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1. Introduction

The subject of domain wall motion in ferromagnetic nanowires has attracted a great
deal of interest in recent years, from both the physics and applied mathematics
communities. This is, in part, due to proposed magnetic storage media such as the
so-called racetrack memory [16]. This device makes use of the fact that, in a thin
ferromagnetic nanowire, the magnetic domains (regions of uniform magnetization,
which are separated by small transition layers called domain walls) prefer to align
along the wire axis (in either direction), thus providing a two-state system which
can be used to represent information. In order to read or write information, the
domains are propagated through the wire by application of a magnetic field or an
electric current.

In order to understand the workings of such a device, the primary problem to
study is the dynamics of a single domain wall separating two domains of opposite
magnetization, under the influence of an applied magnetic field. The magnetization
dynamics is modelled by the Landau–Lifshitz–Gilbert (LLG) equation [4, 11].

An ansatz method that has been successful in approximately describing one-
dimensional domain wall motion was introduced by Schryer and Walker [17], gen-
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eralized by Malozemoff and Slonczewski [13], and applied to various cases by a
number of authors (see, for example, [1, 12, 15, 19–24]). This approach consists of
looking for approximate solutions belonging to a three-parameter family of profiles,
in which the parameters represent translations, rotations and re-scalings of a suit-
ably chosen static profile. The time dependence of the parameters is determined
so as to satisfy the equations of motion as closely as possible. A recent asymptotic
analysis [6] provides a systematic foundation for this approach.

The phenomenology of solution behaviours in this problem is reasonably well
understood by applying the approximate methods discussed above. Exact solutions
are obtained only in some special cases [5, 17], including a travelling-wave (TW)
solution known as the Walker solution. For values of the driving field (that is, the
component of the applied field along the wire axis) up to a certain critical value,
which depends on other physical parameters (such as the transverse applied field
components and the anisotropy coefficients of the nanowire), the velocity and width
of the domain wall are asymptotically constant in time: the behaviour is apparently
that of a TW. For fields above the critical value, oscillatory motion sets in: the
domain wall precesses about the wire axis, and its velocity and width oscillate in
time. This phenomenon is known in the literature as Walker breakdown, due to its
discovery in the specific case studied by Schryer and Walker [17]. An approximate
description of these transitions in the general one-dimensional problem, including
predictions of the critical fields, has been provided elsewhere [6, 7].

Notwithstanding the success of these approximate methods, rigorous results con-
cerning domain wall motion in nanowires are currently few [2, 3]. In this article,
we analyse TW solutions of the LLG equation in thin nanowires. We consider
nanowires of biaxial anisotropy, with easy axis along the wire, subject to a uniform
magnetic field with components along and transverse to the wire, and prove that
TW solutions exist provided that the magnetic field component along the wire is
sufficiently small. The proof is an application of the implicit-function theorem.

1.1. Domain wall motion in a thin nanowire: statement of the problem

We work in the continuum-mechanical theory of micromagnetics (see, for exam-
ple, [8]). The equation governing magnetization dynamics is the LLG equation. We
study the following dimensionless form:

M̂t + αM̂ × M̂t = M̂ × H(M̂), (1.1)

where M̂ ∈ S2 is the magnetization, α > 0 is the Gilbert damping constant (typical
value in the range 0.01–0.2), and H(M̂) is the effective magnetic field. We study
the LLG equation in a thin cylindrical magnetic nanowire, Ω ⊂ R

3; ‘thin’ meaning
that the radius of the wire is small in comparison to both the length of the wire and
the magnetic exchange length of the material. We work in scaled units such that
the exchange length is equal to 1, and take the length of the wire to be infinite. We
use Cartesian coordinates on Ω: x for the coordinate along the wire axis, and y, z
for the coordinates on the cross-section.

In the thin-wire regime it is known that the micromagnetic energy Γ -converges
to a one-dimensional energy [10,18], given in dimensionless form by

E(M̂) = 1
2

∫
R

|M̂x|2 dx + 1
2

∫
R

(1 − (M̂ · x̂)2 + K2(M̂ · ŷ)2) dx, (1.2)
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where K2 � 0 is the effective hard-axis anisotropy coefficient and x̂, ŷ and ẑ are
the usual Cartesian basis vectors. The magnetization vector depends only on the
axial coordinate, x ∈ R, and time, t ∈ R

+, i.e. M̂ = M̂(x, t). The effective field is
given by

H(M̂) = − δE

δM̂
+ Ha = M̂xx + (M̂ · x̂)x̂ − K2(M̂ · ŷ)ŷ + Ha, (1.3)

where Ha = H1x̂ + H2ŷ + H3ẑ ∈ R
3 is a uniform applied magnetic field. For con-

venience, we denote the parameters of the system, namely the hard-axis anisotropy
K2 and applied magnetic field Ha, collectively by

Λ = (H1, H2, H3, K2). (1.4)

We note that the effective field may also be written as

H(M̂) = M̂xx − ∇M̂UΛ(M̂), (1.5)

where the potential UΛ is given by

UΛ(M̂) = 1
2 (1 − (M̂ · x̂)2 + K2(M̂ · ŷ)2 − 2Ha · M̂). (1.6)

As we are interested in domain wall dynamics, we impose the boundary conditions

lim
x→±∞

M̂ = m̂Λ
±, (1.7)

where m̂Λ
± correspond to distinct local minima of UΛ whose projections along x̂

have opposite signs. For definiteness, we take

x̂ · m̂Λ
+ > 0, x̂ · m̂Λ

− < 0, (1.8)

which corresponds to ‘tail-to-tail’ domains (‘head-to-head’ domains may be treated
similarly).

It will be convenient to introduce polar coordinates (ψ(ξ), β(ξ)) for the magne-
tization, writing

m̂(ψ, β) = (sinψ cos β, cos ψ, sin ψ sin β), (1.9)

and letting (ψΛ
±, βΛ

±) denote the polar coordinates of the boundary values m̂Λ
±. We

note that we have taken the polar axis along the hard axis ŷ rather than, as is often
done, the easy axis x̂. This is because the profiles of interest do not take values near
the hard axis, which is energetically costly, so that their representation in terms of
(ψ, β) avoids the coordinate singularities at ψ = 0 and ψ = π.

1.2. Overview

The remainder of the paper is structured as follows: In § 2 we derive the system
of ordinary differential equations (ODEs) satisfied by TWs and identify static (zero
velocity) solutions for two subsets of parameters in which the component of the
applied field along the wire vanishes, namely (i) K2 > 0, Ha = 0, corresponding to
biaxial anisotropy and vanishing applied field; and (ii) K2 = H1 = 0 < H2

2 +H2
3 < 1,

corresponding to uniaxial anisotropy and non-vanishing transverse applied field. In
§ 3 we reformulate the TW equations as a map between Banach spaces whose zeros
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correspond to solutions of the TW equations. In § 4 we state and prove our main
results, which establish existence of TW solutions to the LLG equation (1.1) for
values of the parameters in neighbourhoods of the subsets (i) and (ii).

2. Travelling waves

We look for TW solutions of the LLG equation (1.1) of the form

M̂(x, t) = m̂(x − V t), (2.1)

where V denotes the velocity of the TW. Substituting (2.1) into (1.1) and imposing
the boundary conditions (1.7), we obtain the TW equation

V m̂′ + αV m̂ × m̂′ + m̂ × H(m̂) = 0, lim
ξ→±∞

m̂(ξ) = m̂Λ
±, (2.2)

a system of second-order ODEs, where we have introduced the travelling coordinate
ξ := x − V t. We note that its solutions are determined up to translation; that is, if
m̂(ξ) satisfies (2.2), so does m̂(ξ − ξ0).

2.1. Static solutions

Given a solution m̂ of the TW equation (2.2), one can derive the following identity
for the velocity [7]:

V =
UΛ(m̂Λ

−) − UΛ(m̂Λ
+)

α
∫

R
m̂′ · m̂′ . (2.3)

(Formally, (2.3) is obtained by noting that the TW equation (2.2) implies that
αV m̂′ · m̂′ is equal to ( 1

2m̂′ · m̂′ − UΛ(m̂))′.) Therefore, if the stable domain
orientations m̂Λ

+ and m̂Λ
− have same energy, then the velocity vanishes – equiva-

lently, there may exist a static solution of the TW equation. We always have that
UΛ(m̂Λ

−) = UΛ(m̂Λ
+) whenever H1 = 0, i.e. the component of the applied field

along the wire vanishes, since in this case, the potential UΛ(m̂) is symmetric under
the reflection (m1, m2, m3) → (−m1, m2, m3).

We can find explicit static solutions in two parameter regimes with H1 = 0. The
first is the case of vanishing transverse applied field, which we denote by

ΛW = (0, 0, 0, K2), K2 > 0. (2.4)

Allowing H1 �= 0, this encompasses the regime of the Walker solution. We note
that, in this regime, we have restricted to positive K2 since the case in which
K2 = H2 = H3 = 0 is degenerate and our results do not apply there, though an
explicit dynamic solution to (1.1) is available that is not a simple TW [5].

The static profile m̂W , for Λ = ΛW , is given by the usual Bloch domain wall,

m̂W (ξ) = (tanh ξ, 0, sech ξ). (2.5)

The polar representation of the static profile (2.5) is given by

ψW (ξ) =
π

2
, βW (ξ) = 2 tan−1(e−ξ). (2.6)
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It is easily shown that m̂W corresponds to a minimizer of the micromagnetic
energy (1.2). A second minimizer, (tanh ξ, 0,− sech ξ), may be obtained by reflec-
tion through the intermediate axis ẑ. There exist another pair of solutions of (2.2)
given by (tanh ξ,± sech ξ, 0), which correspond to critical points of the energy, in
which the domain wall is aligned along the hard axis ŷ. As they are energetically
unstable, we do not consider them further.

The second regime corresponds to vanishing hard-axis anisotropy and non-vanish-
ing transverse field, and is denoted by

ΛT = (0, H2, H3, 0), 0 < H2
2 + H2

3 < 1. (2.7)

In view of the rotational symmetry about the easy axis, we may assume that H2 = 0.
In terms of the polar coordinates (ψ, β), the static profile is given by the solution
of the first-order equations

ψT =
π

2
, β′

T = H3 − sin βT , (2.8)

with boundary conditions

lim
ξ→−∞

βT = π − sin−1 H3, lim
ξ→∞

βT = sin−1 H3. (2.9)

One may explicitly compute βT (see [7]), but the expression is rather long and
in any case will not be required in what follows. We will only need the fact that
sin βT � H3 so that βT is strictly decreasing.

3. TW equations as a map between Banach spaces

Let Λ∗ denote either of the static parameters ΛW or ΛT , and let (ψ∗, β∗) denote
the corresponding static solutions. We introduce reference profiles (ψΛ, βΛ) that
coincide with (ψ∗, β∗) for Λ = Λ∗ as follows:

ψΛ(ξ) := ψ∗(ξ) + Θ(ξ)(ψΛ
+ − ψΛ∗

+ ) + Θ(−ξ)(ψΛ
− − ψΛ∗

− ),

βΛ(ξ) := β∗(ξ) + Θ(ξ)(βΛ
+ − βΛ∗

+ ) + Θ(−ξ)(βΛ
− − βΛ∗

− ).

}
(3.1)

Here, Θ(ξ) is a switching function with the following properties: (i) Θ(ξ) = 0
for ξ < 0, (ii) Θ(ξ) = 1 for ξ > ξ0 for some ξ0 > 0, and (iii) on the inter-
val (0,∞), 1 − Θ belongs to H2((0,∞)). It is then straightforward to check that
limξ±∞(ψΛ(ξ), βΛ(ξ)) = (ψΛ

±, βΛ
±) and that ψΛ′′

, βΛ′′ ∈ L2(R).
We consider profiles with polar-coordinate representation (a, b) of the form

a = ψΛ + u, b = βΛ + w, (3.2)

where u, w ∈ H2(R). These satisfy the boundary conditions (1.7) and include all
profiles sufficiently close to the reference profile (ψΛ, βΛ). Substituting m̂(a, b) :=
(sin a cos b, cos a, sin a sin b) into the TW equation (2.2), we obtain a second-order
system for u and w in the form G1 = G2 = 0, where

G1(u, w, V ; Λ) := sin ab′′ + 2 cos aa′b′ + V a′ + αV sin ab′ − FΛ
1 (a, b),

G2(u, w, V ; Λ) := a′′ − 1
2 sin 2ab′2 + αV a′ − V sin ab′ − FΛ

2 (a, b),

}
(3.3)
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and
FΛ

1 (a, b) := −p̂ · ∇m̂UΛ(m̂(a, b)),

FΛ
2 (a, b) := n̂ · ∇m̂UΛ(m̂(a, b)).

}
(3.4)

Here, n̂ := (cos a cos b, − sin a, cos a sin b) and p̂ := m̂× n̂ form an orthogonal basis
for the plane normal to m̂. The boundary conditions (1.7) imply that

FΛ
1 (ψΛ

±, βΛ
±) = FΛ

2 (ψΛ
±, βΛ

±) = 0, (3.5)

which expresses the vanishing of torques on m̂(ξ) as ξ approaches ±∞.
It is straightforward to show that a′, b′, a′′ and b′′ belong to L2(R) while a, b, a′,

b′ belong to L∞(R). It follows that the terms in G1 and G2 involving derivatives of
a and b belong to L2(R). From (3.1), it is straightforward to show that FΛ

1 and FΛ
2

also belong to L2(R). For example, to show that FΛ
1 is square-integrable on (0,∞),

we note that for ξ > 0, (a, b) can be expressed as (ψΛ
+ + s, βΛ

+ + t), where

s = (ψ∗ −ψΛ∗
+ )− (1−θ)(ψΛ

+ −ψΛ∗
+ )+u, t = (β∗ −βΛ∗

+ )− (1−θ)(βΛ
+ −βΛ∗

+ )+w.
(3.6)

It is evident that s, t ∈ L2((0,∞)). Therefore, since FΛ
1 (ψΛ

+, βΛ
+, ) = 0, it follows

from the mean-value theorem and boundedness of derivatives of FΛ
1 that FΛ

1 (a, b) =
FΛ

1 (ψΛ
++s(ξ), βΛ

++t(ξ)) is bounded by |s(ξ)|+|t(ξ)| up to a multiplicative constant.
A similar argument, with (ψΛ

+, βΛ
+) replaced by (ψΛ

−, βΛ
−), shows that FΛ

1 is square-
integrable on (−∞, 0), and likewise for FΛ

2 .
Finally, just as solutions m̂ of (2.2) are determined up to translations, so too

are solutions (u, w) of G1 = G2 = 0. This degeneracy can be lifted by choosing
the translate which is closest to the static solution m̂∗ in the L2(R)-norm. This is
equivalent to the condition g = 0, where

g(u, w, V ; Λ) := 〈b, β′
∗〉L2(R). (3.7)

With these considerations, we can formulate the TW equation in terms of a map
between Banach spaces. We define

X = H2(R) × H2(R) × R, Y = R
4 = {Λ}, Z = L2(R) × L2(R) × R, (3.8)

and
G : X × Y → Z; (u, w, V ; Λ) 	→ (G1, G2, g)(u, w, V ; Λ). (3.9)

Then m̂(a, b) satisfies (2.2) if and only if G(u, w, V ; Λ) = 0. In order to prove
existence of solutions by applying the implicit-function theorem, we shall need the
following result.

Proposition 3.1. G is continuously Fréchet differentiable.

Proof. The arguments are standard, but because of the large number of terms
contained in the Fréchet derivative of G, we restrict the discussion to a few repre-
sentative terms.

The functional derivative with respect to w of the first term in G1, namely T :=
sin ab′′, is the linear operator B : H2(R) → L2(R); φ 	→ sin aφ′′. This is clearly
bounded, and depends continuously on u, w and Λ. The functional derivative of T
with respect to u is the linear operator A : χ 	→ b′′ cos aχ. We note that b′′ ∈ L2(R)
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while χ, cos a ∈ L∞(R), so that b′′ cos aχ ∈ L2(R). Also, ‖χ‖L∞ is bounded by
‖χ‖H2 . It follows that B is a bounded map from H2(R) to L2(R) and is continuous
in its arguments. The functional derivatives of the remaining terms with respect
to u and w are treated similarly; in general, they can be expressed as linear maps
f 	→ h, where h is given by the product of an L2-function and an L∞-function, so
that h ∈ L2(R). Moreover, the L2-norm of h can be bounded by the H2-norm of f .

Establishing continuous Fréchet differentiability with respect to Λ requires the
vanishing-torque condition (3.5). Consider, for example, the term FΛ

1 as given by
(3.4). It is necessary to show that DΛFΛ

1 (a, b) belongs to L2(R) and that, as an
element of L2(R), DΛFΛ

1 (a, b) depends continuously on u, w and Λ. We have that

DΛFΛ
1 =

(
∂FΛ

1

∂a
DΛa +

∂FΛ
1

∂b
DΛb +

∂FΛ
1

∂Λ

)∣∣∣∣
a,b,Λ

, (3.10)

where the notation f |x indicates the evaluation of function f at the point x. Con-
sider first the interval ξ ∈ (0,∞). From (3.6), (a, b) = (ψΛ

+ + s, βΛ
+ + t), where s, t,

DΛs and DΛt all belong to L2((0,∞)). Substituting into (3.10), we may write that

DΛFΛ
1 = Q +

(
∂FΛ

1

∂a
DΛs +

∂FΛ
1

∂b
DΛt

)∣∣∣∣
a,b

, (3.11)

where

Q =
(

∂FΛ
1

∂a
DΛψΛ

+ +
∂FΛ

1

∂b
DΛβΛ

+ +
∂FΛ

1

∂Λ

)∣∣∣∣
a,b

. (3.12)

Since ∂FΛ
1 /∂a and ∂FΛ

1 /∂b are bounded, the terms

(∂FΛ
1 /∂a)DΛs and (∂FΛ

1 /∂b)DΛt

belong to L2((0,∞)). As for Q, we note that

Q|ψΛ
+,βΛ

+,Λ =
(

∂FΛ
1

∂a
DΛψΛ

+ +
∂FΛ

1

∂b
DΛβΛ

+ +
∂FΛ

1

∂Λ

)∣∣∣∣
ψΛ

+,βΛ
+,Λ

= 0, (3.13)

which follows from differentiating the vanishing-torque condition (3.5) with respect
to Λ. Using the mean-value theorem, we may write that

∂FΛ
1

∂a
(a, b) =

∂FΛ
1

∂a
(ψΛ

+, βΛ
+) +

∂2FΛ
1

∂a2 (ã, b̃)s +
∂2FΛ

1

∂a∂b
(â, b̂, Λ)t, (3.14)

where ψΛ
+ � ã, â � ψΛ

+ + s and βΛ
+ � b̃, b̂ � βΛ

+ + t. Using similar expressions for the
remaining terms in Q, we may write that

Q =
(

∂2FΛ
1

∂a2 DΛψΛ
+ +

∂2FΛ
1

∂a∂b
DΛβΛ

+ +
∂2FΛ

1

∂a∂Λ

)∣∣∣∣
ã,b̃

s

+
(

∂2FΛ
1

∂a∂b
DΛψΛ

+ +
∂2FΛ

1

∂b2 DΛβΛ
+ +

∂2FΛ
1

∂b∂Λ

)∣∣∣∣
â,b̂

t. (3.15)

As s and t belong to L2((0,∞)) and their coefficients in (3.15) are bounded, it
follows that Q ∈ L2((0,∞)).
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An analogous argument shows that for ξ < 0, DΛFΛ
1 (a, b) ∈ L2((−∞, 0)). It

follows that DΛFΛ
1 (a, b) ∈ L2(R), and is continuous with respect to u, w, Λ. One

may apply similar arguments to all other terms, and the claim follows.

4. Existence of TWs

The existence of TWs is given by theorem 4.1 in the anisotropy-dominated case, and
by theorem 4.5 in the transverse-field dominated case. Properties of certain one-
dimensional Schrödinger operators relevant to the analysis are proved in lemmas 4.3,
4.4 and 4.6.

Theorem 4.1 (anisotropy-dominated TWs). For all parameters

Λ = (H1, H2, H3, K2)

sufficiently close to ΛW , there exists a solution m̂(ξ; Λ) of the TW equation (2.2)
with velocity V (Λ). Both m̂ and V are continuously differentiable in Λ, and for
Λ = ΛW , m̂ coincides with the static profile m̂W .

Proof. We recall the implicit-function theorem (see, for example, [9]): given Banach
spaces X, Y , Z and a continuously Fréchet differentiable map G : X ×Y → Z such
that G(x0, y0) = 0, if the linear operator DxG(x0, y0) : X → Z has bounded inverse,
then there exist open balls BX = Br(x0) ⊂ X and BY = Bs(y0) ⊂ Y such that
for all y ∈ BY , there exists a unique x ∈ BX satisfying G(x, y) = 0. Moreover,
the implicit function f : BY → BX defined by G(f(y), y) = 0 is continuously
differentiable on BY .

We take X, Y , Z as in (3.8) and G as in (3.9), with Λ∗ = ΛW = (0, 0, 0, K2). From
proposition 3.1, G is continuously Fréchet differentiable. We let x0 := (u0, w0, V0) =
(0, 0, 0) and y0 = ΛW , so that G(x0, y0) = 0. We let

DW := D(u,w,V )G(0, 0, 0; ΛW ) : X → Z. (4.1)

Then for (f1, f2, µ) ∈ X = H2(R) × H2(R) × R, we have that

D(f1, f2, µ) = (−Lf2 + αµβ′
W ,−(L + K2)f1 − µβ′

W , 〈β′
W , f2〉), (4.2)

where L is the Schrödinger operator given by

L := − d2

dξ2 + W (ξ), W (ξ) = cos 2βW =
β′′′

W

β′
W

= 1 − 2 sech2 ξ. (4.3)

Clearly,
Lβ′

W = 0, (4.4)

so that ker L is spanned by β′
W . (Note that the kernel of a Schrödinger operator is

at most one dimensional, since its eigenfunctions are necessarily non-degenerate.)
First, we show that DW is bounded away from zero. We write fj = f⊥

j + cjβ
′
W ,

where f⊥
j is orthogonal to β′

W . From (4.2) and (4.4) it follows that

‖DW (f1, f2, µ)‖Z = ‖(L+K2)f⊥
1 ‖2

L2 +‖Lf⊥
2 ‖2

L2 +((K2c1+µ)2+α2µ2+c2
2)‖β′

W ‖L2 .
(4.5)
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For α �= 0, the quantity (K2c1 +µ)2 +α2µ2, regarded as a quadratic form in c1 and
µ, is positive definite, so that there exists C > 0 such that

‖β′
W ‖L2((K2c1 + µ)2 + c2

2 + α2µ2) � C(‖c1β
′
W ‖2

H2 + ‖c2β
′
W ‖2

H2 + µ2).

From (4.3), it is clear that (i) W is smooth, (ii) limξ→±∞ W (ξ) = 1, and (iii)
limξ→±∞ W ′′(ξ) = 0. In lemma 4.3, it is shown that if the potential W in a one-
dimensional Schrödinger operator has these properties, then it is bounded away
from zero on the orthogonal complement of its kernel, which for L is the subspace
orthogonal to β′

W . In lemma 4.4 it is shown that L + K2 has trivial kernel for
K2 > 0. Together with lemma 4.3, this implies that L + K2 is bounded away from
zero. Therefore, there exists C ′ > 0 such that

‖(L + K2)f⊥
1 ‖2

L2 � C ′‖f⊥
1 ‖2

H2 , ‖Lf⊥
2 ‖2

L2 � C ′‖f⊥
2 ‖2

H2 .

Taking C ′′ = min(C, C ′), we obtain

‖DW (f1, f2, µ)‖Z � C ′′‖(f1, f2, µ)‖X . (4.6)

Next, we establish that DW : X → Z is onto. The fact that DW is bounded away
from zero implies that DW has closed range R(DW ), so it suffices to show that
R(DW )⊥ = 0.

Suppose that (φ1, φ2, r) ∈ R(DW )⊥ ⊂ Z = L2(R) × L2(R) × R, so that

〈(φ1, φ2, r),DW (f1, f2, µ)〉Z = 0 for all (f1, f2, µ) ∈ X. (4.7)

Writing out the terms in (4.7), we get that

−〈φ1, Lf2 − αµβ′
W 〉L2 − 〈φ2, (L + K2)f1 + µβ′

W 〉L2 + r〈β′
W , f2〉L2 = 0. (4.8)

Taking f2 = 0, µ = 0, we have for all f1 ∈ H2(R) that

〈φ2, (L + K2)f1〉L2 = 0.

Regarding L as an unbounded operator on L2(R) with domain D(L), the preceding
equation implies that φ2 ∈ D(L†). Since L is self-adjoint, it follows that

0 = 〈φ2, (L + K2)f1〉L2 = 〈f1, (L† + K2)φ2〉L2 = 〈f1, (L + K2)φ2〉L2 .

Thus, (L + K2)φ2 = 0. Lemma 4.4 implies that L + K2 has trivial kernel, so that
φ2 = 0.

Next, we take f1 = 0, µ = 0 in (4.8) to obtain that

〈φ1, Lf2〉L2 = r〈β′
W , f2〉L2

for all f2 ∈ H2(R). Arguing as above, it follows that φ1 ∈ D(L†), so that we have
〈Lφ1, f2〉L2 = r〈β′

W , f2〉L2 for all f2 ∈ H2(R), which implies that

Lφ1 = rβ′
W .

Taking inner products with β′
W , we get that r = 0 and that φ1 ∈ ker L = span{β′

W }.
Finally, taking f1 = f2 = 0 in (4.8), we see that

〈φ1, β
′
W 〉L2 = 0, (4.9)

which implies that φ1 = 0.
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It follows that DW is onto, and therefore invertible. Since DW is bounded away
from zero, D−1

W is bounded. The assertions in theorem 4.1 then follow from the
implicit-function theorem.

Remark 4.2. The potential W in (4.3) is a particular case of the modified Pöschl–
Teller potential [14], whose spectral properties are known rather explicitly. We shall
not make use of these explicit results, however, but instead give a self-contained
analysis in lemmas 4.3 and 4.4. This has the advantage of carrying over to the case
of transverse-field-dominated TWs, for which corresponding explicit results for the
Schrödinger operator that appear there are not available.

Lemma 4.3. Let L = −d2/dξ2+W (ξ) : H2(R) → L2(R) be a Schrödinger operator.
If (i) W ∈ C2(R), (ii) W has positive limiting values W± as ξ → ±∞, and (iii)
W ′′(ξ) → 0 as ξ → ±∞, then L is bounded away from zero on the orthogonal
complement of ker L. That is, there exists C > 0 such that

‖Lu‖L2(R) � C‖u‖H2(R) for all u ∈ ker(L)⊥.

Proof. Assuming to the contrary that there exists a normalized sequence un ∈
ker(L)⊥∩H2(R) such that Lun → 0 strongly in L2(R), we can then extract a weakly
convergent subsequence (not relabelling), un ⇀ u in H2(R). As L is bounded, it
follows that Lun ⇀ Lu weakly in L2(R). As the weak and strong limits must
coincide, it follows that Lu = 0, i.e. u ∈ ker L. Since u ∈ (ker L)⊥ by assumption,
we conclude that u = 0, so that un converges weakly to 0 in H2(R).

Integrating by parts, we can write that

‖Lun‖2
L2(R) =

∫
R

(|u′′
n|2 + 2W |u′

n|2 + (W 2 − W ′′)|un|2).

Taking c = min(W+, W−) > 0, we may write that

‖Lun‖2
L2(R) =

∫
R

(|u′′
n|2 + 2c|u′

n|2 + c2|un|2) − Jn, (4.10)

where

Jn :=
∫

R

2(c − W )|u′
n|2 + (c2 − W 2 + W ′′)|un|2.

Given ε > 0, we can choose � > 0 such that 2(c−W ) > −ε and c2 −W 2 +W ′′ > −ε
for |ξ| > �. Then

Jn � −ε +
∫ �

−�

2(c − W )|u′
n|2 + (c2 − W 2 + W ′′)|un|2,

since ‖un‖2
L2 + ‖u′

n‖2
L2 � 1. By the Rellich–Kondrachov compact embedding the-

orem, the fact that un converges weakly to 0 in H2(R) implies that un and u′
n

converge strongly to 0 in L2((−�, �)). Therefore,

lim
n→∞

∫ �

−�

2(c − W )|u′
n|2 + (c2 − W 2 + W ′′)|un|2 = 0.
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It follows that limn→∞ Jn � −ε, and, since ε is arbitrary, that limn→∞ Jn � 0.
From (4.10), we conclude that

lim
n→∞

‖Lun‖2
L2(R) � lim

n→∞

∫
R

(|u′′
n|2 + 2c|u′

n|2 + c2|un|2) � min{1, 2c, c2} > 0. (4.11)

But this contradicts the fact that Lun → 0.

Lemma 4.4. Let L be the Schrödinger operator given by (4.3). Then

〈φ, (L + K2)φ〉L2(R) � K2‖φ‖2
L2

.

Proof. We take φ = uβ′
W . Since |β′

W | > 0, it follows that u ∈ H2
loc(R). Then

Lφ = −u′′β′
W − 2u′β′′

W ,

and hence

〈φ, Lφ〉L2 = −
∫

R

u(u′′β′2
W + 2u′β′

W β′′
W ) = −

∫
R

u(u′β′2
W )′ =

∫
R

u′2β′2
W � 0,

where we have used the fact, easily checked, that β′2
W uu′ vanishes at ξ = ±∞.

Therefore, 〈φ, (L + K2)φ〉L2(R) � K2‖φ‖2
L2

.

Theorem 4.5 (transverse-field-dominated TWs). For all parameters

Λ = (H1, H2, H3, K2)

sufficiently close to ΛT , there exists a solution m̂(ξ; Λ) of the TW equation (2.2)
with velocity V (Λ). Both m̂ and V are continuously differentiable in Λ, and, for
Λ = ΛT , m̂ coincides with the static profile m̂T .

Proof. When ΛW is replaced by ΛT , DT := D(u,w,V )G(0, 0, 0; ΛT ) is given by

DT (f1, f2, µ) = (−Mf2 + αµβ′
T ,−Nf1 − µβ′

T , 〈β′
T , f2〉). (4.12)

Here, βT (ξ) ∈ H2(R) satisfies (see (2.8) and (2.9))

β′
T = H3−sin βT , lim

ξ→−∞
βT = π−sin−1(H3), lim

ξ→∞
βT = sin−1(H3), (4.13)

and M , N are Schrödinger operators given by

M := − d2

dξ2 +
β′′′

T

β′
T

, N := − d2

dξ2 +
(cos βT )′′

cos βT
+ 1. (4.14)

Clearly,
Mβ′

T = 0, (4.15)

so that β′
T spans ker M .

Comparing (4.2) and (4.12), we see that DT is obtained from DW by making the
replacements β′

W → β′
T , L → M and L+K2 → N . The proof of theorem 4.1 carries

over directly provided we show that M is bounded away from zero on ker(M)⊥,
and that N is bounded away from zero.

Firstly, lemma 4.3 implies directly that M = −d2/dξ2 + W is bounded away
from zero on ker(M)⊥. Secondly, with W taken to be (cos βT )′′/ cos βT +1, the fact
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that N = −d2/dξ2 + W is bounded away from zero follows from lemma 4.3 (as
(4.13) implies that W is smooth, limξ→±∞ W (ξ) = 1, and limξ→±∞ W ′′(ξ) = 0),
combined with lemma 4.6 below, which implies that N has trivial kernel.

Lemma 4.6. Let N be the Schrödinger operator given by (4.14). Then

〈φ, Nφ〉L2(R) � H2
3‖φ‖2

L2
.

Proof. From (4.2) and (4.12), we get that

N = − d2

dξ2 + cos 2βT + 3H3 sin βT − H2
3 , (β′

T )′′ = (cos 2βT + H3 sin βT )β′
T .

Therefore,
Nβ′

T = H3(2 sin βT − H3)β′
T .

We let φ = uβ′
T . Since |β′

T | < 0, it follows that u ∈ H2
loc(R). A calculation gives

Nφ = −u′′β′
T − 2u′β′′

T + H3(2 sin βT − H3)φ,

and hence

〈φ, Nφ〉L2(R) = −
∫

R

u(u′′β′2
T + 2u′β′

T β′′
T ) + H3

∫
R

(2 sin βT − H3)φ2

=
∫

R

u′2β′2
T + H3

∫
R

(2 sin βT − H3)φ2

� H2
3‖φ‖2

L2 ,

where in the second equality we have used the fact (easily checked) that β′2
T uu′

vanishes at ξ = ±∞, while in the last equality we have sinβT � H3.

5. Conclusion

We have proven existence of TW solutions to the LLG equation in a thin ferromag-
netic nanowire. This was accomplished by virtue of the implicit-function theorem,
which provides local existence and uniqueness (up to translation) of TW profiles
close to static energy minimizers satisfying tail-to-tail boundary conditions (thus
representing propagating domain walls), with velocities in a neighbourhood of 0. We
proved the existence of solutions of this type for values of the physical parameters
close to two ranges in the parameter space: the first with zero applied field Ha = 0
and non-zero transverse anisotropy K2 > 0, and the second with non-vanishing
transverse applied field Ha = H2ŷ + H3ẑ, 0 < H2

2 + H2
3 < 1, and vanishing hard

axis anisotropy K2 = 0.
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