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Abstract
The induced removal lemma of Alon, Fischer, Krivelevich and Szegedy states that if an n-vertex graph G
is ε-far from being induced H-free then G contains δH(ε) · nh induced copies of H. Improving upon the
original proof, Conlon and Fox proved that 1/δH(ε) is at most a tower of height poly(1/ε), and asked if
this bound can be further improved to a tower of height log (1/ε). In this paper we obtain such a bound
for graphs G of density O(ε). We actually prove a more general result, which, as a special case, also gives a
new proof of Fox’s bound for the (non-induced) removal lemma.

2010 MSC Codes: 05D99

1. Introduction
The graph removal lemma [1, 6, 10] is undoubtedly one of the cornerstone results of modern com-
binatorics. It states that if one must remove from an n-vertex graph G at least εn2 edges in order
to make it H-free then G contains at least nh/RemH(ε) copies of H for some function RemH(ε)
(we use h= |V(H)|). The original proof of the removal lemma relied on Szemerédi’s regularity
lemma [11] and thus only gave the very weak bound RemH(ε)� twr ( poly (1/ε)), where twr (x)
is a tower of exponents of height x (so twr (3)= 222). Thanks to Gowers’ lower bound for the
regularity lemma [8], we know that any proof applying this lemma cannot yield better bounds.
In a major breakthrough, Fox [7] (see also [4]) found a new proof of the removal lemma which
avoided the regularity lemma and was thus able to show that RemH(ε)� twr (O( log (1/ε))). A
different proof of Fox’s result, more similar in nature to the proof of the removal lemma based on
the regularity lemma, was recently given in [9].

The removal lemma was extended to the setting of induced subgraphs by Alon, Fischer,
Krivelevich and Szegedy [2]. Let us say that an n-vertex graph G is ε-far from satisfying a prop-
erty P if one must add/delete at least εn2 edges to make it satisfy P . The induced graph removal
lemma of [2] then states that if G is ε-far from being induced H-free then G contains at least
nh/IRemH(ε) induced copies of H. The original proof of this lemma in [2] introduced and used
the so-called strong regularity lemma and thus supplied only wowzer-type bounds for IRemH(ε),
where the wowzer function is the iterated version of the twr function. Conlon and Fox [3] gave a
new proof of the induced removal lemma which avoided the strong regularity lemma, and were
thus able to prove that IRemH(ε)� twr (O(1/ε4)). They later asked [4] if one can further improve
this and show that IRemH(ε)� twr (O( log (1/ε))) (and more generally prove such a bound for
linear hypergraphs), that is, if one can extend Fox’s bound for the removal lemma to the setting of
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the induced removal lemma. For more background and information on the removal lemma and
its many variants, we refer the reader to the excellent survey [4].

1.1 New bounds for the induced removal lemma
Fox’s new proof of the removal lemma [7], andConlon and Fox’s new proof of the induced removal
lemma [3] used completely differentmethods. Ourmain result in this paper, stated as Theorem 1.1
below, is a new variant of the induced removal lemma, which contains both results as a special
case, and furthermore answers the problem of [4] for sparse graphs. Before stating this theorem
let us slightly extend the notion of inducedH-freeness to finite families of graphsH by saying that
G is induced H-free if it is induced H-free for every H ∈H. It is easy to see that one can assume
without loss of generality that all the graphs in a finite family H have the same size h. Let us also
say that a graph has density p if p= 2|E(G)|/n2. We are now ready to state the main result of this
paper.

Theorem 1.1. Fix a real 0< p� 1/2 and a family of graphsH on h vertices. If an n-vertex graph G
is ε-far from being inducedH-free and G has density p, then G contains at least

nh/ twr
(
O

(
p2

ε2
log

1
p

))

induced copies1 of some H ∈H.

First, note that since in the setting of induced subgraphs we can either work with a graph or
its complement, the assumption p� 1/2 actually covers all the range of possible edge densities.
Hence, setting p= 1/2 in the above theorem, we get the following bound for the induced removal
lemma which (slightly) improves the one obtained by Conlon and Fox [3].

Corollary 1.2. For every H, IRemH(ε)� twr (O(1/ε2)).

With regard to the problem of [4] whether IRemH(ε)� twr (O( log 1/ε)), setting p= ε (or
more generally p=O(ε)) in Theorem 1.1, we obtain the following corollary showing that such
a bound holds for graphs of density O(ε).

Corollary 1.3. If an n-vertex graph G is ε-far from being induced H-free and G has density O(ε),
then G contains at least nh/ twr (O( log 1/ε)) induced copies of H.

Recalling the above-mentioned observation that we can always switch between a graph and
its complement, we immediately see that the above corollary also holds for graphs G of density
1−O(ε).

1.2 Reducing the general case to the sparse case
We believe that it should be possible to reduce the general case of the induced removal lemma to
the sparse case, handled in Corollary 1.3, and thus answer positively the problem of [4] whether
IRemH(ε)� twr (O( log 1/ε)). A special case in which we can achieve this goal is in the setting of
the (non-induced) removal lemma. Indeed, as we now show, Fox’s famous improved bound for
the removal lemma [7] follows as a simple corollary of Theorem 1.1.

Corollary 1.4. For every H, RemH(ε)� twr (O( log 1/ε)).

1Here, and in similar statements, the O notation hides constants that depend on h, but not on ε or p (or n).
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Proof. Suppose G is ε-far from being H-free. It is easy to see that G must contain (ε/|E(H)|)n2
copies of H that are edge-disjoint. Let G′ be the graph obtained by taking just those copies of H.
Then G′ has density ε and is ε/h2-far from being H-free (since the copies are edge-disjoint). Let
H be the family of supergraphs ofH on h vertices. Then G′ is ε/h2-far from being inducedH-free.
Hence, by Theorem 1.1 it contains at least nh/ twr (O( log 1/ε)) induced copies of some H′ ∈H.
Since such an H′ contains H as a subgraph we are done.

1.3 Paper organization
As in [2] and [3], our proof of Theorem 1.1 will rely on a variant of the regularity lemma, stated
in Lemma 3.2, from which the proof will follow rather easily. The proof of this lemma will rely on
some tools previously used in [3] and [9], which we describe in Section 2. The proofs of Lemma 3.2
and Theorem 1.1 are given in Section 3.

2. Preliminary lemmas
2.1 Cylinder regularity lemma
Given a graph G= (V , E) and two subsets of vertices X, Y ⊆V , we write d(X, Y) for the density
of edges between X and Y , that is, d(X, Y)= |{(x, y) ∈ E(G)|x ∈ X, y ∈ Y}|/|X||Y|. We say that the
pair2 of vertex sets (X, Y) is ε-regular if, for all A⊆ X and B⊆ Y with |A|� ε|X| and |B|� ε|Y|,
we have |d(A, B)− d(X, Y)|< ε. A partitionV1, . . . ,Vk ofV(G) is equitable if the sizes of the parts
differ by at most one, that is, if ||Vi| − |Vj||� 1 for all i �= j. We use |P| to denote the number of
parts in P .

Suppose G= (V , E) is a k-partite3 graph with k-partition V1, . . . ,Vk. A cylinder in G is any
collection of k-tuples obtained by picking (non-empty) subsetsW1 ⊆V1, . . . ,Wk ⊆Vk and taking
the product setW1 × · · · ×Wk. Note that the collection of all k-tuples of vertices (x1, . . . , xk) with
xi ∈Vi is the cylinder V1 × · · · ×Vk. A cylinder partition K= {K1,K2, . . .} of the cylinder V1 ×
· · · ×Vk is a collection of cylinders so that every k-tuple (x1, . . . , xk) ∈V1 × · · · ×Vk belongs to
precisely one K ∈K. We use |K| to denote the number of cylinders in the cylinder partitionK. We
say that a cylinder K is ε-regular if all the

(k
2
)
pairs of subsets (Wi,Wj), 1� i< j� k, are ε-regular.

A cylinder K is strongly ε-regular if, in addition, all the pairs (Wi,Wi) are ε-regular, that is, if every
Wi is ε-regular with itself. The cylinder partition K is ε-regular if all but a 1/4-fraction of the k-
tuples (v1, . . . , vk) ∈V1 × · · · ×Vk are in ε-regular cylinders of K, and it is strongly ε-regular if
the same applies for strong ε-regular cylinders.

The key idea in the proof of [3] was an application of the following lemma, the so-called cylinder
regularity lemma of Duke, Lefmann and Rödl [5], which will also be instrumental in our proof.

Lemma 2.1. For each 0<α � 1/2 and integer k, set c(α, k)= α−k2α−5 . If G= (V , E) is a k-
partite graph with k-partition V =V1, . . . ,Vk, then there is an α-regular cylinder partition K
of V1 × · · · ×Vk satisfying |K|� c(α, k). Moreover, every K =W1 × · · · ×Wk ∈K and 1� i� k
satisfy |Wi|� |Vi|/c(α, k).

We will also need the following lemma from [3].

Lemma 2.2. For each 0< γ � 1/2 set r(γ )= 2γ−(20/γ )
4
. Every graph G= (V , E) has a vertex parti-

tion {V1,V2, . . .} into at most r(γ ) parts, such that each of the parts Vi is γ -regular with itself, i.e.
each pair (Vi,Vi) is γ -regular.

2In all cases, the sets X, Y will either be disjoint or identical, that is, we will either consider bipartite ε-regular graphs, or
graphs that are ε-regular. The latter are sometimes referred to as ε-quasi-random.

3We will always assume that in such a k-partition all the sets Vi are non-empty.
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2.2 The potential function
Let the functionH :R+→R

+ be given byH(x)= x ln x, where henceforth 0 ln 0= 0. We will use
H to define a potential function for vertex partitions. For the rest of this subsection let G be an
n-vertex graph. We define the potential of a partition P of V(G) by

H(P) :=
∑

V ,V ′∈P

|V||V ′|
n2

H(d(V ,V ′)).

Observe that the summation is over ordered pairs (V ,V ′). It will be convenient to generalize the
above definition. Henceforth, let P be a partition of A⊆V(G) and P ′ be a partition of A′ ⊆V(G).
We more generally define

H(P ,P ′) :=
∑

V∈P ,V ′∈P ′
|V||V ′|
|A||A′|H(d(V ,V ′)),

and in particular H(P)=H(P ,P) if P is a partition of V(G). We will also need the following two
claims, which follow easily from the convexity of the function x ln x (see either [7] or [9]).

Claim 2.3. IfQ refines P andQ′ refines P ′, then H(Q,Q′)�H(P ,P ′).

Claim 2.4. If G has density p, then p ln p�H(P)� 0.

Another observation we will use is the following technical lemma.

Lemma 2.5. Let G= (V , E) be a graph, and let P = {V1, . . . ,Vk} be a partition of V. Then, for
every t� k, there is an equipartition P0 of V into t parts so that H(P0)�H(P)− k/t.

Proof. Let x= |V| (mod t) and note that an equipartition of V into t parts has x parts of size
�|V|/t	 and t− x parts of size 
|V|/t�. Let us then iteratively remove from V subsets of size
�|V|/t	 so that every such set should be a subset of one of the sets Vi. We stop once we have
picked x such sets or once each of the sets has fewer than �|V|/t	 vertices left in it. We now itera-
tively remove from the remaining vertices subsets of size 
|V|/t� so that every such set should be
a subset of one of the sets Vi. We stop once we have picked t− x such sets or once each of the sets
has fewer than 
|V|/t� vertices left in it.

Let us call the new partition we have thus created Q, and let V ′i be the vertices that were not
removed from Vi in the process of creatingQ. Let x′ denote the number of subsets of size �|V|/t	
we have pulled out of the sets Vi and set U =⋃k

i=1 V ′i . We now pull x− x′ sets of size �|V|/t	 out
of U and then partition the remaining vertices into sets of size 
|V|/t� (thus obtaining t− x sets
of this size). We thus get an equipartition of V which we take to be P0.

Noting that the (intermediate) partitionQ refinesP , Claim 2.3 implies thatH(Q)�H(P). It is
also easy to see that the process of producingQ guarantees that each |V ′i |� n/t and so |U|� kn/t.
We thus have

H(P0)

=
∑

X,Y∈Q :
X,Y⊆V\U

H(d(X, Y))
|X||Y|
|V|2 + 2

∑
X∈Q,Y∈P0 :
X⊆V\U, Y⊆U

H(d(X, Y))
|X||Y|
|V|2 +

∑
X,Y∈P0 :
X,Y⊆U

H(d(X, Y))
|X||Y|
|V|2

�
∑

X,Y∈Q :
X,Y⊆V\U

H(d(X, Y))
|X||Y|
|V|2 − e−1 2|U|(|V| − |U|)+ |U|

2

|V|2
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�H(Q)− k
t

�H(P)− k
t
,

where we used the fact that for every 0� x� 1 we have−e−1 �H(x)� 0.

Suppose P = {V1, . . . ,Vk} andQ are two partitions of V(G) andQ refines P . Then we will use
Q|Vi to denote the partitionQ restricted to Vi, that is, the collection of parts ofQ contained in Vi.
We now write

�1(Q,P)= 1
2

k∑
i,j=1

∑
U∈Q|Vi ,U ′∈Q|Vj

|U||U ′||d(U,U ′)− d(Vi,Vj)|.

We now turn to an important lemma from [9] (Lemma 3.4 in [9]), which follows from an
appropriate application of Pinsker’s inequality.

Lemma 2.6. Suppose G= (V , E) is an n-vertex graph of density p, P = {V1, . . . ,Vk} is an
equipartition of V, andQ is a partition refining P . If H(Q)−H(P)< 2x2p, then �1(Q,P)< xpn2.

We now return to cylinder partitions, discussed above. Let G= (V , E) and P = {V1, . . . ,Vk}
be an equipartition, andK be a cylinder partition of V1 × · · · ×Vk. For K =W1 × · · · ×Wk ∈K,
we define

d(K)= |W1| × · · · × |Wk|
|V1| × · · · × |Vk| and �1(K,P)= 1

k2
k∑

i�=j=1
|d(Wi,Wj)− d(Vi,Vj)|.

The reader should note that unlike the definition of �1 we used above, here we define the
distance between a partition and a cylinder without summing on i= j.

We say that a cylinder partition K is ε-close to the vertex partition P if
∑
K∈K

d(K) · �1(K,P)� ε.

If K =W1 × · · · ×Wk is a cylinder in V1 × · · · ×Vk then we write Ki for Wi. Given a cylin-
der partition K of V1 × · · · ×Vk, let Q(K) be the partition of V1 ∪ · · · ∪Vk obtained by taking
the common refinement of all the sets Ki with i ∈ [k] and K ∈K. Note that this partition is a
refinement of the partition V1, . . . ,Vk.

Lemma 2.7. Let G= (V , E) be of density p and let P = {V1, . . . ,Vk} be an equipartition of V. If a
cylinder partition K of V1 × · · · ×Vk is such that Q=Q(K) satisfies H(Q)<H(P)+ ε, then K is√
2pε-close to P .

Proof. We will assume that all sets Vi are of equal size since it will have no (real) effect on the
following calculations. For the rest of this paragraph, let us fix 1� i �= j� k. For K ∈K, we have

d(Ki,Kj)=
∑
U,U ′

d(U,U ′) |U||U
′|

|Ki||Kj| ,
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where here and in the rest of this paragraph,
∑

U,U ′ is a sum over all U ∈Q|Vi with U ⊆Ki and
U ′ ∈Q|Vj with U ′ ⊆Kj. Hence, by the triangle inequality and the fact that

∑
U,U ′

|U||U ′|
|Ki||Kj| = 1,

we obtain

|d(Ki,Kj)− d(Vi,Vj)|�
∑
U,U ′
|d(U,U ′)− d(Vi,Vj)| |U||U

′|
|Ki||Kj| .

Averaging this inequality over all K ∈K with weights d(K), we have

∑
K∈K
|d(Ki,Kj)− d(Vi,Vj)|d(K)�

∑
K∈K

∑
U,U ′
|d(U,U ′)− d(Vi,Vj)| |U||U

′|
|Ki||Kj|d(K)

=
∑
U,U ′

(
|d(U,U ′)− d(Vi,Vj)|

∑
K∈K

|U||U ′|
|Ki||Kj|d(K)

)

=
∑
U,U ′
|d(U,U ′)− d(Vi,Vj)| |U||U

′|
|Vi||Vj| ,

where in the first equality we just switched the order of summation, meaning that here (and in
the third line) the

∑
U,U ′ is over all U ∈Q|Vi and U ′ ∈Q|Vj and the

∑
K∈K is only over K ∈K

satisfying U ⊆Ki and U ′ ⊆Kj. The second equality follows from the fact that for every U ⊆Vi
and U ′ ⊆Vj, we have

∑
K

∏
t �=i,j |Kt| =∏

t �=i,j |Vt| with the sum being over all K ∈K with U ⊆Ki
and U ′ ⊆Kj.

Summing the above inequality over all i �= j, dividing by k2 and recalling that all sets Vi are of
size n/k, we get

∑
K∈K

�1(K,P)d(K)� 1
n2

∑
i�=j

∑
U∈Q|Vi ,U ′∈Q|Vj

|d(U,U ′)− d(Vi,Vj)||U||U ′|

� 2
n2
· �1(Q,P)�

√
2pε,

where the third inequality follows from the lemma’s assumption that H(Q)<H(P)+ ε together
with Lemma 2.6. This completes the proof.

2.3 A counting and a slicing lemma
We will need a standard version of the counting lemma. For a proof see for example [2].

Lemma 2.8. Suppose H is a graph with vertices 1, . . . , h and G is a graph with not necessarily
disjoint vertex subsets U1, . . . ,Uh such that

• For every 1� i< j� h, the pair (Ui,Uj) is εh/(4h)-regular,
• For 1� i� h we have |Ui|� 4h/εh,
• For 1� i< j� k, d(Ui,Uj)> ε if (i, j) is an edge of H and d(Ui,Uj)< 1− ε otherwise.
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Then G contains at least ε/4(
h
2)|U1| × · · · × |Uh| induced copies of H with the copy of vertex i taken

from Ui.

We will also need the following standard fact regarding ε-regular graphs, sometimes referred
to as the slicing lemma.

Lemma 2.9. If (X, Y) is an ε-regular pair, and X′ ⊆ X and Y ′ ⊆ Y satisfy |X′|� c|X| and |Y ′|� c|Y|
for some ε� c� 1/2, then (X′, Y ′) is an ε/c-regular pair.

3. Proof of the main result
Our goal in this section is to prove Lemma 3.2, from which the proof of Theorem 1.1 will easily
follow. We remind the reader that we always assume that p� 1/2.

Lemma 3.1. For every 0< ε� p� 1/2 and h there exists

z(ε, h, p)= twr
(
600hp2

ε2
ln

1
p

)
such that the following holds: every graph G of density p on at least 1/ε vertices has an equitable par-
tition P = {V1, . . . ,Vk} with 1/ε� k� z(ε, h, p), and a strongly εh/(4h)-regular cylinder partition
K of V1 × · · · ×Vk so that |Q(K)|� z(ε, h, p) and H(Q(K))�H(P)+ ε2/(32p).

Proof. First, if 1/ε� |V|< z(ε, h, p) we can take P to be the trivial partition into singletons, and
K to be the trivial cylinder partition consisting of a single |V|-tuple (in this case Q(K)=P). It is
easy to see that the lemma holds in this case. We can thus assume henceforth that |V|� z(ε, h, p).
This fact will guarantee that in various equipartitions P of V we will obtain during the course of
the proof, none of the parts of P will be empty.4 In what follows, we will use twr (y, x) to denote a
tower of x 2s with y on top (e.g. twr (y, 2)= 22y). We will prove that it is enough to take

z(ε, h, p)= twr
(
1
ε
,
576hp2

ε2
ln

1
p

)
.

It is easy to see that this is at most the

twr
(
600hp2

ε2
ln

1
p

)
bound stated in the lemma.

Set α = εh/(4h). We first show that if P = {V1, . . . ,Vk} is an equipartition of V then we can
find a strongly α-regular cylinder partition K of V1 × · · · ×Vk satisfying

|Q(K)|� k2(r(γ ))
k·c(α,k), (3.1)

where γ = α/c(α, k) and the functions c(α, k) and r(γ ) are those defined in the statements of
Lemmas 2.1 and 2.2.We start by applying Lemma 2.2 with error parameter γ on each partVi ofP .
We get a partition {Vi,1, . . . ,Vi,gi} of each partVi into at most r(γ ) parts so that each partVi,i′ is γ -
regular.We now apply Lemma 2.1 on every possible cylinder consisting of only one part from each
Vi. More precisely, for each k-tuple �= (�1, . . . , �k) ∈ [g1]× · · · × [gk], we obtain an α-regular
cylinder partition K� of the cylinder V1,�1 × · · · ×Vk,�k into at most c(α, k) cylinders, where for
each K =W1,�1 × · · · ×Wk,�k ∈K�k and each 1� j� kwe have |Wj,�j |� |Vj,�j |/c(α, k). Since γ �
c(α, k)−1, Lemma 2.9 implies that each Wj,�j is γ · c(α, k)= α-regular (with itself). Taking the

4Recall that when dealing with cylinders we assume that none of the parts is empty.
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union of the K�, we get a cylinder partition K of V1 × · · · ×Vk, which is strongly α-regular. It is
now easy to see thatQ(K) satisfies (3.1).

We now construct the partitions P , K satisfying the statement of the lemma. To this end,
we iteratively construct a sequence of partitions P1,P2, . . . using the following process. We first
set P1 to be an arbitrary equipartition of V into k parts, for k= 1/ε. Assuming we have already
constructed equipartition Pj, we let Kj be the strongly α-regular cylinder partition one gets from
the process described in the previous paragraph (so Q(Kj) satisfies (3.1)). We then take Pj+1 to
be an equitable partition of Q(Kj) into (64p/ε2)|Q(Kj)| parts satisfying H(Pj+1)�H(Q(Kj))−
ε2/(64p), which exists by Lemma 2.5. We know from Claim 2.4 that every j� 1 satisfies p ln (p)�
H(Pj)� 0, so there will be a j� (64p2/ε2) ln (1/p) satisfyingH(Pj+1)−H(Pj)< ε2/(64p). Such a
j will thus satisfy

H(Pj)>H(Pj+1)− ε2

64p
�H(Q(Kj))− ε2

32p

so we can take P =Pj and K=Kj to be the two partitions in the statement of the lemma.
We now prove the required upper bound on |P| and |Q(K)|. We start by analysing the process

of constructingQj and Pj+1 in the iterative process described above. Suppose we start with a par-
tition Pj satisfying |Pj| = k� 1/ε. Since c(α, k)� α−(k/α)5 we see that γ = α/c(α, k)� 2−(k/α)7 ,
implying that r(γ )� twr ((k/α)36, 3). These facts and (3.1) imply that |Q(Kj)|� twr ((k/α)37, 4).
Since k� 1/ε we can further simplify this bound to |Q(Kj)|� twr (k, 8h). Recalling that |Pj+1| =
(64p/ε2)|Qj|, we conclude that |Q(Kj)|, |Pj+1|� twr (k, 9h). Finally, since j� (64p2/ε2) ln (1/p)
we are guaranteed that

|P|, |Q(K)|� twr
(
1
ε
,
576hp2

ε2
ln

1
p

)
,

as needed.

We are now ready to state (and prove) our key lemma.

Lemma 3.2. For every 0< ε� p� 1/2 and h there exists

S= S(ε, h, p)= twr
(
O

(
p2

ε2
ln

1
p

))

so that the following holds: every graph G= (V , E) of density p on at least 1/ε vertices has an equi-
table partition V1, . . . ,Vk where k� 1/ε and vertex subsets Wi ⊆Vi such that |Wi|� |V|/S, each
pair (Wi,Wj) with 1� i� j� k is εh/(4h)-regular and

1
k2

k∑
i�=j=1
|d(Wi,Wj)− d(Vi,Vj)|< ε. (3.2)

Proof. We will prove the lemma with S= 4z2, where z= z(ε, h, p) is given by Lemma 3.1.
Given G as in the statement, we apply Lemma 3.1 (with the same ε, h and p) and get an

equipartition P = {V1, . . . ,Vk} with 1/ε� k� z and a strongly εh/(4h)-regular cylinder parti-
tionK of V1 × · · · ×Vk, such that the refinementQ=Q(K) of P has at most z parts and satisfies
H(Q)�H(P)+ ε2/(32p). By Lemma 2.7, the cylinder partition K is ε/4-close to P . Hence∑

K∈K
d(K) · �1(K,P)� ε

4
.
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Therefore, we get that
∑

d(K)� 1/4, where the sum is over all K ∈K such that �1(K,P)� ε. In
other words, at most a 1/4-fraction of the k-tuples (v1, . . . , vk) ∈V1 × · · · ×Vk belong to a K ∈K
that does not satisfy (3.2). Since Q(K) has at most z parts, the fraction of k-tuples (v1, . . . , vk) ∈
V1 × · · · ×Vk that belong to parts K =W1 × · · · ×Wk of K with |Wi|< (1/(4z))|Vi| for at least
one i ∈ [k] is at most (1/(4z))z= 1/4. Finally, since K is a strongly εh/(4h)-regular cylinder par-
tition, we get that at most a 1/4-fraction of the k-tuples belong to K ∈K that is not strongly
εh/(4h)-regular. Hence, at least a 1/4-fraction of the k-tuples (v1, . . . , vk) ∈V1 × · · · ×Vk belong
to K ∈K that is strongly εh/(4h)-regular, satisfies (3.2), and every 1� i� k satisfies |Wi|�
|Vi|/4z� |V|/4kz� |V|/4z2 = |V|/S. Hence, we can pick (at least) one K satisfying the assertion
of the lemma.

Proof of Theorem 1.1 Suppose G is an n-vertex graph of density p and G is ε-far from being
inducedH-free, for some family of graphsH on h vertices. Note that this means that ε� p. First,
note that because

S(ε/8, h, p)= twr
(
O

(
p2

ε2
ln

1
p

))
,

if

n� 2S(ε/8, h, p)
4h

(ε/8)h
,

then

nh/ twr
(
O

(
p2

ε2
log

1
p

))
< 1.

Since G must clearly contain at least one induced copy of H (as it is not induced H-free) the
theorem holds in this case. So assume from now on that

n> 2S(ε/8, h, p)
4h

(ε/8)h
.

Applying Lemma 3.2 on G with the same h and p but with ε/8 instead of ε, we get the partition
V1, . . . ,Vk and the setsW1, . . . ,Wk satisfying the conditions of the lemma with k� 8/ε, and

|Wi|� n
S(ε/8, h, p)

.

For every i, j we now delete all the edges between Vi and Vj if d(Wi,Wj)� ε/8 and add all the
edges between Vi and Vj if d(Wi,Wj)� 1− ε/8. The total number of edges removed between
disjoint parts is at most∑

d(Vi,Vj)|Vi||Vj| = n2

k2
∑

d(Vi,Vj)

� n2

k2
(∑
|d(Vi,Vj)− d(Wi,Wj)| +

∑
d(Wi,Wj)

)

<
n2

k2

(
ε

8
k2 + ε

8
k2

)

= ε
4
n2,

where the sums are over all 1� i �= j� k such that d(Wi,Wj)� ε/8, and in the last inequality we
relied on (3.2). The same calculation gives that the total number of edges added between disjoint
parts is also at most (ε/4)n2. Now, for each 1� i� k we have |Vi|< 2n/k, so the number of edges
changed in each Vi is at most 4n2/k2, and summing for all Vi we get 4n2/k. Since k� 8/ε, the
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total number of edges changed within parts is at most (ε/2)n2. Altogether we have changed less
than εn2 edges. Since the graph was ε-far from being inducedH-free, we find that a copy ofH for
some H ∈H remained. If vertex i ∈V(H) belongs to part Vi′ we set Ui =Wi′ (note that it might
be the case that Ui =Uj for i �= j). So for every i �= j ∈V(H), d(Ui,Uj)� ε/8 if (i, j) ∈ E(H) and
d(Ui,Uj)� 1− ε/8 otherwise, because if not, this copy has already been removed. We also have
that for each i �= j ∈V(H) the pair (Ui,Uj) is (ε/8)h/(4h)-regular, and

|Ui|� n
2S(ε/8, h, p)

� 4h
(ε/8)h

.

Now, all the conditions of the counting Lemma 2.8 are satisfied (with ε/8 instead of ε), and we
find that G contains at least

ε

32
(h2) · |U1| · . . . · |Uh|� ε

32
(h2)

(
n

2S(ε/8, h, p)

)h
� nh/ twr

(
O

(
p2

ε2
log

1
p

))
induced copies of H, where the last inequality is true since

S(ε/8, h, p)= twr
(
O

(
p2

ε2
ln

1
p

))
.
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