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Abstract
Although multiple global navigation satellite systems (multi-GNSS) with more visible satellites have a high success
rate, they make positioning time-consuming. Partial ambiguity resolution (PAR) can improve the efficiency of multi-
GNSS; however, at present PAR cannot simultaneously achieve fast and high-precision positioning with a high
success rate. Therefore, PAR based on ambiguity dilution of precision- and convex-hull-based satellite selection is
proposed. The experimental results of the proposed PAR, its corresponding satellite selection algorithm, the classical
PAR, and the low-cutoff-elevation-angle-based multi-GNSS show that the proposed PAR outperforms the classical
PAR, i.e., it achieves fast and high-precision positioning with a success rate of 100·0%. Furthermore, in terms of
R-ratio-test-based ambiguity validation, it improves the reliability of carrier-phase-based integrity monitoring of
multi-GNSS and the corresponding satellite selection algorithms. In addition, its positioning accuracy is close to that
of multi-GNSS and higher than that of the classical PAR, with maximum differences of 0·3 and 2·4 cm, respectively.
The proposed single (dual) frequency-based PAR improves single/dual-frequency multi-GNSS efficiency by more
than 54·9%/80·4% (42·0%/75·8%) when 14·4 (13·2) out of 24·4 satellites are selected.

1. Introduction

Global navigation satellite system (GNSS)-based instantaneous (single-epoch) and high-precision posi-
tioning has wide applications, such as in deformation monitoring, geological disaster monitoring, and
unmanned driving (Han and Rizos, 1999; Yi et al., 2013; Liu et al., 2019). The key to these applica-
tions lies in fast, reliable, and correct determination of the integer ambiguity vector, which has long
been a major challenge. Although single-epoch single satellite system can realise fast positioning, its
ambiguity resolution success rate is low and its positioning is unreliable owing to its weak model (Deng
et al., 2014). With the development of the global positioning system (GPS), BeiDou navigation satellite
system (BDS), and Galileo, multiple GNSS (multi-GNSS)-based single-epoch positioning has become
feasible and its success rate can reach up to 100% for short baselines (Teunissen et al., 2014; Odolinski
et al., 2015; Odolinski and Teunissen, 2016). As of March 2021, the GPS has 31 operational satellites
(GPS.GOV, 2021). Similarly, there are 26 Galileo satellites in orbit; however, only 22 of them are avail-
able for service (European GNSS Service Centre, 2021). Further, there are 15 regional and 29 global
BDS satellites that provide positioning services (BeiDou Navigation Satellite System, 2021). Multi-
GNSS can improve the geometric strength of the GNSS model, the probability of correct ambiguity
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estimation, and the reliability of the positioning system (Yang et al., 2011; Li et al., 2015). However,
the large number of observed satellites in multi-GNSS makes positioning time-consuming.

Partial ambiguity resolution (PAR) can improve the computational efficiency by fixing a subset of
ambiguities rather than a full set, which includes model- and data-driven PAR (Teunissen et al., 1999;
Verhagen et al., 2011; Brack and Christoph, 2014; Brack, 2017). Model-driven PAR includes classical
PAR (Teunissen et al., 1999), sequential PAR (Liu et al., 2017), iterative PAR (Parkins, 2011), and
satellite-selection-based PAR (Mowlam, 2004; Takasu and Yasuda, 2010). However, for the classical
PAR, the integer bootstrapping success rate Ps,IB of multi-GNSS can reach up to 100%; thus, Ps,IB
is no longer suitable as a threshold for selecting the ambiguity subset. Meanwhile, the conservative
Ps,IB sometimes causes the ambiguity vector to be fixed incorrectly and results in a low success rate.
Because the sequential PAR resolves all ambiguities by fixing partial ambiguities in batches, it limits
the improvement of the computational efficiency, which is not beneficial for multi-GNSS to achieve
fast positioning. Furthermore, the unpredictable number of iterations of the iterative PAR may make
positioning more time-consuming. The selected ambiguities of the classical, iterative, and satellite-
selection-based PAR commonly correspond to high-elevation-angle satellites, which will result in low
positioning accuracy. In addition, ambiguity decorrelation is required in the model- and data-driven
PAR, and the higher the dimension of ambiguity vector, the more time-consuming is the decorrelation.
Hence, for multi-GNSS, how to rapidly select an optimal subset of ambiguities to achieve fast and
high-precision positioning with a high success rate is a critical problem.

Ambiguity dilution of precision (ADOP) is a scalar factor for measuring the ambiguity resolution
success rate. To address the above-mentioned limitations of the present PAR, a novel PAR based on
ADOP- and convex-hull-based satellite selection (ACPAR) is proposed. The feasibility of ADOP as a
threshold of PAR to select partial ambiguities by selecting satellites before ambiguity decorrelation is
analysed. Then, ambiguity selection strategies based on ADOP- and convex-hull-based satellite selection
are proposed to rapidly determine the optimal ambiguity subset. Specifically, ambiguity selection based
on convex-hull-based satellite selection is proposed to select the required ambiguities related to the evenly
distributed low-elevation-angle satellites. Further, ambiguity selection based on ADOP-based satellite
selection is proposed to select the least number of ambiguities corresponding to the high-elevation-
angle satellites. The results of single-epoch GPS/BDS/Galileo relative positioning experiments indicate
that ACPAR outperforms the classical PAR, i.e., it achieves fast and high-precision positioning with a
success rate of 100·0%. Furthermore, its positioning accuracy is close to that of low-cutoff-elevation-
angle-based multi-GNSS (L-multi-GNSS) and much higher than that of the classical PAR. Similar
to ADOP- and convex-hull-based satellite selection, it can improve the computational efficiency of
L-multi-GNSS considerably, which is higher than that of the classical PAR. Moreover, it can improve
the R-ratio-test-based reliability of L-multi-GNSS and the corresponding satellite selection.

The remainder of this paper is organised as follows. Section 2 introduces the GNSS ambiguity
resolution theory with the R-ratio test. Section 3 describes the ADOP and convex hull theories. Section 4
introduces the ACPAR. Section 5 discusses the positioning performance of ACPAR on the basis of
single-epoch positioning experiments. Finally, Section 6 concludes the paper.

2. GNSS ambiguity resolution

2.1. Full and partial ambiguity resolution modes

The double-difference function and stochastic models of observed satellites are given by Equations (1)
and (2), respectively (Teunissen et al., 2014):
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where 𝑬 [·] and 𝑫 [·] denote the expectation and dispersion operators, respectively; 𝒃 and 𝒂 repre-
sent the baseline and double-difference ambiguity vectors, respectively; 𝑩 is a coefficient matrix, and
𝑩𝜆 = 𝜆 · 𝑰𝑛 ×𝑛, where 𝜆 is the carrier wavelength and n is the ambiguity vector dimension; 𝑸 is the
covariance matrix of the double-difference observations with the elevation-dependent weighting model;
and 𝜎𝑝 and 𝜎∅ are the undifferenced code and phase standard deviations, respectively.

Using the standard least-squares method, the float solutions 𝒃̂ and 𝒂̂with variance-covariance matrices
𝑸 𝑏̂ and 𝑸 𝑎̂ can be obtained. The least-squares ambiguity decorrelation adjustment (LAMBDA) can
be used to obtain the integer solution of the ambiguity vector in the full ambiguity resolution mode
(Teunissen, 1995):

ž = min
𝒛∈𝒁̃

( 𝒛̂ − 𝒛)T𝑄−1
𝑧̂ (𝒛̂ − 𝒛) (3)

where 𝒛̂ = 𝒁𝒂̂, 𝑄 𝑧̂ = 𝒁𝑄 𝑎̂𝒁
T, Z represents the decorrelation transform matrix, and 𝒁̃ represents the

set of integers. If Z is set as
[
𝒁T

1 𝒁T
2
]T, Equation (3) can be expressed as follows (Li et al., 2015):
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. In the PAR mode, only ambiguity subset
𝒛̂1 is fixed as integer solution 𝒛̌1 by LAMBDA.

2.2. R-ratio-test-based ambiguity validation

The ambiguity validation that determines whether to accept the integer solution fixed in Section 2.1 is a
non-trivial procedure for achieving high-precision positioning. The ratio test with an empirical threshold
has been widely used for ambiguity validation. The most commonly used test is the R-ratio test, which
can be defined as follows (Verhagen and Teunissen, 2006, 2013):

( 𝒂̂ − 𝒂̌2)T 𝑸−1
𝑎̂ ( 𝒂̂ − 𝒂̌2)

( 𝒂̂ − 𝒂̌1)T 𝑸−1
𝑎̂ ( 𝒂̂ − 𝒂̌1)

=
𝑹2

𝑹1
≥ 𝜇 (5)

where 𝜇 is the tolerance value and 𝑅𝑖 is the quadratic form of the ambiguity residuals of the best (i= 1)
and second-best (i= 2) integer solutions, i.e., 𝒂̌1 and 𝒂̌2, respectively. Note that 𝒂̌1 can be accepted only
when the ratio in Equation (5) is sufficiently large.

3. ADOP and two-dimensional convex hull theories

3.1. Single-epoch ADOP

The ADOP, first introduced by Teunissen (1997), is as an easy-to-compute scalar diagnostic for
measuring the intrinsic model strength for successful ambiguity resolution. It can be defined as follows:

ADOP = |𝑸 𝑎̂ |1/2𝑛 (6)

The ADOP for the geometry-based single-epoch single-baseline mode is given as follows (Odĳk and
Teunissen, 2008):
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√
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Figure 1. Graham’s scan algorithm for a convex hull.

where |·| denotes the determinant, 𝜆̄ =
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, where j is the number of frequencies, and 𝑤 = (sin𝜃)2, where 𝜃 denotes the elevation

angle. The ADOP also provides a good approximation to the integer least-squares success rate Ps,ILS of
the ambiguity resolution (Verhagen, 2003; Odĳk and Teunissen, 2008):

Ps,IB ≤ Ps,ILS ≈ Ps,ADOP =

[
2Φ

(
1

2ADOP

)
− 1

]𝑛
(8)

where Ps,ADOP represents the ADOP-based success rate. Note that Ps,ADOP and Ps,ILS increase as ADOP
decreases; the more ambiguities are involved, the steeper the decrease will be (Odĳk and Teunissen,
2008).

3.2. Two-dimensional convex hull

The smallest convex set containing the given finite point set 𝑺 = {d1, · · · , dk} in Euclidean plane 𝑅2

is called a two-dimensional convex hull whose vertices, called extreme points, belong to S. Graham’s
Scan algorithm (Figure 1) is a well-known algorithm that constructs a sequence D = {D1, · · · , D5} for
all points in a polar coordinate system with D0 as a pole, D0L as the starting direction, and counter-
clockwise as the positive direction (An, 2007). If the interior angle 𝜑𝑖 composed of the three adjacent
points is not greater than 𝜋, then D𝑖 is an extreme point. In Figure 1, D0, D1, D2, D4, and D5 are extreme
points.

4. PAR based on ADOP- and convex-hull-based satellite selection

In this section, the feasibility of ADOP as a threshold of PAR is analysed. Then, a novel PAR, i.e.,
ACPAR, is proposed. ADOP is invariant for a class of admissible ambiguity transformations, which
makes it possible for ADOP to serve as a threshold for determining the ambiguity subset before ambiguity
decorrelation. Based on Equation (7), ADOP can be predicted precisely by observed satellites that have a
definite relationship with double-difference ambiguities. Hence, the ambiguity subset can be determined
by selecting the corresponding satellites.

4.1. Feasibility analysis of ADOP as a threshold factor

To analyse the feasibility of ADOP as a PAR threshold, the corresponding parameters in Equations (1)
and (2) are set as follows: 𝒑 =

[
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2
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]
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]
, where 𝑷2 =
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[𝑸2 − 𝑸21𝑸
−1
1 𝑸12]−1. When the parameters with the subscript ‘1’ determined by satellite selection are

used for positioning, the float ambiguity vector 𝒂̂1 and its variance-covariance matrix are labelled as 𝒂̂S
1

and 𝑸S
𝑎̂1

, respectively. They are marked as 𝒂̂P
1 and 𝑸P

𝑎̂1
with all the parameters used. The relationship

between 𝑸S
𝑎̂1

and 𝑸P
𝑎̂1

can be expressed as follows (Liu et al., 2021):

𝑸P
𝑎̂1

= 𝑸S
𝑎̂1
− 𝑨1 (9)

where 𝑨1 = 𝑩−1
1,𝜆𝑩1𝑨2𝑩

T
1 𝑩

−1
1,𝜆 is a positive semidefinite matrix, 𝑨2 = 𝑸 𝑏̂𝑨

T
3 (𝑷−1

2 + 𝑨3𝑸 𝑏̂𝑨
T
3 )−1𝑨3𝑸 𝑏̂,

and 𝑨3 = 1
𝜎𝑝

(𝑸21𝑸
−1
1 𝑩1 − 𝑩2). For positive definite matrices 𝑸S

𝑎̂1
and 𝑸P

𝑎̂1
, Equation (10) holds on the

basis of Weyl’s theorem (Lancaster and Tismenetsky, 1985) and Equations (6), (8), and (9):{
ADOPP < ADOPS

PS
s,ADOP < PP

s,ADOP ≈ PP
s,ILS

(10)

where ADOPP and ADOPS represent the ADOP values of 𝒂̂P
1 and 𝒂̂S

1, respectively, PP
s,ADOP and PS

s,ADOP
denote their ADOP-based success rates, respectively, and PP

s,ILS denotes the integer least-squares success
rate of 𝒂̂P

1.
The relation PS

s,ADOP < PP
s,ADOP indicates that it is feasible to use the ADOP as the PAR threshold

to determine the ambiguity subset by selecting satellites. Equation (8) indicates that Ps,ADOP can esti-
mate Ps,ILS more accurately than Ps,IB. Hence, from the analyses presented above, compared with the
conservative Ps,IB, ADOP is more suitable as a threshold for selecting partial ambiguities.

4.2. ADOP- and convex-hull-based ambiguity selection method

Rapidly determining the optimal ambiguity subset is of the utmost importance for PAR to achieve
instantaneous high-precision positioning. Based on the positioning dilution of precision theory (Phillips,
1984), the selected ambiguities should correspond to the low- and high-elevation-angle satellites evenly
distributed around the receiver. Hence, fast ambiguity selection methods based on ADOP- and convex-
hull-based satellite selection are proposed in Sections 4.2.1 and 4.2.2.

4.2.1. Ambiguity selection based on convex-hull-based satellite selection
Compared with other points, the polygon area formed by the extreme points of the convex hull is
maximum. Hence, an ambiguity selection method based on convex-hull-based satellite selection is first
proposed to select the required ambiguities corresponding to evenly distributed low-elevation-angle
satellites. In this method, convex-hull-based satellite selection, including the equipartition rotation
method based on the convex hull and the method of the minimum inscribed circle of a polygon with the
largest radius, is proposed to rapidly select low-elevation-angle satellites.

For the convex-hull-based equipartition rotation method, all the visible satellites are projected onto
the XY plane of the local Cartesian coordinates, as shown in Figure 2(a): the circle represents the cutoff
elevation angle, ‘O’ represents the master station, and the points represent the observed satellites.

Let us suppose that 𝑚L = 3 points evenly distributed around point O need to be selected from
𝑚′ = 9 extreme points. The detailed strategy is as follows. (a) The starting line O1, together with the
equipartition lines 1 and 2 in Figure 2(b), divides the circle evenly into 𝑚L parts; each part is evenly
divided by the blue dotted lines, which makes the circle evenly divided into sectors 𝜑̃1, 𝜑̃2, and 𝜑̃3, with
the red lines as their bisectors. (b) For each sector, the extreme point with the smallest angular distance
from its angle bisector is selected, i.e., the points 1, 4, and 7 in sectors 𝜑1, 𝜑2, and 𝜑3 in Figure 2(b). (c)
The red and blue lines are rotated clockwise with point O as the origin until the starting line coincides
with line O2, as shown in Figure 2(c). Step (b) is repeated and the points 2, 5, and 9 are selected. Step (c)
is repeated until all the extreme points have been executed and there are at most 𝑚′ = 9 sets of extreme
points selected finally.
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(a) (b) (c)

Figure 2. Convex-hull-based equipartition rotation method.

Figure 3. Inscribed circle of a triangle with different radii.

The optimal set that is most evenly distributed around point O needs to be determined from the
selected point sets. Hence, the method of the largest-radius-based minimum inscribed circle of a polygon
is proposed, in which the minimum inscribed circle of the polygon is the circle with point O as the
centre and the shortest distance from point O to each side of the polygon as the radius.

In Figure 3, the blue circle with radius d and the red circle with radius 𝑑 ′ are the minimum inscribed
circles ofΔABC andΔA′B′C′, respectively, whereΔABC is an equilateral triangle. The points ofΔABC
are more evenly distributed around point O than those of ΔA′B′C′, and both the area and the radius of
the blue circle of ΔABC are larger than those of ΔA′B′C′. Hence, it can be concluded that the more
even the distribution of the points around point O, the larger is the radius of the minimum inscribed
circle. The set of extreme points whose minimum inscribed circle has the largest radius is selected as the
optimal point set. Hence, by the convex-hull-based satellite selection, the ambiguities corresponding to
𝑚L low-elevation-angle satellites are selected first.

4.2.2. Ambiguity selection method based on ADOP-based satellite selection
The given ADOP (ADOPG) can be achieved with the minimum number of high-elevation-angle satellites
(Liu et al., 2019). Therefore, to realise fast positioning with a high success rate, an ambiguity selection
method based on ADOP-based satellite selection is proposed to select the remaining ambiguities
corresponding to high-elevation-angle satellites in the optimal subset based on ADOPG.

To facilitate the analysis, the equation ln(ADOP/ 𝑓1) = 𝛼(𝛽 + 𝜉) is used, where 𝛼 = 1
𝑛 ,

𝛽 = 1
2 ln

(∑𝑚
𝑠 = 1 𝑤𝑠/

∏𝑚
𝑠 = 1 𝑤𝑠

)
, and 𝜉 = ln(𝜎̄𝑝/𝜎̄∅)3, and ln(∗) is the e-based logarithmic function.

Further, 𝛽 is selected as the threshold because only 𝛽 is a variable for ADOPG with a known number of
satellites for the determined system. From Equation (7), the theoretical 𝛽 and actual calculated 𝛽 can be
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Figure 4. Flowchart of ACPAR.

written as follows: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛽 =

ln(ADOP/ 𝑓1)
𝛼

− 𝜉

𝛽 = ln

(∑𝑚L
𝑖 = 1 𝑤

L
𝑖 +

∑𝑚H
𝑠 = 1 𝑤

H
𝑠∏𝑚L

𝑖 = 1 𝑤
L
𝑖 ·

∏𝑚H
𝑠 = 1 𝑤

H
𝑠

)1/2 (11)

where 𝑚H is the number of selected high-elevation-angle satellites and 𝑛 = 𝑚H + 𝑚L − 𝑡, where
t denotes the number of reference satellites. When 𝛽 is smaller than 𝛽, ADOPP < ADOPS < ADOPG

and PG
s,ADOP < PS

s,ADOP < PP
s,ADOP hold on the basis of Equation (10), where PG

s,ADOP is the ADOP-based
success rate calculated on the basis of ADOPG.

The specific steps of the proposed method are as follows. First, 𝑚H ≥ 𝑡 satellites with the highest
elevation angles are selected from the remaining visible satellites. For ADOPG, if 𝛽1 of the selected
𝑚L + 𝑚H satellites calculated by Equation (11) is smaller than 𝛽, then the ambiguities corresponding
to the selected satellites are the optimal subset. Otherwise, the highest-elevation-angle satellite in the
remaining satellites is continuously selected and 𝛽2 of all the selected satellites is calculated. The above-
mentioned process is repeated until 𝛽i of the selected satellites is smaller than the corresponding 𝛽. The
ambiguity subset corresponding to the selected satellites is the optimal subset, which can be fixed by
LAMBDA.

The method described in Section 4.2 is called ACPAR, and its flowchart is shown in Figure 4. The
convex hull algorithm becomes more time-consuming as the number of satellites increases. To achieve
fast positioning with more evenly distributed satellites, an elevation-angle-based layered processing
strategy is proposed, as shown in the dotted box in Figure 4.

5. GPS/BDS/Galileo-based single-epoch positioning experiment

In this section, the GPS/BDS/Galileo systems are considered, as their signals are all based on the
code-division multiple access technique. GLONASS was not considered, as the signals of most of its
satellites are based on the frequency-division multiple access technique, which impedes straightforward
integer resolution of the double-differenced ambiguities (Zaminpardaz et al., 2017). Single-epoch static
and low-dynamic positioning experiments based on GPS/BDS/Galileo L1/B1/E1 and L2/B2/E5b were
conducted in terms of the success rate, positioning accuracy, time consumption, and R-ratio test to
validate the performance of ACPAR. The models for comparison include the ADOP- and convex-hull-
based satellite selection (ACSS) described in the three dotted boxes in Figure 4, the classical PAR
(CPAR), and L-multi-GNSS with a cutoff elevation angle of 10◦ . For CPAR, the float ambiguities with
the highest accuracy were selected until Ps,IB of the selected ambiguities was larger than the given
threshold P◦

s,IB and then fixed by LAMBDA. The above-mentioned data-processing algorithms were
written in MATLAB R2016b based on goGPS (goGPS-project, 2021). The computer used for data
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Table 1. Settings of different models.

Frequency Model ADOPG P◦
s,IB Labelled name

L1/B1/E1 ACSS 0·120/0·155 / ACSS1-SF1/ACSS2-SF1
ACPAR 0·135/0·155 / ACPAR1-SF1/ACPAR2-SF1

L2/B2/E5b ACSS 0·092/0·124 / ACSS1-SF2/ACSS2-SF2
ACPAR 0·105/0·124 / ACPAR1-SF2/ACPAR2-SF2

L1/2/B1/2/E1/5b ACPAR 0·155 / ACPAR-DF1
0·124 / ACPAR-DF2

CPAR / 99·720% CPAR-DF1
/ 99·976% CPAR-DF2

processing was a Dell desktop with an Intel Core i7-7700 CPU (3·60 GHz) and 8·00 GB RAM. The
baseline vector errors were obtained by subtracting the corresponding true values from the calculated
baseline vectors. The empirical success rate Ps,E was calculated as follows (Odolinski and Teunissen,
2016):

Ps,E =
Number of successful epochs

Number of total epochs
(12)

where the successful epoch satisfied the following conditions: (i) the fixed ambiguities were the same as
the reference ones that were determined by the multiple-frequency multi-GNSS with master and rover
stations of known coordinates; (ii) the baseline vector deviations were all within certain ranges in the
directions of East (E), North (N), and Up (U), the values of which were 10, 10, and 30 cm, respectively.

In this study, one pivot satellite between overlapping frequencies was used for double-difference
observations. Hence, the L1/E1 parameters were labelled with the superscript ‘GE’ and they were
labelled as ‘BE’ for B2/E5b. At B1/L1/E1, the average phase- and code-standard deviations were
𝜎∅GE + B = 3 · 033 mm and 𝜎𝑝

GE + B = 31 · 0 cm, respectively, and the parameters were 𝑓 GE + B
1 ≈

0·02247, 𝑓 GE + B
3 ≈ (102 · 21)3/𝑛, and 𝜉GE + B ≈ 13·88. At B2/L2/E5b, they were𝜎∅G + BE = 3·237 mm,

𝜎𝑝
G + BE = 25 · 667 cm, 𝑓 G + BE

1 ≈ 0 · 01854, 𝑓 G + BE
3 ≈ (79 · 29)3/𝑛, and 𝜉G + BE ≈ 13 · 12. The above-

mentioned results were estimated using the method proposed by Odolinski et al. (2013); the data used
were independent of those in the following sections.

5.1. GPS/BDS/Galileo-based static positioning

The 24 h and 5 km baseline data with a sampling interval of 1 s and 86,400 epochs from the Hong Kong
base station were used in this section. The GPS/BDS/Galileo-based model settings are summarised in
Table 1.

CPAR-DFi with given P◦
s,IB can obtain the same average Ps,IB as ACPAR-DFi (i= 1, 2). The ADOPG

values of ACSS1-SFi, ACPAR1-SFi, and ACPAR-DFi are the maximum values for which the corre-
sponding models can achieve Ps,E = 100 · 0%. For ACPAR-DFi and CPAR-DFi, only the ambiguities
corresponding to the ith frequency were selected as the ambiguity subset. In addition, the L1/B1/E1-,
L2/B2/E5b-, and L1/2/B1/2/E1/5b-based L-multi-GNSS were labelled as L-SF1, L-SF2, and L-DF,
respectively. The number of observations of L-DF was twice that of L-SFi (i= 1, 2). Note that the satel-
lites used for positioning selected by ACSS and ACPAR were the same, with the same ADOPG, based
on Figure 4.

5.1.1. GPS/BDS/Galileo-based positioning performance
The results of the different models are presented in Table 2 and Figures 5–8. The values before and
after ‘/’ in Table 2 denote the improvements in time consumption of the corresponding model relative
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(a) (b)

Figure 5. Number of satellites of different models based on (a) L1/B1/E1 and (b) L2/B2/E5b.

(a) (b)

Figure 6. ADOP of different models based on (a) L1/B1/E1 and (b) L2/B2/E5b.

to L-SFi and L-DF, respectively. The average time consumption is defined by the total time divided by
the total epochs, where the numerator is the period from the time at which the observation data were
obtained to the time at which all the integer solutions of b were obtained. It should be emphasised that
the positioning accuracy in the following tables is three-dimensional accuracy.

As shown in Table 2 and Figures 5 and 6, to achieve Ps,E = 100 · 0%, both the ADOPG values and
the numbers of required satellites of ACSS1-SFi, ACPAR1-SFi, and ACPAR-DFi (𝑖 = 1, 2) decreased,
whereas the ADOP values of ACPAR1-SFi and ACPAR-DFi were slightly larger than that of ACSS1-
SFi. Hence, compared with ACSS, ACPAR could achieve Ps,E = 100 · 0% with larger ADOPG and fewer
satellites, although its ADOP was slightly larger. The above-mentioned phenomenon becomes more
obvious with more observations. Based on Figure 6, the ADOP fluctuation of CPAR was larger than
that of ACPAR, while the large ADOP values at some epochs denote a low success rate. Hence, the Ps,E
of CPAR-DFi was slightly smaller than that of ACPAR-DFi, although both its average Ps,IB and ADOP
were the same as those of ACPAR-DFi. This indicates that the ambiguity vectors fixed by CPAR were
incorrect at some epochs albeit with large P◦

s,IB. Therefore, it can be concluded that ADOP is more
suitable than Ps,IB as a threshold for selecting the ambiguity subset.

According to Table 2, L-SFi and L-DF were most time-consuming owing to a large number of visible
satellites. ACPAR, similarly to ACSS, could improve the computational efficiency of L-multi-GNSS
considerably. The ACPAR1-SFi could improve the efficiency of L-SFi/L-DF by more than 54·9%/80·4%
by selecting 14·4 out of 24·4 satellites. The corresponding improvement caused by ACPAR-DFi with
13·2 selected satellites was greater than 42·0%/75·8%, but it was smaller than that of ACPAR1-SFi
owing to the large number of float parameters required to be calculated. However, the above-mentioned
improvements were all larger than those of CPAR, although the number of satellites of CPAR was
minimum; one reason was the similarity to ACPAR-DFi, while the other was the ambiguity decorrelation.

https://doi.org/10.1017/S0373463322000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463322000017


The Journal of Navigation 841

(a) (b)

(c) (d)

Figure 7. ENU deviations of (a) ACPAR-DF1, (b) CPAR-DF1, and (c) L-SF1, (d) L-DF.

(a)

(b) (c)

Figure 8. ENU deviations of (a) ACPAR-DF2, (b) CPAR-DF2, and (c) L-SF2.

According to Table 2, ACSS1-SFi, ACPAR1-SFi, and ACPAR-DFi had similar positioning accuracies
close to L-SFi and L-DF with a maximum difference of 0·3 cm. Owing to the selected ambiguities
corresponding only to the high-elevation-angle satellites, the positioning accuracy of CPAR-DFi was
lower than that of ACPAR-DFi with a maximum difference of 1·1 cm. Based on the positioning accuracy
results, Figures 7 and 8 show only the baseline vector errors of ACPAR-DFi, CPAR-DFi, L-SFi, and
L-DF. The same trend of the positioning accuracy can be observed for the baseline vector accuracy
according to Figures 7 and 8. Specifically, the baseline vector deviations in the E, N, and U (ENU)
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Table 2. Positioning results of different models.

Model

Number
of

satellites ADOP Ps,E(%)

Positioning
accuracy

(cm)

Average time
consumption

(ms)
Improvement

(%)

ACSS1-SF1 15·6 0·117 100·00 1·3 16·8 53·46/79·18
ACPAR1-SF1 14·5 0·120 100·00 1·3 15·8 56·23/80·42
ACPAR-DF1 13·4 0·119 100·00 1·3 19·5 45·98/75·84
CPAR-DF1 10·3 0·119 99·99 2·2 23·7 34·35/70·63

ACSS1-SF2 15·8 0·090 100·00 1·5 15·9 51·23/80·30
ACPAR1-SF2 14·4 0·093 100·00 1·6 14·7 54·91/81·78
ACPAR-DF2 13·2 0·099 100·00 1·6 18·9 42·02/76·58
CPAR-DF2 9·9 0·099 99·97 2·7 24·9 23·62/69·14

L-SF1 24·4 0·085 100·00 1·2 36·1 /
L-SF2 24·4 0·068 100·00 1·4 32·6 /
L-DF 24·4 0·557 100·00 1·3 80·7 /

(a) (b)

Figure 9. Ratio values of different models based on (a) L1/B1/E1 and (b) L2/B2/E5b.

directions of ACPAR-DFi were slightly larger than those of L-SFi and L-DF but smaller than those of
CPAR-DFi.

In summary, for single-epoch positioning, compared with L-multi-GNSS, ACSS, and CPAR, ACPAR
could simultaneously achieve high positioning accuracy, success rate, and computational efficiency,
which also implies that ADOP is more suitable than Ps,IB as a PAR threshold.

5.1.2. GPS/BDS/Galileo-based R-ratio test
In this section, 𝜇 is set to 1·5, 2·0, 2·5, and 3·0 (Verhagen and Teunissen, 2013). The results of
ACSS2-SFi, ACPAR2-SFi, ACPAR-DFi, and L-DF (𝑖 = 1, 2) are presented in Table 3 and Figure 9.

Here, the acceptance rate Pa,R is defined as the number of accepted epochs divided by 86,400, where
an accepted epoch satisfies Equation (5). The successfully fixed rate Psf,R is defined as the ratio of the
number of successfully fixed epochs satisfying Equation (5) to the number of accepted epochs, where
the epochs in the numerator should meet conditions (i) and (ii) given after Equation (12). The false alarm
rate Pfa,R is defined as the ratio of the number of false alarm epochs to the number of successfully fixed
epochs, where the number of false alarm epochs is equal to the number of successfully fixed epochs
minus the number of accepted epochs. In this section, the success rate refers to the R-ratio-test-based
success rate Ps,R equal to Psf,R · Pa,R.
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Table 3. R-ratio test results of different models.

Pa,R (%)Psf,R/Pfa,R (%)

Model Average ratio 𝜇 ≥ 1 · 5 𝜇 ≥ 2 · 0 𝜇 ≥ 2 · 5 𝜇 ≥ 3 · 0

L-DF 3·15 84·79 66·12 50·64 38·94
100·0/15·21 100·0/33·88 100·0/49·36 100·0/61·06

ACSS2-SF1 5·75 95·65 88·67 81·84 75·01
99·99/4·02 100·0/11·00 100·0/17·86 100·0/24·71

ACPAR2-SF1 7·01 97·47 92·59 87·00 81·36
100·0/2·44 100·0/7·33 100·0/12·93 100·0/18·57

ACPAR-DF1 8·29 98·40 94·88 90·60 86·03
100·0/1·60 100·0/5·12 100·0/9·40 100·0/13·96

ACSS2-SF2 8·78 95·28 90·83 86·83 82·61
99·96/3·69 99·99/8·19 100·0/12·24 100·0/16·50

ACPAR2-SF2 10·19 96·65 93·07 89·33 86·20
100·0/3·26 100·0/6·84 100·0/10·59 100·0/13·72

ACPAR-DF2 11·35 97·47 93·92 90·83 87·68
100·0/2·53 100·0/6·08 100·0/9·17 100·0/12·32

The results presented in Table 3 indicate that with a certain 𝜇, Pa,R of L-DF, ACSS2-SFi, ACPAR2-
SFi, and ACPAR-DFi increased, which is consistent with the ratio values in Table 3 and Figure 9. When
i= 1, for Pa,R, the maximum difference between ACSS2 and L-DF was around 36·1%, that between
ACSS2 and ACPAR2 was around 6·4%, and that between ACSS2 and ACPAR-DF1 was around 11·0%.
For i= 2, they were 43·7%, 3·6%, and 5·1%, respectively. Hence, both ACSS and ACPAR could improve
Pa,R of L-DF, while ACPAR could further improve Pa,R of ACSS. Hence, the improvement caused by
ACPAR increases with more satellite observations and Pa,R of ACPAR could be up to 98·4%. Based on
Psf,R equal or close to 100·0% and the relation of Ps,R = Pa,R · Psf,R, the same results and conclusion as
those of Pa,R could be obtained for Ps,R.

However, Pfa,R showed opposite behavior: both ACSS and ACPAR could reduce Pfa,R of L-DF, while
ACPAR could further reduce Pfa,R of ACSS. With i= 1, ACSS2 could reduce Pfa,R of L-DF by up to
36·4%, while ACPAR2-SF1 and ACPAR-DF1 could reduce Pfa,R of ACSS2 by up to 6·1% and 10·8%,
respectively. For i= 2, they were 44·6%, 2·8%, and 4·2%, respectively. Further, Pfa,R of ACPAR could
reach 1·6%.

Ambiguity validation falls under carrier-phase-based integrity monitoring (Feng et al., 2009). Hence,
in terms of the R-ratio-test-based ambiguity validation of single-epoch positioning, ACPAR could
improve the reliabilities of the carrier-phase-based integrity monitoring of L-DF and ACSS: both
ACPAR and ACSS could improve the ratio, Pa,R, and Ps,R of L-DF, and reduce its Pfa,R, whereas the
ACPAR could further improve the corresponding results of ACSS; these results become more obvious
with more observations. The accuracy of low-elevation-angle satellite observations is easily and severely
affected by ionospheric, tropospheric, and multipath errors, which will degrade the precision of the
corresponding float ambiguities and affect the validation reliability of the entire ambiguity vector. Hence,
the above-mentioned results of L-DF might be due to its large number of low-elevation-angle satellites.

5.2. L2/B2/E5b-based low-dynamic positioning

In this section, 1·5 h low-dynamic data with a sampling interval of 1 s, 5,218 epochs, and average speed
of 30 km/h were collected using Trimble R10 from Xuzhou, China. As shown in Figure 10, one receiver
was installed on the vehicle roof and another as the base station was placed on top of a building. The
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(a) (b)

Figure 10. (a) Experimental device and (b) movement trajectory.

Table 4. Positioning results of different models.

Model
Number of
satellites ADOP Ps,E (%)

Positioning
accuracy

(cm)

Average
time con-
sumption

(ms)
Improvement

(%)

ACSS2-SF2 13·3 0·101 99·90 1·6 11·9 80·20
ACPAR-DF2 13·3 0·087 100·00 1·6 16·5 72·55
CPAR-DF2 9·8 0·095 99·88 4·0 20·2 66·39
L-DF 20·0 0·053 100·00 1·9 60·1 /

red line represents the movement trajectory with a maximum distance from the base station of around
8·0 km. The yellow directional lines and the numbers from small to large represent the driving direction
and sequence of the vehicle, respectively. For urban canyon conditions, the experimental settings shown
in Figure 4 were adjusted as follows: the step ‘Ambiguities related to middle-elevation-angle satellites’
was abandoned; 𝜃 in ‘Ambiguities related to low-elevation-angle satellites’ was set to 10◦ ≤ 𝜃 ≤ 50◦ .
According to the results presented in the previous section, L2/B2/E5b-based positioning can achieve
smaller ADOP with a similar number of satellites compared with L1/B1/E1. Hence, ACSS2-SF2,
ACPAR-DF2, CPAR-DF2, and L-DF were used, for which P◦

s,IB and ADOPG were set to 99·995% and
0·105, respectively.

5.2.1. L2/B2/E5b-based positioning performance
Table 4, together with Figures 11 and 12, presents the positioning accuracy, ADOP, Ps,E, time
consumption, and corresponding improvement results of the different models.

As shown in Table 4, the Ps,E values of both ACPAR-DF2 and L-DF were up to 100·00% larger than
that of ACSS2-SF2, while the ADOP of ACPAR-DF2 was smaller than that of ACSS2-SF2, although
the same satellites were used for positioning. Hence, compared with ACSS, ACPAR could achieve
higher Ps,E and smaller ADOP with the same satellites and ADOPG. According to the ADOP and Ps,E
results shown in Table 4 and Figure 11, the similar relationship between CPAR-DF2 and ACPAR-DF2
compared with that described in Section 5.1.1 indicates that the conclusion drawn in the previous section
is still valid.

Table 4 and Figures 11 and 12 show that the trends in the time consumption and positioning accuracy
between ACSS2-SF2, ACPAR-DF2, CPAR-DF2, and L-DF are similar to those in Section 5.1.1. Hence,
in the above-mentioned aspects, the same conclusions as those in the previous section can be obtained
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(a) (b)

Figure 11. (a) Number of satellites and (b) ADOP of different models.

(a)

(b) (c)

Figure 12. ENU deviations of (a) ACPAR-DF2, (b) CPAR-DF2, and (c) L-DF.

in this section. However, there were some discrepancies. By selecting 13·3, 13·3, and 9·8 out of
20·0 satellites, respectively, ACSS-SF2, ACPAR-DF2, and CPAR-DF2 could improve the efficiency of
L-DF by more than 80·0%, 72·5%, and 66·0%, respectively. In terms of the positioning accuracy, similar
to ACSS-SF2, the positioning accuracy of ACPAR-DF2 was up to 1·6 cm, which was higher than those
of L-DF and CPAR-DF2 with differences of around 0·3 and 2·4 cm, respectively. The positioning
accuracy of L-DF was lower than that of ACPAR-DF2, which may be due to the large number of low-
elevation-angle satellites in L-DF. Compared with high-elevation-angle satellites, low-elevation-angle
satellite signals are severely affected by ionospheric and tropospheric delay errors, and are vulnerable
to multipath errors, which will adversely affect the positioning accuracy and ambiguity resolution
success rate.

In summary, in terms of L2/B2/E5b-based low-dynamic single-epoch positioning, compared to
L-multi-GNSS, ACSS, and CPAR, ACPAR could simultaneously achieve fast and high-precision posi-
tioning with a high success rate, which again proves that ADOP is more suitable than Ps,IB as a PAR
threshold.
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Table 5. R-ratio test results of different models.

Pa,R (%)
Psf,R/Pfa,R(%)

Model Average ratio 𝜇 ≥ 1 · 5 𝜇 ≥ 2 · 0 𝜇 ≥ 2 · 5 𝜇 ≥ 3 · 0

L-DF 3·22 96·16 80·99 58·42 41·56
100·0/3·84 100·0/17·32 100·0/41·58 100·0/58·44

ACSS2-SF2 5·35 97·64 94·99 92·17 84·14
100·0/2·27 100·0/4·92 100·0/7·74 100·0/15·97

ACPAR-DF2 7·00 99·79 99·48 94·80 90·54
100·0/0·21 100·0/0·52 100·0/5·20 100·0/9·46

Figure 13. Ratio values of different models.

5.2.2. L2/B2/E5b-based R-ratio test
In this section, the same values were used for 𝜇 as those in Section 5.1.2; here, the success rate refers
to Ps,R. The R-ratio test results of L-DF, ACSS2-SF2, and ACPAR-DF2 are presented in Table 5 and
Figure 13.

Table 5 and Figure 13 show that in terms of the ratio, Pa,R, Psf,R, and Pfa,R, the relationships between
ACSS2-SF2, ACPAR-DF2, and L-DF are the same as those in Section 5.1.2. Hence, in terms of Ps,R and
the above-mentioned aspects, the same conclusions as those in Section 5.1.2 can be drawn in this section
with some changes. The maximum difference of Pa,R between ACSS-SF2 and L-DF was around 42.6%
and that between ACSS-SF2 and ACPAR-DF2 was around 6·4%. For Pfa,R, the maximum differences
between ACSS-SF2 and L-DF and between ACPAR-DF2 and ACSS-SF2 were around 42·5% and
6.5%, respectively. Further, Pa,R, Ps,R, and Pfa,R of ACPAR could reach 99·79%, 99·79%, and 0·21%,
respectively.

Therefore, in terms of R-ratio-test-based ambiguity validation of L2/B2/E5b-based low-dynamic
single-epoch positioning, ACPAR has the same advantages as the statistic positioning experiments in
Section 5.1.2.

6. Conclusion

Owing to the wide applications of fast positioning, GNSS-based single-epoch positioning has long
been a research hotspot. Although multi-GNSS can improve the success rate, its large number of visible
satellites make positioning time-consuming. PAR can improve the efficiency of multi-GNSS by selecting
partial ambiguities. However, the present PAR cannot simultaneously achieve fast and high-precision
positioning with a high success rate. To address this issue, this paper proposed a novel PAR, i.e., ACPAR.
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The feasibility of ADOP as the PAR threshold was analysed theoretically. Further, ambiguity selection
based on ACSS was proposed to determine the optimal ambiguity subset by rapidly and adaptively
selecting the corresponding satellites satisfying ADOPG. The following conclusions can be drawn from
the static and low-dynamic single-epoch positioning results of ACPAR, ACSS, the classical PAR, and
L-multi-GNSS:

(a) ACPAR can achieve a higher success rate and more stable ADOP than the classical PAR with the
same Ps,IB, which indicates that ADOP is more suitable than Ps,IB as a threshold for determining
the ambiguity subset; compared to ACSS, ACPAR can achieve a higher success rate and smaller
ADOP with the same satellites and ADOPG.

(b) Similar to ACSS, ACPAR can achieve high positioning accuracy close to that of L-multi-GNSS
and higher than that of the classical PAR with maximum differences of 0·3 and 2·4 cm,
respectively. ACPAR outperforms the classical PAR and it improves the efficiency of
L-multi-GNSS considerably. The improvements caused by single (dual) frequency-based ACPAR
are greater than 54·9%/80·4% (42·0%/75·8%) when 14·4 (13·2) out of 24·4 single/dual-frequency
L-multi-GNSS satellites are selected.

(c) From the perspective of R-ratio-test-based ambiguity validation, ACPAR can improve the
reliabilities of the carrier-phase-based integrity monitoring of L-multi-GNSS and ACSS: ACSS
can improve Pa,R and Ps,R and reduce Pfa,R of L-multi-GNSS by up to 43·7%, 43·7%, and 44·6%,
respectively; ACPAR can further improve the corresponding results of ACSS by up to 11·0%,
11·0%, and 10·8%, respectively.

In the future, the large number of visible satellites in GPS, BDS, GLONASS, and Galileo will make
positioning more time-consuming. By then, the advantages of ACPAR will be more obvious. Focus areas
for further research include the mechanism of float ambiguity vector precision affecting the reliability
of ambiguity validation and how to further improve the acceptance rate and reduce the false alarm rate
of ACPAR.
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