
J. Fluid Mech. (2022), vol. 933, A17, doi:10.1017/jfm.2021.1016

The rotation of a sedimenting spheroidal particle
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We derive analytically the angular velocity of a spheroid, of an arbitrary aspect ratio κ ,
sedimenting in a linearly stratified fluid. The analysis demarcates regions in parameter
space corresponding to broadside-on and edgewise settling in the limit Re,Riv � 1, where
Re = ρ0UL/μ and Riv = γL3 g/μU, the Reynolds and viscous Richardson numbers,
respectively, are dimensionless measures of the importance of inertial and buoyancy
forces relative to viscous ones. Here, L is the spheroid semi-major axis, U an appropriate
settling velocity scale, μ the fluid viscosity and γ (> 0) the (constant) density gradient
characterizing the stably stratified ambient, with the fluid density ρ0 taken to be a
constant within the Boussinesq framework. A reciprocal theorem formulation identifies
three contributions to the angular velocity: (1) an O(Re) inertial contribution that already
exists in a homogeneous ambient, and orients the spheroid broadside-on; (2) an O(Riv)
hydrostatic contribution due to the ambient stratification that also orients the spheroid
broadside-on; and (3) a hydrodynamic contribution arising from the perturbation of the
ambient stratification whose nature depends on Pe; Pe = UL/D being the Péclet number
with D the diffusivity of the stratifying agent. For Pe � 1, this contribution is O(Riv)
and orients prolate spheroids edgewise for all κ (> 1). For oblate spheroids, it changes
sign across a critical aspect ratio κc ≈ 0.41, orienting oblate spheroids with κc < κ < 1
edgewise and those with κ < κc broadside-on. For Pe � 1, the hydrodynamic component
is always smaller in magnitude than the hydrostatic one, so a sedimenting spheroid
in this limit always orients broadside-on. For Pe � 1, the hydrodynamic contribution
is dominant, being O(Ri2/3v ) in the Stokes stratification regime characterized by Re �
Ri1/3v , and orients the spheroid edgewise regardless of κ . Consideration of the inertial
and large-Pe stratification-induced angular velocities leads to two critical curves which
separate the broadside-on and edgewise settling regimes in the Riv/Re3/2–κ plane, with the
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region between the curves corresponding to stable intermediate equilibrium orientations.
The predictions for large Pe are broadly consistent with observations.

Key words: stratified flows, particle/fluid flow

1. Introduction

The atmosphere and oceans being, on average, in a stably stratified state, the motion of
particles as well as living organisms in a stratified ambient is of obvious importance in
natural settings. A large fraction of the research on the vertical motion of particles through
stratified fluids, including cases of both sharp (Srdic-Mitrovic, Mohamed & Fernando
1999; Roberto et al. 2009) and continuous (Hanazaki 1988; Hanazaki, Konishi & Okamura
2009; Yick et al. 2009; Doostmohammadi, Stocker & Ardekani 2012; Doostmohammadi,
Dabiri & Ardekani 2014; Mehaddi, Candelier & Mehlig 2018) stratification profiles, has,
however, focused on spherical particles. Although this research has shed light on the
non-trivial effects of stratification on the structure of the disturbance flow field induced
by a sedimenting sphere, for instance, its sensitive dependence on the diffusivity of the
stratifying agent via the Péclet number (Pe) (see List 1971; Ardekani & Stocker 2010;
Doostmohammadi et al. 2012; Varanasi & Subramanian 2021; Shaik & Ardekani 2020),
the vast majority of particles and living (micro)organisms in natural scenarios depart from
the idealized spherical shape. Indeed, both marine phytoplankton and zooplankton come
in an astonishing variety of shapes (Kiorboe 2011; Lab 2018), and there are provocative
questions to be addressed with regard to the large-scale effects of zooplankton migration
across the oceanic pycnocline (Kunze et al. 2006; Visser 2007; Katija & Dabiri 2009;
Subramanian 2010; Varanasi & Subramanian 2021). Other classes of organic particles
including marine snow aggregates (Prairie et al. 2015), phytodetritus and faecal pellets,
which make up the so-called biological pump (Turner 2015), and undesired microplastics
(Cole et al. 2011; Turner & Holmes 2011), also depart significantly from the canonical
spherical geometry. Extensive research over a long time has now led to a fairly mature
understanding of the dynamics of anisotropic particles sedimenting in a homogeneous
ambient (Guillaume & Magnaudet 2002; Auguste, Magnaudet & Fabre 2013). Although
the non-trivial effects of unsteady wake dynamics come into play at higher Reynolds
numbers (Re), as manifest by the onset of path instabilities of sedimenting spheroids
(Patricia et al. 2012), the simplest scenario which prevails for low to moderate Re, when
the wake has a quasi-steady character, involves inertial forces acting to turn sedimenting
anisotropic particles broadside-on. For small Re, and in the case where the anisotropic
particle is a prolate or an oblate spheroid, the inertial torque acting to turn the spheroid
broadside-on has been determined analytically as a function of the spheroid aspect ratio
(Dabade, Marath & Subramanian 2015; Jiang et al. 2020). Recent direct numerical
simulations (DNS) have shown this inertial torque to strongly influence the orientation
distribution of such particles in an ambient turbulent flow (Gustavsson et al. 2019;
Anand, Ray & Subramanian 2020), with these distributions exhibiting a pronouncedly
non-Gaussian character (Anand et al. 2020).

The present study is specifically motivated by very recent experiments involving
cylindrical and disk-shaped particles (Mrokowska 2018; Mercier et al. 2020; Mrokowska
2020b,a) that are among the first to systematically explore the role of shape anisotropy for
sedimenting particles in a heterogeneous stably stratified fluid ambient. The experiments
and computations reported by Mercier et al. (2020) pertain to a linearly stratified
ambient, whereas the experiments reported in Mrokowska (2018), Mrokowska (2020b)
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and Mrokowska (2020a) pertain to a nonlinearly stratified fluid layer sandwiched between
homogeneous upper and lower layers. Although the detailed results obtained for the two
sets of experiments differ on account of the differing nature of the ambient stratification,
one of the most important findings, common to both sets of experiments, pertains to
the ability of the torque due to buoyancy forces to oppose, and even overwhelm the
aforementioned inertial torque that acts in a homogeneous setting, thereby turning the
particle longside-on. It is worth mentioning here that the rotation of an anisotropic particle
(a prolate spheroid of aspect ratio two) towards the edgewise configuration, in a stratified
setting, was originally discovered in the numerical simulations of Doostmohammadi
& Ardekani (2014). Such a rotation was found to occur for both a linear and a
discontinuous stratification (a density interface). This study of anisotropic particle
reorientation was, in turn, motivated by an earlier work, of the same authors, where they
found analogous behaviour in the context of pair interactions of sedimenting spherical
particles; particle pairs in close contact were found to rotate at a slower rate in a stratified
ambient, implying a stratification-induced torque favouring a long-side orientation of the
resulting dumbbell-shaped configuration (Doostmohammadi & Ardekani 2013). A recent
theoretical study (Dandekar, Shaik & Ardekani 2020) has analytically determined the
stratification-induced corrections to the force and torque acting on a non-spherical particle
settling in a viscous linearly stratified ambient. Although a correction to the force was
determined in terms of the viscous Richardson number (Riv defined in § 2) for both chiral
and achiral particles, a hydrodynamic torque was found to arise from buoyancy forces
only for chiral particles, the origin of this torque being the translation–rotation coupling
that already exists for such particles in a homogeneous ambient. As shown later, the
hydrodynamic torque for the spheroids (achiral particles) considered here arises at an order
higher than that explored in the previous study. Thus, the said analysis does not explain one
of the principal observations in the aforementioned experiments and simulations involving
the stratification-induced transition of a sedimenting anisotropic but achiral particle from
a broadside-on to an edgewise configuration.

In the present study, we show that buoyancy forces associated with the ambient
stratification do lead to a torque even for achiral particles modelled as prolate and oblate
spheroids of an arbitrary aspect ratio. This stratification-induced torque consists of both
hydrostatic and hydrodynamic components; the former contribution has been given in
Dandekar et al. (2020) for a slender cylindrical rod of a circular cross-section, and acts
to orient the rod broadside-on. Consistent with this finding, it is shown here that the
hydrostatic contribution turns a spheroid broadside-on regardless of whether its prolate
or oblate, and regardless of its aspect ratio. More importantly, however, the hydrodynamic
component of the stratification-induced torque is shown to be asymptotically larger than
the hydrostatic one for large Pe, and orients spheroids edgewise, thereby offering the first
theoretical explanation of the experimental observations above: that of edgewise settling
of an anisotropic particle in a stratified fluid.

The layout of the paper is as follows. In § 2, we describe the reciprocal theorem
formulation which yields the angular velocity of a spheroid sedimenting in a linearly
stratified viscous fluid in terms of distinct contributions originating from the effects of
fluid inertia and the buoyancy forces associated with the ambient stratification. The angular
velocity contributions arising from the fluid inertial torque, and the hydrostatic component
of the stratification torque, are readily evaluated on account of their regular character, and
this calculation is given in § 3. The calculation of the hydrodynamic component of the
stratification torque is more involved, being sensitively dependent on Pe, and is carried
out in §§ 4.1 and 4.2 in the limits Pe � 1 and Pe � 1, respectively. Certain subtle aspects
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pertaining to the low-Pe regime are discussed in § 4.1.1 and in Appendix B; specifically,
the derivation of an outer-region torque contribution in the latter appendix helps demarcate
the regime of validity of the analysis in § 4.1. Finally, § 5 discusses the transition from
broadside-on to edgewise settling that arises due to the competing influences of the inertial
and hydrodynamic components of the stratification torque, at large Pe, and ends with a
qualitative comparison with recent experiments. In § 6, we briefly indicate possible lines
of investigation for the future.

2. A sedimenting spheroid in a linearly stratified ambient: the generalized reciprocal
theorem formulation

The torque acting on a spheroid, sedimenting in a stably stratified fluid ambient, is derived
in the following using the generalized reciprocal theorem (see Kim & Karrila 1991;
Dabade et al. 2015; Dabade, Marath & Subramanian 2016). The theorem relates two pairs
of stress and velocity fields, and may be stated in the form:∫

Sp

σ
(2)
ij u′(1)

i nj dS −
∫

Sp

σ
(1d)
ij u(2)i nj dS =

∫
∂σ

(1d)
ij

∂xj
u(2)i dV, (2.1)

where Sp denotes the surface of the spheroid, and with the neglect of the surface integrals
at infinity, the volume integral on the right-hand side of (2.1) is over the unbounded fluid
domain external to the spheroid. In (2.1), the pair (σ (1d),u′(1)) denotes the dynamic stress
and velocity fields associated with the problem of interest, namely a torque-free spheroid
sedimenting under gravity in an ambient linearly stratified medium for small Reynolds
(Re) and viscous Richardson (Riv) numbers, with u′(1) corresponding to the lab reference
frame with a quiescent far-field ambient (the prime indicates that the velocity field has a
disturbance-like character in this reference frame, and decays away in the far-field). The
Reynolds and viscous Richardson numbers measure the relative importance of inertial and
buoyancy forces relative to viscous forces, respectively, and the aforementioned smallness
of these parameters corresponds therefore to the case where inertia and stratification act as
weak perturbing influences about a leading-order Stokesian approximation; note, however,
that the result for the stratification torque obtained in § 4.1 is an exception to this general
assumption, in that it continues to be valid for finite values of the Richardson number. The
Reynolds and Richardson numbers are defined later in this section when writing down
the non-dimensional system of governing equations; the precise definition of the dynamic
stress field, σ (1d), is also provided at the same place.

The pair (σ (2),u(2)), that defines the test problem in (2.1), corresponds to the stress and
velocity fields associated with inertialess (Re = 0) rotation of the same spheroid, about
an axis orthogonal to its axis of symmetry, in a homogeneous and otherwise quiescent
ambient with the same (assumed constant) viscosity as the medium in the actual problem.
The equations governing the test problem may be written as

∂u(2)i
∂xi

= 0, (2.2)

μ
∂2u(2)i

∂x2
j

− ∂p(2)

∂xi
= 0, (2.3)

with the boundary condition u(2) = Ω(2) ∧ x on Sp, Ω(2) being the angular velocity of
the spheroid in the test problem, and far-field decay conditions for both u(2) and p(2).
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Note that the test velocity (u(2)) and stress (σ (2)) fields decay as O(1/r2) and O(1/r3),
respectively, r being the distance away from the spheroid; this decay, together with the
decaying (dynamic) stress field in the problem of interest, justifies the neglect of the
surface integrals at infinity in (2.1). Use of the aforementioned surface boundary condition
in (2.1) leads to

∫
Sp

σ
(2)
ij u′(1)

i nj dS −Ω
(2)
j

∫
Sp

εijkxkσ
(1d)
il nl dS =

∫
∂σ

(1d)
ij

∂xj
u(2)i dV, (2.4)

where the second integral on the left-hand side in (2.4) now denotes the torque due to the
dynamic stress field σ (1d). We postpone further simplification of (2.4) until after we define
the pair (σ (1d),u′(1)).

As mentioned previously, problem 1 corresponds to an arbitrarily oriented spheroid,
sedimenting under the action of a gravitational force Fĝ, in an ambient fluid that is linearly
stratified (along ĝ) in the absence of the fluid motion induced by the spheroid. The unit
vector ĝ is aligned along gravity, with g denoting the magnitude of the gravitational
acceleration, and F = (4π/3)Lb2	ρg((4π/3)L2b	ρg) denoting the buoyant weight for
a prolate (oblate) spheroid. Here, L and b are the semi-major and semi-minor axes of the
spheroid, with κ = L/b and b/L being the aspect ratios of prolate and oblate spheroids,
respectively; thus, κ > 1 and κ < 1 for the prolate and oblate cases. The density difference
that enters the buoyant weight above is 	ρ = ρs − ρ

(1)
∞ (xc), with ρs being the density

of the spheroid (assumed homogeneous), and ρ
(1)
∞ (xc) = ρ0 being the ambient fluid

density at the centre of the spheroid. The latter simplification arises because of the linear
stratification and the fore–aft symmetry of the spheroid, both of which imply that the
weight of the equivalent stratified spheroidal fluid blob that gives the buoyant force, within
an Archimedean interpretation, is the same as the weight of a homogeneous fluid blob with
density equal to the ambient value at the spheroid centre. In a lab-fixed reference frame,
the ambient density field in problem 1 may be written in the form:

ρ(1)∞ (xL) = ρ0 + γ xL
i ĝi, (2.5)

where xL denotes the position vector in laboratory coordinates with the spheroid centre as
the origin, and γ > 0 is the constant density gradient that characterizes the stable ambient
stratification. The calculations for the torque are, however, best done in a reference frame
translating with the spheroid where a quasi-steady state is assumed to prevail at leading
order. The latter assumption is motivated by the asymptotically weak rotation of the
sedimenting spheroid in the limit Re,Riv � 1. The precise condition for the quasi-steady
state assumption to hold depends on Pe, being more restrictive for large Pe, and is stated
later alongside the results for the spheroid angular velocity for small and large Pe, obtained
in the following.

The ambient density in the particle-fixed reference frame takes the form:

ρ(1)∞ (x) = ρ0 + γ (xi + Uit)ĝi, (2.6)

x being the position vector in the new reference frame. In (2.6), U is the spheroid settling
velocity, and related to the force (Fĝ) via a mobility tensor that is a known function of
the spheroid aspect ratio κ . In terms of the spheroid orientation vector p, one may write
U = (1/μL)[X−1

A pp + Y−1
A (I − pp)] · (Fĝ), XA(κ) and YA(κ) being the non-dimensional

axial and transverse translational resistance functions. The aspect ratio dependence of
these functions is well known (see Kim & Karrila 1991), and is given in Appendix A for
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convenient reference. Note that the ambient density at the centre of the spheroid (x = 0)
is given by ρ0 + γ (Uiĝi)t, the time dependence arising from the spheroid translation. The
equations of motion for problem 1, within a Boussinesq framework where the fluid density
multiplying the inertial terms is taken as a constant ρ0 (say), may be written as

∂u(1)i
∂xi

= 0, (2.7)

μ
∂2u(1)i

∂x2
j

− ∂p(1)

∂xi
= ρ0u(1)j

∂u(1)i
∂xj

− ρ(1)gi, (2.8)

∂ρ(1)

∂t
+ u(1)j

∂ρ(1)

∂xj
= D∇2ρ(1), (2.9)

where D is the diffusivity of the stratifying agent (Candelier, Mehaddi & Vauquelin 2014;
Mehaddi et al. 2018; Shaik & Ardekani 2020). One now defines the perturbation density
(ρ′(1)) via ρ(1) = ρ0 + γ (xi + Uit)ĝi + ρ′(1). Next, using the scales U = F/(μLXA) for
the velocity, L for the length, μU/L for the pressure and γL for ρ′(1), one obtains the
following system of non-dimensional equations:

∂u(1)i
∂xi

= 0, (2.10)

∂2u(1)i

∂x2
j

− ∂p(1)

∂xi
+ ρ0gL2

μU
ĝi + Riv(Ûjt + xj)ĝjĝi = Re u(1)j

∂u(1)i
∂xj

− Rivρ′(1)ĝi, (2.11)

u(1)j
∂ρ′(1)

∂xj
+ (Ûj + u(1)j )ĝj = 1

Pe
∇2ρ′(1), (2.12)

where Re = ρ0UL/μ, Riv = γL3g/(μU) and Pe = UL/D are the Reynolds, viscous
Richardson and Péclet numbers, respectively; note that Riv = Re/Fr2, where Fr is the
Froude number, and the usual measure of the importance of stratification in the inviscid
limit (Turner 1973). In (2.10)–(2.12), we continue to use the same notation for the
dimensionless fields for simplicity. The velocity fields, in the lab reference frame used
in (2.1), and in the particle-fixed reference frame adopted in (2.10)–(2.12) are related
as u′(1) = (Û + u(1)), with Û = [pipj + XA/YA(δij − pipj)]ĝj, now being a dimensionless
vector along the direction of settling, and −Û therefore being the far-field ambient flow in
the particle-fixed frame; note that Û is not a unit vector for an arbitrarily oriented spheroid,
and reduces to one only for a spheroid aligned with gravity. Thus, the combination
(Û + u(1)) · ĝ in (2.12) denotes the convection of the (constant) base-state density gradient
by the component of the disturbance velocity field (u′(1)

3 ) along gravity. Finally, the time
dependence of u(1) in (2.11), and that of ρ′(1) in (2.12) in particular, that arise from
the (slow) rotation of the spheroid, have been neglected owing to the quasi-steady state
assumption made in (2.10)–(2.12); the time dependence of the density multiplying the
inertial terms, on account of spheroid translation, has already been neglected within the
Boussinesq approximation.

One now defines a disturbance pressure field (p′(1)) via p(1) = p(1)0 + p′(1) with

∂p(1)0
∂xi

= ρ0gL2

μU
ĝi + Riv(Ûjt + xj)ĝjĝi, (2.13)
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so that p(1)0 defines the baseline hydrostatic contribution arising from the ambient linear
stratification. Having incorporated the baseline hydrostatic variation in p(1)0 , one may write
the governing equations above in terms of the disturbance velocity, pressure and density
fields as follows:

∂u′(1)
i
∂xi

= 0, (2.14)

∂σ
(1d)
ij

∂xj
= Re(−Ûj + u′(1)

j )
∂u′(1)

i
∂xj

− Rivρ′(1)ĝi, (2.15)

(−Ûj + u′(1)
j )

∂ρ′(1)

∂xj
= −u′(1)

j ĝj + 1
Pe

∇2ρ′(1). (2.16)

where the left-hand side of (2.11) has been written in terms of the dynamic stress field

σ (1d) defined by σ (1d) = −p′(1)I + (∇u′(1) + ∇u′(1)†). Thus, one has the relation σ (1) =
−p(1)0 I + σ (1d) between the total (σ (1)) and the dynamic stress fields of problem 1.

Assuming the spheroid in problem 1 to rotate with an angular velocity Ω(1), one has the
boundary condition u′(1) = Ω(1) ∧ x on Sp. Using this in the first surface integral in (2.4),
and substituting the divergence of the dynamic stress from (2.15) in the volume integral in
(2.1), one obtains

Ω
(1)
j L(2)j −Ω

(2)
j Lσ(1)dj = Re

∫
u(2)i (−Ûj + u′(1)

j )
∂u′(1)

i
∂xj

dV − Riv

∫
ρ′(1)ĝi u(2)i dV,

(2.17)

where Lσ(1)d now denotes the torque contribution due to the dynamic stress σ (1d).
Now, the particle in problem 1 is torque-free. In light of the above relation between
σ (1) and σ (1d), the total torque (L(1)) may be written as L(1) = Lσ(1)d + Lσ(1)s, where
the dynamic torque component Lσ(1)d includes both inertia and stratification-induced
contributions, whereas Lσ(1)s is the hydrostatic contribution owing to the pressure field
p(1)0 associated with the linearly varying density field of the stably stratified ambient, and
defined by (2.13). Thus, L(1) = 0 ⇒ Lσ(1)d = −Lσ(1)s, and the relation involving the
spheroid angular velocity in problem 1 takes the following form:

Ω
(1)
j L(2)j = Re

∫
u(2)i (−Ûj + u′(1)

j )
∂u′(1)

i
∂xj

dV −
[
Ω
(2)
j Lσ(1)sj + Riv

∫
ρ′(1)ĝi u(2)i dV

]
,

(2.18)

where

Lσ(1)si = −εijk

∫
Sp

p(1)0 xjnk dS, (2.19)

with p(1)0 being defined in (2.13). As the buoyancy force in a homogeneous ambient acts
through the centre of the spheroid, only the linearly varying term in (2.13) contributes to
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the hydrostatic torque, which may therefore be written as

Lσ(1)si = −Riv εijk

∫
Sp

1
2
(xlĝl)

2xjnk dS, (2.20)

the contribution above remaining the same regardless of the choice of reference frame (x
or xL). On substitution of the above expression for Lσ(1)sk , and using the relation u(2)i =
U (2)

ij Ω
(2)
j (on account of the linearity of the Stokes equations), the second-order tensor

U (2)
ij being known in closed form (see Dabade et al. 2015, and § 3), (2.18) takes the form

Ω
(1)
j L(2)j = Ω

(2)
k

{
Re

∫
U(2)

jk (−Ûl + u′(1)
l )

∂u′(1)
j

∂xl
dV

−Riv

[
−1

2
εklm

∫
Sp

(xjĝj)
2xlnm dS +

∫
ρ′(1)ĝj U(2)

jk dV

]}
, (2.21)

Again, on account of linearity, one may write the torque on the rotating spheroid in the test
problem, in the form L(2) = [XCpp + YC(I − pp)] · Ω(2), where XC(κ) and YC(κ) are
the non-dimensional axial and transverse rotational resistance functions, and are known
functions of κ (Kim & Karrila 1991) whose expressions are given in Appendix A. By
symmetry, the sedimenting spheroid cannot spin about its axis regardless of its orientation,
and therefore without loss of generality, the test problem can be taken as that of a transverse
rotation in the inertialess limit (Ω(2) · p = 0), in which case the test torque–angular
velocity relation takes the simpler form L(2) = YCΩ(2). Finally, accounting for the
fact that the test angular velocity Ω(2) can point in an arbitrary direction in a plane
perpendicular to p, one obtains the following relation for the spheroid angular velocity
in problem 1:

Ω
(1)
i = 1

YC

{
Re

∫
U(2)

ji (−Ûl + u′(1)
l )

∂u′(1)
j

∂xl
dV + Riv

[
εilm

∫
Sp

1
2
(xjĝj)

2xlnm dS

−
∫
ρ′(1)ĝj U(2)

ji dV
]}
. (2.22)

As a settling spheroid in a homogeneous ambient must retain its initial orientation in
the Stokes limit on account of reversibility, expectedly, the rotation of the spheroid, as
given by (2.22), arises due to the combined (weak) effects of fluid inertia and the ambient
stratification. The first term within the curly brackets in (2.22) corresponds to the inertial
torque, whereas the second and third terms which have been grouped together (within
square brackets) correspond to the hydrostatic and hydrodynamic components of the
stratification torque, respectively. The hydrostatic torque only involves knowledge of the
ambient density field, and is easily evaluated. The inertial torque has a regular character
in that the dominant contributions to the O(Re) volume integral in (2.22) arise from a
volume of O(L3) around the sedimenting spheroid, and therefore, the integral may again
readily be determined at leading order using Stokesian approximations for the velocity
fields involved, as has been done in Dabade et al. (2015). The evaluation of these two
simpler contributions is detailed in the next section. The nature of the hydrodynamic
torque arising from the perturbed stratification depends crucially on Pe, and this more
complicated calculation is given in §§ 4.1 and 4.2, for small and large Pe, respectively.
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The rotation of a spheroid in a linearly stratified fluid

3. The spheroidal angular velocity due to the inertial and hydrostatic torque
contributions

The O(Re) inertial angular velocity in (2.22) has recently been calculated for spheroids,
both prolate and oblate, of an arbitrary aspect ratio (see Dabade et al. 2015). Although
the analysis in Dabade et al. (2015) pertains to the limit Re � 1, the results have been
shown to remain qualitatively valid even for Re of order unity (see Jiang et al. 2020).
As mentioned previously, this angular velocity has a regular character, as may be seen
from the convergence of the inertial volume integral in (2.18) based on the leading-order
Stokesian estimate for the integrand. As argued in Dabade et al. (2015), the inertial
acceleration u(1) · ∇u′(1) ∼ Û · ∇u′(1) ∼ O(1/r2) for distances large compared with L,
or r � 1 in dimensionless terms, on using u′(1) ∼ O(1/r) for the Stokeslet field due to
the translating spheroid. The test velocity field u(2) due to the rotating spheroid has the
character of a rotlet-cum-stresslet in the far-field, and is therefore O(1/r2). This leads to
an integrand that decays as Û · ∇u′(1) · u(2) ∼ O(1/r4) for r � 1, implying a convergent
volume integral. This volume integral has been evaluated in closed form using spheroidal
coordinates in Dabade et al. (2015). For the prolate case, the spheroidal coordinates
(ξ, η, φ) are defined by the relations: x1 + ix2 = dξ̄ η̄ exp(iφ), x3 = dξη, with the three
axes of the Cartesian system (13) aligned with the spheroid axis of symmetry. Here,
1 ≤ ξ < ∞, |η| ≤ 1 and 0 ≤ φ < 2π, with ξ̄ = (ξ2 − 1)1/2 and η̄ = (1 − η2)1/2. The
constant-ξ surfaces correspond to confocal prolate spheroids and the constant-η surfaces to
confocal two-sheeted hyperboloids, both with the interfoci distance 2d, and the constant-φ
surfaces are planes passing through the axis of symmetry. The corresponding expressions
for the oblate case may be obtained by the substitutions d ↔ −id, ξ ↔ iξ̄ , the constant-ξ
and η surfaces now being confocal oblate spheroids and single-sheeted hyperboloids,
respectively. In either case, the spheroid is the surface ξ = ξ0, its aspect ratio being given
by κ = ξ0/ξ0 and ξ̄0/ξ0 for prolate and oblate spheroids; thus, the near-spherical limit
(κ → 1) for either prolate or oblate spheroids corresponds to ξ0 → ∞, whereas the slender
fiber (κ → ∞) and flat disk (κ → 0) limits correspond to ξ0 → 1. The fluid domain in the
volume integrals in (2.22) corresponds to ξ ≥ ξ0.

For a prolate spheroid, the actual velocity field u′(1) and the test velocity field tensor
U (2) in (2.22), may be written in the form (see Dabade et al. 2015, 2016):

u′(1) =
(

Û · 13

ξ0Q1
1(ξ0)+ Q0

0(ξ0)

)
S(3)1,0 +

(
Û · 11

3Q0
0(ξ0)− ξ0Q0

1(ξ0)

)
(S(3)1,1 − S(3)1,−1), (3.1)

U (2) = 12

⎛
⎜⎜⎝ d(2ξ2

0 − 1)(S(2)1,1 − S(2)1,−1)[
2ξ0Q0

1(ξ0)−
√
ξ2

0 − 1Q1
1(ξ0)

] +
d
[
ξ0Q1

1(ξ0)+ 2
√
ξ2

0 − 1Q0
1(ξ0)

]
(S(3)2,1 − S(3)2,−1)

Q1
2(ξ0)

[
2ξ0Q0

1(ξ0)−
√
ξ2

0 − 1Q1
1(ξ0)

]
⎞
⎟⎟⎠ .

(3.2)
The S(3)t,s and S(2)t,s in (3.1) and (3.2) denote the decaying (biharmonic and harmonic)
vectorial solutions of the Stokes equations in spheroidal coordinates, and are given in
Appendix C; the Qs

t (ξ) denote the associated Legendre functions of the second kind. Using
these expressions, the volume integration may then be carried out analytically, and the
inertial angular velocity (Ω(1)I) is given by

Ω
(1)I
i = Re

[
Fp

I (ξ0)XA

YCYA
(εijkĝjpk ĝlpl)

]
, (3.3)
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Figure 1. The functions (Fp
I (ξ0)XA)/(YCYA) and (Fo

I (ξ0)XA)/(YCYA), that characterize the aspect ratio
dependence of the inertial contributions to the angular velocities of prolate and oblate spheroids in (3.3) and
(3.4), plotted as a function of the spheroid eccentricity.

for prolate spheroids. The corresponding expression for the oblate case may be obtained by
the aforementioned substitutions, namely d ↔ −id, ξ0 ↔ iξ̄0 in the dimensional angular
velocity, and is given by

Ω
(1)I
i = Re

[
Fo

I (ξ0)XA

YCYA
(εijkĝjpkĝlpl)

]
. (3.4)

The expressions for Fp
I (ξ0) and Fo

I (ξ0), as functions of the spheroid eccentricity
(e = 1/ξ0), were first obtained by Dabade et al. (2015), and are given in
Appendix A. The inertial angular velocity given by (3.3) and (3.4) orients sedimenting
spheroids broadside-on regardless of κ . The combination of the aspect-ratio-dependent
functions, Fp/o

I (ξ0)XA/(YCYA), that multiplies Re(ĝ · p)(ĝ ∧ p), and that determines the
κ-dependence of the inertial angular velocities above, is plotted as a function of the
eccentricity in figure 1, for both the prolate and oblate cases. One obtains the expected
O(1/ξ2

0 ) scaling in the near-sphere limit (ξ0 → ∞); at the other extreme(ξ0 → 1), the
inertial angular velocity approaches zero as O[ln(ξ0 − 1)]−1 in the slender fiber limit,
consistent with viscous slender body theory (Khayat & Cox 1989; Subramanian & Koch
2005), while remaining finite in the limit of a flat disk.

The hydrostatic component of the stratification torque is also readily evaluated in
spheroidal coordinates. For the prolate case, the dimensionless position vector that appears
in (2.20) is given by x = (ξ̄0/ξ0)η̄(cosφ11 + sinφ12)+ η13, and the unit normal is

n = 1ξ = ξ0η̄√
ξ2

0 − η2
(cosφ11 + sinφ12)+ ξ0η√

ξ2
0 − η2

13. (3.5)

Using these expressions, and the areal element dS = hηhφ dη dφ, with hη =√
ξ2

0 − η2/ξ0η̄ and hφ = ξ̄0η̄/ξ0, one obtains the angular velocity due to the hydrostatic
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Figure 2. The aspect-ratio-dependent functions multiplying Riv(ĝ · p)(ĝ ∧ p) in (3.6) and (3.7), that
characterize the hydrostatic contributions for prolate and oblate spheroids, plotted as a function of the spheroid
eccentricity.

torque as

Ω
(1)s
i = Riv

4π

15YC

1 − ξ2
0

ξ4
0

(εijkĝjpk)(ĝlpl), (3.6)

for the prolate case, and using the transformations mentioned previously,

Ω
(1)s
i = Riv

4π

15YC

√
ξ2

0 − 1

ξ3
0

(εijkĝjpk)(ĝlpl), (3.7)

for the oblate case. The angular velocities given by (3.6) and (3.7) also orient the spheroid
broadside-on like the inertial torque above. The aspect-ratio-dependent functions that
multiply Riv(ĝ · p)(ĝ ∧ p) in (3.6) and (3.7) are plotted as functions of ξ0 in figure 2. As the
hydrostatic torque is only a function of the particle geometry, these aspect ratio functions
are algebraically small in both the near-sphere, and the slender fiber and flat-disk limits.

The inertial and hydrostatic angular velocities above have an identical angular
dependence, of the form (ĝ · p)(ĝ ∧ p), one which is easily inferred based on the
requirement that the angular velocity be a pseudovector quadratic in ĝ (Dabade et al. 2015).
The dependence implies that the maximum angular velocity occurs midway between
the horizontal (ĝ · p = 0) and vertical (ĝ · p = 1) orientations. The hydrostatic torque
arises because the point of action of the upward buoyant force, the centre of mass of
the equivalent stratified fluid blob (in the Archimedean interpretation) lies below the
geometric centre through which the weight of the spheroid acts vertically downward.
The two forces therefore constitute a couple that turns the spheroid broadside-on. The
broadside-on nature of the inertial torque is on account of ‘wake-shielding’: the wake
associated with the front portion of the spheroid shields the rear, which catches up with
the front as a result. As pointed out in Dabade et al. (2015), this is not literally true for
small Re. A signature of the wake arises only on length scales greater than O(LRe−1),
the Oseen region, in contrast to the scaling arguments above which show that the O(Re)
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inertial torque arises from fluid inertial forces in a region of O(L3) (the inner region)
around the sedimenting spheroid. Nevertheless, the velocity field in the inner region
reflects the asymmetry of the outer Oseen field, and the sense of rotation remains the same
for small Re. Importantly, the broadside-on nature of the inertial and hydrostatic torques
imply that the transition from broadside-on to edgewise settling, observed in the recent
experiments (see Mercier et al. 2020) discussed in the introduction, must depend entirely
on the hydrodynamic component of the stratification torque, that is, the second term within
square brackets on the right-hand side in (2.22). While the calculation above shows the
hydrostatic component to be O(Riv), consistent with the nominal order in (2.22), this is
not true of the hydrodynamic component. As shown in § 4, the hydrodynamic component
scales as O(Riv) only for sufficiently small Pe(� Ri3/5v for Riv � 1; see § 4.1.1), when
the dominant contribution to the associated torque integral comes from length scales of
O(L) similar to the inertial torque above. In the opposite limit, and for the so-called Stokes
stratification regime corresponding to Re � Ri1/3v (see Mehaddi et al. 2018; Varanasi &
Subramanian 2021), the dominant contributions to the torque integral arise from much
larger length scales of O(LRi−1/3

v ), and the hydrodynamic component scales as O(Ri2/3v ),
being much larger than the hydrostatic component above.

Before proceeding with the calculation of the hydrodynamic component of the
stratification torque, it is worth remarking on the nature of the coupling between the
inertial and stratification torque contributions that is not obvious from the formal result
(2.22), where they appear as separate additive contributions. On account of the convergent
volume integral, the O(Re) inertial angular velocity, as given by (3.3) and (3.4), only
involves the Stokesian fields in a homogeneous ambient, and is evidently independent
of the ambient stratification. The correction to this leading-order estimate is dependent on
the nature of the ambient stratification, however, even within the Boussinesq framework.
To see this, we return to the inertial volume integral, and estimate the next correction.
Recall that the angular velocities in (3.3) and (3.4) were based on the approximating
the volume integral by Stokesian estimates, and the torque contribution at the next order
requires one to examine the next term in the small-Re expansion for the velocity field in
problem 1. Writing u′(1) = u′(10) + Re u′(11), u′(10) is the Stokesian approximation given
by (3.1) and is O(1/r) for r � 1, whereas u′(11) remains O(1) in the far-field. The latter,
of course, implies that the above regular expansion breaks down at length scales of
O(LRe−1), a manifestation of the singular nature of inertia in an unbounded domain (the
so-called Whitehead’s paradox; see Leal 1992). Provided one assumes buoyancy forces
to dominate the inertial ones on scales much smaller than the inertial screening length
(of O(LRe−1)), the above far-field estimate of u′(11) may still be used to estimate the
correction to the leading O(Re) contribution. The O(Re2) inertial acceleration is now Û ·
∇u′(11) ∼ O(1/r), and using u(2) ∼ O(1/r2) , the resulting volume integral, at O(Re2), is
logarithmically divergent. The divergence will be cut off at the stratification screening
length that is O(RivPe)−1/4 for Pe � 1 (List 1971; Ardekani & Stocker 2010), and
O(Ri−1/3

v ) for Pe � 1 (Mehaddi et al. 2018; Varanasi & Subramanian 2021), implying that
the next correction to the inertial angular velocity is O[Re2 ln(RivPe)−1/4] for Pe � 1 and
O(Re2 ln Ri−1/3

v ) for Pe � 1, and is thereby a function of the ambient stratification. For self
consistency, one requires that both of the aforementioned stratification screening lengths
be less than O(Re−1), which translates to the requirement Riv � Pe−1Re4 for small Pe,
and for one to be in the aforementioned Stokes stratification regime (Ri1/3v � Re) for
large Pe.
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The rotation of a spheroid in a linearly stratified fluid

4. The spheroidal angular velocity due to the hydrodynamic component of the
stratification contribution

Owing to the differing character of the hydrodynamic component in the limits of small
and large Pe, the calculations in these two asymptotic regimes are carried out in separate
subsections here. Keeping in mind that Pe = RePr, Pr being the Prandtl number, the small
Pe case does not necessarily place a restriction on Pr which may either be small or large
(although, large Pr imposes a greater restriction on the smallness of Re because Re must
now be smaller than O(Pr−1)). However, the assumption of small Re implies that the large
Pe case necessarily requires a large Pr which may be realized in experiments that use salt
as a stratifying agent.

4.1. The hydrodynamic stratification torque in the diffusion-dominant limit (Pe � 1)
In the limit Pe � 1, one may neglect the convective terms in the advection diffusion
equation (2.16), and the density perturbation ρ′(1) in the stratification torque integral
therefore arises as a diffusive response to the no-flux condition that must be satisfied on
the spheroid surface. As a result, the spheroid acts as a concentration-dipole singularity
in the far-field (r � 1), implying that ρ′(1) must decay as O(1/r2). As the test velocity
field u(2) corresponding to the rotating spheroid also decays as O(1/r2), the integrand is
O(1/r4) for r � 1. This decay is the same as that of the inertial integrand estimated above,
and the integral for the hydrodynamic stratification torque is therefore convergent for small
Pe, based on the leading-order diffusive estimates above. Thus, the effects of stratification
arise as a regular perturbation for small Pe, or said differently, the dominant contribution to
the hydrodynamic component of the stratification torque arises from buoyancy forces in a
volume of O(L3) around the sedimenting spheroid. As a consequence and as is shown
in the following, for small Pe, the hydrodynamic component is O(Riv) similar to the
hydrostatic component given in (3.6) and (3.7). It turns out that there is, in fact, a more
severe constraint on the Péclet number; as explained in § 4.1.1, the O(Riv) scaling for the
hydrodynamic component holds only when Pe � Ri3/5v � 1.

To determine the detailed dependence of the O(Riv) hydrodynamic component on κ ,
one needs to solve for the density perturbation ρ′(1) which satisfies

∇2ρ′(1) = 0 (4.1)

in the fluid domain ξ ≥ ξ0. The no-flux boundary condition on the spheroid surface
(ξ = ξ0) may be written as 1ξ · ∇ρ′(1) = −1ξ · ĝ where we have used that n = 1ξ , and the
right-hand side of the boundary condition arises from the gradient of the linearly varying
ambient density; there is the additional requirement of far-field decay, namely ρ′(1) → 0
for ξ → ∞. Note that the linearity of the governing equation (4.1) and the boundary
conditions in ρ′(1), and the linear dependence on ĝ of the surface boundary condition
above, imply that ρ′(1) must be linear in ĝ at leading order for small Pe. From (2.22),
the hydrodynamic component of the stratification torque must therefore be quadratic in ĝ.
This implies that the hydrodynamic torque must have an angular dependence identical to
the inertial and hydrostatic contributions, of the form (ĝ ∧ p)(ĝ · p), with a multiplicative
pre-factor that is a function of κ . Thus, for small Pe, the ratio of the hydrostatic and
hydrodynamic components of the stratification torque is independent of the spheroid
orientation and Riv , and only a function of κ .
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To solve (4.1), we write down the explicit form of the no-flux boundary condition, in
prolate spheroidal coordinates:

∂ρ′(1)

∂ξ

∣∣∣∣∣
ξ=ξ0

= (P1
1(η)e

iφ − 2P−1
1 (η)eiφ)

2ξ̄0
sinψ − P0

1(η)

ξ0
cosψ, (4.2)

where ψ denotes the angle between p and g; in (4.2), and Ps
t (ξ) is the associated

Legendre function of the first kind with P−1
1 (η) = −P1

1(η) = −(η̄/2) and P0
1(η) = η. The

η-dependence of the solution is imposed by that of the boundary condition above. This, and
the fact that the Laplacian is separable in spheroidal coordinates with the eigenfunctions
in ξ and η being the associated Legendre functions of the second and the first kind,
respectively, points to the following ansatz for ρ′(1):

ρ′(1) = A1,1Q1
1(ξ)P

1
1(η)e

iφ + A1,−1Q−1
1 (ξ)P−1

1 (η)e−iφ + A1,0Q0
1(ξ)P

0
1(η), (4.3)

where Q−1
1 (ξ) = Q1

1(ξ)/2 , the latter being defined in Appendix C (see (C7)). Substitution
of (4.3) leads to the following expressions for the Ai,j in (4.3):

A1,1 = ξ̄2
0

4 − 2ξ2
0 + 2ξ0ξ̄

2
0 coth−1 ξ0

sinψ, (4.4)

A1,−1 = −4A1,1, (4.5)

A1,0 = ξ̄2
0

ξ0(ξ0 − ξ̄2
0 coth−1 ξ0)

cosψ. (4.6)

The first two terms in (4.3) correspond to the density perturbation induced by a spheroid
oriented transversely to gravity, whereas the third term corresponds to that induced
by a spheroid aligned with gravity. The expressions for the Ai,j above are therefore
consistent with the underlying linearity of the problem, in that the perturbation induced
by an arbitrarily oriented spheroid is obtained as a superposition of the transverse and
longitudinal problems, the factors involved in this superposition being sinψ and cosψ ,
respectively.

The density perturbation from (4.3), together with (4.4)–(4.6), and the test velocity
field from (3.2) are now substituted in the integral for the hydrodynamic stratification
torque in (2.22). The volume integration is carried out in the spheroidal coordinate system
introduced in § 3, and leads to the following expression for the angular velocity:

Ω
(1)d
i = Riv

Fp/o
s (ξ0)

YC
(εijkĝjpk)(ĝlpl), (4.7)

with

Fp
s (ξ0) = 2πξ0

2

((
7ξ 5

0 − 7ξ 3
0 − 2ξ0

) + ξ0
2
Cp

(−12ξ 4
0 + 6ξ 2

0 + ξ0Cp
(
3ξ 4

0 + 2
(
ξ 5

0 − ξ0
)

Cp − 6ξ 2
0 + 7

) − 2
))

15ξ 5
0

(
ξ0 − ξ0

2
Cp

) (
−ξ 2

0 + ξ0
2
ξ0Cp + 2

) ((
ξ 2

0 + 1
)

Cp − ξ0
) ,

(4.8)
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Figure 3. The aspect-ratio-dependent functions, given by (4.8) and (4.9) divided by YC, that characterize the
hydrodynamic stratification-induced contribution for prolate and oblate spheroids in the small Pe limit, plotted
as a function of the spheroid eccentricity.

for prolate spheroids, where Cp = coth−1 ξ0. Using the transformation mentioned in § 3,
one obtains

Fo
s (ξ0) = 2π((
7ξ 4

0 − 7ξ 2
0 − 2

)
ξ̄0 + 2

(
ξ 4

0 − 3ξ 2
0 + 2

)
ξ 4

0 C3
o − 2

(
6ξ 4

0 − 9ξ 2
0 + 4

)
ξ 2

0 Co + (
3ξ 4

0 + 4
)
ξ̄0ξ

2
0 C2

o

)
15ξ 3

0

(
ξ 2

0 Co)− ξ̄0
) ((
ξ 2

0 − 2
)
(Co)− ξ̄0

) (−ξ 2
0 + ξ̄0ξ

2
0 Co − 1

) ,

(4.9)

for the oblate case, where Co = cot−1 ξ̄0. Figure 3 shows a plot of the aspect-ratio-
dependent functions given by (4.8) and (4.9), divided by YC. The hydrodynamic
component of the stratification torque given by (4.8) always orients a prolate spheroid
edgewise for small Pe. Interestingly, figure 3 shows that (4.9) changes sign below a
critical aspect ratio κc ≈ 0.41 (e ≈ 0.9) and, therefore, the hydrodynamic component acts
to orient oblate spheroids, with aspect ratios lower than the aforementioned threshold,
broadside-on.

The hydrodynamic stratification torque arises due to the flow associated with the
baroclinic source of vorticity, although the reciprocal theorem formulation used here
bypasses the explicit calculation of this flow. The vorticity arises from the tilting of the
isopycnals to the vertical (the direction of gravity) due to the requirement that they meet
the spheroidal surface in a normal orientation, consistent with a no-flux constraint. A
sketch of the deformed isopycnals in the plane φ = 0,π, and the resulting sign of the
baroclinic vorticity field (∝ ∇ρ ∧ ĝ) in different regions of the fluid domain, appears
in figure 4, for both prolate and oblate spheroids. The baroclinically induced flow has a
dipolar character in the Stokes limit, and the relative sizes of the different flow quadrants
are set by the pair of singular isopycnals that meet the spheroid surface in the points S1
and S2. This pair separates the isopycnals that do not meet the spheroid surface from
those that do. The baroclinically induced flow on account of diffusive isopycnal tilting has
been known for a long time, having originally been proposed in the oceanic context where
the induced flow has a boundary layer character on account of the dominance of inertia
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Figure 4. Baroclinically driven flow, for small Pe, that is responsible for the rotation of an (a) oblate and a (b)
prolate spheroid, in a stably stratified ambient. The curved blue arrows denote the sense of the baroclinically
induced vorticity in the different quadrants of the fluid domain, with vorticities corresponding to anticlockwise
and clockwise senses of rotation being denoted by solid and dashed lines; the blue contours denote the deformed
isopycnals around each of the spheroids.

(Phillips 1970; Wunsch 1970). Such a flow has also been examined in a Stokesian scenario
more recently (Anis Alias & Page 2017), although only for the case of a horizontal circular
cylinder wherein symmetry precludes a torque contribution. That there must be a torque
on an inclined spheroid, due to the aforementioned baroclinic flow, is obvious. Although
the sense of the torque (broadside-on versus edgewise) is not readily evident, one may
nevertheless rationalize the scalings observed for the extreme aspect ratio cases. Figure 3
shows that the angular velocity remains finite in the limit of a flat disk (κ → 0) which is
consistent with the isopycnals being perturbed in a volume of O(L3) around the spheroid
in this limit, with the density perturbation being O(γL), and the test velocity field U (2)

being O(1) in this region; the points S1 and S2 remain bounded away from the edges of
the flat disk. On the other hand, the angular velocity approaches zero as O(ξ0 − 1) in the
limit of a slender fiber, with the points S1 and S2 now moving towards the ends of the
fiber. The dominant contribution continues to come from a volume of O(L3). However,
although U (2) is O[ln(ξ0 − 1)]−1, the density perturbation in this region is algebraically
small. The slender fiber only perturbs the isopycnals in a thin O(d2L) shell around itself,
with the density perturbation being O(γ d) in this region. Further, each cross-section of
the fiber acts as a 2D concentration dipole, implying that the density perturbation decays
as O(1/r) for r much greater than d, and is therefore O(γ d)(d/L) for r ∼ O(L). Using
these estimates, and dividing by the O[ln(ξ0 − 1)]−1 rotational resistance for a slender
fiber leads to the aforementioned scaling for the fiber rotation due to the hydrodynamic
contribution of the stratification torque.

4.1.1. A closer look at the Pe � 1 analysis
Although the O(Riv) angular velocity given by (4.7) was said to be valid for small Pe,
there are, in fact, multiple contributions to the stratification-induced rotation for Pe � 1;
the more detailed arguments herein, and the analysis in Appendix B, yield a precise
estimate of the Pe interval of validity. Although the dominant contribution to (4.7) arose
from buoyancy forces on length scales of O(L), as we show in § 4.2, the dominant
length scale contributing to the hydrodynamic component of the stratification torque
changes to O(LRi−1/3

v ) with increasing Pe; one therefore expects the singular effect of
convection to already be evident for small but finite Pe. To see this, we note that, for
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The rotation of a spheroid in a linearly stratified fluid

small Pe, in addition to the density perturbation driven by the no-flux condition on the
spheroid surface that has been analysed in section (4.1), an independent contribution
arises from perturbation of the ambient stratification on much larger length scales due
to weak convection effects. To obtain an estimate for this latter torque contribution, we
consider the correction to the leading-order density perturbation, now denoted as ρ′(10),
in a manner similar to the velocity field examined at the end of the earlier section; thus,
one writes ρ′(1) = ρ′(10) + Pe ρ′(11), with ∇2ρ′(11) ∼ u′(1) · ĝ. With u′(1) ∼ 1/r on length
scales smaller than O(LRe−1), one obtains ρ′(11) ∼ r. The stratification torque at the next
order is proportional to RivPe

∫
ρ′(11)ĝu(2) dV , which turns out to diverge as O(r2), on

using the above estimate for ρ′(11). Cutting off the divergence at the small-Pe stratification
screening length of O[L(RivPe)−1/4] (List 1971; Ardekani & Stocker 2010) would seem
to lead to an O(RivPe)1/2 torque contribution. However, it is shown in Appendix B
that this contribution is identically zero, on account of the fore–aft symmetry of the
disturbance density field on scales of [L(RivPe)−1/4] (Ardekani & Stocker 2010; Varanasi
& Subramanian 2021).

The fore–aft asymmetry of the density perturbation, necessary for a non-trivial torque
contribution, requires inclusion of the O(Pe) convective term (u · ∇ρ′) in (2.12). It is
well known that, for small but finite Pe, this convective term becomes comparable to the
diffusive term on length scales of O(LPe−1), the mass/heat transfer analogue of the inertial
screening length (Leal 1992), and the angular velocity scaling therefore depends on the
relative magnitudes of the convective (LPe−1) and stratification (L(RivPe)−1/4) screening
lengths, which in turn depends on the relative magnitudes of Pe and Ri1/3v ; this criterion
being analogous to the classification into Stokes (Re � Ri1/3v ) and inertia (Re ≥ Ri1/3v )
stratification regimes based on the structure of the large-Pe disturbance velocity field
(Mehaddi et al. 2018; Varanasi & Subramanian 2021), except that Pe now replaces Re.
For Pe � Ri1/3v , fore–aft asymmetric buoyancy forces acting on scales of O[L(RivPe)−1/4]
lead to an O(Ri1/4v Pe5/4) hydrodynamic torque contribution, an exact expression for which
is obtained in Appendix B. In the opposite limit of Pe � Ri1/3v , the dominant contribution
to the torque integral arises on scales of O(Ri−1/3

v ), and the resulting torque comes out
to be O(Ri2/3v ). Thus, the arguments above, and those in Appendix B, show that, for
small Pe, in addition to the O(Riv) torque contribution given by (4.8) and (4.9), there
exists a second independent contribution that increases with Pe as O(Ri1/4v Pe5/4) for
Pe � Ri1/3v , but is independent of Pe, being O(Ri2/3v ) for Ri1/3v � Pe � 1. This far-field
hydrodynamic contribution, arising from a weak convective distortion of the stratified
ambient, can evidently exceed the hydrostatic contribution, possibly leading to an edgewise
settling regime even for small Pe. In light of this additional contribution, the dominance
of the O(Riv) hydrostatic contribution and the prevalence of broadside-on settling requires
Riv � Ri1/4v Pe5/4, which translates to the stricter criterion Pe � Ri3/5v � 1, instead of
Pe � 1, as assumed originally.

It is important to point out that the O(Riv) scaling in (3.6), (3.7) and (4.7) implies
that the associated (dimensional) angular velocities are independent of U. Although this
must be the case for the hydrostatic contributions, it turns out to be the case for the
hydrodynamic component too, at small Pe, because the leading-order density perturbation
arises as a diffusive response, and is therefore independent of the ambient flow. Despite
this U-independence, the torque associated with (4.7) does have a hydrodynamic character,
in that it still arises from the flow induced by buoyancy forces. Using the O(γL) density
perturbation produced by the diffusive response, one obtains a buoyancy-driven velocity
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scale of O(γL3g/μ), implying a spheroidal angular velocity of O(γL2g/μ); the latter is
O(Riv) in units of U/L, this being the scale used in the reciprocal theorem formulation
in § 2. Importantly, the U-independence implies that this torque contribution is not
necessarily limited to small Riv . Instead, it is limited by the assumption of a quasi-steady
density perturbation set up on scales of O(L) by diffusion alone, which requires an
appropriate Péclet number (based on the aforementioned O(γL3g/μ) velocity scale) to
be small; an analogously defined Reynolds number must also be small for the baroclinic
flow to be obtained from the Stokes equations. These two requirements translate to
RivPe,RivRe � 1, which also ensures that the spheroid rotation may be neglected when
deriving the disturbance fields. Thus, (4.7) remains valid even when Riv ∼ O(1) provided
Re,Pe � 1. Note, however, that a genuine dependence, of the hydrodynamic component of
the angular velocity contribution, on U arises due to contributions from the outer region,
and an estimate of this contribution was obtained in the preceding paragraph (also see
Appendix B).

To summarize then, for sufficiently small Pe, all three contributions in (2.22) have a
regular character, and therefore, the same dependence on the spheroid orientation, namely
sinψ cosψ with ψ being the angle between p and g as defined above; the Pe interval of
validity depends on Riv , being Pe � 1 for Riv ∼ O(1), and Pe � Ri3/5v for Riv � 1. The
inertial contribution is O(Re), whereas both hydrodynamic and hydrostatic components
of the stratification contribution are O(Riv), with the hydrodynamic component alone
acting to orient the spheroid edgewise for prolate spheroids of arbitrary κ and oblate
spheroids with κ > 0.41. Therefore, oblate spheroids with κ < 0.41 will certainly orient
broadside-on for Pe � 1. Further, it is seen from figures 2 and 3 that the hydrodynamic
component always remains smaller in magnitude than the hydrostatic one in the
edgewise-rotation regime and, therefore, a sedimenting spheroid, either prolate or oblate,
is expected to settle in the broadside-on configuration, regardless of κ , for sufficiently
small Pe.

4.2. The angular velocity due to the hydrodynamic torque in the convection-dominant
limit (Pe � 1)

In contrast to the small Pe limit examined in the previous section, for Pe � 1, the dominant
contribution to the integral for the stratification-induced hydrodynamic torque in (2.21)
comes from length scales of O(LRi−1/3

v ), the stratification screening length in the Stokes
stratification regime (Re � Ri1/3v � 1). To see this, we note from the right-hand side
of the advection diffusion equation (2.16) that, for large Pe, the density perturbation is
driven by the convection of the base-state stratification of order unity by the vertical
component of the Stokeslet field, u′(1)

3 . As u′(1)
3 ∼ O(1/r), one finds ρ′(1) ∼ O(1) for

r � 1. This, along with the far-field O(1/r2) decay of the test velocity field, implies
that the integrand in the stratification torque integral decays as O(1/r2), and that the
volume integral therefore diverges as O(r). This divergence is expected to be resolved
only when the slow O(1/r) decay of the Stokeslet is accelerated by stratification that, for
large Pe, occurs on length scales of O(LRi−1/3

v ). It has recently been shown in Varanasi
& Subramanian (2021) that, for a sedimenting sphere at large Pe, the density and velocity
fields are indeed asymptotically small on length scales larger than O(Ri−1/3

v ), except within
a horizontal wake whose vertical extent grows as O(r2/5

t ), rt being the distance in the
plane transverse to gravity, where the density and axial velocity perturbation decay as
r−12/5

t and r−14/5
t , respectively; and a buoyant jet in the rear where u′(1)

3 reverses sign,
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but continues to exhibit an O(1/r) Stokesian decay. Despite the latter slow decay, the
asymptotically narrow character of the buoyant jet implies that the torque integral does
converge on length scales of O(LRi−1/3

v ), and is O(Ri−1/3
v ). The pre-factor of Riv in front of

the integral in (2.21) implies that the torque and the angular velocity scale as O(Ri2/3v ) for
Pe → ∞.

As the dominant contribution to the torque integral comes from length scales much
larger than O(L), of O(LRi−1/3

v ), the calculation requires one to rewrite the integral
involving ρ′(1), in (2.21), in outer coordinates (defined below), with the sedimenting
spheroid in problem 1 now regarded as a point force, and the rotating spheroid in the
test problem acting as a combination of rotlet and stresslet singularities (see Marath
& Subramanian 2017). The details of this calculation are provided below; a similar
calculation, but for low Pe, with the outer region being characterized by a length scale
of O(RivPe)−1/4, has been given in Appendix B and the resulting O(Ri1/4v Pe5/4) torque
contribution was discussed above in § 4.1.1.

Before delving into the large-Pe analysis, it is worth noting that a reciprocal theorem
formulation to determine the stratification-induced correction to the force (that would
include both drag and lift components for an arbitrarily oriented spheroid) would involve
the test problem of a translating spheroid instead. As the test velocity field now decays as
O(1/r) in the far-field, this would lead to a stronger O(r2) divergence of the force integral,
leading to a scaling of O(Ri−2/3

v ) on truncation of the divergence and, thence, an O(Ri1/3v )

stratification-induced correction to the Stokes drag. Such a correction was originally
calculated for a spherical particle by Zvirin & Chadwick (1975). A similar calculation
was done by Candelier et al. (2014) for the small-Pe regime, the drag contribution from
the outer region now being O(RivPe)1/4; a later effort has connected this outer-region
drag calculation across the different asymptotic regimes (Mehaddi et al. 2018). In a very
recent study, Dandekar et al. (2020) have examined the force and torque acting on an
arbitrarily shaped particle sedimenting in a linearly stratified ambient. For anisotropic
particles lacking a handedness (that includes the spheroids examined here), the authors
find a correction to the force at O(Ri1/3v ) similar to the case of a spherical particle
mentioned above efforts, but end up not finding a torque at this order, a result that
is not surprising in light of the above scaling arguments which show the torque to be
O(Ri2/3v ). Within the framework of the matched asymptotics expansions approach used
by the said authors, the O(Ri1/3v ) correction to the drag appears as a response of the
particle to an ‘ambient uniform flow’ that is the limiting form of the outer solution in
the matching region (1 � r � Ri−1/3

v ); the uniformity of this flow is consistent with
the absence of a torque at this order. Incidentally, the existence of an inertial torque
induced by a uniform flow suggests a higher O(ReRi1/3v ) inner-region contribution to
the leading O(Re) inertial angular velocity, in response to the aforementioned O(Ri1/3v )

uniform flow that would again orient the spheroid broadside-on; this is in addition to
the outer-region correction obtained in § 3, and is dominant in the Stokes stratification
regime.

As mentioned above, the stratification torque integral in (2.22) needs to be evaluated in
outer coordinates which are related to the coordinates in the particle-fixed reference frame
as x̃ = Ri1/3v x, so an O(1) change in x̃ corresponds to x changing by an amount of order
the stratification screening length. However, as originally shown by Childress (1964) and
Saffman (1965), a Fourier space approach turns out to be much more convenient for a
calculation involving the outer region, and we therefore consider the Fourier transformed
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equations of continuity and motion, and the advection diffusion equation for the density
field, obtained from (2.14)–(2.16), and given by

kiû
′(1)
i = 0, (4.10)

−4π2k2û′(1)
i − 2πikip̂′(1) = −Riv(ρ̂′(1)ĝi)+ F̃ĝi, (4.11)

2πikjÛjρ̂
′(1) = û′(1)

j ĝj + 1
Pe

4π2k2ρ̂′(1) + 1
Pe

i2πkiDs
i , (4.12)

for problem 1. Here, we have used the definition f̂ (k) = ∫
dx exp(−2πik · x)f (x) for the

Fourier transform, and the sedimenting spheroid has been replaced by a point force, F̃δ(x),
on the right-hand side of the physical space equations of motion, namely (2.15), with
F̃ = F̃ĝ, F̃ being the non-dimensional buoyant force (in units of μUL) exerted by the
spheroid; the corresponding dimensional expression has been given in § 2 (given that U
is itself defined in terms of F, this re-scaling of F merely amounts to multiplication by
XA). Note that the inertial term in the original equation of motion, (2.15), has now been
omitted in (4.11) because, as argued earlier, the leading O(Re) inertial torque is dominated
by the inner region, with the outer region contribution being only O(Re2 ln Ri−1/3

v ) (see
the end of § 3), and not considered here. Further, on large length scales relevant to the
outer region, the spheroid, on account of the no-flux boundary condition at its surface,
appears as a concentration-dipole forcing in the advection–diffusion equation. In physical
space, this corresponds to a term of the form Ds · ∇δ(x), and the Fourier transform of this
term appears on the right-hand side of (4.12); Ds here is the Pe-dependent strength of the
dipole forcing; this can be neglected for the same reason as the inertial term above, its
contribution being asymptotically small compared with that arising from the distortion of
the base-state stratification (the first term on the right-hand side of (4.12)).

Setting Pe = ∞ in (4.12), one obtains

ρ̂′(1) =
û′(1)

j ĝj

2πi(klÛl)
. (4.13)

Using (4.13) in (4.11), and operating on both sides with (δij − k̂ik̂j) to eliminate the pressure
field, one obtains

4π2k2û′(1)
i = Riv ĝj(δij − k̂ik̂j)

û′(1)
l ĝl

2πi(kpÛp)
+ F̃ĝj(δij − k̂ik̂j). (4.14)

Contracting with ĝ gives

û′(1)
i ĝi = F̃ĝiĝj(δij − k̂ik̂j)[

4π2k2 − Riv
ĝmĝn(δmn − k̂mk̂n)

2πi(klÛl)

] , (4.15)

which, on using in (4.13), yields the following final expression for ρ̂′(1):

ρ̂′(1)(k) = F̃[1 − (k̂iĝi)
2]

{8π3ik3(k̂nÛn)− Riv[1 − (k̂mĝm)2]} , (4.16)

which will be used in the Fourier-space torque integral that is defined below.
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The test velocity field u(2)i = U(2)
ij Ω

(2)
j satisfies the Stokes equations, with the rotating

spheroid, on length scales of O(LRi−1/3
v ), acting as a force-dipole singularity that includes

both stresslet and rotlet contributions. Thus, the equations of motion may be written in the
form (see Marath & Subramanian 2017):

∂2u(2)i

∂x2
j

− ∂p(2)

∂xi
= S(2)ij

∂

∂xj
[δ(x)], (4.17)

where
S(2)ij = B1[(εilmΩ

(2)
l pm)pj + (εjlmΩ

(2)
l pm)pi] + B3εijkΩ

(2)
k (4.18)

with

B1 = 8π

ξ3
0 (−3ξ0 + 3 coth−1 ξ0(1 + ξ2

0 ))
, (4.19)

B3 = 8π(1 − 2ξ2
0 )

ξ3
0 (−3ξ0 + 3 coth−1 ξ0(1 + ξ2

0 ))
, (4.20)

for prolate spheroids. There is an additional contribution that is neglected in (4.18), on
account of the test spheroid rotating about an axis transverse to p, that is, because Ω(2) ·
p = 0. The term proportional to B3 in (4.18) is the rotlet singularity (due to transverse
rotation), whereas that involving B1 is the stresslet singularity. Thus, for ξ0 → ∞, B3 =
−4π and B1 is O(1/ξ2

0 ), consistent with a rotating sphere acting as a pure rotlet singularity;
note that B3 = YC/2, the latter being the resistance function mediating the torque–angular
velocity relation for transverse rotation defined earlier.

Fourier transforming (4.17), and contracting with the projection operator (I − k̂k̂), one
obtains

û(2)i = − i
2πk

{B1[(εmqrΩ
(2)
q pr)pn + (εnqrΩ

(2)
q pr)pm] + B3εmnqΩ

(2)
q }k̂n(δim − k̂ik̂m),

(4.21)

so the second-order tensor U (2) is given by

U(2)
ij (k) = − i

2πk
{B1[(εmjrpr)pn + (εnjrpr)pm] + B3εmnj}k̂n(δim − k̂ik̂m). (4.22)

Now, using the convolution theorem, the integral for the angular velocity contribution
due to the hydrodynamic component of the stratification-induced torque in (2.21) may be
written as

Riv

∫
ρ′(1)ĝjU

(2)
ji dV = Riv

∫
dkρ̂′(1)(k)ĝjU

(2)
ji (−k), (4.23)

where, in applying the convolution theorem, we have assumed the volume integral on
the left-hand side of (4.23) to extend over the entire domain, and thereby, neglected the
O(L3) volume of the spheroid. As the dominant contribution arises from length scales of
O(LRi−1/3

v ), this neglect only amounts to an error of O(Riv) in the torque integral, and
O(Ri2v) in the resulting angular velocity.
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Using (4.16) and (4.22) in the Fourier space torque integral in (4.23), and after some
simplification which includes defining a rescaled wave vector 2πk, one obtains the angular
velocity induced by the hydrodynamic stratification torque as

Ω
(1)d
i = Riv

iF̃
8π3YC

∫
dk

[1 − (k̂xĝx)
2]

{ik3(k̂yÛy)− Riv[1 − (k̂zĝz)2]}k
[
B1

{
(εirjprĝj)(k̂mpm)

+(εirjprk̂j)(ĝmpm)− 2(k̂mĝm)(k̂jpj)(εirlprk̂l)
}

+ B3εijrĝjk̂r

]
, (4.24)

the terms proportional to B1 and B3 being the stresslet and rotlet-induced torque
contributions, respectively. Redefining the new wave vector to be Ri−1/3

v k, so it remains
of order unity on length scales of order the stratification screening length (and, thereby,
pertains to the outer region in Fourier space), and considering only the real part of the
integral above, one obtains

Ω
(1)d
i = Ri2/3v

F̃
8π3YC

[
B1

∫
dk

[1 − (k̂xĝx)
2]k2(k̂vÛv)

{k6(k̂yÛy)2 + [1 − (k̂zĝz)2]2} [{(εirjprĝj)(k̂mpm)

+(εirjprk̂j)(ĝmpm)− 2(k̂mĝm)(k̂jpj)(εirlprk̂l)}]

+B3

∫
dk

[1 − (k̂xĝx)
2]k2(k̂vÛv)

{k6(k̂yÛy)2 + [1 − (k̂zĝz)2]2}εijrĝjk̂r

]
, (4.25)

where the angular velocity due to the hydrodynamic stratification torque finally comes out
to be O(Ri2/3v ), as anticipated by the scaling arguments above, and the convergent Fourier
integrals in (4.25) are evaluated below; note that the imaginary part of (4.24), neglected in
(4.25), may be shown to equal zero by symmetry. Before evaluating the integrals above
using a specific coordinate system, we note that the force–velocity relationship for a
sedimenting spheroid, for the scalings used here, is given by

Ûi =
[

pipj + XA

YA
(δij − pipj)

]
ĝj. (4.26)

Defining the aspect-ratio-dependent resistance ratio An(κ) = XA/YA, equation (4.26) may
be written as

Ûi = [(1 − An)pipj + Anδij]ĝj. (4.27)

where An decreases monotonically from unity for a sphere to a minimum of 1/2 for an
infinitely slender prolate spheroid (κ → ∞); on the oblate side, An increases from unity
to a maximum of 3/2 for a flat disk (κ → 0). Both of these may be readily verified based
on the expressions given in Appendix A.

To evaluate the above Fourier integrals, we choose a spherical coordinate system with its
polar axis along Û . Interestingly, a numerical evaluation in the alternate and perhaps more
natural choice of a ĝ-aligned coordinate system turns out to much more involved, with
the individual integrals making up the torque diverging as Pe1/2 in the limit Pe → ∞,
the divergence arising due to the buoyant jet mentioned above, and that corresponds
to the region k̂ · Û = 0, k � 1 in Fourier space (see Varanasi & Subramanian 2021).
We have verified that the divergences of the individual contributions cancel out, and
the total torque integral is nevertheless convergent and independent of Pe for Pe → ∞,
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matching the result obtained below in the Û-aligned system. In the latter coordinate
system, Û = Um1U , 1U being the unit vector along Û ; using (4.27), one finds Um =
cos2 ψ + An2 sin2 ψ , ψ being the angle between ĝ and p defined in earlier sections. The
unit wave vector is given by k̂ = sin θ cosφ1U⊥1 + sin θ sinφ1U⊥2 + cos θ1U , with 1U⊥1

chosen to lie in the plane of sedimentation, that is, the plane containing the vectors p, Û
and ĝ, so the torque acting on the spheroid points along ĝ ∧ p̂ =1U⊥2 . With this choice,
k̂ · Û = Um cos θ . We take p = cosψU1U + sinψU1U⊥1 , ψU being the angle between p

and Û . Noting from (4.27) that Û · p = ĝ · p, one has cosψU = cosψ/Um. With ψU as
defined above, k̂ · p = cosψU cos θ + sinψU sin θ cosφ, and k̂ · ĝ = An−1[k̂ · Û − (1 −
An) cosψ k̂ · p]. As mentioned above, the torque only has a component along 1U⊥2 in the
chosen coordinate system. As the vectors involved in the integrals in (4.25) are ĝ ∧ k̂,
p ∧ ĝ and p ∧ k̂, we have

ε2jrĝjk̂r = 1
An

[Um sin θ cosφ − (1 − An) cosψ(cosψU sin θ cosφ − sinψU cos θ)],

(4.28)

ε2jrpjĝr = −Um sinψU

An
, (4.29)

ε2jrpjk̂r = − sinψU cos θ + cosψU sin θ cosφ, (4.30)

which defines all quantities involved in the calculation. Using these expressions in the
integrals in (4.25), the k-integration is carried out analytically while the remaining
two angular integrals are evaluated numerically using Gaussian quadrature. From
(4.28)–(4.30), and other quantities defined in the preceding text, the ψ-dependence of
the large-Pe hydrodynamic angular velocity is seen to be more complicated than the
cosψ sinψ dependence obtained earlier for the inertial and hydrostatic contributions in
§ 3, and for the hydrodynamic component, in the limit Pe � Ri3/5v , in § 4.1. This is along
expected lines because the large-Pe limit examined in this section is a singular perturbation
problem, as evident from the outer region contributing at leading order (this aspect is also
seen in the outer-region contribution to the torque at low Pe, derived in Appendix B).
Another feature of the singular character is that, unlike the earlier torque contributions,
the large-Pe hydrodynamic stratification torque is in general a non-separable function of
ψ and κ .

Figures 5(a) and 6(a) show plots of the angular velocity (Ω(1)d), due to the
hydrodynamic component of the stratification torque, versus ψ for prolate and oblate
spheroids, respectively. As evident from figure 5(a), for prolate spheroids, the magnitude
of the angular velocity is expectedly small in the near-sphere limit, increasing
monotonically with κ to a (finite) maximum in the limit of a slender fiber. Figures 5(b)
shows plots of the angular velocity scaled with the square of the eccentricity (ξ−2

0 ),
so as to obtain a collapse in the near-sphere limit. Note that the finite value of the
stratification-induced angular velocity in the limit of a slender fiber (ξ0 → 1) is in contrast
to the O[ln(ξ0 − 1)]−1 scaling exhibited by the inertial angular velocity calculated in § 3
(see also Dabade et al. 2015), and implies that, for fixed Re and Riv , the stratification
torque invariably becomes dominant for large aspect ratios. Figure 6(b) confirms the
squared-eccentricity scaling for oblate spheroids with near-unity aspect ratios; expectedly,
the angular velocity approaches a finite value in the limit of a flat disk. Importantly, for
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Figure 5. The scaled angular velocity (Ri−2/3
v Ω(1)d), due to the hydrodynamic component of the stratification

torque, for prolate spheroids of different aspect ratios: (a) Ri−2/3
v Ω(1)d , for prolate spheroids, as a function of

the spheroid inclination with gravity; (b) Ri−2/3
v Ω(1)d , normalized by the near-sphere scaling (1/ξ2

0 ) for prolate
spheroids, plotted as a function of the spheroid inclination with gravity.
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Figure 6. The scaled angular velocity (Ri−2/3
v Ω(1)d), due to the hydrodynamic component of the stratification

torque, for oblate spheroids of different aspect ratios: (a) Ri−2/3
v Ω(1)d , for oblate spheroids, as a function of

the spheroid inclination with gravity; (b) Ri−2/3
v Ω(1)d , normalized by the near-sphere scaling (1/ξ2

0 ) for oblate
spheroids, plotted as a function of the spheroid inclination with gravity.
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Figure 7. The angle corresponding to the maximum angular velocity, arising from the hydrodynamic
component of the stratification torque, plotted as a function of the spheroid aspect ratio (both prolate and
oblate spheroids); the inset shows the variation of this angle on a log–log scale, emphasizing the approach to
finite values for extreme aspect ratios (κ = 0 and ∞).

both prolate and oblate spheroids, the sign of Ω(1)d is such as to rotate the spheroid onto
an edgewise orientation.

The non-trivial orientation dependence of the angular velocity referred to in the previous
paragraph is also evident from the plots in figures 5(a) and 6(a). For near-unity aspect
ratios, the angular velocity curve is nearly symmetric about ψ = π/4; that the angular
dependence in this limit is indeed of the form sinψ cosψ may be shown based on the fact
that for An → 1, ψU ≈ ψ . The asymmetry about ψ = π/4 increases as the aspect ratio
departs from unity, with the location of the maximum angular velocity moving toψ greater
than and less than π/4 for prolate and oblate spheroids, respectively, as shown in figure 7.
To see the deviation of the angular dependence from the aforementioned simple form more
clearly, in figures 8(a) and 8(b) we plot the angular velocity, scaled by the inertial angular
velocity which is proportional to sinψ cosψ , again as a function of ψ . For near-unity
aspect ratios, one obtains a horizontal line, while for both larger and smaller aspect ratios,
this renormalized angular velocity asymptotes from one plateau for ψ → 0 to a second
one for ψ → π/2.

4.2.1. A closer look at the Pe � 1 analysis
In contrast to the inertial contribution determined in § 3, which was independent of the
ambient stratification at leading order, the stratification-induced torque can, in principle,
be coupled to inertial forces even in the limit Re,Riv � 1. For sufficiently small Pe
(Pe � Ri3/5v as argued in § 4.1.1), the density perturbation that determines the stratification
torque arises from a diffusive response to the no-flux condition on the surface of the
sedimenting spheroid, and is therefore independent of the fluid motion. As a result,
a non-trivial coupling between stratification and inertia occurs primarily for large Pe.
As the dominant length scales contributing to the stratification torque in this limit are
much larger than O(L), the magnitude of the density perturbation is controlled by the
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convection of the ambient stratification by the far-field disturbance fluid motion. The
nature of this convection is, therefore, dependent on the form of the disturbance velocity
field, and this in turn depends on the relative magnitudes of the inertial (LRe−1) and
stratification (LRi−1/3

v ) screening lengths. The calculation of the angular velocity due to
the hydrodynamic stratification torque detailed above pertains to the Stokes stratification
regime, with Re � Ri1/3v , where the disturbance velocity field directly transitions from
the Stokeslet form to a more rapid decay on length scales of O(LRi−1/3

v ) (Varanasi &
Subramanian 2021) and is therefore independent of Re. In the Stokes stratification regime,
therefore, the stratification-induced rotation, both in the limit of small and large Pe, is
independent of Re, and the inertial and stratification angular velocity contributions are
additive. This will no longer true when Re ≥ O(Ri1/3v ), corresponding to the so-called
inertia-stratification regime, in which case the leading-order stratification-induced rotation
for large Pe will be a function of Re/Ri1/3v . In the limit Ri1/3v � Re � 1, opposite to
that analysed above, the disturbance velocity transitions from an O(1/r) to an O(1/r2)
decay (outside of a viscous wake) across length scales of order the inertial screening
length. This leads to the stratification torque integrand decaying as O(1/r3) for length
scales much larger than O(LRe−1), and the torque integral in (2.22) continues to exhibit a
logarithmic divergence. This (milder) divergence is only eliminated when buoyancy forces
become comparable to inertial forces at a secondary screening length that was estimated in
Varanasi & Subramanian (2021) to be O(Re/Riv)1/2. Accounting for the aforementioned
cut-off of the logarithmic divergence, the angular velocity arising from the hydrodynamic
stratification torque is expected to have a leading O[RivRe−1 ln(Re/Ri1/3v )] contribution
arising from a region between the primary and secondary screening lengths (that is, due
to the logarithmic growth for Re−1 � r � (Re/Riv)1/2), with logarithmically smaller
O(RivRe−1) contributions arising from length scales of order the two screening lengths.
Assuming this angular velocity to rotate the spheroid towards an edgewise configuration,
and equating it to the O(Re) inertial contribution, one obtains Re ≤ Ri2v for a transition
to an edgewise-settling regime. This, however, contradicts the requirement Re � Ri1/3v

characterizing the inertia-stratification regime, implying that the inertial angular velocity
contribution remains dominant in this regime. Thus, one concludes that, in the limit
of small Re and Riv , a broadside-on–edgewise transition is possible only in the Stokes
stratification regime.

To end this subsection, we again examine the validity of a quasi-steady state assumed in
the analysis above for large Pe. As already argued in § 3, momentum diffusion occurs
asymptotically fast for small Re and, therefore, the quasi-steady assumption used to
evaluate the stratification torque integral relies on the time scale for the density disturbance
to approach a steady state being much shorter than that characterizing spheroid rotation.
The former time scale may be regarded as that required to convect the density perturbation
through the O(LRi−1/3

v ) stratification screening length, and is therefore O(L/URi−1/3
v ).

The time scale of rotation is O(L/URe−1) or O(L/URi−2/3
v ), depending on which of

Re or Ri2/3v is greater. In either case the time scale for the development of a steady
density perturbation is smaller, provided one remains in the Stokes stratification regime
Re � Ri1/3v � 1. Note that the perturbation density field, for Pe = ∞, is expected to be
logarithmically singular along the rear stagnation streamline, as has been shown for the
case of a spherical particle (see Varanasi & Subramanian 2021), with this singularity either
being resolved on a larger diffusive time scale (that is, due to Pe being regarded as large but
finite), or on account of the unsteadiness arising from the rotation of the settling spheroid.
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However, the convergence of the Fourier integrals involved in the stratification torque
above implies that the contribution of the transiently developing region in the immediate
neighbourhood of the rear stagnation streamline is irrelevant as far as the leading-order
hydrodynamic stratification torque is concerned, and a quasi-steady analysis of this torque
remains valid for Re � Ri1/3v .

5. Results and discussion

In earlier sections, we have derived expressions for the angular velocity of a spheroid
settling in a viscous linearly stratified ambient. The spheroid angular velocity is the
sum of three components; the inertial and hydrostatic contributions are given by (3.3)
and (3.6) [(3.4) and (3.7)] for prolate [oblate] spheroids; the hydrodynamic contributions
arising from the stratification are given by (4.8) and (4.9) for prolate and oblate spheroids,
respectively, in the limit of small Pe; and are obtained from the numerical evaluation
of (4.25) for Pe � 1. As already argued in § 4.1, both prolate and oblate spheroids will
settle broadside-on for sufficiently small Pe regardless of κ . Herein, we therefore focus
on the transition from broadside-on to edgewise settling that becomes possible for large
Pe. In this limit, the hydrodynamic stratification component is O(Ri2/3v ) and rotates the
spheroid towards an edgewise orientation regardless of κ . It is dominant over the O(Riv)
hydrostatic component that favours the broadside-on orientation. Thus, the transition from
broadside-on to edgewise settling, at leading order, depends on the relative magnitudes
of the inertial and hydrodynamic stratification angular velocities, and for a fixed κ ,
the transition threshold is determined by the ratio Riv/Re3/2 in the limit Re,Riv � 1.
However, the differing orientation dependence of the inertial and stratification angular
velocities, as evident from figure 8(a), for instance, implies that the transition cannot
be characterized by Riv/Re3/2 equalling a single κ-dependent threshold. An instance of
the latter scenario, that of a single threshold demarcating differing orientation dynamics
regimes, occurs when the competing physical effects are inertia and viscoelasticity, both of
which lead to angular velocities with a sinψ cosψ dependence, so that the edgewise and
broadside-on settling regimes are demarcated by a single critical curve in the De/Re − κ

plane, De here being the Deborah number, a dimensionless measure of elasticity (see
Dabade et al. 2015).

Writing the leading-order hydrodynamic stratification component in the general form
Ri2/3v Fs(κ, ψ), for large Pe, and equating it to the inertial component, of the form
ReFI(κ) sinψ cosψ , the threshold criterion for the broadside-on–edgewise transition
is determined by the ratio Riv/Re3/2 = [(sinψ cosψ)FI(κ)/Fs(κ, ψ)]3/2. Recall from
figure 8 that, for all κ > 1 (κ < 1), Fs(κ, ψ)/(FI(κ) sinψ cosψ) approaches its
minimum and maximum values for ψ → 0(π/2) and π/2(0), respectively, varying
monotonically in between these limits. Now, define (Riv/Re3/2)max = limψ→0(ψ→π/2)
[(FI(κ) sinψ cosψ)/Fs(κ, ψ)]3/2 and (Riv/Re3/2)min = limψ→(π/2)(ψ→0)[(FI(κ) sinψ
cosψ)/Fs(κ, ψ)]3/2 for prolate (oblate) spheroids, both of which are finite and
only functions of κ . One then has the following behaviour for the orientation of
either a sedimenting prolate or an oblate spheroid. For Riv/Re3/2 < (Riv/Re3/2)min,
the broadside-on orientation is the only equilibrium; likewise, for Riv/Re3/2 >
(Riv/Re3/2)max the longside-on orientation is the only equilibrium. For Riv/Re3/2 between
the aforementioned thresholds, the inertial and stratification angular velocity curves
must intersect at an orientation, ψi (say), intermediate between 0 and π/2. It is
easily seen that this equilibrium is a stable one for both the prolate and oblate cases;
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Figure 9. The upper and lower threshold curves that demarcate the regimes of broadside-on settling (below),
edgewise settling (above) and intermediate equilibrium orientations (in between), plotted as a function of
eccentricity, for a prolate spheroid; the plot on the right presents a magnified view of the thresholds near
the slender-fiber limit.

for example, in the prolate case, the stratification-induced angular velocity is greater
than the inertial one for ψi < ψ < π/2, with the converse being true 0 < ψi < ψ ,
implying that a prolate spheroid with its orientation in either of these intervals is
rotated towards ψ = ψi. As Riv/Re3/2 increases from the lower [(Riv/Re3/2)min] to the
upper threshold [(Riv/Re3/2)max], the intermediate equilibrium orientation, ψi, decreases
from π/2 to zero. Figures 9 and 10 show the aforementioned pair of threshold curves,
(Riv/Re3/2)min(κ) and (Riv/Re3/2)max(κ), plotted in the Riv/Re3/2 − κ plane for prolate
and oblate spheroids, respectively. Both the threshold values in figure 9 approach zero in
the limit of large aspect ratios because, as already noted in § 4.2, the stratification-induced
torque remains finite in this limit, in contrast to the inertial torque which becomes
logarithmically small (see figure 1). As seen from the log–log plot in figure 9, the
convergence of the thresholds to zero is slow on account of the aforementioned logarithmic
scaling. For oblate spheroids, the lower and upper thresholds approach distinct finite
values in the limit of a flat disk. As the angular velocity due to the hydrodynamic
stratification torque approaches a sinψ cosψ dependence for κ → 1 from either the
prolate or oblate side, the two threshold curves towards a common albeit finite critical
value in the near-sphere limit in both figures 9 and 10. In effect, for a prolate spheroid, the
thresholds diverge from a common finite value for κ = 1, tending to a maximum separation
for κ ≈ 4.11 (e ≈ 0.94), before approaching zero in the limit κ → ∞. For flat disks, the
threshold curves diverge away monotonically from a common value as κ increases from
unity, approaching a maximum separation in the limit of a flat disk.

In order to connect to experiments, we now discuss the implication of the
aforementioned predictions, within a quasi-steady framework, for a spheroid that starts
off with an arbitrary initial orientation and sediments through a stratified fluid at large
Pe; arguments in §§ 4.1 and 4.2 show that the quasi-steady assumption remains rigorously
valid in the Stokes stratification regime, regardless of Pe, provided Re and Riv are small.
The experiments reported in Mercier et al. (2020) correspond to an ambient linear
stratification that includes a neutral buoyancy level. The latter would correspond to the
equilibrium location of the sedimenting spheroid for long times, and for the viscous
overdamped regime under consideration, one expects the spheroid velocity U to decrease
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Figure 10. The upper and lower threshold curves that demarcate the regimes of broadside-on settling (below),
edgewise settling (above) and intermediate equilibrium orientations (in between), plotted as a function of
eccentricity, for an oblate spheroid; the plot on the right presents a magnified view of the thresholds near
the flat-disk limit.

monotonically to zero as it approaches this level. In dimensionless terms, Re and Pe
decrease with time, whereas Riv increases with time. If the spheroid starts off sufficiently
far above neutral buoyancy level, then the initial terminal velocity is likely large enough
for the ratio Riv/Re3/2 ∼ U−5/2 to be below the lower κ-dependent threshold in figure 10
(note that the particles used in the experiments were disk-shaped, and maybe likened to
thin oblate spheroids). As a result, the spheroid starts off rotating towards a broadside-on
orientation. The spheroid will slow down as it approaches the neutral buoyancy level, and
the resulting increase in Riv/Re3/2 will eventually cause it to exceed the aforementioned
lower threshold, leading to the broadside-on orientation becoming an unstable equilibrium.
Assuming the spheroid to have had sufficient time prior to this point, to have already
attained a near-broadside-on orientation, one expects the onset of a reversal in rotation.
Strictly speaking, the arguments in the previous paragraph, with regard to the existence
of an intermediate stable equilibrium, only pertain to a truly steady setting (where the
neutral buoyancy level corresponds to an infinitely great depth). For the experimental
scenario, assuming a sufficiently slow increase in Riv/Re3/2 with time, the spheroid would
progress quasi-statically through a sequence of intermediate orientation equilibria, on
its way to an edgewise configuration. Finally, in the immediate neighbourhood of the
neutral buoyancy level, the dynamics would appear to be slow enough for one to be in
the small-Pe regime analysed in § 4.1, and the resulting dominance of the hydrostatic
component of the stratification torque, over the O(Riv) hydrodynamic component, should
again reverse the spheroid rotation, causing it to finally approach its equilibrium location in
a broadside-on configuration. The aforementioned sequence of events is broadly consistent
with the observations in Mercier et al. (2020). Note that because U → 0 for long
times in the vicinity of the neutral buoyancy level, Riv becomes arbitrarily large in the
vicinity of the neutral buoyancy level, in turn leading to an apparent breakdown of the
analysis. As discussed in § 4.1.1, the expressions (4.8) and (4.9), for the hydrodynamic
component of the stratification angular velocity remain valid, even for Riv of order unity
or greater provided RivPe � 1 (for sufficiently small Re). The magnitude of RivPe, which
is independent of U, therefore determines whether the small-Pe analysis remains valid
close to the neutral buoyancy level. For large RivPe, the small-Pe screening length of
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O[L(RivPe)−1/4] would be much less than L, implying that the baroclinic flow driving
spheroid rotation is likely restricted to a thin boundary layer on the surface of the spheroid,
this boundary-layer character being similar to the original analysis of Phillips (1970); the
resulting magnitude of the hydrodynamic stratification component is not known. It must
also be emphasized that both Re and Riv for the disks in the said experiments are of order
unity, and a direct quantitative comparison with the experimental trajectories is therefore
not possible. Such a comparison would require the analogues of the thresholds in figures 9
and 10 for finite Re and Riv; even within the asymptotic framework analysed here, there
exist corrections of O(Ri1/3v ) to the threshold Riv/Re3/2 values in the said figures, owing
to the neglect of both the O(Riv) hydrostatic contribution, and higher-order corrections to
the hydrodynamic contribution.

The experiments reported in Mrokowska (2018), Mrokowska (2020b) and Mrokowska
(2020a) correspond to a nonlinearly stratified ambient where the density varies within
an intermediate layer sandwiched between homogeneous upper and lower layers. The
effects of the stratification on particle orientation, and the resulting coupling to the settling
velocity via the orientation-dependent resistance coefficient, lead to extrema (both maxima
and minima) in the settling velocity profile; five different phases have been identified in
the settling behaviour of thin disks. A detailed theoretical investigation to establish the
variation of the settling velocity profile for small Re and Riv requires an integration of
the coupled translational and orientational equations of motion, and this will be reported
separately. It is worth noting one interesting feature in these experiments, however. The
particles used in the experiments have a density that is greater than that of the lower
denser layer of the nonlinearly stratified ambient, and the resulting absence of a neutral
buoyancy level renders these experiments closer to the ideal steady-state scenario of a
constant U, thereby pointing to the possible relevance of the intermediate orientation
equilibria identified in figures 9 and 10. Interestingly, Mrokowska (2020b) observed thick
disks to behave differently from thin ones. On entering the transition layer, these disks
appear to rotate from an initial broadside-on configuration, attained in the upper layer,
towards an intermediate inclined orientation, before rotating back onto a broadside-on
orientation in the lower homogeneous layer. The persistence of the inclined orientation in
the transition layer appears consistent with the prediction of equilibrium orientations in
figure 10. The ratio Riv/Re3/2 equals (γL3/2μ1/2g)/(U5/2ρ

3/2
0 ) in terms of the underlying

physical parameters. Further, using the scale F/(μLXA) for U, one obtains the ratio as
(3XA/4π)5/2(γμ3/((ρ0g)3/2(	ρ)5/2Lb5/2). Both the thick and thin disks used in the
experiments of Mrokowska (2020b) correspond to κ � 1, implying that XA(κ) ≈ XA(0) in
the expression for Riv/Re3/2 above. It is therefore the thickness b that varies significantly
in going from the thin to the thick disk in the experiments, and the b−5/2 scaling of the
above ratio implies that the thick disk will correspond to a significantly lower value of
Riv/Re3/2. Thus, it is possible for the thin disk to correspond to an Riv/Re3/2 above the
upper threshold, with the thick disk falling in between the two thresholds above; in this
sense, our predictions again appear broadly consistent with the observations in Mrokowska
(2020b).

6. Conclusions and future work

To summarize, in this study, we present the first rigorous theoretical description of
the orientation dynamics of spheroidal particles in a stably stratified ambient. The
stratification-induced hydrodynamic torque, acting on a spheroidal particle, has been
calculated for the first time. For large Pe in particular, the torque is shown to rotate
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both prolate and oblate spheroids towards an edgewise orientation regardless of aspect
ratio. The theoretical predictions with regard to the transitions between broadside-on and
edgewise settling, and with regard to the existence of intermediate inclined equilibrium
orientations, appear broadly consistent with very recent experiments. Unfortunately, and
as already mentioned in § 5, a detailed quantitative comparison appears out of reach at the
moment; the particles used in all of the experiments, referred to in § 5, correspond to Riv
and Re values of order unity and higher. The quantitative disconnect between experiment
and theory is also evident from the threshold Froude number condition identified by
Mercier et al. (2020) for the so-called perfect disk which, translated to our notation,
corresponds to a threshold Riv/Re3; as opposed to the ratio Riv/Re3/2 identified in § 5. We
therefore hope that future experiments will use smaller particles, in an attempt to access
the regime of small Re and Riv , and thereby validate the detailed predictions given here. It
needs to be emphasized that the many of the smaller zooplankton, for typical values of the
stratification pertaining to the oceanic pycnocline, correspond to the small Re–Riv regime,
and thus the theoretical framework given here is certainly relevant to natural settings (the
oceanic realm in particular).

It is worth mentioning that the focus in the present manuscript has been on the large-Pe
analysis, in an attempt to explain the transition between broadside-on and edgewise settling
observed in experiments, all of which correspond to a salt-stratified ambient, and for
the millimetre-sized particles used, pertain therefore to large Pe. There are, however,
interesting issues that emerge even in the small Pe regime.

(i) Scaling arguments given in 4.1.1, and the analysis in Appendix B, highlight the
possibility of an analogous broadside-on–edgewise transition in the range Ri3/5v <

Pe � 1. One expects the parametric combination (Ri1/4v Pe5/4)/Re to determine
the transition threshold in the range Ri3/5v � Pe � Ri1/3v , with the ratio Riv/Re3/2

controlling this transition for Pe � Ri1/3v . The emergence of an O(Ri2/3v ) torque for
Pe � Ri1/3v suggests that the large-Pe analysis might be applicable to a wider range
of Pe that initially apparent (see Appendix B).

(ii) The opposing senses of rotation of oblate spheroids, with κ < 0.41 in the small-Pe
(Pe � Ri3/5v ) and large-Pe regimes point to a non-trivial dependence of the
stratification-induced angular velocity on Pe, one that can be examined in detail
through a numerical investigation over the entire range of Pe.

These aspects will be taken up in future work.
Finally, it is also of interest to move beyond orientation dynamics, towards a more

detailed illustration of actual particle trajectories which requires an integration of the
quasi-steady equations of motion for both translational and rotational degrees of freedom.
This would enable a more comprehensive comparison with the experiments of Mrokowska
(2020b) and Mrokowska (2020a). We expect some of the non-trivial signatures to be
revealed in an analysis that might only incorporate an anisotropic Stokes drag for the
positional dynamics, a valid leading-order approximation for Re,Riv � 1. This will again
be taken up in a future study.

Acknowledgements. Numerical computations reported here were mainly carried out on the ‘Nalanda-2’
computational cluster available with JNCASR. The authors thank the institute for providing this facility.
N.K.M. thanks IIT Ropar for the ISIRD project grant.

Declaration of interests. The authors report no conflict of interest.

933 A17-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
16

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1016


A.K. Varanasi, N.K. Marath and G. Subramanian

Author ORCIDs.
Ganesh Subramanian https://orcid.org/0000-0003-4314-3602.

Appendix A. Resistance functions and inertial torque

The expressions for Fp
I (ξ0) and Fo

I (ξ0) defined in (3.3) and (3.4) are given in terms of the
eccentricity of the spheroid (e = 1/ξ0) as

Fp
I (ξ0) = −πe2 (

420e + 2240e3 + 4249e5 − 2152e7)
315((e2 + 1) tanh−1 e − e)2((1 − 3e2) tanh−1 e − e)

+ πe2 (
420 + 3360e2 + 1890e4 − 1470e6) tanh−1 e

315((e2 + 1) tanh−1 e − e)2((1 − 3e2) tanh−1 e − e)

− πe2 (
1260e − 1995e3 + 2730e5 − 1995e7) (tanh−1 e)2

315((e2 + 1) tanh−1 e − e)2((1 − 3e2) tanh−1 e − e)
, (A1)

and

Fo
I (ξ0) = πe3

√
1 − e2

(−420 + 3500e2 − 9989e4 + 4757e6)
315

√
1 − e2(−e

√
1 − e2 + (1 + 2e2) sin−1 e)(e

√
1 − e2 + (2e2 − 1) sin−1 e)2

+ 210πe2 (
2 − 24e2 + 69e4 − 67e6 + 20e8) sin−1 e

315
√

1 − e2(−e
√

1 − e2 + (1 + 2e2) sin−1 e)(e
√

1 − e2 + (2e2 − 1) sin−1 e)2

+ 105πe3 (
12 − 17e2 + 24e4) (sin−1 e)2

315(−e
√

1 − e2 + (1 + 2e2) sin−1 e)(e
√

1 − e2 + (2e2 − 1) sin−1 e)2
. (A2)

The resistance functions XA, YA and YC are expressed in terms of the spheroid
eccentricity as

XA = 16πe3(
2e − (1 + e2) log

(
1 + e
1 − e

)) , (A3)

YA = − 32πe3(
2e + (3e2 − 1) log

(
1 + e
1 − e

)) , (A4)

YC = 32πe3(e2 − 2)

3
(

−2e + (1 + e2) log
(

1 + e
1 − e

)) , (A5)

for a prolate spheroid and as

XA = − 8πe3[
e
√

1 − e2 + (2e2 − 1) cot−1

(√
1 − e2

e

)] , (A6)
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YA = 16πe3[
e
√

1 − e2 − (1 + 2e2) cot−1

(√
1 − e2

e

)] , (A7)

YC = 16πe3(e2 − 2)

3

[
e
√

1 − e2 − (1 − 2e2) cot−1

(√
1 − e2

e

)] , (A8)

for an oblate spheroid.

Appendix B. Additional convective contributions to the spheroid angular velocity for
Pe � 1

In § 4.1, an O(Riv) contribution to the spheroid angular velocity, given by (4.7), arose from
the density perturbation driven by the no-flux condition on the spheroid surface (and given
by (4.3)). This contribution denotes the effect of buoyancy forces acting in a volume of
O(L3) around the spheroid, and may be termed the inner-region contribution. Herein, we
show that there exist additional buoyancy-induced contributions to the spheroid angular
velocity arising from a perturbation of the ambient stratification, on much larger length
scales, due to weak convection effects. Convection effects become important on length
scales of order the stratification screening length of L(RivPe)−1/4 for RivPe � 1 (Ardekani
& Stocker 2010 and § 4.1.1), and the resulting outer-region contribution may be isolated
from the full integral for the hydrodynamic component of the stratification torque in (2.22),
by first subtracting the aforementioned inner-region contribution. Thus, we begin from the
following difference integral:

Riv
1
Yc

∫
(ρ′(1) − ρ′(10))ĝjU

(2)
ji dV, (B1)

where the density disturbance defined by (4.3) is now denoted as ρ′(10) (as in § 4.1.1); the
test velocity field tensor U (2) is given in (4.22). Now, recall from § 4.1.1 that the difference
ρ′(1) − ρ′(10) grows as O(Pe r), leading to the dominant contribution to the difference
integral in (B1) arising from scales large compared with O(L), even in the limit RivPe � 1.
Therefore, neglecting the volume of the spheroid, and applying the convolution theorem,
one obtains

Riv
1
Yc

∫
(ρ′(1) − ρ′(10))ĝjU

(2)
ji dV = Riv

1
Yc

∫
[ρ̂′(1)(k)− ρ̂′(10)(k)]ĝjÛ

(2)
ji (−k) dk.

(B2)

The Fourier-transformed density field, ρ̂′(1)(k), is obtained by solving (4.10)–(4.12), being
given by

ρ̂′(1) =
−F̃Pe[1 − (ĝmk̂m)

2] + i8π3k2kjDs
j[

iPe8π3k2kjÛj − PeRiv(1 − (ĝnk̂n)2)− 16π4k4
] . (B3)

The Fourier-transformed density, ρ̂′(10)(k), in (B2) corresponds to the approximate form
of ρ′(10) at large distances (k � 1), and may be obtained from Fourier transforming the
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solution of the diffusion equation with a concentration-dipole forcing at the origin (see the
discussion after (4.12) in § 4.2); thus, ρ̂′(10)(k) is given by

ρ̂′(10) = −
i2πkjDs

j

4π2k2 , (B4)

where the dipole strength, Ds, is an order unity function of the spheroid
aspect ratio for Pe � 1; it may be shown that Ds = D1sĝ · (I − pp)+ D2s(ĝ ·
p)p, where D1s = 8π(ξ2

0 − 1)/3ξ2
0 (−ξ2

0 + (ξ2
0 − 1)ξ0coth−1ξ0 + 2) and D2s = 4π(ξ2

0 −
1)/3ξ3

0 (−ξ2
0 coth−1ξ0 + ξ0 + coth−1ξ0) for prolate spheroids; the corresponding

expressions for oblate spheroids may be obtained using the transformation presented in
§ 3.

As the dominant contributions to (B2) come from scales of O[L(RivPe)−1/4], we define
a rescaled Fourier wave vector pertaining to the outer region as ko =(RivPe)−1/4k. On
doing so, one finds from (B3) and (B4):

ρ̂′(1)(ko)− ρ̂′(10)(ko)

=
F̃[1 − (ĝmk̂om)

2] − Ri3/4v Pe−1/4i8π3ko
2kojDs

j

Riv[−iPe3/4Ri−1/4
v 8π3k2

okojÛj + (1 − (ĝnk̂on)2)+ 16π4k4
o]

+
i2πkojDs

j

(RivPe)1/44π2k2
o
.

(B5)

The relative magnitudes of the first with regards to the remaining terms in the denominator
of ρ̂′(1)(ko) depends on the ratio Pe/Ri1/3v , as mentioned in § 4.1.1. In the limit Pe � Ri1/3v ,
the density difference in (B5) reduces to

ρ̂′(1)(ko)− ρ̂′(10)(ko) ≈ F̃[1 − (ĝmk̂om)
2]

Riv[(1 − (ĝnk̂on)2)+ 16π4k4
o]
, (B6)

at leading order. The test velocity field tensor in (4.22) is again O(1/k) ∼
O[RivPe)−1/4/ko]. Using this along with the O(RivPe)3/4 volume in Fourier space that
contributes to the integral in (B2) (that is, dk = (RivPe)3/4 dko), would appear to lead
to an O(RivPe)1/2 outer-region contribution to the angular velocity for Riv,Pe � 1. This
contribution is, however, identically zero on account of the integrand being an odd function
of k. The absence of such a contribution arises from the fore–aft symmetry, at leading
order, of the density and velocity disturbance fields in the outer region (see Ardekani &
Stocker 2010; Varanasi & Subramanian 2021); the symmetry of the density disturbance
field may be seen from its Fourier transform in (B6) which is an even function of ko.

Recall that in § 4.1.1, we had mentioned that the O(Riv) inner-region contribution
remained valid even for finite Riv provided RivPe � 1, this because this torque
contribution arose from O(γL3g/μ) baroclinic flow induced due to the deformed
isopycnals around a stationary spheroid, rather than the O(U) disturbance velocity field
associated with translation; the resulting dimensional angular velocity was independent of
U. Interestingly, the small-Pe screening length above is also independent of U; it equals
(μ.D/Lgγ )1/4 in terms of the actual physical parameters. The U-independence suggests
that screening length for the onset of buoyancy-induced screening is independent of the
source of the disturbance flow; it may indeed by verified, using an O(γL3g/μ) scale for
the velocity field and going through the arguments of § 4.1.1, that one obtains the same
screening length. However, the more rapid O(1/r2) decay of the dipolar baroclinic flow
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implies that the O(1/r) Stokeslet field dominates the distorts the pycnals at leading order,
and it is this contribution that is accounted for in (B6).

In light of the symmetry-induced cancellation at leading order, one needs to consider
the correction to (B6) to obtain the leading-order contribution from the outer region. In
the limit Pe � Ri1/3v , on expanding (B5), one readily finds

ρ̂′(1)(ko)− ρ̂′(10)(ko) ≈ [F̃(1 − (ĝmk̂om)
2)]

Riv[(1 − (ĝnk̂on)2)+ 16π4k4
o]

+
i2πkojDs

j [(1 − (ĝmk̂om)
2)]

(RivPe)1/4[(1 − (ĝnk̂on)2)+ 16π4k4
o]4π2k2

o

+ Pe3/4iF̃(1 − (ĝmk̂om)
2)8π3ko

2kojÛj

Ri5/4v [(1 − (ĝnk̂on)2)+ 16π4k4
o]2

,

(B7)

where we have only included correction terms that are odd in k which will lead to a
non-zero angular velocity in (B2). On combining the scalings arising from the test velocity
((RivPe)−1/4), the Fourier space volume ((RivPe)3/4) and the Riv pre-factor in (B2), one
finds the first correction term (proportional to Ds) in (B7) to lead to an angular velocity of
O(Ri5/4v Pe1/4), whereas the second correction term gives a contribution of O(Ri1/4v Pe5/4).
The first correction is, however, always smaller than the O(Riv) inner-region contribution
for Riv,Pe � 1. Therefore, we only consider the second correction for the explicit
calculation below. Substituting (B7) into the integral in (B2), one finally obtains the
following integral expression:

Ω
(1)d
i

outer = Ri1/4v Pe5/4

Yc

∫ iF̃(1 − (ĝmk̂om)
2)8π3ko

2kojÛj

[(1 − (ĝnk̂on)2)+ 16π4k4
o]2

ĝlÛ
(2)
li (−ko) dko, (B8)

for the outer-region contribution to the hydrodynamic component of the stratification-
induced angular velocity, where

U(2)
ij (ko) = − i

2πko
{B1[(εmjrpr)pn + (εnjrpr)pm] + B3εmnj}k̂on(δim − k̂oik̂om), (B9)

with B1 and B3 being given by (4.19) and (4.20), respectively, for prolate spheroids. The
aspect-ratio-dependent functions B1 and B3 for oblate spheroids can again be obtained as
mentioned above.

To reiterate, the contribution given by (B8) exists in addition to the O(Riv) contribution
evaluated in § 4.1, and given by (4.7). A comparison for Riv � 1 readily shows that the
(B8) is dominant when Pe � Ri3/5v . Using (B9) in (B8), one obtains

Ω
(1)d
i

outer

= Ri1/4v Pe5/4 4π2F̃
Yc

[
B1

∫
(1 − (ĝmk̂om)

2)ko
2k̂ojÛj

[(1 − (ĝnk̂on)2)+ 16π4k4
o]2
εirjpr{ĝj(k̂olpl)+ k̂oj(ĝlpl)

−2(k̂olpl)(k̂oqĝq)k̂j}] dko + B3

∫
(1 − (ĝmk̂om)

2)ko
2k̂ojÛj

[(1 − (ĝnk̂on)2)+ 16π4k4
o]2
εijrĝjk̂or dko

]
. (B10)

The evaluation of the integral in (B10) is best done in a ĝ-aligned spherical coordinate
system. After expressing Û in terms of ĝ, p and An(κ) as in (4.27), the unit wave vector
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k̂o and p may be written in the form − cos θ ′ĝ + sin θ ′ cosφ′1g⊥1 + sin θ ′ sinφ′1g⊥2

and − cosψ ĝ + sinψ1g⊥1 , respectively, in a ĝ-aligned coordinate system similar to the

Û-aligned coordinate system used in § 4.2; θ ′ and φ′ here being the polar and azimuthal
angles, with the polar axis being along −ĝ. Substituting these in (B10) and using the
rescaled wave vector 2πko leads to the following form:

Ω
(1)d
2

outer

= Ri1/4v Pe5/4 F̃
8π3Yc

[∫ ∞

0
dko

∫ π

0
dθ ′

∫ 2π

0
dφ′ [(cosψ cos θ ′ + sinψ sin θ ′ cosψ)

× cosψ(1 − An)+ cos θ ′An
]
(B1f1 + B3 sin θ ′ cosφ′)

k4
o sin3 θ ′

(k4
o + sin2 θ ′)2

]
, (B11)

Ω
(1)d
2

outer

= Ri1/4v Pe5/4 F̃
8π3Yc

π5/2Γ
(

9
4

)
sin 2ψ

231
√

2Γ
(

3
4

) [−12AnB1 − 6(1 − An)B1 + 11(1 − An)B3

+(1 − An)B1 cos 2ψ)] . (B12)

An explicit calculation shows that the angular velocity given by (B12) always
acts to orient the spheroid edgewise, and as mentioned above, is greater than the
inner-region contribution for Pe > Ri3/5v . A comparison with the inertial torque obtained
in § 3 (given by (3.3) and (3.4) for prolate and oblate spheroids) suggests that the
broadside-on–edgewise transition may now be characterized on the Ri1/4v Pe5/4/Re − κ

plane in the range Ri3/5v � Pe � Ri1/3v . Note that the dependence on ψ in (B12) is more
complicated than that the sin 2ψ-dependence characterizing the regular contributions
derived in §§ 3 and 4.1. However, the deviation from the sin 2ψ-dependence turns out
to be very small in magnitude, and as a result, the upper and lower thresholds, separating
the broadside-on and edgewise orientations in the aforesaid parameter plane, are nearly
coincident.

The above analysis for the outer-region contribution is restricted to the limit Pe � Ri1/3v .
In the opposite limit, Pe � Ri1/3v , the first term in the denominator in (B5), that denotes
the effects of the ambient convection, is dominant over the second term that denotes the
buoyancy forces. The first term in the numerator continues to be dominant, and therefore,
at leading order, one now obtains

ρ̂′(1)(ko) ≈ F̃[1 − (ĝmk̂om)
2]

[−i(RivPe)3/48π3k2
okojÛj + Riv16π4k4

o]
. (B13)

The two terms in the denominator, denoting the convection and diffusion of the
density disturbance, are comparable when ko ∼ O(Ri−1/4

v Pe3/4) which, in physical space,
corresponds to the familiar (dimensional) convective screening length of O(LPe−1).
However, combining this with the test velocity field leads to an integrand that is O(1/k4)
for small k, in turn leading to the Fourier integral in (B2) being divergent for k → 0.
This suggests that the dominant contribution in the said limit comes from length scales
much larger than O(Pe−1). A closer examination shows that, for Pe � Ri1/3v , the dominant
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contribution to the integral in (B2) arises for k ∼ O(Ri1/3v ), corresponding to the large-Pe
stratification screening length of O(Ri−1/3

v ), and that is indeed much larger than the
aforementioned convective screening length; the viscous forces are now asymptotically
small compared with the convection and buoyancy terms, so the balance reduces to that
considered in § 4.2 for large Pe. Thus, the implication is that the angular velocity integral
in (B2) reduces to the same one as that obtained in § 4.2 when Pe � Ri1/3v , and the
outer-region contribution is now O(Ri2/3v ). The extended range of validity of the large-Pe
analysis for the torque mirrors the drag scenario where the analysis of Zvirin & Chadwick
(1975) was found to be valid for a larger interval of Pe than originally anticipated (Mehaddi
et al. 2018).

To summarize, for Pe small compared with unity, the hydrodynamic component of
the stratification-induced angular velocity always includes an inner-region contribution
of O(Riv) that has been derived in § 4.1, with an additional outer-region contribution
that is O(Ri1/4v Pe5/4) for Pe � Ri1/3v , being given by (B12) above, and that is O(Ri2/3v )

for Pe � Ri1/3v , the corresponding expression being the same as that obtained in § 4.2.
The only difference between the angular velocity contributions in the regimes Ri1/3v �
Pe � 1 and Pe � 1 is that, although sub-dominant, there is still an O(Riv) inner-region
contribution in the former case owing to the dominance of diffusion on length scales of
O(L); in contrast, diffusion is only expected to be important in a boundary layer with a
thickness of O(Pe−1/3) for Pe � 1, and there can be no analogue of the small-Pe O(Riv)
contribution.

Appendix C. Spheroidal harmonics solutions

In (3.1) and (3.2), S(3)t,s and S(2)t,s denote the decaying (biharmonic and harmonic) vectorial
solutions of the Stokes equations in spheroidal coordinates, and are given by the following
expressions:

S(3)1,0 =
[
(x111 + x212 + x313)

∂

∂x3
Q0

0(ξ)−
(

Q0
0(ξ)+ dξ2

0

(
∂

∂x3

[
Q0

1(ξ)P
0
1(η)

]))
13

−d(ξ2
0 − 1)

(
11

∂

∂x1

[
Q0

1(ξ)P
0
1(η)

]
+ 12

∂

∂x2

[
Q0

1(ξ)P
0
1(η)

])]
, (C1)

S(3)1,1 − S(3)1,−1 =
[
−2

(
(x111 + x212 + x313)

∂Q0
0(ξ)

∂x1
− Q0

0(ξ)11

)

−13 dξ2
0
∂

∂x3
(P1

1(η)Q
1
1(ξ) cosφ)− d(ξ2

0 − 1)
(

11
∂

∂x1
+ 12

∂

∂x2

)
(P1

1(η)Q
1
1(ξ) cosφ)

]
,

(C2)

S(2)1,1 + S(2)1,−1 =
[
2P0

1(η)Q
0
1(ξ)11 + P1

1(η)Q
1
1(ξ) cos(φ)13

]
, (C3)

S(3)2,1 − S(3)2,−1 =
[
(x111 + x212 + x313)

∂

∂x3
(P1

1(η)Q
1
1(ξ) sin(φ))− dξ2

0
3

∂

∂x3
(P1

2(η)Q
1
2(ξ) cos(φ))13 − d(ξ2

0 − 1)
3

(
11

∂

∂x1
+ 12

∂

∂x2

)
(P1

2(η)Q
1
2(ξ) cos(φ))

]
,

(C4)
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with the Ps
t (η) and Qs

t (ξ) being the associated Legendre functions of the first and second
kind, respectively (for s = 0, the Ps

t (η) correspond to the usual Legendre polynomials).
We have the following expressions for the Qs

t involved in (C1)–(C4):

Q0
0(ξ) = coth−1 ξ, (C5)

Q0
1(ξ) = ξ coth−1 ξ − 1, (C6)

Q1
1(ξ) =

(
ξ̄2 coth−1 ξ − ξ

)
/ξ̄ , (C7)

Q1
2(ξ) = (−3ξ2 + 3ξ̄2ξ coth−1 ξ + 2)/ξ̄. (C8)

Further, P0
1(η) = η, P1

1(η) = η̄ and P1
2(η) = 3ηη̄2. The general expressions for the vector

spheroidal harmonics S(3)t,s , for arbitrary t and s, have been obtained in the solid mechanics
context, and are given in Kushch (1997) and Kushch (1998).
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