ I) (ai → bi) ∈ Si ⇔ (∀i ∈ I) [ai]≤Si [bi]

which proves that the map 〈π̃i〉i∈I : A /S→ ∏
i∈I (Ai/Si) is an embedding of the poset (A /S,≤S)

into the product poset
∏

i∈I (Ai/Si,≤Si). Moreover, the map 〈π̃i〉i∈I is clearly surjective (from the
axiom of choice); therefore, it is an isomorphism of posets, and thus an isomorphism of HAs.

4.2 The uniform power separator
Let A = (A ,�,→) be a fixed implicative structure. For each set I, we write

A I = (A I ,�I ,→I) :=
∏
i∈I

(A ,�,→)

the corresponding power implicative structure, which is a particular case of the product presented
in Section 4.1. Each separator S⊆ A induces two separators in A I :

— The power separator SI := ∏
i∈I S⊆ A I .

— The uniform power separator S[I]⊆ A , that is defined by

S[I] := {a ∈ A : ∃s ∈ S, ∀i ∈ I, s� ai} = ↑img(δI) ,

where δI : A → A I is defined by δ(a)= (i �→ a) for all a ∈ A .

From the definition, it is clear that S[I]⊆ SI ⊆ A . The converse inclusion SI ⊆ S[I] does not hold
in general, and we easily check that

Proposition 4.5. For all separators S⊆ A , the following are equivalent.

(1) S[I]= SI.
(2) S is closed under all I-indexed meets.

Proof. (1)⇒ (2) Let (ai)i∈I be an I-indexed family of elements of S, that is, an element of SI .
By (1), we have (ai)i∈I ∈ S[I], so that there is s ∈ S such that s� ai for all i ∈ I. Therefore, s�(�

i∈I ai
) ∈ S (by upwards closure).

(2)⇒ (1) Let (ai)i∈I ∈ SI . By (2), we have s := (�
i∈I ai

) ∈ S, and since s� ai for all i ∈ I, we get
that (ai)i∈I ∈ S[I] (by definition). Hence, SI = S[I].

Thanks to the notion of uniform separator, we can also characterize the intuitionistic and
classical cores (Section 3.3) of the power implicative structure A I .

Proposition 4.6. S0J (A I)= S0J (A)[I] and S0K(A I)= S0K(A)[I].

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

494 A. Miquel

Proof. Recall that: S0J (A) = ↑{
(t)A : t closed λ-term}

S0J (A I) = ↑{
(t)A I : t closed λ-term}

S0J (A)[I] = {
a ∈ A I : ∃s ∈ S0J (A), ∀i ∈ I, s� ai

}
.

Since S0J (A I) is the smallest separator of A I , we have S0J (A I)⊆ S0J (A)[I]. Conversely, take a ∈
S0J (A)[I]. By definition, there is s ∈ S0J (A) such that s� ai for all i ∈ I. And since s ∈ S0J (A), there
is a closed λ-term t such that (t)A � s, hence (t)A � ai for all i ∈ I. From Proposition 4.3, we
deduce that (t)A I = (

(t)A
)
i∈I � (ai)i∈I (in A I), hence (ai)i∈I ∈ S0J (A I). The equality S0K(A I)=

S0K(A)[I] is proved similarly, using closed λ-terms with cc instead of pure λ-terms.

In the rest of this section, we shall see that, given a separator S⊆ A , the correspondence I �→
A I/S[I] (from unstructured sets to HAs) is functorial and actually constitutes a tripos.

4.3 Triposes
4.3.1 The category of HAs
Given two HAs H and H′, a function F :H →H′ is called amorphism of HAs when

F(a∧H b) = F(a)∧H′ F(b) F(�H) = �H′

F(a∨H b) = F(a)∨H′ F(b) F(⊥H) = ⊥H′

F(a→H b) = F(a)→H′ F(b)

(for all a, b ∈H)

(In other words, a morphism of HAs is a morphism of bounded lattices that also preserves
Heyting’s implication. Note that such a function is always monotonic.)

The category of HAs is the category whose objects are the HAs and whose arrows are the
morphisms of HAs; it is a (non-full) subcategory of the category of posets (notation: Pos). This
category also enjoys some specific properties that will be useful in the following:

(1) An arrow is an isomorphism inHA if and only if it is an isomorphism in Pos.
(2) Any injective morphism of HAs F :H →H′ is also an embedding of posets, in the sense

that: a≤ b iff F(a)≤ F(b) (for all a, b ∈H).
(3) Any bijective morphism of HAs is also an isomorphism.

4.3.2 Set-based triposes
In this section, we recall the definition of Set-based triposes, such as initially formulated byHyland
et al. in (1980). For the general definition of triposes, where the base category Set can be replaced
by an arbitrary Cartesian category, see for instance (Pitts 1981, 2002).

Definition 4.7 (Set-based tripos). A Set-based tripos is a functor P : Setop →HA that fulfills the
following three conditions:

(1) For each function f : I → J, the corresponding map Pf : PJ → PI has left and right adjoints
in Pos that are monotonic maps ∃f , ∀f : PI → PJ such that

∃f (p)≤ q ⇔ p≤ Pf (q)

q≤ ∀f (p) ⇔ Pf (q)≤ p
(for all p ∈ PI, q ∈ PJ)

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 495

(2) Beck–Chevalley condition. Each pullback square in Set (on the left-hand side) induces the
following two commutative diagrams in Pos (on the right-hand side):

I
f1 ��

f2
��

I1
g1
��

I2 g2
�� J

⇒
PI

∃f1 �� PI1

PI2

Pf2

��

∃g2
�� PJ

Pg1

�� PI
∀f1 �� PI1

PI2

Pf2

��

∀g2
�� PJ

Pg1

��

That is, ∃f1 ◦ Pf2 = Pg1 ◦ ∃g2 and ∀f1 ◦ Pf2 = Pg1 ◦ ∀g2.
(3) The functor P : Setop →HA has a generic predicate, that is, a predicate Tr ∈ P Prop (for some

set Prop) such that for all sets I, the following map is surjective:

PropI → PI
f �→ Pf (Tr)

Remarks 4.8 (Intuitive meaning of the definition). Intuitively, each Set-based tripos
P : Setop →HA describes a particular model of intuitionistic higher order logic, in which higher
order types are modeled by sets. In this framework,
(1) the functor P : Setop →C associates to each “type” I ∈ Set the poset PI of all predicates over I.
The ordering on PI represents inclusion of predicates (in the sense of the considered model),
whereas equality represents extensional equality (or logical equivalence). In what follows, it is con-
venient to think that predicates p, q, . . . ∈ PI represent abstract formulas p(x), q(x), . . . depending
on a variable x : I, so that

whereas

p≤ q means (∀x ∈ I)(p(x)⇒ q(x))

p= q means (∀x ∈ I)(p(x)⇔ q(x)) .

The fact that PI is an HA simply expresses that the predicates over I can be composed using all
the connectives of intuitionistic logic and that these operations fulfill the laws of intuitionistic
propositional logic.
(2) the functoriality of P expresses that each function f : I → J induces a substitution map Pf :
PJ → PI that intuitively associates to each predicate q ∈ PJ its “preimage” Pf (q)= “q ◦ f ” ∈ PI.
Again, if we think that the predicate q ∈ PJ represents an abstract formula q(y) depending on a
variable y : J, then the predicate Pf (q) represents the substituted formula q(y){y := f (x)} ≡ q(f (x))
(that now depends on x : I). The fact that the substitution map Pf : PJ → PI is a morphism of HAs
expresses that substitution commutes with all the logical connectives.
(3) Given a function f : I → J, the left and right adjoints ∃f , ∀f : PI → PJ represent existential and
universal quantifications along the function f : I → J. By this, we mean that if a predicate p ∈ PI
represents a formula p(x) (depending on x : I), then

whereas

∃f (p) represents the formula (∃x : I)(f (x)= y∧ p(x))

∀f (p) represents the formula (∀x : I)(f (x)= y⇒ p(x))

(where both right-hand side formulas depend on y : J). Both “quantified” predicates ∃f (p), ∀f (p) ∈
PJ are characterized by the adjunctions

and

∃f (p)≤ q iff p≤ Pf (q)

q≤ ∀f (p) iff Pf (q)≤ p

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

496 A. Miquel

(for all q ∈ PJ), which express the logical equivalences

and

(∀y : J)[(∃x : I)(f (x)= y∧ p(x)) ⇒ q(y)] ⇔ (∀x : I)[p(x) ⇒ q(f (x))]

(∀y : J)[q(y) ⇒ (∀x : I)(f (x)= y⇒ p(x))] ⇔ (∀x : I)[q(f (x)) ⇒ p(x)] .

Note that unlike the substitution map Pf : PJ → PI, the two adjoints ∃f , ∀f : PI → PJ are only
monotonic maps (i.e., arrows in Pos); they are not morphisms of HAs in general. (Quantifiers
do not commute will all connectives!) Nevertheless, left adjoints commute with joins (and ⊥),
whereas right adjoints commute with meets (and �):

∃f (p1 ∨ p2) = ∃f (p1)∨ ∃f (p2) ∃f (⊥) = ⊥
∀f (p1 ∧ p2) = ∀f (p1)∧ ∀f (p2) ∀f (�) = �

(for all p1, p2 ∈ PI)

Using left adjoints, we can also define the equality predicate
(=I) := ∃δI(�I) ∈ P(I × I) (for each I ∈ Set)

writing δI : I → I × I the duplication function and �I the top element of PI. From what precedes,
it should be clear to the reader that this predicate represents the formula (∃x ∈ I)(δ(x)= (x1, x2)∧
�) (depending on x1, x2 : I), that is equivalent to x1 = x2.
(4) The Beck–Chevalley condition expresses a property of commutation between substitution and
quantifications. It is typically used with pullback squares of the form

I ×K
πI, K ��

f×idK
��

I

f
��

J ×K
πJ, K

�� J

where the adjoints ∃πI,K , ∀πI,K : P(I ×K)→ PI and ∃πJ,K , ∀πJ,K : P(J ×K)→ PJ represent
“pure” quantifications over an abstract variable z :K (in the contexts x : I and y : J, respectively).
In this case, the induced equalities

∃πI,K ◦ P(f × idK)= Pf ◦ ∃πJ,K and ∀πI,K ◦ P(f × idK)= Pf ◦ ∀πJ,K

P(I ×K)
∃πI,K �� PI

P(J ×K) ∃πJ,K
��

P(f×idK)

��

PJ

Pf

�� P(I ×K)
∀πI,K �� PI

P(J ×K) ∀πJ,K
��

P(f×idK)

��

PJ

Pf

��

express for each predicate q ∈ P(J ×K) the logical equivalences

and

(∀x : I)[(∃z :K)(q(y, z){y := f (x), z := z}) ⇔ ((∃z :K)q(y, z)){y := f (x)}]
(∀x : I)[(∀z :K)(q(y, z){y := f (x), z := z}) ⇔ ((∀z :K)q(y, z)){y := f (x)}]

describing the behavior of substitution with respect to quantifiers.
(5) The Beck–Chevalley condition requires that the diagrams

PI
∃f1 �� PI1

PI2

Pf2

��

∃g2
�� PJ

Pg1

��

and

PI
∀f1 �� PI1

PI2

Pf2

��

∀g2
�� PJ

Pg1

��

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 497

commute for all pullback squares
I

f1 ��

f2
��

I1
g1
��

I2 g2
�� J

in Set.

However, both commutation properties are equivalent up to the symmetry with respect to the
diagonal (by exchanging the indices 1 and 2 in the above pullback square). By this, we mean that
the ∃-diagram associated to the initial pullback square commutes if and only if the ∀-diagram asso-
ciated to the symmetric pullback square (obtained by exchanging the indices 1 and 2) commutes,
that is,

∃f1 ◦ Pf2 = Pg1 ◦ ∃g2 iff ∀f2 ◦ Pf1 = Pg2 ◦ ∀g1 .
(This equivalence is easily derived from the adjunctions defining the monotonic maps ∃f and ∀f .)
So that in order to prove the Beck–Chevalley condition, we only need to check that all ∃-diagrams
commute, or that all ∀-diagrams commute.
(6) Finally, the set Prop represents the type of propositions, whereas the generic predicate Tr ∈
P Prop represents the formula asserting that a given proposition is true. Thanks to this predicate,
we can turn any functional proposition into a predicate via the map

PropI → PI
f �→ Pf (Tr)

(I ∈ Set)

We require that this map is surjective for all sets I, thus ensuring that each predicate p ∈ PI is
represented by (at least) a functional proposition f ∈ PropI .

Remark 4.9 (Non-uniqueness of the generic predicate). It is important to observe that in a
Set-based tripos P, the generic predicate is never unique.
(1) Indeed, given a generic predicate Tr ∈ P Prop and a surjection h : Prop′ → Prop, we can always
construct another generic predicate Tr′ ∈ P Prop′, letting Tr′ = Ph(Tr).8

(2) More generally, if Tr ∈ P Prop and Tr′ ∈ P Prop′ are two generic predicates of the same tri-
pos P, then there always exist two conversion maps h : Prop′ → Prop and h′ : Prop→ Prop′ such
that Tr′ = Ph(Tr) and Tr= Ph′(Tr). Intuitively, the sets Prop and Prop′ represent distinct imple-
mentations of the type of propositions (they do not need to have the same cardinality), whereas
the conversion functions h : Prop′ → Prop and h′ : Prop→ Prop′ implement the corresponding
changes in representation.

Example 4.10 (Forcing tripos). Given a complete HA (H,≤), the functor P : Setop →HA defined
for all I, J ∈ Set and f : I → J by

PI := HI and Pf := (h �→ h ◦ f) : HJ →HI

is a Set-based tripos, in which left and right adjoints ∃f , ∀f : PI → PJ are given by

∃f (p) :=
(∨
i∈f−1(j)

pi
)
j∈J

and ∀f (p) :=
(∧
i∈f−1(j)

pi
)
j∈J

(for all f : I → J and p ∈ PI =HI), and whose generic predicate (Prop, Tr) is given by

Prop := H and Tr := idH ∈ PProp .

Such a tripos is called a Heyting tripos, or a forcing tripos.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

498 A. Miquel

4.4 Construction of the implicative tripos
Theorem 4.11 (Implicative tripos). Let A = (A ,�,→, S) be an implicative algebra. For each set
I, we write PI = A I/S[I]. Then:

(1) The correspondence I �→ PI induces a (contravariant) functor P : Setop →HA
(2) The functor P : Setop →HA is a Set-based tripos.

Proof. It is clear that for each set I, the poset (A I/S[I],≤S[I]) is an HA, namely, the HA induced
by the implicative algebra (A I ,�I ,→I , S[I]).

Functoriality Let I, J ∈ Set. Each function f : I → J induces a reindexing map A f : A J → A I

defined by A f (a)= a ◦ f for all a ∈ A J . Now, let us consider two families a, b ∈ A J such
that a"	S[J] b, that is, such that

�
j∈J (aj ↔ bj) ∈ S. Since

�
j∈J (aj ↔ bj)�

�
i∈I (af (i) ↔

bf (j)), we deduce that
�

i∈I (af (i) ↔ bf (i)) ∈ S, so that A f (a)"	S[I] A f (b). Therefore,
through the quotients PJ = A J/S[J] and PI = A I/S[I], the reindexing map A f : A J →
A I factors into a map Pf : PJ → PI. We now need to check that the map Pf : PJ → PI is
a morphism of HAs. For that, given predicates p= [a]/S[J] ∈ PJ and q= [b]/S[J] ∈ PJ, we
observe that

Pf (p∧ q) = Pf
([
a×J b

]
/S[J]

) = Pf
([
(aj × bj)j∈J

]
/S[J]

)
= [

(af (i) × bf (i))i∈I
]
/S[I] = [

(af (i))i∈I ×I (bf (i))i∈I
]
/S[I]

= [
(af (i))i∈I

]
/S[I] ∧

[
(bf (i))i∈I

]
/S[I] = Pf (p)∧ Pf (q)

(The case of the other connectives ∨, →, ⊥, and � is similar.) The contravariant functori-
ality of the correspondence f �→ Pf is obvious from the definition.

Existence of right adjoints Let f : I → J. For each family a ∈ A I , we let

∀0f (a) =
(�
f (i)=j

ai
)
j∈J

(∈ A J)

We observe that for all a, b ∈ A I and s ∈ S,

s�
�
i∈I

(ai → bi) implies s�
�
j∈J

(∀0f (a)j → ∀0f (b)j) .

Therefore,
and thus

a	S[I] b implies ∀0f (a)	S[J] ∀0f (b) ,
a"	S[I] b implies ∀0f (a)"	S[J] ∀0f (b) .

For each predicate p= [a]/S[I] ∈ PI, we can now let ∀f (p)= [∀0f (a)]/S[J] ∈ PJ. Given
p= [a]/S[I] ∈ PI and q= [b]/S[J] ∈ PJ, it remains to check that

Pf (q)≤ p iff
�
i∈I

(bf (i) → ai) ∈ S iff
�
j∈J

�
f (i)=j

(bj → ai) ∈ S

iff
�
j∈J

(
bj →

�
f (i)=j

ai
)

∈ S iff
�
j∈J

(
bj → ∀0f (a)j

) ∈ S

iff q≤ ∀f (p)

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 499

Existence of left adjoints Let f : I → J. For each family a ∈ A I , we let

∃0f (a) =
(∃
f (i)=j

ai
)
j∈J

=
(�
c∈A

(�
f (i)=j

(ai → c) → c
))

j∈J
(∈ A J)

We observe that for all a, b ∈ A I and s ∈ S,

s�
�
i∈I

(ai → bi) implies s′ �
�
j∈J

(∃0f (a)j → ∃0f (b)j) ,

where s′ := (λxy . x (λz . y (s z)))A ∈ S.

Therefore,
and thus

a	S[I] b implies ∃0f (a)	S[J] ∃0f (b) ,
a"	S[I] b implies ∃0f (a)"	S[J] ∃0f (b) .

For each predicate p= [a]/S[I] ∈ PI, we can now let ∃f (p)= [∃0f (a)]/S[J] ∈ PJ. Given
p= [a]/S[I] ∈ PI and q= [b]/S[J] ∈ PJ, it remains to check that

p≤ Pf (q) iff
�
i∈I

(ai → bf (i)) ∈ S iff
�
j∈J

�
f (i)=j

(ai → bj) ∈ S

iff
�
j∈J

((∃
f (i)=j

ai
)

→ bj
)

∈ S iff
�
j∈J

(∃0f (a)j → bj
) ∈ S

iff ∃f (p)≤ q

(Here, the third “iff ” follows from the soundness of the elimination rule of ∃.)
Beck–Chevalley condition Let us now check that the Beck–Chevalley condition holds for

the functor P : Setop →HA. For that, we consider an arbitrary pullback square in the
category Set

I
f1 ��

f2
��

I1
g1
��

I2 g2
�� J

and we want to show that the following two diagrams commute (in Pos):

PI
∃f1 �� PI1

PI2

Pf2

��

∃g2
�� PJ

Pg1

�� PI
∀f1 �� PI1

PI2

Pf2

��

∀g2
�� PJ

Pg1

��

Since both commutation properties are equivalent up to the symmetry with respect to the
diagonal (Remarks 4.8 (5)), we only need to prove the second commutation property. And
since the correspondence f �→ ∀f is functorial, we can assume without loss of generality
that
• I = {(i1, i2) ∈ I1 × I2 : g1(i1)= g2(i2)}
• f1(i1, i2)= i1, for all (i1, i2) ∈ I
• f2(i1, i2)= i2, for all (i1, i2) ∈ I

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

500 A. Miquel

using the fact that each pullback diagram in Set is of this form, up to a bijection. For all
p= [a]= [

(ai)i∈I2
] ∈ PI2, we check that

(∀f1 ◦ Pf2)(p) = ∀f1
([
(af2(i1,i2))(i1,i2)∈I

]) = ∀f1
([
(ai2)(i1,i2)∈I

])
=

[(�
(i1,i2)∈I

f1(i1,i2)=i′1

ai2
)
i′1∈I1

]
=

[(�
i2∈I2

g2(i2)=g1(i1)

ai2
)
i1∈I1

]

=
[((∀0g2 (a))g1(i1))i1∈I1

]
= Pg1

([∀0g2 (a)])
= (Pg1 ◦ ∀g2)(p)

The generic predicate Let us now take Prop := A and Tr := [idA]/S[A] ∈ P Prop. Given a set
I ∈ Set and a predicate p= [

(ai)i∈I
]
/S[I] ∈ PI, we take f := (ai)i∈I : I → A and check that

Pf (Tr) = Pf
([
(a)a∈A

]
/S[A]

) = [
(ai)i∈I

]
/S[I] = p .

Example 4.12 (Particular case of a complete HA). In the particular case where the implicative
algebra (A ,�,→, S) is a complete HA (which means that → is Heyting’s implication, whereas
the separator is trivial: S= {�}), we can observe that for each set I, the equivalence relation "	S[I]
over A I is discrete (each equivalence class has one element), so that we can drop the quotient:

PI = A I/S[I] ∼ A I .

Up to this technical detail, the implicative tripos associated to the implicative algebra (A ,�,→, S)
is thus the very same as the forcing tripos associated to the underlying complete HA (A ,�) (cf.
Example 4.10).

4.5 Characterizing forcing triposes
Example 4.12 shows that forcing triposes are particular cases of implicative triposes. However, it
turns out that many implicative algebras that are not complete HAs nevertheless induce a tripos
that is isomorphic to a forcing tripos. The aim of this section is to characterize them, by proving
the following:

Theorem 4.13 (Characterizing forcing triposes). Let P : Setop →HA be the tripos induced by an
implicative algebra (A ,�,→, S). Then, the following are equivalent.

(1) P is isomorphic to a forcing tripos.
(2) The separator S⊆ A is a principal filter of A .
(3) The separator S⊆ A is finitely generated and �A ∈ S.

Before proving the theorem, let us recall that:

Definition 4.14. Two Set-based triposes P, P′ : Setop →HA are isomorphic when there exists a
natural isomorphism φ : P⇒ P′, that is, a family of isomorphisms φI : PI ∼→ P′I (indexed by I ∈ Set)
such that the following diagram commutes:

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 501

I

f
��

PI
φI
∼ �� P′I

J PJ

Pf

��

φJ

∼ �� P′J

P′f

��

(for all f : I → J)

(Note that here, the notion of isomorphism can be taken indifferently in the sense of HA or Pos,
since φI : PI → P′I is an iso inHA if and only if it is an iso in Pos.)

Remarks 4.15. The above definition does not take care of generic predicates, since any natural
isomorphism φ : P⇒ P′ automatically maps each generic predicate Tr ∈ P Prop (for the tripos P)
into a generic predicate Tr′ := φProp(Tr) ∈ P′Prop (for the tripos P′).

4.5.1 The fundamental diagram
Given an implicative algebra A = (A ,�,→, S) and a set I, we have seen (Section 4.2) that the
separator S⊆ A induces two separators

S[I] ⊆ SI ⊆ A I

in the power implicative structure A I , where

S[I] := {
(ai)i∈I ∈ A I : ∃s ∈ S, ∀i ∈ I, s� ai

}
(uniform power separator)

We thus get the following (commutative) diagram

A I [·]/S[I] �� ��

[·]
/SI

����

A I/S[I] = PI

ĩd
������
��
��
��
��
��
��
��
�

ρI

����

[(ai)i∈I]/S[I]�

��
A I/SI

αI

∼ �� �� (A /S)I = (P1)I ([ai]/S)i∈I

where

— [·]/S[I] : A I →AI/S[I] (= PI) is the quotient map associated to AI/S[I];
— [·]/SI : A I →AI/SI is the quotient map associated to AI/SI ;
— ˜id : A I/S[I]→ A I/SI is the (surjective) map that factors the identity of A I through the

quotients A I/S[I] and A I/SI (remember that S[I]⊆ SI);
— αI = 〈π̃i〉i∈I : A I/SI → (A /S)I is the canonical isomorphism (Proposition 4.4) between the

HAs A I/SI and (A /S)I (= (P1)I);
— ρI : A I/S[I]→ (A /S)I is the (surjective) map that is defined by ρI := αI ◦ ˜id, so that for all

(ai)i∈I ∈ A I , we have

ρI
([
(ai)i∈I

]
/S[I]

) = (
[ai]/S

)
i∈I .

Proposition 4.16. The following are equivalent.

(1) The map ρI : PI → (P1)I is injective.
(2) The map ρI : PI → (P1)I is an isomorphism of HAs.
(3) Both separators S[I] and SI coincide: S[I]= SI.
(4) The separator S⊆ A is closed under all I-indexed meets.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

502 A. Miquel

Proof. (1)⇔ (2) Recall that a morphism of HAs is an isomorphism (in HA) if and only if the
underlying map (in Set) is bijective. But since ρI is a surjective morphism of HAs, it is clear that
ρI is an isomorphism (inHA) if and only the underlying map (in Set) is injective.

(2)⇔ (3) It is clear that ρI is an iso iff ˜id is an iso, that is, iff S[I]= SI .
(3)⇔ (4) See Proposition 4.5, p. 493.

We can now present:

Proof of Theorem 4.13. Wehave already proved that (2)⇔ (3) (Proposition 3.30, Section 3.7.4),
so that it only remains to prove that (1)⇔ (2).
(2)⇒ (1) When S⊆ A is a principal filter, the HA H := P1= A /S is complete
(Proposition 3.30). Moreover, since S is closed under arbitrary meets, the arrow ρI : PI → (P1)I is
an isomorphism (Proposition 4.16) for all sets I. It is also clearly natural in I, so that the family
(ρI)I∈Set is an isomorphism between the implicative tripos P and the forcing tripos I �→HI

(where H = P1= A /S).
(1)⇒ (2) Let us now assume that there is a complete HA H together with a natural isomor-
phism φI : PI ∼→HI (in I). In particular, we have φ1 : P1 →̃H1 =H, so that A /S= P1∼H is
a complete HA. Now, fix a set I and write ci := {0 �→ i} : 1→ I for each element i ∈ I. Via the
two (contravariant) functors P,H(–) : Setop →HA, we easily check that the arrow ci : 1→ I is
mapped to

and

Pci = ρi : PI → P1

Hci = π ′
i : HI →H

where ρi is the ith component of the surjection ρI : PI� (P1)I and where π ′
i is the ith projection

from HI to H. We then observe that the two diagrams

A /S
φ1
∼ �� H

A I/S[I]

Pci=ρi
��

φI

∼ �� HI

π ′
i=Hci

�� (A /S)I
φI1
∼ �� HI

A I/S[I]

ρI=〈ρi〉i∈I
��

φI

∼ �� HI

idHI=〈π ′
i 〉i∈I∼

��

are commutative. Indeed, the first commutation property comes from the naturality of φ, and the
second commutation property follows from the first commutation property, by gluing the arrows
ρi and π ′

i for all indices i ∈ I. From the second commutation property, it is then clear that the
arrow ρI : PI → (P1)I is an isomorphism for all sets I, so that by Proposition 4.16, the separator
S⊆ A is closed under arbitrary meets, which precisely means that it is a principal filter of A .

Remarks 4.17. Intuitively, Theorem 4.13 expresses that forcing is the same as non-deterministic
realizability (both in intuitionistic and classical logic).

4.6 The case of classical realizability
In Sections 2.2.5 and 3.2.3, we have seen that each AKS K= (�,�, . . .) can be turned into a
classical implicative algebraAK = (P(�), . . .). By Theorem 4.11, the classical implicative algebra
AK induces in turn a (classical) tripos, which we shall call the classical realizability tripos induced
by the AKS K.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 503

Remark 4.18. In Streicher (2013), Streicher shows how to construct a classical tripos (which he
calls a Krivine tripos) from an AKS, using a very similar construction. Streicher’s construction
is further refined in Ferrer Santos et al. (2017), which already introduces some of the main ideas
underlying implicative algebras. Technically, the main difference between Streicher’s construction
and ours is that Streicher works with a smaller algebra A ′

K of truth values, that only contains the
sets of stacks that are closed under bi-orthogonal:

A ′
K = P‚(�) = {S ∈P(�) : S= S‚‚} .

Although Streicher’s algebra A ′
K is not an implicative algebra (it is a classical ordered combina-

tory algebra, following the terminology of Ferrer Santos et al. 2017), it nevertheless gives rise to a
classical tripos, using a construction that is very similar to ours. In Ferrer and Malherbe (2017), it
is shown that Streicher’s tripos is actually isomorphic to the implicative tripos that is constructed
from the implicative algebra AK.

The following theorem states that AKSs generate the very same class of triposes as classical
implicative algebras, so that both structures (AKSs and classical implicative algebras) have actually
the very same logical expressiveness:

Theorem 4.19 (Universality of AKS). For each classical implicative algebra A , there exists an
AKS K that induces the same tripos, in the sense that the classical realizability tripos induced by K
is isomorphic to the implicative tripos induced by A .

The proof of Theorem 4.19 is a consequence of the following lemma:

Lemma 4.20 (Reduction of implicative algebras). Let A = (A ,�A ,→A , SA) and
B = (B,�B ,→B , SB) be two implicative algebras. If there exists a surjective map ψ : B → A
(a “reduction from B onto A ”) such that

(1) ψ
(�

i∈I bi
) = �

i∈I ψ(bi) (for all I ∈ Set and b ∈ BI)
(2) ψ(b→B b′)=ψ(b)→A ψ(b′) (for all b, b′ ∈ B)
(3) b ∈ SB iff ψ(b) ∈ SA (for all b ∈ B)

then the corresponding triposes PA , PB : Setop →HA are isomorphic.

Proof. For each set I, we consider the mapψ I : BI → A I defined byψ I(b)=ψ ◦ b for all b ∈ BI .
Given two points b, b′ ∈ BI , we observe that

b	SB[I] b′ iff
�

i∈I (bi →B b′
i) ∈ SB

iff ψ
(�

i∈I (bi →B b′
i)
) ∈ SA

iff
�

i∈I (ψ(bi)→A ψ(b′
i)) ∈ SA

iff ψ I(b)	SA [I] ψ
I(b′)

From this, we deduce that

(1) The map ψ I : BI → A I is compatible with the preorders 	SB[I] (on BI) and 	SA [I] (on
A I), and thus factors into a monotonic map ψ̃I : PBI → PA I through the quotients PBI =
BI/SB[I] and PA I = A I/SA [I].

(2) Themonotonic map ψ̃I : PBI → PA I is an embedding of partial orderings, in the sense that
p≤ p′ iff ψ̃I(p)≤ ψ̃I(p′) for all p, p′ ∈ PBI.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

504 A. Miquel

Moreover, since ψ : B → A is surjective, the maps ψ I : BI → A I and ψ̃I : PBI → PA I are sur-
jective too, so that the latter is actually an isomorphism in Pos, and thus an isomorphism in HA.
The naturality of ψ̃I : PBI → PA I (in I) follows from the naturality ofψ I : A I → BI (in I), which
is obvious by construction.

Proof of Theorem 4.19. Let A = (A ,�,→, S) be a classical implicative algebra.
Following Ferrer Santos et al. (2017), we define K= (�,�, @, ·, k_, K, S, cc, PL,‚) by

• �=� := A
• a@b := ab, a · b := a→ b and ka := a→ ⊥ (for all a, b ∈ A)
• K :=KA , S := SA and cc := ccA
• PL := S and ‚ := (�A)= {(a, b) ∈ A 2 : a� b}

It is a routine exercise to check that the above structure is an AKS. Note that in this AKS, the
orthogonal β‚ ⊆� of a set of stacks β ⊆� is characterized by

β‚ = {a ∈ A : ∀b ∈ β , a� b} = ⏐�{�
β
}

From the results of Sections 2.2.5 and 3.2.3, the AKS K induces in turn a classical implicative
algebra B = (B,�B ,→B , SB) that is defined by

• B := P(�) = P(A)
• β �B β ′ :⇔ β ⊇ β ′ (for all β , β ′ ∈ B)
• β→B β ′ := β‚ · β ′ = {

a→ a′ : a��
β , a′ ∈ β ′} (for all β , β ′ ∈ B)

• SB := {β ∈ B : β‚ ∩ PL �=∅} = {
β ∈P(A) : �β ∈ SA

}
Let us now define ψ : B → A by ψ(β)= �

β for all β ∈ B (= P(A)). We easily check that ψ :
B → A is a reduction from the implicative algebraB onto the implicative algebraA (in the sense
of Lemma 4.20), so that by Lemma 4.20, the triposes induced by A and B are isomorphic.

4.7 The case of intuitionistic realizability
In Sections 2.2.3 and 2.7.1, we have seen that each PCA P= (P, ·, k, s) induces a quasi-implicative
structureAP = (P(P),⊆,→) based on Kleene’s implication. In intuitionistic realizability (Hyland
et al., 1980; Pitts, 2002; van Oosten, 2008), this quasi-implicative structure AP is the logical
seed from which the corresponding realizability tripos is constructed. Indeed, recall that the
intuitionistic realizability tripos P : Setop →HA induced by a PCA P= (P, ·, k, s) is defined by

PI := P(P)I/"	I (for all I ∈ Set)

where "	I is the equivalence relation associated to the preorder of entailment 	I on the set
P(P)I (= A I

P), which is defined by

a	I a′ iff
⋂
i∈I

(ai → a′
i) �=∅ (for all I ∈ Set and a, a′ ∈P(P)I)

In the particular case where the PCA P= (P, ·, k, s) is a (total) CA, the induced quasi-
implicative structure AP turns out to be a full implicative structure (Fact 2.5 (2), p. 463), and
it should be clear to the reader that the above construction coincides with the construction of
the implicative tripos induced by the implicative algebra (AP,P(P) \ {∅}), which is obtained by
endowing the implicative structure AP with the separator formed by all nonempty truth values.
In other words:

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 505

Proposition 4.21. For each (total) CA P= (P, ·, k, s), the corresponding intuitionistic realizabil-
ity tripos is an implicative tripos, namely, the implicative tripos induced by the implicative algebra
(AP,P(P) \ {∅}) induced by P.

However, there are many interesting intuitionistic realizability triposes (for instance, Hyland’s
effective tripos) that are induced by PCAs whose application is not total. To see how such
realizability triposes fit in our picture, it is now time to make a detour toward the notion of
quasi-implicative algebra and the corresponding tripos construction.

4.7.1 Quasi-implicative algebras
Quasi-implicative structures (Remark 2.2 (2)) differ from (full) implicative structures in that the
commutation property

a→
�
b∈B

b =
�
b∈B

(a→ b)

only holds for the nonempty subsets B⊆ A , so that in general we have (� → �) �= �.
In practice, quasi-implicative structures are manipulated essentially the same way as

(full) implicative structures, the main difference being that, in the absence of the equation
(� → �)= �, the operation of application (a, b) �→ ab (Definition 2.11), and the interpretation
t �→ tA of pure λ-terms (Section 2.4) are now partial functions. Formally,

Definition 4.22 (Interpretation of λ-terms in a quasi-implicative structure). Let (A ,�,→) be
a quasi-implicative structure.

(1) Given a, b ∈ A , we let Ua,b = {c ∈ A : a� (b→ c)}. When Ua,b �=∅, application is defined
as ab := �

Ua,b; otherwise, the notation ab is undefined.
(2) Given a partial function f : A ⇀A , the abstraction λf is (always) defined by

λf :=
�

a∈dom(f)
(a→ f (a)) .

(3) The partial function t �→ tA (from the set of closed λ-terms with parameters in A to A) is
defined by the equations

aA := a, (tu)A := tA uA , (λx . t)A := λ(a �→ (t{x := a})A)

whenever the right-hand side is well defined.
(4) The above interpretation naturally extends to λ-terms with cc, letting

ccA := �
a,b∈A (((a→ b)→ a)→ a) (as before).

(The reader is invited to check that when the equation (� → �)= � holds, the above functions
are total and coincide with the ones defined in Section 2.4.)

In the broader context of quasi-implicative structures,

— All the semantic typing rules of Proposition 2.23, p. 469 remain valid (except the�-introduc-
tion rule), provided we adapt the definition of semantic typing to partiality, by requiring that
well-typed terms have a well-defined interpretation:

� 	 t : a :≡ FV(t)⊆ dom(�), (t[�])A well defined and (t[�])A � a .

— The identities of Proposition 2.24, p. 470 (about combinators KA , SA , etc.) remain valid.
— Separators are defined the same way as for implicative structures (Definition 3.1, p. 477).

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

506 A. Miquel

— A quasi-implicative algebra is a quasi-implicative structure (A ,�,→) equipped with a sepa-
rator S⊆ A . As before, each quasi-implicative algebra (A ,�,→, S) induces an HA written
A /S, that is defined as the poset reflection of the preordered set (A ,	S), where	S is defined
by a	S b :≡ (a→ b) ∈ S for all a, b ∈ A .

Given a quasi-implicative algebra (A ,�,→, S), we more generally associate to each set I the
poset PI := A I/S[I], where S[I] is the corresponding uniform power separator (same definition
as before). It is then a routine exercise to check that:

Proposition 4.23 (Quasi-implicative tripos).

(1) The correspondence I �→ PI induces a (contravariant) functor P : Setop →HA.
(2) The functor P : Setop →HA is a Set-based tripos.

From what precedes, it is now clear that:

Proposition 4.24. Given a PCA P= (P, ·, k, s):
(1) The quadruple (P(P),⊆,→,P(P) \ {∅}) is a quasi-implicative algebra.
(2) The tripos induced by the quasi-implicative algebra (P(P),⊆,→,P(P) \ {∅}) is the intu-

itionistic realizability tripos induced by the PCA P= (P, ·, k, s).

At this point, the reader might wonder why we focused our study on the notion of implicative
algebra rather than on the more general notion of quasi-implicative algebra. The reason is that
from the point of view of logic, quasi-implicative algebras bring no expressiveness with respect
to implicative algebras, due to the existence of a simple completion mechanism that turns any
quasi-implicative algebra into a full implicative algebra, without changing the underlying tripos.

4.7.2 Completion of a quasi-implicative algebra
Given a quasi-implicative structure A = (A ,�A ,→A), we consider the triple B =
(B,�B ,→B) that is defined by

• B := A ∪ {�B}, where �B is a new element;

• b�B b′ iff b, b′ ∈ A and b�A b′, or b′ = �B (for all b, b′ ∈ B)

• b→B b′ :=

⎧⎪⎪⎨⎪⎪⎩
b→A b′ if b, b′ ∈ A

�A → b′ if b= �B and b′ ∈ A

�B if b′ = �B

(for all b, b′ ∈ B)

Fact 4.25. The triple B = (B,�B ,→B) is a full implicative structure.

In what follows, we shall say that the implicative structure B is the completion of the quasi-
implicative structure A 9. Intuitively, this completion mechanism simply consists to add to the
source quasi-implicative structure A a new top element �B (or, from the point of view of
definitional ordering: a new bottom element) that fulfills the equation (�B → �B)= �B by
construction.

Writing φ : A → B the inclusion of A into B, we easily check that:

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 507

Lemma 4.26.

(1) a�A a′ iff φ(a)�B φ(a′) (for all a, a′ ∈ A)

(2) φ
(�
i∈I

ai
)

=
�
i∈I
φ(ai) (for all I �=∅ and a ∈ A I)

(3) φ(a→A a′)= φ(a)→B φ(a′) (for all a, a′ ∈ A)

(4) φ(KA)=KB and φ(SA)= SB

Proof. Items (1), (2), and (3) are obvious from the definition of�B and →B . (Note that (2) only
holds when I �=∅.) To prove (4), we observe that

KB =
�

a,b∈B

(a→B b→B a)

=
�

a,b∈A

(a→B b→B a) �
�
a∈A

(a→B �B →B a) �

�
b∈A

(�B →B b→B �B) � (�B →B �B →B �B)

=
�

a,b∈A

(a→A b→A a) �
�
a∈A

(a→A �A →A a) � �B � �B

=
�

a,b∈A

(a→A b→A a) = φ(KA)

The equality φ(SA)= SB is proved similarly.

From the above lemma, we immediately deduce that:

Proposition 4.27. If SA is a separator of the quasi-implicative structure A , then the set SB :=
SA ∪ {�B} is a separator of the implicative structure B.

Now, given a quasi-implicative algebra A = (A ,�A ,→A , SA), we can define its completion
as the full implicative algebra B = (B,�B ,→B , SB), where

— (B,�B ,→B) is the completion of the quasi-implicative structure (A ,�A ,→A);
— SB := SA ∪ {�B} is the extension of the separator SA ⊆ A into B (Proposition 4.27).

Writing PA : Setop →HA and PB : Setop →HA the triposes induced by A and B, respectively,
it now remains to check that:

Theorem 4.28. The triposes PA , PB : Setop →HA are isomorphic.

Proof. For each set I, we observe that the inclusion map φ : A → B induces an inclusion
map φI : A I → BI (given by φI(a)= φ ◦ a for all a ∈ A I). Given a, a′ ∈ A I , let us now check
that

a	SA [I] a′ iff φI(a)	SB[I] φ
I(a′) .

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

508 A. Miquel

Indeed, the equivalence is clear when I =∅, since a= a′ (for A I is a singleton). And in the case
where I �=∅, we have

a	SA [I] a′ iff
�
i∈I

(ai →A a′
i) ∈ SA

iff φ
(�
i∈I

(ai →A a′
i)
)

∈ SB

iff
�
i∈I

(φ(ai)→B φ(a′
i)) ∈ SB

iff φI(a)	SB[I] φ
I(a′)

(since SA = SB ∩ A = φ−1(SB))

(by Lemma 4.26 (2), (3))

From the above equivalence, it is clear that

(1) The map φI : A I → BI is compatible with the preorders 	SA [I] (on A I) and 	SB[I]
(on BI), and thus factors into a monotonic map φ̃I : PA I → PBI through the quotients
PA I := A I/SA [I] and PBI := BI/SB[I].

(2) The monotonic map φ̃I : PA I → PBI is an embedding of partial orderings, in the sense that
p≤ p′ iff φ̃I(p)≤ φ̃I(p′) for all p, p′ ∈ PA I.

(3) The embedding φ̃I : PA I → PBI is natural in I ∈ Set.

To conclude that the embedding φ̃I : PA I → PBI is an isomorphism in Pos – and thus an iso-
morphism in HA –, it only remains to prove that it is surjective. For that, we consider the map
ψ : B → B that is defined by

ψ(b) :=
�
c∈B

((b→ c)→ c) (for all b ∈ B)

as well as the family of maps ψ I : BI → BI (I ∈ Set) defined by ψ I(b) :=ψ ◦ b for all I ∈ Set and
b ∈ BI . Now, given I ∈ Set and b ∈ BI , we observe that

(1) ψ I(b)"	SB[I] b, since

(λxz . zx)B �
�
i∈I

(bi →ψ(bi)) and (λy . y I)B �
�
i∈I

(ψ(bi)→ bi) .

(2) ψ I(b) ∈ A I , since for all i ∈ I, we have
ψ I(b)i = ψ(bi) � (b→B ⊥)→B ⊥ � ⊥ →B ⊥ = ⊥ →A ⊥ � �A .

Therefore, [b]/SB[I] = [ψ I(b)]/SB[I] = φ̃I
(
[ψ I(b)]/SA [I]

)
. Hence, φ̃I is surjective.

From the above discussion, we can now conclude that

Theorem 4.29. For each PCA P= (P, ·, k, s), the intuitionistic realizability tripos induced by P is
isomorphic to an implicative tripos, namely, to the implicative tripos induced by the completion of
the quasi-implicative algebra (P(P),⊆,→,P(P) \ {∅}).

Notes
1 Here, we put aside the case of numeric (or arithmetic) quantifications that can always be decomposed as a uniform
quantification followed by a relativization: (∀x ∈N)φ(x)≡ ∀x (x ∈N⇒ φ(x)) and (∃x ∈N)φ(x)≡ ∃x (x ∈N∧ φ(x)).
2 The distinction between uniform constructions (e.g., intersection and union types) and non-uniform constructions
(Cartesian product and direct sum) has always been overlooked in model theory, although it is at the core of the phenomenon

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079

Mathematical Structures in Computer Science 509

of incompleteness in logic. Indeed, Gödel’s undecidable sentence is a �0
1-formula G≡ ∀x φ(x) that is built from a particular

�0
0-predicate φ(x) that has no generic proof, although each closed instance φ(n) (n ∈N) has.

3 Note that this correspondence automatically identifies realizers that have the same principal type. But since such realizers
are clearly interchangeable in the “logic” of A , this identification is harmless.
4 As a consequence, the constructions presented in Streicher (2013), Ferrer Santos et al. (2017) only fulfill half of the adjunc-
tion of Proposition 2.12 (5), the missing implication being recovered only up to a step of η-expansion, by inserting the
combinator E = λxy . xy appropriately (see Ferrer Santos et al. 2017; Streicher 2013 for the details).
5 This is why sets of stacks are sometimes called falsity values, as in Miquel (2011, 2011).
6 In classical realizability, it can be shown (Guillermo and Miquel, 2015) that the universal realizers of the second-order
formula ∀α ∀β (α→ β→ α ∩ β) (where α ∩ β denotes the intersection of α and β) are precisely the closed terms t with
the non-deterministic computational rules t � u · v · π � u � π and t � u · v · π � v � π for all closed terms u, v and for all
stacks π . Recall that Krivine’s abstract machine (Krivine, 2009) can be extended with extra instructions at will (for instance,
an instruction � with the aforementioned non-deterministic behavior), so that such realizers may potentially exist.
7 Here, we recognize Dedekind’s construction of natural numbers, as the elements of a fixed Dedekind-infinite set that are
reached by the induction principle (seen as a local property).
8 To prove that Tr′ ∈ P Prop′ is another generic predicate of the tripos P, we actually need to pick a right inverse of h :
Prop′ → Prop, which exists by the Axiom of Choice (AC). Without (AC), the same argument works by replacing “surjective”
with “having a right inverse.”
9 Here, the terminology of completion is a bit abusive, since B always extends A with one point, even when A is already a
full implicative algebra.

References
Barendregt, H. (1984).The Lambda Calculus: Its Syntax and Semantics, Studies in Logic and The Foundations ofMathematics,

vol. 103, North-Holland, Elsevier.
Barendregt, H., Coppo, M. and Dezani-Ciancaglini, M. (1983). A filter lambda model and the completeness of type

assignment. Journal of Symbolic Logic 48 (4) 931–940.
Cohen, P. J. (1963). The independence of the continuum hypothesis. Proceedings of the National Academy of Sciences of the

United States of America 50 (6) 1143–1148.
Cohen, P. J. (1964). The independence of the continuum hypothesis II. Proceedings of the National Academy of Sciences of the

United States of America 51 (1) 105–110.
Coppo, M., Dezani-Ciancaglini, M. and Venneri, B. (1980). Principal type schemes and lambda-calculus semantics. In:

Hindley, R. and Seldin, G. (eds.) To H. B. Curry. Essays on Combinatory Logic, Lambda-Calculus and Formalism, London,
Academic Press, 480–490.

Ferrer, W. and Malherbe, O. (2017). The category of implicative algebras and realizability. ArXiv e-prints.
Ferrer Santos, W., Frey, J., Guillermo, M., Malherbe, O. and Miquel, A. (2017). Ordered combinatory algebras and

realizability.Mathematical Structures in Computer Science 27 (3) 428–458.
Friedman, H. (1973). Some applications of Kleene’s methods for intuitionistic systems. In: Mathias, A. R. D. and Rogers, H.

(eds.), Cambridge Summer School in Mathematical Logic, Lecture Notes in Mathematics, vol. 337, Berlin-Heidelberg-New
York, Springer-Verlag, 113–170.

Girard, J. (1987). Linear logic. Theoretical Computer Science 50, 1–102.
Girard, J.-Y. (1972). Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Doctorat

d’État, Université Paris VII.
Girard, J.-Y., Lafont, Y. and Taylor, P. (1989). Proofs and Types. Cambridge, Cambridge University Press.
Griffin, T. (1990). A formulae-as-types notion of control. In: Principles of Programming Languages (POPL’90), 47–58.
Guillermo, M. and Miquel, A. (2015). Specifying Peirce’s law.Mathematical Structures in Computer Science 26 (7) 1269–1303.
Hyland, J. M. E., Johnstone, P. T. and Pitts, A. M. (1980). Tripos theory. Mathematical Proceedings of the Cambridge

Philosophical Society 88 205–232.
Jech, T. (2002). Set Theory, Third Millennium Edition (Revised and Expanded). Berlin-Heidelberg-New York, Springer.
Kleene, S. C. (1945). On the interpretation of intuitionistic number theory. Journal of Symbolic Logic 10 109–124.
Koppelberg, S. (1989). Handbook of Boolean Algebras, vol. 1, North-Holland.
Krivine, J. L. (1993). Lambda-Calculus, Types and Models. Ellis Horwood. Out of print, now available at the author’s web page

at: https://www.irif.univ-paris-diderot.fr/∼krivine/articles/Lambda.pdf.
Krivine, J.-L. (2001). Typed lambda-calculus in classical Zermelo-Fraenkel set theory. Archive for Mathematical Logic 40 (3)

189–205.
Krivine, J.-L. (2003). Dependent choice, ‘quote’ and the clock. Theoretical Computer Science 308 (1–3) 259–276.
Krivine, J.-L. (2009). Realizability in classical logic. In: Interactive Models of Computation and Program Behaviour, Panoramas

et synthèses, vol. 27, Société Mathématique de France, 197–229.
Krivine, J.-L. (2011). Realizability algebras: a program to well order R. Logical Methods in Computer Science 7 1–47.

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://www.irif.univ-paris-diderot.fr/~krivine/articles/Lambda.pdf
https://doi.org/10.1017/S0960129520000079

510 A. Miquel

Krivine, J.-L. (2012). Realizability algebras II: new models of ZF + DC. Logical Methods for Computer Science 8 (1:10) 1–28.
Leivant, D. (1983). Polymorphic type inference. In: Proceedings of the 10th ACM Symposium on Principles of Programming

Languages, 88–98.
McCarty, D. (1984). Realizability and Recursive Mathematics. Phd thesis, Oxford University.
Miquel, A. (2000). A model for impredicative type systems, universes, intersection types and subtyping. In: LICS, 18–29.
Miquel, A. (2011). Existential witness extraction in classical realizability and via a negative translation. Logical Methods for

Computer Science 7 (2) 1–47.
Miquel, A. (2011). Forcing as a program transformation. In: LICS, IEEE Computer Society, 197–206.
Myhill, J. (1973). Some properties of intuitionistic Zermelo-Fraenkel set theory. Lecture Notes in Mathematics 337 206–231.
Parigot, M. (1997). Proofs of strong normalisation for second order classical natural deduction. Journal of Symbolic Logic 62

(4) 1461–1479.
Pitts, A. M. (1981). The Theory of Triposes. Phd thesis, University of Cambridge.
Pitts, A. M. (2002). Tripos theory in retrospect.Mathematical Structures in Computer Science 12 (3) 265–279.
Ronchi della Rocca, S. and Venneri, B. (1984). Principal type schemes for an extended type theory. Theoretical Computer

Science 28 151–169.
Ruyer, F. (2006). Preuves, types et sous-types. Thèse de doctorat, Université Savoie Mont Blanc.
Streicher, T. (2013). Krivine’s classical realisability from a categorical perspective.Mathematical Structures in Computer Science

23 (6) 1234–1256.
Tait, W. (1967). Intensional interpretation of functionals of finite type I. Journal of Symbolic Logic 32 (2), 198–212.
van Bakel, S., Liquori, L., Ronchi della Rocca, S. and Urzyczyn, P. (1994). Comparing cubes. In: Nerode, A. and Matiyasevich,

Y. V. (eds.), Proceedings of LFCS’94. Third International Symposium on Logical Foundations of Computer Science, Lecture
Notes in Computer Science, vol. 813, Springer-Verlag, 353–365.

van Oosten, J. (2002). Realizability: a historical essay.Mathematical Structures in Computer Science 12 (3) 239–263.
van Oosten, J. (2008). Realizability, an Introduction to its Categorical Side. Amsterdam, Elsevier.
Werner, B. (1994). Une théorie des Constructions Inductives. Phd thesis, Université Paris VII.

Cite this article: Miquel A (2020). Implicative algebras: a new foundation for realizability and forcing. Mathematical
Structures in Computer Science 30, 458–510. https://doi.org/10.1017/S0960129520000079

https://doi.org/10.1017/S0960129520000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000079
https://doi.org/10.1017/S0960129520000079

	Implicative algebras: a new foundation for realizability and forcing†
	Introduction
	Sources of inspiration & related works
	Outline of the paper

	Implicative Structures
	Definition
	Examples of implicative and quasi-implicative structures
	Complete HAs
	Dummy implicative structures
	Quasi-implicative structures induced by partial applicative structures
	Quasi-implicative structures of reducibility candidates
	Implicative structures of classical realizability

	Viewing truth values as generalized realizers: a manifesto
	Interpreting -terms
	Semantic typing
	Some combinators
	Interpreting call/cc

	The problem of consistency
	The case of intuitionistic realizability
	The case of classical realizability

	Separation
	Separators and implicative algebras
	Examples
	Complete HAs.
	Implicative algebras of intuitionistic realizability
	Implicative algebras of classical realizability

	Generating separators
	Interpreting first-order logic
	Conjunction and disjunction
	Quantifiers
	Leibniz equality
	Interpreting a first-order language

	Entailment and the induced HA
	Ultraseparators
	Separators, filters, and non-deterministic choice
	Non-deterministic choice
	Non-deterministic choice and induction
	Non-deterministic choice and the parallel-or
	The case of finitely generated separators

	On the interpretation of existential quantification as a join

	The Implicative Tripos
	Product of implicative structures
	Product of separators

	The uniform power separator
	Triposes
	The category of HAs
	Set-based triposes

	Construction of the implicative tripos
	Characterizing forcing triposes
	The fundamental diagram

	The case of classical realizability
	The case of intuitionistic realizability
	Quasi-implicative algebras
	Completion of a quasi-implicative algebra

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

