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SUMMARY

With the recent global spread of a number of mosquito-borne viruses, there is an urgent need to understand the factors that
contribute to the ability of viruses to expand into naïve populations. Using dengue and chikungunya viruses as case
studies, we detail the necessary components of the expansion process: presence of the mosquito vector; introduction of
the virus; and suitable conditions for local transmission. For each component we review the existing modelling approaches
that have been used to understand recent emergence events or to assess the risk of future expansions. We identify gaps in
our knowledge that are related to each of the distinct aspects of the human-mosquito transmission cycle: mosquito ecology;
human–mosquito contact; mosquito–virus interactions; and human–virus interactions. Bridging these gaps poses chal-
lenges to both modellers and empiricists, but only through further integration of models and data will we improve our
ability to better understand, and ultimately control, several infectious diseases that exert a significant burden on human
health.
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INTRODUCTION

The last 50 years have seen an expansion in the geo-
graphical range of several mosquito-borne viruses,
such as dengue, West Nile, Japanese encephalitis
and most recently, chikungunya and Zika viruses
(Gubler, 1998b; Mackenzie et al. 2004; Rezza,
2014; Rodriguez-Morales, 2015). The factors impli-
cated in this are many, including increased connect-
ivity of human populations, expansion of mosquito
populations beyond their native ranges, urbaniza-
tion, climate change and lack of, or ineffective, mos-
quito control (Gubler, 1998b; Jones et al. 2008;
Parham et al. 2015). Yet, despite our broad under-
standing of the processes underlying virus expan-
sion, what determines specific patterns of spread is
less well characterized and much of what we current-
ly understand relies on theory and data from trans-
mission in endemic areas. Most recently, the
emergence of chikungunya in the Western
Hemisphere has highlighted the importance of im-
proving our understanding of how viruses are intro-
duced into new environments, and whether they are
likely to emerge and establish beyond their current
ranges (Nasci, 2014; Weaver and Lecuit, 2015).

Chikungunya belongs to the genusAlphavirus and
is primarily vectored by two mosquito species:Aedes
aegypti and Aedes albopictus. It was first identified in
Tanzania in 1952, and until recently, human cases
had been largely restricted to parts of sub-Saharan
Africa, Southeast Asia and the Indian subcontinent
(Weaver and Lecuit, 2015). Chikungunya comprises
three distinct lineages and several sub-lineages,
which appear to have had differential ability in
expanding from, and establishing in, various parts
of the world (Weaver and Lecuit, 2015). In the last
decade, chikungunya has expanded its range consid-
erably, including outbreaks in tropical and subtrop-
ical regions of the Caribbean and Central America,
attributed to the Asian lineage (Leparc-Goffart
et al. 2014), as well as seasonal incursions into
more temperate regions in Southern Europe, attrib-
uted to the Indian Ocean lineage (Rezza et al. 2007;
Grandadam et al. 2011).
The expansion and persistence of chikungunya

beyond its historical distribution are, in part, de-
pendent on the expansion of suitable ecological
niches of the vectors. However, this alone is not
sufficient for expansion, because dengue, a taxonom-
ically-distinct but ecologically-related arbovirus, has
persisted in many of these areas for decades (Gubler,
1998a). The difference in the timing and magnitude
of the emergence of these viruses underscores the
need to improve our understanding of the factors
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that create the specific conditions affecting the likeli-
hood of emergence.
Dengue, a member of the Flavivirus genus, is a

complex of four antigenically-related serotypes
(dengue 1–4), vectored by the same mosquito
species as chikungunya. Endemic/epidemic dengue
virus is thought to have first emerged from sylvatic
dengue strains approximately 1000 years ago, in
Africa or Asia, and was first associated with human
epidemic transmission in the late 18th and early
19th centuries (Vasilakis and Weaver, 2008). By
the mid-20th century, dengue was probably wide-
spread in the tropics and subtropics, although high
intensity transmission was relatively confined to
Southeast Asia. In the 1970s, dengue began to re-
emerge in South America, following the collapse of
the Ae. aegypti eradication program (Gubler,
1998a, b). In the last several decades, all four sero-
types have spread throughout the tropical and sub-
tropical parts of the world, and today are endemic
to most of Asia, Central and South America, the
Caribbean and parts of Africa (Gubler, 1998a;
Messina et al. 2014). Globally, it is estimated that
over 50% of the world’s population is at risk of
dengue infection (Brady et al. 2012) and that 390
million cases of dengue occur each year (Bhatt
et al. 2013).
As chikungunya and dengue continue to expand

both at the margins of existing transmission locales
as well as through discrete, longer-range introduc-
tions, mathematical and statistical modelling offer
unique tools, which enable analysis of recent emer-
gence events, and risk assessment and prediction of
future emergence events. While there have been a
number of recent papers reviewing mathematical
models of mosquito-borne pathogens, these have
largely been aimed at understanding disease trans-
mission in endemic settings (Andraud et al. 2012;
Reiner et al. 2013; Perkins et al. 2014). Here, we
review existing contributions of modelling to under-
stand the expansion of mosquito-borne viruses into
naïve populations. We use the term naïve to refer
to populations that are immunologically naïve to
the virus under consideration, or at least to popula-
tions in which pre-existing immunity does not play
a significant role in determining the likelihood of
local transmission. We choose to focus on the case
studies of chikungunya and dengue because they
are transmitted by the same mosquito vectors, and
modelling frameworks that have been developed
for one virus can often be adapted for the other. In
addition, by taking a comparative approach we can
explore how differences between the viruses impact
their ability to emerge in novel populations. In the
first part, we identify the necessary factors for expan-
sion of mosquito-borne viruses, discussing the rele-
vant components of the process and contrasting the
different modelling approaches. In the second part,
we identify gaps in our understanding that lead to

challenges and opportunities for future modelling
and empirical studies.

FRAMEWORK AND MODELLING APPROACHES

The expansion of mosquito-borne human viruses
into naïve populations requires three distinct but
related components: (1) the presence of a suitable
mosquito vector; (2) the introduction of the virus
from an external source; and (3) the ecological and
epidemiological conditions permissive to local trans-
mission. Changes in any one of these components,
either short-term, such as seasonal fluctuations in
adult mosquito populations, or over longer time
scales, such as climate-driven changes in mosquito
habitat, can lead to changes in the potential for
virus expansion.

Mosquito distributions

The distributions of the primary Aedes vectors of
chikungunya and dengue have changed significantly
over the past century, due to both long-distance
translocations and expansions along the margins of
their native ranges (Tabachnick, 1991; Benedict
et al. 2007; Medlock et al. 2012; Carvalho et al.
2014). Historically, Ae. aegypti, an anthropophilic
mosquito, was endemic primarily to urban areas in
tropical and subtropical regions but the species has
been expanding farther into the Northern
Hemisphere in recent years (Kraemer et al. 2015).
This expansion is likely seasonal, but can support
self-limited transmission, as was observed during a
dengue outbreak in Key West, Florida in 2009–
2010 (Radke et al. 2012). Overall, it has been
shown that the range of Ae. aegypti is largely
limited by yearly minimum low temperatures,
below which its eggs are nonviable (Fischer et al.
2011b). As climate change alters the length of
warming periods, the geographical range of Ae.
aegypti egg viability is likely expanding, however
the impact of warming on Ae. aegypti populations
is not yet well understood. In a recent modelling
study, Williams et al. (2014) demonstrate that Ae.
aegypti abundance could increase or decrease de-
pending on the rate of warming as well as the magni-
tude of temperature increase.
Aedes albopictus, while also found in tropical and

subtropical regions, can tolerate lower temperatures
than Ae. aegypti (Waldock et al. 2013). The eggs of
Ae. albopictus can undergo diapause, providing a
means of over-wintering in otherwise hostile envir-
onments. In particular, Ae. albopictus populations
are now found throughout parts of Europe, particu-
larly southern Europe, where the species was impli-
cated in local transmission of dengue in Croatia in
2010 (Gjenero-Margan et al. 2011) and in France
in 2013 (Marchand et al. 2013), local transmission
of chikungunya in France in 2010 and 2014
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(Grandadam et al. 2011; Delisle et al. 2015), as well
as an outbreak of chikungunya in Italy in 2007
(Rezza et al. 2007). Aedes albopictus is also found
across much of Eastern North America as far north
as New York, where one locally acquired dengue
case was reported in 2013 (CDC ArboNET, 2015),
but this northern distribution is thought to be
limited to summer months (Rochlin et al. 2013).
Although Ae. albopictus can be found in close associ-
ation with human domiciles, this species often
dwells in suburban and peri-urban areas (Hawley,
1988) because it feeds on a broader range of verte-
brate hosts (Rai, 1991; Faraji et al. 2014).
Changes in mosquito distributions can be caused

indirectly by human activities, such as urbanization,
water source alterations or movement of man-made
containers that serve as mosquito breeding habitat.
For example, Ae. aegypti was once found along the
majority of the Australian coast and a large portion
of Queensland and New South Wales (Russell et al.
2009). Today, Ae. aegypti populations are only
found throughout Queensland, primarily in the
northeast region of the state. This shift in distribu-
tion is attributed to changes in water infrastructure
and technological advances, which resulted in the
removal of suitable habitat (Russell et al. 2009).
Mosquito distributions are also affected by direct
human interventions, such as nuisance or targeted
mosquito control efforts. These human-driven per-
turbations can impact the abundance and range of
disease vectors over much shorter time scales. For in-
stance, intensive control measures targeting Ae.
aegypti and Ae. albopictus populations were con-
ducted in Central and South America (especially
Brazil) throughout the 1960s and into the 1970s
with the goal of eliminating yellow fever. Following
a sharp decline in disease burden, and with the
advent of an efficacious yellow fever vaccine, these
efforts were discontinued (Gubler, 1998b). As
vector control measures waned, Ae. aegypti popula-
tions experienced a resurgence, and this species is
now firmly established in the very areas from which
it had been eradicated (Gubler, 1998a).

Modelling mosquito distributions

While mosquito biogeography defines the spatial
limits of mosquito-borne pathogen expansion, our
knowledge of the actual distribution of Aedes
species is coarse, at best. There have been two
major modelling approaches to characterizing the
potential range of Ae. aegypti and Ae. albopictus:
mechanistic and correlative (Fischer et al. 2014).
Mechanistic or process-based studies quantify how
aspects of mosquito life history are affected by cli-
matic variables, usually with laboratory- or field-
determined empirical relationships, and combine
this with meteorological data to assess the suitability
of particular regions to support Ae. aegypti and Ae.

albopictus populations. Most studies focus exclusive-
ly on temperature, and whether its effects on traits
such as egg diapause and adult survival permit per-
sistence (Nawrocki and Hawley, 1987; Kobayashi
et al. 2002; Medlock et al. 2006; Takumi et al.
2009; Caminade et al. 2012). For example, a recent
study by Brady et al. (2014) produced a model of
the absolute limits of temperature on dengue trans-
mission, taking into account daily and seasonal vari-
ation in temperature and its effect on both mosquito
survival and viral replication within the mosquito.
However, while temperature is perhaps the most
crucial climatic variable for mosquito life history, it
is certainly not the only one.
The correlative approach is species distribution

(or ecological niche) modelling, which combines ob-
servational data about a species (usually occurrence
data at known locations) with environmental (but
potentially any relevant spatial) data to derive statis-
tical models that can be used to predict a species’
geographic distribution (Elith and Leathwick,
2009). A large body of work has been devoted to
assess the current and future distribution of Ae.
aegypti and Ae. albopictus, predominantly correlat-
ing mosquito presence data with climatic variables,
often using climate predictions to project mosquito
distributions into the future (Campbell et al.
2015). Due to its recent rapid expansion there has
been an emphasis on Ae. albopictus, both globally
(Benedict et al. 2007; Proestos et al. 2015), and re-
gionally in Europe (Fischer et al. 2011a; Neteler
et al. 2011) and the USA (Rochlin et al. 2013;
Ogden et al. 2014), but a few studies have focused
on Ae. aegypti (Cardoso-Leite et al. 2014; Khormi
and Kumar, 2014). A recent study by Kraemer
et al. (2015) used a temperature suitability mask
adapted from Brady et al. (2014) to filter out
regions based on the thermal limits of the species
and combined this with a suite of climatic and
land-cover variables to predict the global distribu-
tion of Ae. albopictus and Ae. aegypti at high
spatial resolution. Temperatures, followed by pre-
cipitation and vegetation indices were the best pre-
dictors in their model. The distribution of both
vectors largely agreed with what is known from sur-
veillance data, although Ae. albopictus was predicted
to occur more widely in China, Africa and parts of
Europe than is currently reported.
While the correlative approach can take advantage

of large spatial and temporal climatic datasets, the use
of this approach is currently limited. For instance,
most of these studies are based on long-term
average data that do not predict fine-scale changes
in mosquito distributions, although time-specific
ecological niche modelling has been utilized to
predict dynamic Ae. aegypti distributions in
Mexico (Peterson et al. 2005). In addition, few
studies address the introduction and dispersal of
mosquito species, for example, via cargo movement
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(Thomas et al. 2014). Furthermore, although
meteorological variables such as temperature and
precipitation play major roles in defining mosquito
distributions, there are a number of ecological (such
as competition) and anthropogenic factors that are
known to have significant effects. Finally, local adap-
tation tomicro-climates (Roche et al. 2015) can result
in mosquitoes occurring in places that would not be
predicted by modelling at large spatial scales.

Introduction of the virus

While necessary for the expansion of arboviruses,
the presence of the vectors alone is not sufficient to
predict emergence risk. For urban-centric transmis-
sion systems like dengue and chikungunya, the
introduction of virus into novel susceptible popula-
tions is driven by human movement (Gubler,
1998b; Tatem et al. 2012; Bhatt et al. 2013). Aedes
aegypti, in particular, moves very short distances
(up to 120 m), so even at a local scale human move-
ment patterns likely define the spread of infection
within a city (Stoddard et al. 2009, 2013).
However, one recent study recognized that within
the flight range of Ae. Aegypti the role of the mos-
quito in spreading dengue has been underestimated
(Thomas et al. 2015). As with many other human
pathogens, long-distance introductions have largely
coincided with an increase in global air travel and
connectivity (Gubler, 1998b; Tatem et al. 2012).
Recent local transmission of chikungunya in Italy

and France are thought to be linked to ongoing trans-
mission of chikungunya in India (Rezza et al. 2007;
Grandadam et al. 2011) and Cameroon (Delisle
et al. 2015). The 2014 chikungunya outbreak in the
Western Hemisphere began following the arrival of
an infectious person from the Philippines in Saint
Martin, an Ae. aegypti-abundant island in the
Caribbean. Since then, over 1 million cases have
been reported in the Caribbean and Latin America
(Johansson, 2015). Importation of dengue by travel-
lers returning, or visiting, from endemic areas (rather
than the transport of infectious mosquitoes) is also
believed to be responsible for initiating recent out-
breaks in Queensland (Naish et al. 2014b), Texas
(Murray et al. 2013; CDC ArboNET, 2015),
Hawaii (Effler et al. 2005; Johnston et al. 2016) and
Florida (Rey, 2014; CDC ArboNET, 2015).
Complicating the ability to understand the

mechanisms of virus introduction in novel popula-
tions, and subsequently identify expansion, initial
importations of the virus often go undetected. In
particular, the majority of dengue infections are sub-
clinical or asymptomatic (Bhatt et al. 2013). These
patients are much less likely to self-quarantine than
symptomatic patients, particularly in naïve regions,
in which the virus may not be suspected. This
increases the probability of contact with susceptible
vectors and contributes to the emergence potential of

the virus. Although the clinical presentation rate of
chikungunya is believed to be much higher than
dengue (>75%) (Thiberville et al. 2013), one recent
study from the Philippines suggests this might be
an overestimate (Yoon et al. 2015). Furthermore,
variability in surveillance systems and clinical ser-
vices at the country level often leads to bias in the
reporting of virus expansion and in the application
of modelling studies. In particular, global interest
in the spread of chikungunya increased considerably
following the outbreak on La Réunion (LR), a
setting in which there is well developed epidemio-
logical surveillance and the virus has the potential
to exert a significant impact on a wealthy nation,
France. It is possible that outbreaks occur without
detection or with greater underreporting in locations
with less developed public health systems (Cash and
Narasimhan, 2000).

Modelling introduction of the virus

A number of studies have focused on the risk of im-
portation into specific locations that have either pre-
viously experienced sporadic local cases or where it is
known that the mosquito vector is present. For
example, the importation of dengue and chikun-
gunya into Europe (Seyler et al. 2009), dengue into
Italy (Quam et al. 2015) and chikungunya into the
Americas (Johansson et al. 2014). Although almost
all of these studies have focused on air travel,
during the 2014 chikungunya outbreak in the
Caribbean, air traffic volume was not a good predict-
or of the spread of chikungunya to new islands
(Cauchemez et al. 2014). Instead a simple model of
distance better characterized the spread suggesting
that marine transport might have played an import-
ant role at a more regional level. Futhermore, human
mobility patterns along road networks were import-
ant to explain the regional spread of chikungunya on
the island of LR (Moulay and Pigne, 2013).
In other work, researchers have modelled mos-

quito distributions in tandem with human move-
ment. In particular, Tatem et al. (2012) combined
geospatial data and air traffic information to predict
risks of vector-borne disease importation and estab-
lishment and have developed an online tool for visu-
alizing these risks to aid in planning mitigation
strategies (Huang et al. 2012). Similar approaches
have been used by Gardner and Sarkar (2013),
who coupled species distribution modelling to a
model of the airline travel network to quantify the
relative risk of dengue importation and establish-
ment posed by each airport based on the likely pres-
ence of dengue-infected travellers.

Conditions for autochthonous transmission

Even in the presence of a suitable vector and with
frequently imported human cases, local transmission
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cannot occur without the necessary ecological and
epidemiological conditions. The sufficiency of
these conditions can help categorize mosquito-
borne transmission according to its ecological and
epidemiological context (Smith et al. 2014).
Specifically, Macdonald (1952) proposed two
primary categories of transmission, stable and un-
stable, which, while stemming from malaria re-
search, are relevant to all mosquito-borne pathogens.
From the perspective of the virus, we can distin-

guish between two distinct scenarios based on
‘habitat’ quality: (1) suitable habitat (stable condi-
tions for transmission); (2) unsuitable habitat (un-
stable conditions for transmission). A suitable
habitat is defined as an environment that has all
the necessary conditions to support persistence of
the virus; thus there is a non-zero probability of pro-
ducing an outbreak. The rate-limiting step for emer-
gence success in a suitable habitat is the introduction
of the virus from an external source. In addition, fol-
lowing successful virus establishment, a suitable
habitat has the potential to serve as a source of
virus. An unsuitable habitat will have insufficient
conditions at some stage of the emergence process.
For example, while an introduction could lead to a
short chain of transmission, large-scale outbreaks

are not possible. In unsuitable habitats, emergence
failure could be due to inadequate mosquito abun-
dance, insufficient contact between human and
mosquito populations, or a lack of sustained envir-
onmental conditions to support continued
transmission.
Although habitats can be classified as suitable or

unsuitable, this classification is dynamic.
Unsuitable habitats may become suitable either per-
manently, due to long-term climate change, or tran-
siently, due to seasonal climatic variation, the latter
of which is often indicated by epidemic behaviour.
Likewise, suitable habitats may be rendered tempor-
arily unsuitable due to extreme weather events or
permanently unsuitable due to human actions (e.g.
land use changes). Assuming the virus is initially
introduced into an immunologically susceptible
human population, then a basic reproductive
number of one (R0 = 1) defines the threshold
between habitat types. In Fig. 1, we summarize
how habitat quality and frequency of virus introduc-
tions from source populations can interact to
produce different levels of risk in naïve populations.
In particular, populations may move from one risk
group to another depending on, for example, season-
al changes in local mosquito populations (affecting

Fig. 1. Classification of naïve populations: risk for virus expansion and modelling priorities. Naïve populations can be
categorized as either suitable or unsuitable habitat for the virus, which may change over time under the influence of
environmental factors or the specific viral strain introduced (horizontal axis). Expansion into suitable habitats is limited by
the frequency of introduction of the virus from source populations (vertical axis). Unsuitable habitats cannot support
sustained transmission but short chains of self-limited transmission are possible. Modelling priorities broadly depend on
the type of population under consideration: those at the lower risk levels are defined by the components most sensitive to
change, affecting whether the populations are likely to move to a higher risk level.
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habitat quality), or seasonal changes in travel behav-
iour (affecting import rates). The modelling prior-
ities at the lower risk levels are defined by the
components most sensitive to change, which deter-
mine whether populations are likely to move to
higher risk levels.

Modelling autochthonous transmission

Models that aid in categorizing the ecological
context are thus essential for understanding the po-
tential for autochthonous transmission. This is
often decoupled from the importation step (except
for Johansson et al. (2014)) partly because modelling
of local transmission is often in response to the de-
tection of an introduction. In this context, models
have been used in a variety of ways, both to (a)
understand the key drivers of transmission, as well
as to (b) assess the future risk of transmission.
(a) Understanding the drivers of autochthonous

transmission in naïve populations: A substantial part
of the modelling of dengue and chikungunya in
emergence settings has involved analysing outbreaks
in real-time or after the event. Characterizing local
transmission by the human-to-human reproduction
number, R (the average number of secondary cases
generated by a primary case), is often the first step
in assessing the potential intensity of transmission
and providing guidance for mitigation efforts.
Methods developed for directly-transmitted patho-
gens have been adapted and applied to the 2005–
2006 chikungunya outbreaks on LR as well as the
2014 outbreaks in the Caribbean. An empirical ap-
proach that requires an estimate of the distribution
of the generation (or serial) interval of the pathogen
(Fine, 2003; Wallinga and Teunis, 2004) and inci-
dence data from the early part of the epidemic
curve was used in both settings. For the outbreak
on LR, Boëlle et al. (2008) estimated an initial R of
3·7, with a possible range 2–11, and Cauchemez
et al. (2014) (using the exponential growth method
of Wallinga and Lipsitch (2007)) found that the
initial R for the islands of Saint Martin,
Martinique and Guadeloupe was in the range 2–4.
While incidence data are often available in close to

real-time, the window of time chosen can lead to
variability in the estimates of R (Cauchemez et al.
2014). Further complicating this for dengue, and
to a lesser degree for chikungunya, is the high per-
centage of subclinical and asymptomatic cases, as
previously discussed. Low rates of clinical presenta-
tion lead to lower frequencies of reported cases,
which in turn impact the ability to obtain accurate
estimates of case numbers.
In addition, estimating the generation interval of

the pathogen (the time distribution between symp-
toms in a primary case and that of its secondary
cases) encompasses all aspects of the transmission
process and requires the specification of time from

infectiousness to symptoms in the human host,
time from infectiousness in the human host to a mos-
quito bite infecting the vector, time from infection to
symptoms in the human host, and time between in-
fection of the mosquito and a subsequent bite infect-
ing a human host (Boëlle et al. 2008). Similar issues
arise when fitting mechanistic models using varia-
tions of the Susceptible Exposed Infectious
Recovered (SEIR) framework to the entire epidemic
curve, because assumptions about these distribu-
tions are implicit in model structure and parameter-
ization. Comparable estimates of R (in the range
3–4) were found using this approach for the outbreak
on LR (Bacaër, 2007; Yakob and Clements, 2013).
However, Dumont et al. (2008) parameterized a
mechanistic transmission model with independent
data for different cities on the island in 2005 and
2006, and found substantial variation in estimates of
R. This variation was largely driven by differences
in mosquito populations and a change in the extrinsic
incubation period (EIP), highlighting that between-
city and between-year differences were important to
explain chikungunya incidence in space and time.
These analyses confirm that such locations were

suitable habitat for the pathogen and that once intro-
duced, chikungunya was able to invade.
Retrospective analyses aimed at understanding the
factors responsible for why locations were suitable
habitat can help inform future surveillance and miti-
gation programs. For the Caribbean outbreak of chi-
kungunya, Perkins et al. (2015) adapted the time
series susceptible infectious recovered (TSIR) for-
malism used for directly-transmitted diseases to in-
vestigate whether the effects of environmental
drivers could explain outbreak dynamics at the
country level. Even at this coarse spatial resolution
for both climate and incidence data, they revealed
that climate-driven seasonality in transmission (spe-
cifically, mean temperature and precipitation) could
explain variation in between-country dynamics. At
the other extreme of spatial scales, modelling mos-
quito habitats as small as containers, a simulation-
based framework for dengue, DENSiM (Focks
et al. 1995), was successfully applied retrospectively
to outbreaks in northern Australia (Bannister-
Tyrrell et al. 2013). Their analysis demonstrated
that inter-annual weather variation was one of the
key determinants of whether an outbreak occurred
in Cairns from 1991 to 2009. While this model is
also able to make predictions about the impacts of
specific vector control measures and the impacts of
future climate, it requires detailed meteorological,
entomological and demographic data as inputs,
which limits its use to areas with extensive entomo-
logical surveillance. An alternative spatially-explicit,
individual-based model that was calibrated on the
2003 Cairns dengue outbreak does not require the
same entomological inputs but is still calibrated
against mosquito trap data (Karl et al. 2014). Their
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study supports the hypothesis that despite warmer
temperatures and increased human mobility, a
shorter virus strain-specific EIP largely explains
the explosive outbreak in Cairns in 2008–2009
(Ritchie et al. 2013).
(b) Assessing future risk of autochthonous transmis-

sion: An alternative role for models is to extrapolate
beyond what has been observed and understand
the transmission potential in regions where R is
not always above one, and not necessarily limited
by a lack of virus importations. Some studies aim
to quantify the potential for future transmission by
explicitly modelling aspects of the transmission
process. Most of these models, directly (or indirect-
ly), link weather variables such as temperature to
mosquito, and sometimes virus, population dynam-
ics. Following the chikungunya outbreak in Italy,
Poletti et al. (2011) coupled a stage-structured
model of temperature-driven Ae. albopictus popula-
tion dynamics to an epidemic model using the
SEIR framework and demonstrated that variability
in the probability of observing a major outbreak
after the introduction of an index case was due to
variation in the vector-host ratio. A similar approach
was taken by Ruiz-Moreno et al. (2012), who pre-
dicted windows of risk for different regions of the
USA, largely determined by the effects of regional
temperature profiles on mosquito abundance, and
Lourenço and Recker (2014), who analysed the 2012
dengue outbreak on Madeira. In addition, Johansson
et al. (2014) incorporated temperature-driven esti-
mates of mosquito life-history and the EIP into a
branching process model to predict the probability
of local transmission of chikungunya in new locations
in the Americas. Overall 8 out of the 10 locations that
were predicted to be themost likely locations for intro-
duced chikungunya transmission in the first 4 months
of the outbreak reported local cases within this time
frame (Johansson et al. 2014).
In these and other studies, process-based models

have been used to explore the sensitivity of poorly
understood parameters. The most sensitive para-
meters are usually those associated with themosquito
part of the transmission cycle (Manore et al. 2014), in
particular those pertaining to vector-host contact
(Christofferson et al. 2014b), such as the vector-
host ratio (Poletti et al. 2011) and the proportion of
bloodmeals on human hosts (Ruiz-Moreno et al.
2012). The duration of human infectiousness is also
a sensitive parameter and for the index case, the
timing of introduction relative to the duration of in-
fectiousness is crucial for determining the likelihood
of autochthonous transmission (Christofferson et al.
2014b). Unfortunately, many of the most sensitive
parameters are subject to uncertainty and thus build-
ing this uncertainty into model predictions is essen-
tial for assessing risk (Johansson et al. 2014).
In addition to these process-based models, there is

a body of work on correlative models that use

statistical associations between historical prevalence
data and climatic or environmental data to predict
the future risk of dengue transmission (Racloz
et al. 2012; Louis et al. 2014). Some of these
studies are aimed at producing early warning
systems for areas where dengue has occurred previ-
ously but not continuously. For example, Descloux
et al. (2012) developed a statistical model relating
climate, Ae. aegypti and dengue as an early
warning system for New Caledonia. There was also
intense interest in mapping the risk of dengue
during the 2014 Brazil World Cup (Lowe et al.
2014). Most recently, a study assessing the risk of
chikungunya transmission in Argentina emphasizes
that it is only a matter of time before cases of chikun-
gunya are reported in this region (Carbajo and
Vezzani, 2015). An alternative approach uses the
same methodology employed in mosquito distribu-
tion modelling, often to identify risk of transmission
in regions where dengue has not yet been reported
(Machado-Machado, 2012).
With many of these approaches assuming mech-

anistic or correlative associations between climatic
variables and dengue/chikungunya transmission, it
is natural to consider how long-term climate
change might impact future emergence. Indeed,
Naish et al. (2014a) reviewed the quantitative mod-
elling approaches that have been used to assess the
potential impact of climate change on future
dengue transmission. Most of these studies couple
current climate change projections with climate-
based models that associate Aedes mosquito distri-
butions and/or virus occurrence with climatic
variables, such as temperature and humidity. For
example, Fischer et al. (2013) investigated the
impacts of climate change scenarios in Europe on
chikungunya in Ae. albopictus, predicting the
highest risk in France, Northern Italy and East-
Central Europe by the end of this century. In a
different study, Bouzid et al. (2014) combined cli-
matic variables and socio-economic factors in statis-
tical models built using contemporary dengue
occurrence data from Mexico, then applied the
model to climate change scenarios in Europe and
predicted the highest risk of dengue in areas clus-
tered around the Mediterranean and Adriatic coasts.

CHALLENGES AND OPPORTUNITIES

It is apparent that a significant amount of research
has focused on the necessary conditions for mos-
quito-borne virus emergence: the presence of mos-
quito populations and the importation of the virus.
However, studies looking at the sufficient conditions
for emergence are fewer, and often in reaction to the
detection of novel introductions and outbreaks.
While our understanding of transmission in
endemic regions has improved, there are certain
gaps in our understanding that deserve more
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attention within the context of emergence. In this
section, we identify the major gaps for each subcom-
ponent of the transmission cycle: (i) mosquito
ecology; (ii) human–mosquito contact; (iii) mos-
quito–virus interactions; and (iv) human–virus
interactions. We discuss how these challenges ultim-
ately present opportunities for future modelling and
empirical work.
(i) Finer description of mosquito populations at a

local scale: Predicting local chains of transmission
is complicated by the lack of characterization of mos-
quito populations at the relevant scales. We know
that the spatial distributions of Ae. aegypti and Ae.
albopictus are highly dynamic, even within relatively
small urban areas (e.g. in Madagascar (Raharimalala
et al. 2012), and in Florida (Leisnham et al. 2014)).
While many models are able to successfully predict
the geographical extent of mosquito species distribu-
tions, and even changes in these distributions due to
long-term trends from climate change, these predic-
tions are often over large spatial scales. Predictions
about transmission at local scales are dependent on
accurate projections of mosquito population sizes,
which have yet to be fully understood.
Mosquito abundance is affected by a combination

of environmental (Chaves et al. 2014), ecological and
anthroponotic variables; and often complicated by
the nonlinear interaction of these factors (Chaves
et al. 2012). Mechanistic models that build such
interrelations into descriptions of mosquito dynam-
ics have rarely been applied and tested in emergence
settings. A number of models have been developed
for Aedes population dynamics that describe mos-
quito abundance as a direct function of food
resources (Romeo Aznar et al. 2015), rainfall and
temperature (Tran et al. 2013), or a suite of eco-
physiological processes (Padmanabha et al. 2012a).
And others have used mathematical models to
explore the effects of different environmental
factors on mosquito dispersal (Dufourd and
Dumont, 2013). Although these methods have
rarely been calibrated to address the relevant scale
of transmission at local levels, there are opportun-
ities to do so by capitalizing on the wealth of climatic
and remote sensing data that is routinely collected at
finer temporal and spatial scales (Tran and Raffy,
2006).
Additionally, models require further input from

laboratory experiments characterizing the relation-
ship between, for example, temperature and mos-
quito life history traits (Yang et al. 2009), as well
as validation from targeted mosquito surveillance
in the field. Mosquito surveillance in the USA, for
example, is targeted for an ecologically distinct
genus (Culex spp.), and there is no similarly broad
program available for Aedes species. Entomological
studies aimed at estimating abundance are often
reliant on crude metrics such as the Breteau Index
or the Container Index, which have been shown to

reflect actual population distributions poorly and
disease incidence even worse (Bowman et al. 2014).
In the absence of reliable mosquito abundance
data, mechanistic models of disease transmission
could be validated by comparing model output
with alternative sources of data, such as derived stat-
istical relationships (and their corresponding uncer-
tainty) between weather variables and disease
incidence at a local scale in endemic settings.
(ii) Better characterization of human–mosquito

encounters: In otherwise permissive environments,
such as along margins of high intensity transmission
foci, reduced contact between humans and mosqui-
toes is often the mitigating factor in preventing
disease outbreaks. Yet, we have still to fully charac-
terize how contact varies between the populations,
among individual humans and mosquitoes, and
over time. A significant component of human–mos-
quito contact is influenced by the preferences of each
vector.Ae. aegypti is endophilic and endophagic (i.e.
preferring to rest and feed indoors), whereas Ae.
albopictus is exophilic and exophagic (i.e. preferring
to rest and feed outdoors) (Schoof, 1967; Scott et al.
2000; Delatte et al. 2010). This disparity leads to
different interactions between humans and the two
vectors.
Aedes aegypti has a strong preference for feeding

on humans. This implies that given a large enough
population of humans relative to mosquitoes
(humans are not a limiting resource), the human
biting rate (the number of bites per human per
unit time) can be estimated simply by measuring
the number of bites on humans. Although theoretic-
ally straightforward, this is practically difficult and
estimates rely on indirect landing rates (Casas
Martínez et al. 2013; Tangena et al. 2015). Aedes
albopictus also prefers to feed on humans, but is
less selective than Ae. aegypti and will feed upon a
broader range of vertebrate hosts. Blood meal ana-
lyses have been performed in the field for both
species (Savage et al. 1993; Ponlawat and
Harrington, 2005; Valerio et al. 2010), but with the
lack of good population estimates for alternative
hosts, extrapolation of the proportion of mosquito
bites on humans is also difficult.
Additionally, the risk (and frequency) of being

bitten by mosquitoes depends on mosquito behav-
iour and certain anthropological factors. In general,
daily behaviour of Ae. aegypti and Ae. albopictus
and differences in behaviour as a function of envir-
onmental and climatic variables are not well charac-
terized. For instance, one study by Dieng et al.
(2010) showed that Ae. albopictus, usually a peri-do-
mestic day-biting mosquito, exhibits a tendency to
live and breed indoors and bite more frequently at
night on the island of Penang. The relative epi-
demiological impact of this change in behaviour is
not yet clear. Factors associated with the human
population, and human behaviour in particular,
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could also lead to differential impacts on the spread
of dengue and chikungunya. These factors include
age (surface area), occupation, social habits, recre-
ational activities (affecting time spent outdoors), or
socio-economic status (affecting housing infrastruc-
ture such as window screens and air conditioning,
density of and distance to breeding containers).
Several studies have linked risk of dengue infection
to socio-economic status (Waterman et al. 1985;
Reiter et al. 2003; Brunkard et al. 2007), and the
recent dengue outbreak in Martin County, Florida
(Teets et al. 2014) was contained to two older neigh-
bourhoods that either lacked mosquito-avoiding in-
frastructure or where residents traditionally spent
part of the evening outdoors.
While models of mosquito-borne disease have

been developed to include heterogeneity in
human–mosquito contact (Smith et al. 2004), in-
cluding host-seeking behaviour (Cummins et al.
2012) and realistic feeding patterns (Rock et al.
2015), few studies have considered their importance
in emergence settings (Manore et al. 2014).
Moreover, although modelling frameworks that in-
corporate socio-economic factors have been applied
to vector-borne diseases (e.g. Werneck et al.
(2007)), these factors are largely ignored in transmis-
sion models and should be a priority for future re-
search. In particular, models that can account for
contact heterogeneity in terms of individual human
behaviour, such as agent-based models
(Padmanabha et al. 2012b; Chao et al. 2013;
Dommar et al. 2014; Manore et al. 2015), do not
always make a direct link to the risk factors discussed
above, and remain underused for understanding the
potential for mosquito-borne virus expansion.
(iii) Recognition of the role of diversity in mosquito–

virus interactions: An increasing amount of evidence
supports the notion that individual viral strains have
differential efficiency within mosquito populations
and that, likewise, across geographically distinct
mosquito populations (of the same species) the
same virus strain may have altered fitness. This
interaction of mosquito and virus has the potential
to define differences in the ability of a virus to
emerge in ecologically similar areas. For example,
chikungunya strains of the Asian lineage have been
displaced by the Indian Ocean lineage, specifically
the LR sub-lineage. This LR sub-lineage emerged
in 2006, when the strains present on LR island
adapted to the local Ae. albopictus population, in-
creasing the competence of this species to equal
that of the usual vector Ae. aegypti (Tsetsarkin
et al. 2007). Furthermore, the emergence of
dengue 3 in Cairns, Australia was, in part, attributed
to the increased vector competence of a particular in-
vading strain relative to previous strains (Ritchie
et al. 2013). Previous modelling work has considered
how changes in viral strains have affected vector
competence through manipulation of the average

EIP (Dumont et al. 2008; Manore et al. 2014).
However, modelling studies can overestimate the
impact of changes in viral strains by misinterpreting
the variety of ways in which vector competence data
is reported. For example, studies often report the
earliest time to a disseminated infection (Dubrulle
et al. 2009), but this does not necessarily translate
into the average EIP, which is frequently used in
models.
In addition, these viral strain–dependent interac-

tions are modified by extrinsic factors such as tem-
perature, though the modification of specific strains
due to extrinsic factors is understudied. Predictions
about the potential for virus expansion should be
informed by studies speaking to the variability of
viral strain phenotype in mosquito vectors and its
impact on transmission. Such studies include both
empirical work in the laboratory to determine the
spectrum of vector competence and EIPs (and how
these might differ depending on the combination
of vector species and viral strain), as well as theoret-
ical work to determine the most appropriate param-
eterization of models with these data (Christofferson
et al. 2014a). Moreover, models can be used to inves-
tigate the sensitivity of the transmission cycle to
changes in vector competence, and to identify loca-
tions, where even small changes might lead to large
impacts on transmission potential.
(iv) Incorporation of heterogeneity in human–virus

interactions: Recent studies have shown that human
viremia curves differ among dengue serotypes,
which directly translates into infectivity to mosqui-
toes (Carrington and Simmons, 2014; Whitehorn
et al. 2015). Further, the changes in viremia over
the course of an individual’s infectious period
affect the transmissibility of that infection to naïve
vectors. However, limited data exist comparing clin-
ical against sub-clinical cases, and the relationship
regarding meaningful differences in viremia and
disease presentation remains poorly understood
(Tang et al. 2010; Stramer et al. 2012; de la Cruz-
Hernández et al. 2013). Data concerning chikun-
gunya viremia in humans are even more limited,
though available data suggest it is likely to be
highly variable (Appassakij et al. 2013; Chusri
et al. 2014). For both viruses, little is known about
the time to onset of symptoms/fever relative to the
onset of infectiousness, which is relevant for accurate
estimates of the generation interval of the virus.
In emergence settings, it is important to consider

how temporal heterogeneity in viremia within an in-
dividual human affects model predictions. For
example, Christofferson et al. (2014b) showed that
if the contact rate between human and mosquito
populations is high, then even periods of very low
human infectiousness can contribute to the prob-
ability of an outbreak. However, if contact rates are
low, then the window of human infectiousness is
effectively truncated and imported human cases are
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unlikely to lead to local transmission. Further work
is needed to integrate models of local transmission
with the dynamics of imported cases, including the
timing of travel relative to exposure.

CONCLUSIONS

The emergence of a mosquito-borne virus in a naïve
population is a complex process that requires the
presence of a suitable mosquito vector, the introduc-
tion of the virus and conditions amenable to trans-
mission of the virus. As we have discussed here,
models have made progress toward developing a
better understanding of the processes driving
disease emergence by focusing independently on
these three components, but our ability to fully
understand and predict expansion into naïve popula-
tions is still lacking.
We have outlined a number of challenges to mod-

elling the emergence of mosquito-borne viruses that
are necessary to address as the field moves forward.
To respond to these challenges will require collabor-
ation among modellers and empiricists on surveys,
experiments and models across a spectrum of com-
plexity and scales. For example, large-scale surveys
of human activity patterns are important to under-
stand how humans influence movement of the
virus throughout and between populations; experi-
ments are needed to test factors contributing to het-
erogeneity in vector competence, human viremia and
mosquito population dynamics; and data-driven,
mechanistic models are critical to understand
micro-scale contributions to transmission and to
predict emergence potential at the population level.
This study has focused primarily on the emer-

gence of mosquito-borne viruses in naïve popula-
tions; however, much of what has been discussed is
applicable to the many regions of the world that lie
on the margins of becoming endemic to dengue
and chikungunya. For example, regions such as nor-
thern Vietnam experience yearly dengue epidemics,
but are regarded as sink populations for the virus
which is reintroduced each year from human popu-
lation centres in southern Vietnam (Rabaa et al.
2013). In these regions, small changes in subcompo-
nents of the transmission process can have large con-
sequences on long-term virus persistence,
highlighting the broader importance of understand-
ing the sensitivity of these disease systems to envir-
onmental, evolutionary and anthropogenic changes.
Although the work surveyed here is with respect to

the mosquito-borne viruses of dengue and chikun-
gunya, the primary vectors of these two viruses are
also the major vectors of yellow fever virus, as well
as two newly emerging viruses: Zika and Mayaro
(Auguste et al. 2015; Buathong et al. 2015; Campos
et al. 2015). In addition, many of the gaps in under-
standing and modelling apply to other mosquito-
borne pathogens such as Japanese encephalitis

virus, West Nile Virus and malaria. Further integra-
tion of models and data to understand the basic
mechanisms behind emergence of mosquito-borne
pathogens will benefit our understanding of, and ul-
timately our ability to better control, a number of dis-
eases that have significant impacts on human health.
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