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Abstract The goal of this paper is the study of homogeneous Riemannian structure tensors within the
framework of reduction under a group H of isometries. In a first result, H is a normal subgroup of the
group of symmetries associated with the reducing tensor S̄. The situation when H is any group acting
freely is analyzed in a second result. The invariant classes of homogeneous tensors are also investigated
when reduction is performed. It turns out that the geometry of the fibres is involved in the preservation
of some of them. Some classical examples illustrate the theory. Finally, the reduction procedure is applied
to fibrings of almost contact manifolds over almost Hermitian manifolds. If the structure is, moreover,
Sasakian, the obtained reduced tensor is homogeneous Kähler.
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1. Introduction

Since their introduction [2], homogeneous structure tensors have proved to be a powerful
tool in the study of homogeneous Riemannian manifolds. Their nature is twofold. On one
hand, they belong to the tensor algebra. In particular, representation theory techniques
classify them into eight different invariant classes with respect to a convenient action of
the orthogonal group. On the other hand, homogeneous tensors satisfy a system of partial
differential equations (Ambrose–Singer equations). Many works in the literature combine
these aspects to provide geometric properties of the underlying Riemannian manifold.
The first characterizations were given to hyperbolic space and naturally reductive spaces
(see [18]). These techniques were subsequently generalized to Riemannian manifolds with
special holonomy by many authors (see, for example, [1,4,6,10,11]). It is interesting to
point out that there is no bijection between tensors and possible groups acting isomet-
rically and transitively. The same tensor can be defined by two different groups and the
same group can provide different tensors. In this context, it is remarkable how little is
known about all homogeneous structures and tensors for even well-known spaces. There
is still much work to do.

c© 2014 The Edinburgh Mathematical Society 81

https://doi.org/10.1017/S0013091513000679 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000679


82 M. Castrillón López and I. Luján

Manifolds endowed with symmetries are relevant in many situations. In particular,
symmetries represent a classical tool in reduction schemes intimately related to different
topics such as systems of differential equations, variational principles, symplectic or other
geometric structures, etc. In particular, reduction is recurrently applied in homogeneous
manifolds. The goal of this paper is the study of the behaviour of homogeneous tensors
by reduction under subgroups of the group of isometries. In particular, this gives rise to
new homogeneous tensors in the orbit space of the action. Additionally, the reduction
process reveals and sheds light on some previously known properties of some homoge-
neous structures. Finally, the reduction technique opens up a reverse way to get new
homogeneous tensors in the unreduced space from tensors in the orbit space.

The paper has the following structure. In § 2 we recall basic definitions on homogeneous
structure tensors and their classification. Moreover, the model for reduction is a Rieman-
nian principal bundle M̄ → M , endowed with the compatible connection defined as the
orthogonal complements to the fibres. This connection is ubiquitously used for reduction
schemes in mechanics (see, for example, [14,15]), where it is called the mechanical con-
nection. Section 3 begins with reduction of homogeneous tensors S̄ on M̄ by the action
under a normal subgroup H of the group of symmetries Ḡ associated with S̄ (see The-
orem 3.4). The space of all tensors S̄ projecting to the same tensor S on M = M̄/H is
also determined. The expression of the reduced tensors leads to a generalization of the
reduction result (see Theorem 3.7) to the case where S̄ is not explicitly associated with
a precise group Ḡ. For example, this is the case of non-simply connected or incomplete
manifolds where the existence of homogenous tensors still provides interesting geometric
properties. Without the presence of the group Ḡ, the normality of the structure group H

of the bundle M̄ → M needs to be replaced by a suitable differential condition on the
mechanical connection. Finally, the behaviour of the classification of homogeneous tensors
under the reduction process is analyzed. It is interesting to point out that the geome-
try of the orbits of the H-action is involved in some of the classes in this classification.
Section 4 provides many examples of the main results of the paper. In particular, they
explore the possible scenarios with respect to the classes when reduction is performed.
Section 5 applies the reduction theorem to fibrings of almost contact manifolds over
almost Hermitian manifolds (see [16]). It turns out that the differential condition on
the mechanical connection is automatically satisfied for homogeneous almost contact or
Sasakian tensors. Hence, they project to homogeneous almost Hermitian or Kähler ten-
sors in a natural way. This is connected with other constructions found in the literature
(see [8]).

2. Preliminaries

2.1. Homogeneous Riemannian structures

Let (M, g) be a connected Riemannian manifold of dimension n. Let ∇ be the Levi-Civita
connection of g and let R be its curvature tensor with the convention

RXY Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z.
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A homogeneous Riemannian structure on (M, g) is a (1, 2)-tensor field S satisfying the
so-called Ambrose–Singer equations

∇̃g = 0, ∇̃R = 0, ∇̃S = 0, (2.1)

where ∇̃ = ∇ − S [18]. We also denote by S the associated (0, 3)-tensor field obtained
by lowering the contravariant index, SXY Z = g(SXY, Z).

We now suppose that (M, g) is homogeneous Riemannian. Let G be a connected Lie
group with Lie algebra g acting effectively and transitively on M by isometries. And let
K be the isotropy group at a point x ∈ M with Lie algebra k. A decomposition g = m⊕ k

is said to be a reductive decomposition of g if Ad(K)(m) ⊂ m. Let μ be the infinitesimal
action of g at the point x, that is,

μ : g → TxM

ξ �→ d
dt

∣∣∣∣
t=0

Φexp(tξ)(x),

where Φa denotes the action of an element a ∈ G. Then, for all k ∈ K, the following
diagram is commutative:

g

�Ad(k)

��

μ �� TxM

(Φk)∗

��
g

μ �� TxM

(2.2)

The restriction of μ to m gives an isomorphism μ : m → TxM , and the canonical connec-
tion ∇̃ (see [12]) with respect to the reductive decomposition g = m ⊕ k is determined
by its value at x:

(∇̃XY )x = μ([μ−1(X), μ−1(Y )]m), X, Y ∈ TxM. (2.3)

The tensor field S = ∇ − ∇̃ is the homogeneous Riemannian structure associated with
the reductive decomposition g = m ⊕ k.

The Ambrose–Singer theorem states that a connected, simply connected and complete
Riemannian manifold is homogeneous Riemannian if and only if it admits a homogeneous
structure tensor. In the case where (M, g) is just a connected Riemannian manifold, the
existence of a homogeneous structure tensor implies that (M, g) is locally homogeneous.
Tricerri and Vanhecke [18] gave a classification of the homogeneous Riemannian structure
tensors in eight invariant classes: the class {S = 0} of symmetric structures, the total
space denoted by S, three irreducible classes under the action of the group O(n),

S1 = {S ∈ S/SXY Z = g(X, Y )ϕ(Z) − g(X, Z)ϕ(Y ), ϕ ∈ Γ (T ∗M)},

S2 =
{

S ∈ S
/

S
XY Z

SXY Z = 0, c12(S) = 0
}

,

S3 = {S ∈ S/SXY Z + SY XZ = 0},
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and their direct sums,

S1 ⊕ S2 =
{

S ∈ S
/

S
XY Z

SXY Z = 0
}

,

S1 ⊕ S3 = {S ∈ S/SXY Z + SY XZ = 2g(X, Y )ϕ(Z) − g(X, Z)ϕ(Y ) − g(Y, Z)ϕ(X),
ϕ ∈ Γ (T ∗M)},

S2 ⊕ S3 = {S ∈ S/c12(S) = 0},

where c12(S)p(Z) =
∑

iSeieiZ for any orthonormal base {ei}i=1,...,n of TpM .

2.2. The reduced metric in a principal bundle

Let π : M̄ → M be an H-principal bundle, where M̄ is a Riemannian manifold with
metric ḡ, and H acts on M̄ by isometries. Although it is not essential, the action of H is
understood as left and, hence, π is a left principal bundle. Let x̄ ∈ M̄ and let Vx̄M̄ denote
the vertical subspace at x̄. If we take the orthogonal complement Hx̄M̄ = (Vx̄M̄)⊥ of
Vx̄M̄ in Tx̄M̄ with respect to the metric ḡ, we have that

Tx̄M̄ = Vx̄M̄ ⊕ Hx̄M̄. (2.4)

Moreover, as H acts by isometries, the horizontal subspaces Hx̄M̄ are preserved by the
action of H, and the decomposition (2.4) leads to the so-called mechanical connection
in the principal bundle M̄ → M . In this situation there is a unique Riemannian metric
g in M such that the restriction π∗ : Hx̄M̄ → Tπ(x̄)M is an isometry at every x̄ ∈ M̄ .
Obviously, the metric g satisfies

g(X, Y ) ◦ π = ḡ(XH, Y H) ∀X, Y ∈ X(M), (2.5)

where XH and Y H denote the horizontal lift of X and Y , respectively, with respect
to the mechanical connection. To complete the notation, in the following, for a vector
Z ∈ Tx̄M̄ , we denote by Zh ∈ Hx̄M̄ the horizontal part of Z with respect to the
mechanical connection. In particular,

Zh = (π∗(Z))H. (2.6)

Proposition 2.1. In the situation above, if ∇̄ is the Levi-Civita connection for the
metric ḡ, then the Levi-Civita connection ∇ for the reduced metric g is given by

∇XY = π∗(∇̄XHY H) ∀X, Y ∈ X(M). (2.7)

Proof. Since the structure group H acts by isometries, it also acts by affine trans-
formations of ∇̄. Thus, the vector field ∇̄XHY H is projectable and the operator DXY =
π∗(∇̄XHY H) is well defined. It is a direct computation to show that D fulfils the prop-
erties of a linear connection in M . For X, Y, Z ∈ X(M), from (2.5) and (2.6) we have
that

g(DXY, Z) ◦ π + g(Y, DXZ) ◦ π = ḡ((∇̄XHY H)h, ZH) + ḡ(Y H, (∇̄XHZH)h)

= ḡ(∇̄XHY H, ZH) + ḡ(Y H, ∇̄XHZH)

= XH(ḡ(Y H, ZH)).
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Hence, g(DXY, Z) + g(Y, DXZ) = X(g(Y, Z)) and the connection D is metric. Finally,
as [X, Y ]H = [XH, Y H]h, the torsion tensor of D is

T (X, Y ) = DXY − DY X − [X, Y ]

= π∗(∇̄XHY H − ∇̄Y HXH − [XH, Y H])

= 0,

and D is the Levi-Civita connection for g. �

3. Main results

3.1. Reduction by a normal subgroup of isometries

Let (M̄, ḡ) be a homogeneous Riemannian manifold. Let Ḡ be a group of isometries acting
transitively on M̄ and let H � Ḡ be a normal subgroup acting freely on M̄ . The quotient
M = M̄/H is thus endowed (see [13, Theorem 9.16]) with a smooth structure such that
π : M̄ → M is an H-principal bundle. By definition, the bundle π : M̄ → M is equipped
with the mechanical connection and M is Riemannian with the reduced metric g as
in (2.5). Since H is normal, there is a well-defined action of the group G = Ḡ/H on M

given by

Φ : G × M → M

([ā], [x̄]) �→ Φ[ā]([x̄]) = [Φā(x̄)], (3.1)

where [ā] and [x̄] denotes the classes modulo H of ā ∈ Ḡ and x̄ ∈ M̄ , respectively, and
Φā denotes the action of Ḡ on M̄ . The action of G is obviously transitive, but need
not be effective. If it is not, we replace G by G/N , where N is the kernel of the map
G → Iso(M), a �→ Φa, a ∈ G.

Proposition 3.1. The group G acts on (M, g) by isometries.

Proof. The action (3.1) can be written as π◦Φā = Φa◦π for a = [ā]. This implies that
Ḡ preserves vertical subspaces and, acting by isometries, also preserves their horizontal
complements. Hence, the horizontal lift of (Φa)∗(X) is (Φā)∗(XH) for all X ∈ X(M). In
addition, for X, Y ∈ X(M),

g((Φa)∗(X), (Φa)∗(Y )) ◦ π = ḡ((Φa)∗(X)H, (Φa)∗(Y )H)

= ḡ((Φā)∗(XH), (Φā)∗(Y H))

= ḡ(XH, Y H)

= g(X, Y ) ◦ π,

and then Φa is an isometry. �

From this last proposition, the manifold (M, g) is homogeneous Riemannian. We call
it the reduced homogeneous Riemannian manifold.
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Remark 3.2. Note that Proposition 3.1 shows that the horizontal distribution is
invariant by Ḡ. This means that the mechanical connection is Ḡ-invariant, an important
fact that is used in § 3.3.

Let x̄ ∈ M̄ and let x = π(x̄) ∈ M . We denote by K̄ the isotropy group of x̄ under the
action of Ḡ, and by K the corresponding isotropy group of x under the action of G. We
also denote their Lie algebras by k̄ and k, respectively. We then have the following.

Lemma 3.3. Let τ : Ḡ → G be the quotient homomorphism. Then, K = τ(K̄),
H ∩ K̄ = {e}, and the restriction τ |K̄ : K̄ → K is an isomorphism of groups.

Proof. It is obvious from (3.1) that τ(K̄) ⊂ K. Now let k ∈ K and take ā ∈ Ḡ such
that k = τ(ā). Then, for any x ∈ M , we have x = Φk(x) = π(Φā(x̄)), and then Φā(x̄) is
in the same fibre as x̄. Hence, there exists h ∈ H such that Φh ◦ Φā(x̄) = x̄, so hā ∈ K̄.
Since τ(hā) = τ(ā) = k, we have k ∈ τ(K̄). For the injectivity of τ |K̄ , let k̄1, k̄2 ∈ K̄

such that τ(k̄1) = τ(k̄2). There exists h ∈ H such that hk̄1 = k̄2. Then k̄−1
1 hk̄1 = k̄−1

1 k̄2,
so k̄−1

1 k̄2 ∈ K̄ ∩ H. But since H acts freely, k̄−1
1 k̄2 = ē, and then k̄1 = k̄2. �

Theorem 3.4. Let (M̄, ḡ) be a connected homogeneous Riemannian manifold and
let Ḡ be a group of isometries acting transitively and effectively in M̄ . Let H � Ḡ be a
normal subgroup acting freely in M̄ . Every homogeneous structure tensor S̄ associated
with Ḡ then induces a homogeneous structure tensor S associated with G = Ḡ/H in the
reduced Riemannian manifold M = M̄/H.

Proof. Let x̄ ∈ M̄ and x = π(x̄) ∈ M , and let ḡ be the Lie algebra of Ḡ. For
any reductive decomposition ḡ = m̄ ⊕ k̄ associated with S̄, the restriction isomorphism
μ̄ : m̄ → Tx̄M̄ induces from ḡ a positive definite bilinear form B in m̄. Moreover, by the
commutativity of (2.2) the bilinear form B is Ad(K̄)-invariant, that is,

B(Ad(k̄)ξ,Ad(k̄)η) = B(ξ, η) ∀k̄ ∈ K̄.

Then, (2.4) induces an orthogonal and Ad(K̄)-invariant decomposition

m̄ = m̄
v ⊕ m̄

h,

i.e. Ad(K̄)(m̄v) ⊂ m̄v and Ad(K̄)(m̄h) ⊂ m̄h.
Let g = ḡ/h be the Lie algebra of G and let μ : g → TxM be the corresponding

infinitesimal action at x. For any ξ̄ ∈ ḡ, by (3.1) we have that

π∗ ◦ μ̄(ξ̄) = π∗

(
d
dt

∣∣∣∣
t=0

Φexp(tξ̄)(x̄)
)

=
d
dt

∣∣∣∣
t=0

(π ◦ Φexp(tξ̄))(x̄)

=
d
dt

∣∣∣∣
t=0

Φτ(exp(tξ̄))(π(x̄))
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=
d
dt

∣∣∣∣
t=0

Φexp(tτ∗(ξ̄))(x)

= μ ◦ τ∗(ξ̄),

which means that the following diagram is commutative:

ḡ

�τ∗

��

μ̄ �� Tx̄M̄

π∗

��
g

μ �� TxM

(3.2)

Restrictions to m̄h and m̄v give the commutative diagrams:

m̄v

�τ∗

��

μ̄ �� Vx̄M̄

π∗

��
τ∗(m̄v)

μ �� {0}

m̄h

�τ∗

��

μ̄ �� Hx̄M̄

π∗

��
τ∗(m̄h)

μ �� TxM

(3.3)

which shows that τ∗ : m̄h → τ∗(m̄h) and μ : τ∗(m̄h) → TxM are isomorphisms, and
τ∗(m̄v) ⊂ k. In addition, by Lemma 3.3 the restriction of τ∗ : ḡ → g to k̄ is an iso-
morphism of Lie algebras from k̄ to k. Therefore, denoting by m the image τ∗(m̄h), we
have the decomposition

g = m ⊕ k. (3.4)

Let k ∈ K and let ξ ∈ m, and let k̄ ∈ K̄ and ξ̄ ∈ m̄h be such that τ(k̄) = k and
τ∗(ξ̄) = ξ. We have that

Ad(k)(ξ) = Ad(τ(k̄))(τ∗(ξ̄))

= μ−1 ◦ Φτ(k̄) ◦ μ(τ∗(ξ̄))

= μ−1 ◦ Φτ(k̄) ◦ π∗(μ̄(ξ̄))

= μ−1 ◦ π∗ ◦ Φk̄(μ̄(ξ̄))

= μ−1 ◦ π∗ ◦ μ̄(Ad(k̄)(ξ̄))

= μ−1 ◦ μ ◦ τ∗(Ad(k̄)(ξ̄))

= τ∗(Ad(k̄)(ξ̄)).

Since m̄h is Ad(K̄)-invariant we deduce that Ad(k)(m) ⊂ τ∗(m̄h) = m, which proves
that (3.4) is a reductive decomposition.

The homogeneous structure tensor associated with (3.4) at x is given (see [18, p. 24])
by

(Sx)XY = (∇Y ξ∗)x, X, Y ∈ TxM,
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where ξ∗ is the vector field given by the infinitesimal action of ξ ∈ m with ξ∗
x = μ(ξ) = X.

Let ξ̄ ∈ m̄h be such that τ∗(ξ̄) = ξ; then,

(Sx)XY = (∇Y ξ∗)x

= π∗((∇̄Y H(ξ∗)H)x̄)

= π∗((∇̄Y H ξ̄∗)) − π∗((∇̄Y H(ξ̄∗)v)x̄).

Now let Z̄ ∈ Tx̄M̄ be a horizontal vector; since ξ̄∗
x̄ is horizontal,

ḡ((∇̄Y H(ξ̄∗)v)x̄, Z̄) = Y Hḡ((ξ̄∗)v, Z̄) − ḡ((ξ̄∗)v
x̄, ∇̄Y HZ̄) = 0.

Hence, by [18, p. 24] and (3.3),

(Sx)XY = π∗((S̄x̄)XHY H), X, Y ∈ TxM. (3.5)

Finally, we extend Sx to the whole M with the action of G to obtain a homogeneous
structure tensor S. �

We call the tensor field S the reduced homogeneous structure tensor.

Corollary 3.5. The reduced homogeneous structure can be expressed as

SXY = π∗(S̄XHY H), X, Y ∈ X(M). (3.6)

Proof. Let ā ∈ Ḡ and a = τ(ā) ∈ G. We have already proved that the horizontal lift
of (Φa)∗(X) is (Φā)∗(XH) for all X ∈ X(M). This together with the invariance of S̄ by Ḡ

and the invariance of S by G gives (3.6). �

3.2. The space of tensors reducing to a given tensor

Suppose that we are now in the situation of Theorem 3.4 and we have a homogeneous
structure tensor S associated with G in the reduced manifold M . Using diagram (3.2)
we can define

m̄
h = τ−1

∗ (m) ∩ μ̄−1(Hx̄M̄) and m̄
v = h.

The decomposition
ḡ = m̄ ⊕ k̄, with m̄ = m̄

v ⊕ m̄
h, (3.7)

is then a reductive decomposition. Indeed, since H is normal in Ḡ, it is obvious that
Ad(K̄)(h) ⊂ h. On the other hand, for k̄ ∈ K̄ and ξ̄ ∈ m̄h, as μ̄(Ad(k̄)(ξ̄)) = (Φk̄)∗(μ̄(ξ̄)),
we have μ̄(Ad(k̄)(ξ̄)) ∈ Hx̄M̄ and τ∗(Ad(k̄)(ξ̄)) ∈ m, and then Ad(k̄)(ξ̄) ∈ m̄h. The
homogeneous structure tensor associated with this decomposition at x̄ is (see, for exam-
ple, [9])

(S̄x̄)X̄Ȳ Z̄ = 1
2 (B([ξ̄, η̄]m̄, ζ̄) − B([η̄, ζ̄]m̄, ξ̄) + B([ζ̄, ξ̄]m̄, η̄)), X̄, Ȳ , Z̄ ∈ Tx̄M̄, (3.8)

where ξ̄, η̄, ζ̄ ∈ m̄ are such that their images by μ̄ are X̄, Ȳ , Z̄, and B is the bilinear
form induced on m̄ from Tx̄M̄ by μ̄. Note that we have exactly the same situation in

https://doi.org/10.1017/S0013091513000679 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000679


Reduction of homogeneous Riemannian structures 89

the proof of Theorem 3.4, so the homogeneous structure tensor S̄ associated with (3.7)
reduces to S.

We can construct all other homogeneous structures in M̄ associated with Ḡ by chang-
ing m̄ in (3.7) by the graph

m̄
ϕ = {X + ϕ(X)/X ∈ m̄}

of an Ad(K̄)-equivariant map ϕ : h ⊕ m̄h → k̄. The condition that the new homoge-
neous structure tensors reduce to S is equivalent to the condition ϕ|m̄h = 0. So the
family of homogeneous structure tensors that reduce to S is parametrized by the set of
Ad(K̄)-equivariant maps ϕ : h → k̄. For the sake of convenience we denote by the same ϕ

both ϕ : h → k̄ and its extension by zero to m̄ = h ⊕ m̄h. The expression of the homoge-
neous structure tensor S̄ϕ associated with this map is the same as in (3.8) by changing
m̄ to m̄ϕ, B to the induced bilinear form Bϕ in m̄ϕ, and the ξ̄, η̄, ζ̄ to ξ̄′ = ξ̄ + ϕ(ξ̄),
η̄′ = η̄ + ϕ(η̄), ζ̄ ′ = ζ̄ + ϕ(ζ̄) ∈ m̄ϕ. As

[ξ̄′, η̄′]m̄ϕ = [ξ̄, η̄]m̄ϕ + [ξ̄, ϕ(η̄)]m̄ϕ + [ϕ(ξ̄), η̄]m̄ϕ + [ϕ(ξ̄), ϕ(η̄)]m̄ϕ

and [ϕ(ξ̄), ϕ(η̄)]m̄ϕ = 0, we have that

Bϕ([ξ̄′, η̄′]m̄ϕ , ζ̄ ′) = Bϕ([ξ̄, η̄]m̄ϕ , ζ̄ ′) + Bϕ([ξ̄, ϕ(η̄)]m̄ϕ + [ϕ(ξ̄), η̄]m̄ϕ , ζ̄ ′)

= B([ξ̄, η̄]m̄, ζ̄) + B([ξ̄, ϕ(η̄)] + [ϕ(ξ̄), η̄], ζ̄),

where one has to take into account that the isomorphism m̄ → m̄ϕ, ξ̄ �→ ξ̄ + ϕ(ξ̄) is an
isometry with respect to B and Bϕ. Hence,

(S̄ϕ
x̄ )X̄Ȳ Z̄ = (S̄x̄)X̄Ȳ Z̄ + 1

2{B([ξ̄, ϕ(η̄)] + [ϕ(ξ̄), η̄], ζ̄)

− B([η̄, ϕ(ζ̄)] + [ϕ(η̄), ζ̄], ξ̄) + B([ζ̄, ϕ(ξ̄)] + [ϕ(ζ̄), ξ̄], η̄)}.

(3.9)

The summands involving B define a tensor field Pϕ globally defined in M̄ by the left
action of Ḡ. More precisely, for any ȳ ∈ M̄ , with ȳ = Φā(x̄), ā ∈ Ḡ, this tensor is

(Pϕ
ȳ )X̄Ȳ Z̄ = 1

2{Bȳ([ξ̄, ϕȳ(η̄)] + [ϕȳ(ξ̄), η̄], ζ̄) − Bȳ([η̄, ϕȳ(ζ̄)] + [ϕȳ(η̄), ζ̄], ξ̄)

+ Bȳ([ζ̄, ϕȳ(ξ̄)] + [ϕȳ(ζ̄), ξ̄], η̄)}
(3.10)

for X̄, Ȳ , Z̄ ∈ TȳM̄ , where

m̄ȳ := Ad(ā)(m̄), k̄ȳ := Ad(ā)(k̄),

ϕȳ := Ad(ā) ◦ ϕ ◦ Ad(ā−1) : h → k̄ȳ,

Bȳ is the bilinear form on m̄ȳ induced from ḡȳ by

μ̄ȳ := (Φā)∗ ◦ μ̄ ◦ Ad(ā−1) : m̄ȳ → TȳM̄,

and ξ̄, η̄, ζ̄ ∈ m̄ȳ are such that their images by μ̄ȳ are X̄, Ȳ , Z̄, respectively.
We have then proved the following.
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Proposition 3.6. In the situation of Theorem 3.4, let S be a homogeneous struc-
ture tensor in M associated with G. The space of homogeneous structure tensors in M̄

associated with Ḡ and reducing to S is then a vector space isomorphic to the space of
Ad(K̄)-equivariant maps ϕ : h → k̄. Moreover, the isomorphism is given by

ϕ �→ S̄ϕ = S̄ + Pϕ,

where S̄ is the homogeneous structure associated with the decomposition (3.7) and Pϕ is
given in (3.10).

3.3. Reduction in a principal bundle

We have noted in Remark 3.2 that the normality of the group H gives the invariance of
the mechanical connection. This implies that the connection form ω is Ad(Ḡ)-equivariant,
i.e.

Φ∗
āω = Ad(ā) · ω ∀ā ∈ Ḡ, (3.11)

where Ad(ā) · ω denotes the 1-form in M̄ with values in h given by

(Ad(ā) · ω)(X̄) = Ad(ā)(ω(X̄)).

The canonical linear connection ˜̄∇ = ∇̄ − S̄ of the reductive decomposition ḡ = m̄ ⊕ k̄

at x̄ is characterized by the following property: for every ξ̄ ∈ m̄, the parallel displacement
with respect to ˜̄∇ along the curve γ(t) = Φexp(tξ̄)(x̄), from x̄ to γ(t), is equal to (Φexp(tξ̄))∗
(see [12, Chapter X, Corollary 2.5]). Hence, infinitesimally we have that

( ˜̄∇X̄ω)x̄ = ad(μ̄−1(X̄)) · ωx̄ ∀X̄ ∈ Tx̄M̄,

and, by the invariance of ˜̄∇ by Ḡ,

( ˜̄∇X̄ω)ȳ = ad(μ̄−1
ȳ (X̄)) · ωȳ ∀ȳ ∈ M̄, ∀X̄ ∈ TȳM̄, (3.12)

that is, the covariant derivative of ω by the connection ˜̄∇ is proportional to itself by a
suitable linear operator. We note that, in particular, if H is contained in the centre of Ḡ,
the linear operator is null. Hence, ω is invariant by Ḡ. If H is just a normal subgroup
not contained in the centre, (3.12) follows from the equivariance of ω.

The preceding discussion suggests that we study the reduction of homogeneous struc-
ture tensors S̄ in a principal bundle without the use of the group Ḡ. More precisely,
the group Ḡ (and its reductive decomposition) associated with the tensor S̄ was a key
ingredient in Theorem 3.4. We now begin with any tensor S̄ in a manifold (M̄, ḡ) where
a group H acts by isometries (and such that M̄ → M̄/H = M is a principal bundle)
satisfying the Ambrose–Singer equations and an additional algebraic condition for the
mechanical connection analogous to (3.12). The tensor S̄ can then also be projected
without using any reductive decomposition, as we see in the following result.
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Theorem 3.7. Let (M̄, ḡ) be a Riemannian manifold. Let π : M̄ → M be a principal
bundle with structure group H acting on M̄ by isometries, and endowed with the mechan-
ical connection ω. For every H-invariant homogeneous Riemannian structure tensor S̄

with canonical linear connection ˜̄∇, if

˜̄∇ω = α · ω (3.13)

for some 1-form α in M̄ taking values in End(h), the tensor field S defined by

SXY = π∗(S̄XHY H), X, Y ∈ X(M), (3.14)

is a homogeneous Riemannian structure tensor in (M, g), where g is the reduced Rie-
mannian metric.

Proof. First note that H-invariance of S̄ implies that S̄XHY H is projectable, and
then S is well defined. Since the structure group H acts by isometries, the Levi-Civita
connection ∇̄ of ḡ is H-invariant, which implies that ˜̄∇ = ∇̄ − S̄ is also H-invariant.
Now, from condition (3.13) we have that, for all X, Y ∈ X(M),

ω( ˜̄∇XHY H) = XH(ω(Y H)) − ( ˜̄∇XHω)(Y H) = −α(XH) · ω(Y H) = 0,

so ˜̄∇XHY H is horizontal. If we define ∇̃ = ∇ − S, ∇ being the Levi-Civita connection of
g, then ˜̄∇XHY H projects to ∇̃XHY H. Hence, by H-invariance,

(∇̃XY )H = ˜̄∇XHY H. (3.15)

We now prove that S satisfies the Ambrose–Singer equations (equivalent to those in (2.1)):

∇̃g = 0, ∇̃R̃ = 0, ∇̃S = 0, (3.16)

where R̃ is the curvature tensor of ∇̃, and R̃ and S are seen to be (0, 4) and (0, 3) tensors,
respectively, by lowering their contravariant index with respect to g.

For the first equation, taking into account (3.15), we have, for U, X, Y ∈ X(M), that

(∇̃Ug)(X, Y ) ◦ π = U(g(X, Y )) ◦ π − g(∇̃UX, Y ) ◦ π − g(X, ∇̃UY ) ◦ π

= UH(ḡ(XH, Y H)) − ḡ((∇̃UX)H, Y H) − ḡ(XH, (∇̃UY )H)

= UH(ḡ(XH, Y H)) − ḡ( ˜̄∇UHXH, Y H) − ḡ(XH, ˜̄∇UHY H)

= ( ˜̄∇UH ḡ)(XH, Y H),

and then, since ˜̄∇ḡ = 0, we have ∇̃g = 0.
For the third equation, let U, X, Y, Z ∈ X(M). Then, again by (3.15), we have that

(∇̃US)XY Z ◦ π = U(SXY Z) ◦ π − (S∇̃U XY Z) ◦ π − (SX∇̃U Y Z) ◦ π − (SXY ∇̃U Z) ◦ π

= UH(S̄XHY HZH) − S̄(∇̃U X)HY HZH − S̄XH(∇̃U Y )HZH − S̄XHY H(∇̃U Z)H

= UH(S̄XHY HZH) − S̄ ˜̄∇UHXHY HZH − S̄
XH ˜̄∇UHY HZH − S̄XHY H∇̃UHZH

= ( ˜̄∇UH S̄)XHY HZH ,

which vanishes as ˜̄∇S̄ = 0.
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We now prove the second Ambrose–Singer equation. Let ˜̄R be the curvature tensor
of ˜̄∇. From (3.15), for X, Y, Z ∈ X(M) we first have that

(R̃XY Z)H = ˜̄∇XH(∇̃Y Z)H − ˜̄∇Y H(∇̃XZ)H − ˜̄∇[X,Y ]HZH

= ˜̄∇XH( ˜̄∇Y HZH) − ˜̄∇Y H( ˜̄∇XHZH) − ˜̄∇[XH,Y H]hZH

= ˜̄RXHY HZH + ˜̄∇[XH,Y H]vZH.

We also denote by ˜̄R the (0, 4) tensor field associated with ˜̄R with respect to ḡ. Then,
for X, Y, Z, W ∈ X(M), one has that

R̃XY ZW ◦ π = ˜̄RXHY HZHWH + ḡ( ˜̄∇[XH,Y H]vZH, WH)

= ˜̄RXHY HZHWH − ḡ( ˜̄∇Ω(XH,Y H)∗ZH, WH), (3.17)

where Ω(XH, Y H)∗ is the fundamental vector field associated with Ω(XH, Y H) ∈ h. For
any x̄ ∈ M̄ , let I(x̄) be the bilinear form in h defined as

I(x̄)(ξ, η) = ḡ(ξ∗
x̄, η∗

x̄) ∀ξ, η ∈ h.

Applying Koszul’s formula for ∇̄ and taking into account that [XH, ξ∗] = 0 for any
X ∈ X(M), ξ ∈ h, we have that

ḡ( ˜̄∇Ω(XH,Y H)∗ZH, WH) = ḡ(∇̄Ω(XH,Y H)∗ZH, WH) − ḡ(S̄Ω(XH,Y H)∗ZHWH)

= 1
2 I(Ω(XH, Y H), Ω(ZH, WH)) − S̄Ω(XH,Y H)∗ZHWH ,

where, as usual, ˜̄∇ = ∇̄ − S̄. Applying the previous equation and (3.17), a direct com-
putation then shows that

(∇̃U R̃)XY ZW ◦ π = ( ˜̄∇UH
˜̄R)XHY HZHWH

− 1
2UH(I(Ω(XH, Y H), Ω(ZH, WH)))

+ 1
2 I(Ω( ˜̄∇UHXH, Y H), Ω(ZH, WH))

+ 1
2 I(Ω(XH, ˜̄∇UHY H), Ω(ZH, WH))

+ 1
2 I(Ω(XH, Y H), Ω( ˜̄∇UHZH, WH))

+ 1
2 I(Ω(XH, Y H), Ω(ZH, ˜̄∇UHWH))

+ UH(S̄Ω(XH,Y H)∗ZHWH) − S̄
Ω( ˜̄∇UHXH,Y H)∗ZHWH

− S̄
Ω(XH, ˜̄∇UHY H)∗ZHWH − S̄

Ω(XH,Y H)∗( ˜̄∇UHZH)WH

− S̄
Ω(XH,Y H)∗ZH( ˜̄∇UHWH). (3.18)

On the other hand, by (3.13),

0 = ( ˜̄∇XHω)(Y H) − ( ˜̄∇Y Hω)(XH) = dω(XH, Y H) − ω( ˜̄TXHY H),
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where ˜̄T is the torsion tensor field of ˜̄∇. Then, since by definition Ω(X̄, Ȳ ) = dω(X̄h, Ȳ h),
we have that

Ω(XH, Y H) = ω( ˜̄TXHY H).

Using that
˜̄TXHY H = S̄Y HXH − S̄XHY H,

and the conditions (3.13) and ˜̄∇S̄ = 0, one has that

( ˜̄∇UHΩ)(XH, Y H) = α(UH) · Ω(XH, Y H). (3.19)

Now, from ω([XH, Y H]v) = −Ω(XH, Y H) and (3.13) we get that

ω( ˜̄∇UH [XH, Y H]v) = −UH(Ω(XH, Y H)) + α(UH) · Ω(XH, Y H), (3.20)

and hence we have that

UH(I(Ω(XH, Y H), Ω(ZH, WH))) = ḡ( ˜̄∇UH [XH, Y H]v, [ZH, WH]v)

+ ḡ([XH, Y H]v, ˜̄∇UH [ZH, WH]v)

= I(UHΩ(XH, Y H), Ω(ZH, WH))

− I(α(UH) · Ω(XH, Y H), Ω(ZH, WH))

+ I(Ω(XH, Y H), UHΩ(ZH, WH))

− I(Ω(XH, Y H), α(UH) · Ω(ZH, WH)).

In addition, by (3.19) and (3.20),

Ω( ˜̄∇UHXH, Y H) + Ω(XH, ˜̄∇UHY H) = −ω( ˜̄∇UH [XH, Y H]v),

so
Ω( ˜̄∇UHXH, Y H)∗ + Ω(XH, ˜̄∇UHY H)∗ = ˜̄∇UHΩ(XH, Y H)∗, (3.21)

since ˜̄∇UH [XH, Y H]v is vertical. Making use of the preceding formulae and grouping
terms, (3.18) becomes

(∇̃U R̃)XY ZW ◦ π = ( ˜̄∇UH
˜̄R)XHY HZHWH

+ 1
2 I(( ˜̄∇UHΩ)(XH, Y H), Ω(ZH, WH))

− 1
2 I(α(UH) · Ω(XH, Y H), Ω(ZH, WH))

+ 1
2 I(Ω(XH, Y H), ( ˜̄∇UHΩ)(ZH, WH))

− 1
2 I(Ω(XH, Y H), α(UH) · Ω(ZH, WH))

− ( ˜̄∇UH S̄)Ω(XH,Y H)∗ZHWH ,

from which, taking into account (3.19) and (3.21), we deduce that ∇̃U R̃ = 0. This com-
pletes the proof of Theorem 3.7. �
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Remark 3.8. In the situation of Theorem 3.7, in the case where S̄ is a homogeneous
structure tensor associated with a Lie group Ḡ acting by isometries in M̄ , one could ask
if H can be seen to be a normal subgroup of Ḡ and if the projected tensor S is associated
with the group G = Ḡ/H. The answer is not necessarily affirmative. More precisely, for
a connected, simply connected and complete manifold M̄ , if we construct the group Ḡ

from S̄ following the proof of the Ambrose–Singer theorem (as in [18]), one can see that
the normality of H is not guaranteed and the group Ḡ need not project to the group G

constructed in M from S by the same method. An example of this situation is shown
in § 4.2.1 (the Hopf fibration case λ = 0).

Remark 3.9. The algebraic condition (3.13) for α = 0 is an invariance condition and
can be implemented in Ambrose–Singer conditions as in Kiričenko’s theorem (see [11]).
This situation can be found in the last section of the present paper in the framework
of almost contact metric homogeneous structures, where this condition is automatically
satisfied. Note that for non-trivial α, the situation would require an equivariant version
of this theorem.

3.4. Reduction and homogeneous classes

In the situation of Theorem 3.7, we have the following.

Proposition 3.10. The classes {0}, S1, S3, S1 ⊕ S2 and S1 ⊕ S3 are invariant under
the reduction procedure.

Proof. By the expression of the reduced structure tensor (3.14) it is obvious that if
S̄ = 0, then S = 0. Let S̄ ∈ S1 be given by the expression

S̄X̄Ȳ Z̄ = ḡ(X̄, Ȳ )ḡ(ξ̄, Z̄) − ḡ(Ȳ , ξ̄)ḡ(X̄, Z̄),

where ξ̄ is a vector field parallel with respect to ˜̄∇. Since S̄ is H-invariant, the vector
field ξ̄ is also H-invariant, and thus projectable. Let ξ be the projection of ξ̄. We have
ξH = ξ̄h, and then

SXY Z ◦ π = ḡ(XH, Y H)ḡ(ξ̄, ZH) − ḡ(Y H, ξ̄)ḡ(XH, ZH)

= ḡ(XH, Y H)ḡ(ξH, ZH) − ḡ(Y H, ξH)ḡ(XH, ZH)

= g(X, Y )g(ξ, Z) ◦ π − g(Y, ξ)g(X, Z) ◦ π;

hence, S ∈ S1. With a similar argument, one proves that the class S1⊕S2 is also invariant.
The classes S3 and S1 ⊕ S3 are characterized by algebraic conditions clearly preserved
by the reduction formula (3.14). �

The other two classes S2 and S2⊕S3 are characterized by the vanishing of the trace c12.
Let x ∈ M and let {ei}i=1,...,n be an orthonormal base of TxM ; then, for X ∈ TxM ,

c12(S)(X) =
∑

i

SeieiX =
∑

i

S̄eH
i eH

i XH = c12(S̄)(XH) −
∑

j

S̄VjVjXH , (3.22)
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where {Vj}j=1,...,r is an orthonormal basis of the vertical subspace Vx̄M̄ , x̄ ∈ π−1(x).
From ˜̄∇ = ∇̄ − S̄, one has that

S̄VjVjXH = ḡ(∇̄Vj Vj , X
H) − ḡ( ˜̄∇Vj Vj , X

H) = −ḡ(∇̄Vj X
H, Vj) + ḡ( ˜̄∇Vj X

H, Vj),

where the vectors Vj , j = 1, . . . , r, are extended to unitary and, respectively, orthogonal
vertical vector fields. As from (3.13) we have that

ω( ˜̄∇Vj
XH) = Vj(ω(XH)) − α(Vj) · ω(XH) = 0,

the second summand in the formula for S̄VjVjXH is 0, and then

S̄VjVjXH = −ḡ(∇̄Vj
XH, Vj) = ḡ(B(Vj , Vj), XH),

where B denotes the second fundamental form of the fibre π−1(x) at x̄. Inserting this
into (3.22), we obtain that

c12(S)(X) = c12(S̄)(XH) −
∑

j

ḡ(B(Vj , Vj), XH) = c12(S̄)(XH) − rḡ(H, XH),

where H denotes the mean curvature operator of the fibre at x̄. We have proved the
following.

Proposition 3.11. The classes S2 and S2 ⊕ S3 are invariant under reduction if and
only if the fibres of the principal bundle π : (M̄, ḡ) → (M, g) are minimal Riemannian
sub-manifolds of (M̄, ḡ).

Remark 3.12. Propositions 3.10 and 3.11 (when the fibres are minimal) do not
exclude that a homogeneous structure tensor S̄ in a class Si ⊕ Sj reduces to a ten-
sor S belonging to classes Si or Sj , or even to the null tensor. We show some examples
of these situations in the next section.

4. Examples

4.1. Real hyperbolic space

The real n-dimensional hyperbolic space (RH(n), ḡ),

RH(n) = {(ȳ0, ȳ1, . . . , ȳn−1) ∈ R
n/ȳ0 > 0},

ḡ =
1

(ȳ0)2

n−1∑
j=0

dȳj ⊗ dȳj ,

is a symmetric space, RH(n) = SO(n − 1, 1)/O(n − 1). If we consider the Iwasawa
decomposition of its full Lie group of isometries,

SO(1, n − 1) = O(n − 1)AN,
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then we can identify RH(n) � AN such that the hyperbolic space has a solvable Lie
group structure given by

(x̄0, x̄1, . . . , x̄n−1) · (ȳ0, ȳ1, . . . , ȳn−1) = (x̄0ȳ0, x̄0ȳ1 + x̄1, . . . , x̄0ȳn−1 + x̄n−1).

Hence, the real hyperbolic space acts freely, transitively and by isometries on itself by left
translations. The homogeneous structure tensor S̄ associated with this action (see [18])
is a S1 structure given by

S̄X̄Ȳ Z̄ = ḡ(X̄, Ȳ )ḡ(ξ̄, Ȳ ) − ḡ(ξ̄, Ȳ )ḡ(X̄, Z̄), X̄, Ȳ , Z̄ ∈ X(RH(n)),

where
ξ̄ = ȳ0 ∂

∂ȳ0 .

Let Hi � R, i = 2, . . . , n − 1, be the normal subgroups of RH(n) given by

Hi = {(1, 0, . . . , λ, 0, . . . , 0)/λ ∈ R},

where λ is in the ith position. Reduction by the action of Hi gives the fibration

RH(n) → RH(n − 1)

(ȳ0, . . . , ȳn−1) �→ (ȳ0, . . . , ȳi−1, ȳi+1 . . . , ȳn−1)

with vertical and horizontal subspaces at ȳ ∈ RH(n),

VȳRH(n) = span
{

∂

∂ȳi

}
,

HȳRH(n) = span
{

∂

∂ȳ0 , . . . ,
∂

∂ȳi−1 ,
∂

∂ȳi+1 , . . . ,
∂

∂ȳn−1

}
.

Hence, the induced metric on RH(n − 1) is

g =
1

(y0)2

n−2∑
j=0

dyj ⊗ dyj ,

where (y0, . . . , yn−2) are the natural coordinates of RH(n − 1). As a straightforward
computation shows, the reduced homogeneous structure tensor S is

SXY Z = g(X, Y )g(ξ, Z) − g(ξ, Y )g(X, Z), X, Y, Z ∈ X(RH(n − 1)),

where
ξ = y0 ∂

∂y0 .

We have proved that the reduction RH(n) → RH(n− 1) sends the canonical tensor asso-
ciated with the solvable structure of the n-dimensional hyperbolic space to the canonical
tensor associated with the solvable structure of the (n−1)-dimensional hyperbolic space.
The reduction procedure has then preserved the S1 class in this case.
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We now confine ourselves to the four-dimensional hyperbolic space. Besides its symmet-
ric description, all other groups of isometries acting transitively are of the type (see [5])
Ḡ = FN , where F is a connected closed subgroup of SO(3)A with non-trivial projection
to A. In particular, we now consider

Ḡ = SO(2)AN.

Geometrically, if we see SO(2) as the isotropy group of the point x̄ = (1, 0, 0, 0), its Lie
algebra k̄ are infinitesimal rotations generated by

r = ȳ2 ∂

∂ȳ3 − ȳ3 ∂

∂ȳ2 .

The subspace m̄ = a ⊕ n, which is the Lie algebra of the factor AN , gives a reductive
decomposition

ḡ = m̄ ⊕ k̄.

Let a ∈ a, n1, n2, n3 ∈ n be the generators of a and n, respectively, where ni is the
infinitesimal translation in RH(4) in the direction of ∂/∂ȳi. All other reductive decom-
positions ḡ = m̄ϕ + k̄ associated with ḡ and k̄ are given by the graph of any equivariant
map ϕ : m → k. As a computation shows, all these equivariant maps are

ϕ(λ0,λ1) : m → k

a �→ λ0r

n1 �→ λ1r

n2, n3 �→ 0,

with λ0, λ1 ∈ R. The homogeneous structure tensors associated with this two-parameter
family of reductive decompositions are

S̄(λ0,λ1) =
1

(ȳ0)3

( 3∑
k=1

dȳk ⊗ dȳk ∧ dȳ0 − λ0 dȳ0 ⊗ dȳ2 ∧ dȳ3 − λ1 dȳ1 ⊗ dȳ2 ∧ dȳ3
)

,

and the canonical connection ˜̄∇ = ∇̄ − S̄(λ0,λ1) (where ∇̄ is the Levi-Civita connection
of ḡ) is then given by

˜̄∇∂0∂0 = − 1
ȳ0 ∂0,

˜̄∇∂0∂1 = − 1
ȳ0 ∂1,

˜̄∇∂0∂2 = − 1
ȳ0 ∂2 +

λ0

ȳ0 ∂3,

˜̄∇∂0∂3 = − 1
ȳ0 ∂3 − λ0

ȳ0 ∂2,
˜̄∇∂1∂2 =

λ1

ȳ0 ∂3,
˜̄∇∂1∂3 = −λ1

ȳ0 ∂2,

where ∂k stands for ∂/∂ȳk. Let H � R be the subgroup of RH(4) given by

H = {(1, λ, 0, 0)/λ ∈ R}.

We take the H-principal bundle

RH(4) → RH(3)

(ȳ0, ȳ1, ȳ2, ȳ3) �→ (ȳ0, ȳ2, ȳ3)
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with mechanical connection form ω = dȳ1. We have that

˜̄∇ω =
(

1
ȳ0 dȳ0

)
· ω,

where we have identified h � R and End(h) � R. From Theorem 3.7, the family of
homogeneous structure tensors S̄(λ0,λ1) can then be reduced to RH(3). If (y0, y1, y2) are
the standard coordinates of RH(3), these reduced homogeneous structure tensors form a
one-parameter family

Sλ0 =
1

(y0)3

( 2∑
k=1

dyk ⊗ dyk ∧ dy0 − λ0 dy0 ⊗ dy1 ∧ dy2
)

.

Note that in the expression of both S̄(λ0,λ1) and Sλ0 the first summand is the standard
S1 structure of RH(4) and RH(3), respectively. The other summands are of type S2 ⊕ S3

since they have null trace, which makes S̄(λ0,λ1) and Sλ0 of type S1⊕S2⊕S3 in the generic
case. In the special case λ0 = 0 we have a reduction of the generic class S1⊕S2⊕S3 to the
class S1. This example can be generalized to the principal bundle RH(n) → RH(n − 1).

4.2. Hopf fibrations

4.2.1. The fibration S3 → S2

Let S3 ⊂ R
4 � C

2 be the 3-sphere with its standard Riemannian metric with full
isometry group O(4). The natural action of U(2) in C

2 defines a transitive and effective
action of U(2) on S3 given by

U(2) ↪→ SO(4)

(
a b

c d

)
�→

⎛
⎜⎜⎜⎝

Re(a) − Im(a) Re(b) − Im(b)
Im(a) Re(a) Im(b) Re(b)
Re(c) − Im(c) Re(d) − Im(d)
Im(c) Re(c) Im(d) Re(d)

⎞
⎟⎟⎟⎠ .

The isotropy group at x̄ = (1, 0, 0, 0) ∈ S3 is

K̄ =

{ (
1 0
0 z

)
∈ U(2)

/
z ∈ U(1)

}

with Lie algebra

k̄ = span

{ (
0 0
0 i

) }
.

It is easy to see that the complement

m̄ = span

{ (
0 1

−1 0

)
,

(
0 i
i 0

)
,

(
i 0
0 −i

) }

https://doi.org/10.1017/S0013091513000679 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000679


Reduction of homogeneous Riemannian structures 99

makes u(2) = m̄ ⊕ k̄ a reductive decomposition. The rest of the complements m̄′ giving
reductive decompositions u(2) = m̄′ ⊕ k̄ are obtained as the graph of Ad(K̄)-equivariant
maps ϕ : m̄ → k̄. One can check that these decompositions are exhausted by the following
one-parameter family of complements:

m̄λ = span

{ (
0 1

−1 0

)
,

(
0 i
i 0

)
,

(
i 0
0 −i

)
+ λ

(
0 0
0 i

) }
, λ ∈ R.

From (3.8), the expression of the homogeneous structure tensor S̄λ associated with each
reductive decomposition computed at Tx̄S3 is given by

(S̄λ)x̄ = (λ − 1) dx̄2 ⊗ dx̄3 ∧ dx̄4 + dx̄3 ⊗ dx̄2 ∧ dx̄4 − dx̄4 ⊗ dx̄2 ∧ dx̄3, (4.1)

where (x̄1, x̄2, x̄3, x̄4) is the natural system of coordinates in R
4.

Let H be the subgroup of U(2) isomorphic to U(1) given by

H =

{ (
z 0
0 z

) /
z ∈ U(1)

}
.

It is easy to check that H is a normal subgroup of U(2) acting freely on S3. Reduction by
the action of H gives the Hopf fibration S3 → S2 with vertical and horizontal subspaces
at x̄,

Vx̄S3 = span
{

∂

∂x̄2

}
, Hx̄S3 = span

{
∂

∂x̄3
,

∂

∂x̄4

}
.

Since all the terms of S̄λ have the vertical factor dx̄2, it is obvious that they all reduce to
the structure tensor S = 0 on S2, describing S2 as a symmetric space. Note that this is
what one can expect, since S2 only admits the zero homogeneous structure tensor [18].

For the case λ = 0, one can follow the proof of the Ambrose–Singer theorem to con-
struct the Lie algebra of a group acting transitively on S3. As a computation shows, the
holonomy of the connection ˜̄∇ = ∇̄ − S̄0 is trivial, and one obtains the reductive decom-
position TeS

3 ⊕ {0} � su(2) that describes the action of SU(2) � S3 on itself. We then
have an example of a homogeneous Riemannian structure S̄0 satisfying ˜̄∇ω = α · ω as in
Theorem 3.7 (ω being the mechanical connection form of the Hopf fibration S3 → S2),
but for which the structure group of the fibration (H = U(1)) can not be seen as a nor-
mal subgroup of the group (Ḡ′ = SU(2)) obtained by the proof of the Ambrose–Singer
theorem.

Remark 4.1. There are no more reducible tensors than those described above, as the
other groups acting transitively on S3 are SO(4), which has no normal subgroups, and
SU(2) � S3. In addition, this procedure can be adapted to the Berger 3-spheres, where
a family of homogeneous structures is calculated in [7]. All reducible structures of this
family reduce to S = 0 on S2 as expected.

Remark 4.2. The groups acting isometrically and transitively on S7 (see [17]) are
SO(7), SU(4), Sp(2)Sp(1), U(4) and Sp(2)U(1). The first two groups do not have normal
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subgroups and, hence, do not fit in the reduction scheme. The group Ḡ = Sp(2)Sp(1) has
the normal subgroup H = Sp(1) = SU(2), which gives the Hopf fibration S7 → S4. In
this case, a similar computation to the fibration S3 → S2 shows that the corresponding
homogeneous Riemannian structures in the 7-sphere reduce to the null tensor on S4,
the only homogeneous structure in the four-dimensional sphere. The last two groups are
analyzed in the following subsection.

4.2.2. The fibration S7 → CP 3

Let Δi
j denote the 4 × 4 complex matrix with 1 in the ith row and the jth column,

and all other entries equal to 0. Let S7 be the standard 7-sphere as a Riemannian sub-
manifold of C

4 with the usual Hermitian inner product. The standard action of the
unitary group U(4) on C

4 gives a transitive and effective action on S7 by isometries. The
isotropy group K̄ at x̄ = (1, 0, 0, 0) ∈ S

7 is isomorphic to U(3) and we can decompose
u(4) = m̄ ⊕ k̄, where

k̄ =

{ (
0 0
0 A

) /
A ∈ u(3)

}

and
m̄ = span{iΔ1

1, Δ
1
j − Δj

1, i(Δ
1
j + Δj

1), j = 1, 2, 3}.

One can check that u(4) = m̄⊕k̄ is the unique reductive decomposition of u(4) with respect
to k̄. From (3.8), identifying R

8 � C
4 and taking its natural coordinates (x̄1, . . . , x̄8), the

expression of the homogeneous structure tensor S̄ associated with this decomposition
at Tx̄S7 reads

S̄x̄ = dx̄3 ⊗ dx̄2 ∧ dx̄4 − dx̄4 ⊗ dx̄2 ∧ dx̄3 + dx̄5 ⊗ dx̄2 ∧ dx̄6

− dx̄6 ⊗ dx̄2 ∧ dx̄5 + dx̄7 ⊗ dx̄2 ∧ dx̄8 − dx̄8 ⊗ dx̄2 ∧ dx̄7. (4.2)

As a simple computation shows, this tensor belongs to the class S2 ⊕ S3.
Let H be the subgroup of U(4) isomorphic to U(1) given by

H = {z · I/z ∈ U(1)},

where I is the 4×4 identity matrix. It is obvious that H is a normal subgroup of U(4) and
its action on S7 is free. The reduction of S7 by the action of H gives the Hopf fibration
S7 → CP 3 with which the complex projective space inherits the Fubini–Study metric.
The vertical and horizontal subspaces at x̄ are

Vx̄S7 = span
{

∂

∂x̄2

}
, Hx̄S7 = span

{
∂

∂x̄3
, . . . ,

∂

∂x̄8

}
.

As in the Hopf fibration S3 → S2, the homogeneous structure tensor S̄ reduces to S = 0,
describing

CP 3 =
U(4)

U(3) × U(1)

as a symmetric space.
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If H denotes the quaternion algebra, we now see the 7-sphere

S7 =

{ (
q1

q2

)
∈ H

2

/
|q1|2 + |q2|2 = 1

}

as a Riemannian sub-manifold of H
2 with the standard quaternion inner product. The

group Sp(2)U(1) = Sp(2) ×Z2 U(1) acts on H
2 by

(A, z) ·
(

q1

q2

)
= A

(
q1z̄

q2z̄

)
,

(
q1

q2

)
∈ H

2, A ∈ Sp(2), z ∈ U(1),

where z̄ stands for the complex conjugation. This action restricts to a transitive and
effective action by isometries on S7. The isotropy group at x̄ = (1, 0) ∈ S7 is

K̄ =

{((
z 0
0 q

)
, z

)/
q ∈ Sp(1), z ∈ U(1)

}
/Z2,

which is isomorphic to Sp(1)U(1). Let i, j, k be the imaginary quaternion units and let i
be the imaginary complex unit. The Lie algebra of Sp(2)U(1) is then sp(2)⊕ u(1), where

sp(2) = span

{ (
0 1

−1 0

)
,

(
i 0
0 0

)
,

(
0 i
i 0

)
,

(
j 0
0 0

)
,

(
0 j
j 0

)
,

(
k 0
0 0

)
,

(
0 k
k 0

)
,

(
0 0
0 i

)
,

(
0 0
0 j

)
,

(
0 0
0 k

) }

and u(1) = span{i}; the isotropy algebra is then

k̄ = span

{ (
i 0
0 0

)
+ i,

(
0 0
0 i

)
,

(
0 0
0 j

)
,

(
0 0
0 k

) }
.

Taking

m̄ = span

{ (
0 1

−1 0

)
,

(
i 0
0 0

)
,

(
0 i
i 0

)
,

(
j 0
0 0

)
,

(
0 j
j 0

)
,

(
k 0
0 0

)
,

(
0 k
k 0

) }
,

we have that sp(2) ⊕ u(1) = m̄ ⊕ k̄ is a reductive decomposition. All other reductive
decompositions associated with sp(2)⊕u(1) and k̄ are given by a one-parameter family of
complements m̄λ, λ ∈ R, which are the graph of the Ad(K̄)-equivariant maps ϕλ : m̄ → k̄,
where ϕλ maps (

i 0
0 0

)
to λ

(
i 0
0 0

)
+ λi,

and the rest of the elements of the basis to 0. Identifying H
2 ≡ R

8, the homogeneous
structure tensor S̄λ associated with each reductive decomposition sp(2) ⊕ u(1) = m̄λ ⊕ k̄
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is computed at Tx̄S7 as

(S̄λ)x̄ = dx̄5 ⊗ dx̄2 ∧ dx̄6 + dx̄5 ⊗ dx̄3 ∧ dx̄7 + dx̄5 ⊗ dx̄4 ∧ dx̄8

− λ dx̄2 ⊗ dx̄5 ∧ dx̄6 + (1 + 2λ) dx̄2 ⊗ dx̄3 ∧ dx̄4 + λ dx̄2 ⊗ dx̄7 ∧ dx̄8

+ dx̄6 ⊗ dx̄5 ∧ dx̄2 + dx̄6 ⊗ dx̄3 ∧ dx̄8 − dx̄6 ⊗ dx̄4 ∧ dx̄7

+ dx̄3 ⊗ dx̄2 ∧ dx̄4 + dx̄4 ⊗ dx̄2 ∧ dx̄3

− dx̄7 ⊗ dx̄3 ∧ dx̄5 − dx̄7 ⊗ dx̄2 ∧ dx̄8 + dx̄7 ⊗ dx̄4 ∧ dx̄6

− dx̄8 ⊗ dx̄4 ∧ dx̄5 + dx̄8 ⊗ dx̄2 ∧ dx̄7 − dx̄8 ⊗ dx̄3 ∧ dx̄6.

Let H = {(Id, w)/w ∈ U(1)} ⊂ Sp(2)U(1), where Id is the identity of Sp(2); it is easy
to see that H is a normal subgroup of Sp(2)U(1) isomorphic to U(1). Reduction by the
action of H again gives the Hopf fibration π : S7 → CP 3 with π(x̄) = [1 : 0 : 0 : 0] ∈ CP 3.
The vertical and horizontal subspaces of π at x̄ are

Vx̄S7 = span
{

∂

∂x̄2

}
, Hx̄S7 = span

{
∂

∂x̄3
, . . . ,

∂

∂x̄8

}
.

Let (t1, . . . , t6) : CP 3 −{z0 = 0} → R
6 be the coordinate system around x = [1 : 0 : 0 : 0]

given by

[z0 : z1 : z2 : z3] �→
(

Re
(

z1

z0

)
, Im

(
z1

z0

)
, Re

(
z2

z0

)
, Im

(
z2

z0

)
, Re

(
z3

z0

)
, Im

(
z3

z0

))
.

The reduced homogeneous structure tensor S is computed at TxCP 3 as

Sx = dt3 ⊗ dt1 ∧ dt5 + dt3 ⊗ dt2 ∧ dt6

+ dt4 ⊗ dt1 ∧ dt6 − dt4 ⊗ dt2 ∧ dt5

+ dt5 ⊗ dt2 ∧ dt4 − dt5 ⊗ dt1 ∧ dt3

− dt6 ⊗ dt2 ∧ dt3 − dt6 ⊗ dt1 ∧ dt4.

It is easy to check that S̄λ is an S2 ⊕ S3 structure for all λ ∈ R, and not S2 nor S3 for
any λ, and S is also a strict S2 ⊕ S3 structure. Note that in the latter and the previous
example the class S2 ⊕ S3 is preserved by the reduction procedure. This fact is expected
from Proposition 3.11 since the fibres of the Hopf fibration are totally geodesic and, in
particular, minimal Riemannian sub-manifolds of S7.

5. Almost contact metric–almost Hermitian and Sasakian–Kähler reduction

An almost contact structure on a manifold M̄ is a triple (φ, ξ, η), where φ is a (1, 1)-tensor
field, ξ is a vector field and η is a 1-form satisfying

φ(ξ) = 0, η(φ(X̄)) = 0, η(ξ) = 1,

φ2 = − Id +η ⊗ ξ
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for all X̄ ∈ X(M̄). The almost contact structure is said to be strictly regular if ξ is a
regular vector field whose integral curves are homeomorphic, and invariant if φ and η

are invariant by the action of the one-parameter group of ξ. In the following almost all
contact structures are supposed to be invariant and strictly regular. The following results
were proved in [16].

Theorem 5.1. Let (φ, ξ, η) be an almost contact structure and let M be the space of
orbits given by ξ. Then, M is endowed with a smooth structure such that π : M̄ → M is
a principal bundle and η is a connection form.

Theorem 5.2. In the situation of the previous theorem, the (1, 1)-tensor field J

defined in M by
JxX = π∗(φx̄XH), x ∈ M, X ∈ X(M),

where x̄ ∈ π−1(x) ⊂ M̄ and XH is the horizontal lift of X with respect to η, is an almost
complex structure.

If M̄ is equipped with a Riemannian metric ḡ, an almost contact structure (φ, ξ, η) is
said to be metric if the following conditions hold:

ḡ(ξ, X̄) = η(X̄), ḡ(φX̄, φȲ ) = ḡ(X̄, Ȳ ) − η(X̄)η(Ȳ ).

Note that this implies that η defines the mechanical connection in (M̄, ḡ) → M and
induces a Riemannian metric g in M . In this situation it can be proved [16] that (J, g) is
almost Hermitian. Let Φ(X̄, Ȳ ) = ḡ(X̄, φȲ ) be the fundamental or Sasaki 2-form of the
almost contact metric structure; then, (φ, ξ, η, g) is called an almost Sasakian structure
if dη = 2Φ. If, moreover, ∇̄φ = ḡ ⊗ ξ − Id ⊗η, where ∇̄ is the Levi-Civita connection of ḡ,
then it is called a Sasakian structure. It can be proved [16] that if (φ, ξ, η, g) is (almost)
Sasakian, then (J, g) is (almost) Kähler.

An almost contact metric manifold is called homogeneous almost contact metric if there
exists a transitive group of isometries such that φ is invariant (and then so are ξ and η).
If the manifold is (almost) Sasakian, then it is called (almost) Sasakian homogeneous.
A homogeneous structure tensor S̄ on M̄ is called a homogeneous almost contact metric
structure if ˜̄∇φ = 0 (and then ˜̄∇ξ = 0 and ˜̄∇η = 0). From the result of Kiričenko [11] we
have that a connected, simply connected and complete Riemannian manifold is a homo-
geneous almost contact metric manifold if and only if it admits a homogeneous almost
contact metric structure. If the manifold is (almost) Sasakian, then it is homogeneous
(almost) Sasakian if and only if it admits a homogeneous (almost) Sasakian structure.

We now assume that S̄ is an almost contact metric homogeneous structure invariant
by the one-parameter group of ξ. Since ˜̄∇η = 0, we are in the situation of Theorem 3.7,
and then the tensor SXY = π∗(S̄XHY H) defines a homogenous structure on M .

Proposition 5.3. The reduced homogeneous structure S in M is a homogeneous
almost Hermitian structure on M . Moreover, if S̄ is a homogeneous (almost) Sasakian
structure, then the reduced homogeneous structure S is a homogeneous (almost) Kähler
structure on M .
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Proof. Let ∇̃ = ∇ − S, where ∇ is the Levi-Civita connection of g. Then
∇̃XY = π∗( ˜̄∇XHY H). Since η(φ(X̄)) = 0, we have that φ(X̄) is horizontal for all
X̄ ∈ X(M̄). For any X, Y ∈ X(M) we have that

(∇̃XJ)Y = ∇̃X(JY ) − J(∇̃XY )

= π∗( ˜̄∇XH(JY )H) − π∗(φ( ˜̄∇XHY H))

= π∗( ˜̄∇XH(φY H) − φ( ˜̄∇XHY H))

= π∗(( ˜̄∇XHφ)Y H)

= 0,

and hence ∇̃J = 0. �

We now apply Proposition 5.3 to the Hopf fibrations S3 → S2 and S7 → CP 3 and
check that the Sasakian–Kähler reduction procedure gives the null Kähler structures of
the reduced spaces, the only homogeneous Kähler structures existing on S2 and CP 3.
For the first case, let (x̄1, x̄2, x̄3, x̄4) be the natural coordinates of R

4 and let

α = −x̄2 dx̄1 + x̄1 dx̄2 − x̄4 dx̄3 + x̄3 dx̄4.

If i : S3 → R
4 is the natural immersion of the Euclidean 3-sphere in R

4, the form η = i∗α

defines an almost contact metric structure on S3 that is, moreover, a Sasakian struc-
ture [3]. One can check (see [7]) that the homogeneous Sasakian structures on S3 with
respect to η are those given in (4.1) after the isometry

ϕ : S3 → S3

(x̄1, x̄2, x̄3, x̄4) �→ (x̄1,−x̄2,−x̄3,−x̄4),

namely,

(S̄λ)x̄ = (1 − λ) dx̄2 ⊗ dx̄3 ∧ dx̄4 − dx̄3 ⊗ dx̄2 ∧ dx̄4 + dx̄4 ⊗ dx̄2 ∧ dx̄3. (5.1)

This homogeneous structures are obtained from the group of isometries

G = {ϕ ◦ Φa ◦ ϕ−1/a ∈ U(2)},

where Φa denotes the standard action of U(2) on S3. The subgroup

H = {ϕ ◦ Φz ◦ ϕ−1/z ∈ U(1)}

is a normal subgroup of G, where z ∈ U(1) is seen in U(2) as the matrix(
z 0
0 z

)
.
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Reduction by the action of H gives the fibration

S3 → S2

(z1, z2) �→ (2z1z2, |z1|2 − |z2|2),

which is precisely the fibration given by the Sasakian structure η in the sense of Theo-
rem 5.1. The reduction described in Proposition 5.3 by the action of H of the family of
homogeneous structures (5.1) is (as in § 4.2.1) the tensor S = 0.

As for the second fibration, we take (x̄1, . . . , x̄8) as the coordinates of R
8, and

α = −x̄2 dx̄1 + x̄1 dx̄2 − x̄4 dx̄3 + x̄3 dx̄4 − x̄6 dx̄5 + x̄5 dx̄6 − x̄8 dx̄7 + x̄7 dx̄8.

The form η = i∗α, where i : S7 → R
8 is the natural immersion of the Euclidean 7-sphere,

defines an almost contact metric structure on S7 that is, moreover, Sasakian (see [3]). A
homogeneous Sasakian structure on S7 with respect to η is obtained by transforming (4.2)
with respect to the isometry

ϕ : S7 → S7

(x̄1, . . . , x̄8) �→ (x̄1,−x̄2, . . . ,−x̄8),

and reads

S̄x̄ = −dx̄3 ⊗ dx̄2 ∧ dx̄4 + dx̄4 ⊗ dx̄2 ∧ dx̄3 − dx̄5 ⊗ dx̄2 ∧ dx̄6

+ dx̄6 ⊗ dx̄2 ∧ dx̄5 − dx̄7 ⊗ dx̄2 ∧ dx̄8 + dx̄8 ⊗ dx̄2 ∧ dx̄7. (5.2)

This family of homogeneous structure tensors is also obtained from the action of the
group of isometries

G = {ϕ ◦ Φa ◦ ϕ−1/a ∈ U(4)},

where Φa denotes the standard action of U(4) on S7. The subgroup

H = {ϕ ◦ Φz ◦ ϕ−1/z ∈ U(1)}

is a normal subgroup of G, and reduction by the action of H provides the fibration given
by the Sasakian structure η in the sense of Theorem 5.1. Again, the family (5.2) reduces
to S = 0.

A non-trivial projection of homogeneous Sasakian structure tensors can be found in
the following situation. Let π : M̄ → CH(n) be a principal line bundle endowed with
the Sasakian structure (φ, ξ, η, ḡ) given by an invariant metric ḡ and its corresponding
mechanical connection η in M̄ (see [8]). Every homogeneous Kähler structure tensor S

in CH(n) can then be obtained as the reduction of the Sasakian homogeneous structure
tensor

S̄XHY H = (SXY )H − ḡ(XH, φY H)ξ, S̄XHξ = −φXH = S̄ξX
H, S̄ξξ = 0,

in the sense of Proposition 5.3. The description of all these tensors was previously studied
in [8]. Nevertheless, it is interesting to point out that the goal of that reference is to lift
structures from CH(n) to M̄ . The result given in Proposition 5.3 thus gives a reverse
procedure of that particular situation.
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