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Lattice Boltzmann approach to simulating a
wetting–drying front in shallow flows
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The paper reports a new lattice Boltzmann approach to simulating wetting–drying
processes in shallow-water flows. The scheme is developed based on the Chapman–
Enskog analysis and the Taylor expansion, which is consistent with the theory of the
lattice Boltzmann method. All the forces, such as bed slope and bed friction, are
taken into account naturally in determining the wet–dry interface, without the use of
either the spurious assumption of a thin water film on a dry bed or the non-physical
extrapolation of certain variables such as water depth or velocity. This offers a simple
and general model for simulating wetting–drying processes in complex flows involving
external forces. Its verification is carried out by modelling several one-dimensional
(1D) and two-dimensional (2D) flows: (i) 1D sloshing over a parabolic container; (ii)
a 1D tidal wave over three adverse bed slopes; (iii) a 1D solitary wave run up on a
plane sloping beach; (iv) a tsunami run up on a plane beach; (v) a 2D stationary case
with wet–dry boundaries; (vi) a 2D long-wave resonance over a parabolic basin; and
(vii) a 2D solitary wave run up on a conical island. The numerical results agree well
with analytical solutions, other numerical results and experimental data, demonstrating
the effectiveness and accuracy of the new approach.
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1. Introduction
Shallow-water flows are common phenomena in nature and exist in many

engineering applications. Given the hydrostatic pressure nature and the negligible
vertical acceleration, the nonlinear shallow-water (NLSW) equations can be obtained
by integrating the Navier–Stokes equations over the water depth, which turns out to
be a very powerful mathematical model for simulating long-wave hydrodynamics. In
addition to conventional numerical methods, such as the finite volume method and
the finite difference method for solving the NLSW equations, the lattice Boltzmann
method (LBM) for simulating different complex flows has developed rapidly in
recent decades. The LBM is based on a fully discrete kinematic model instead of
a set of partial differential equations, and has several desirable properties, such as
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linear convection terms and nearest-neighbour stencils, leading to a simple model with
parallel processes in coding. Using the LBM, the NLSW equations could be recovered
in macroscopic scale, and it is suitable to investigate shallow-water problems. Since
1999, a number of researchers have carried out work on shallow-water problems
using the LBM (Salmon 1999; Dellar 2002; Zhou 2002). The lattice Boltzmann
shallow-water model was further developed by using multi-block mesh (Liu et al.
2010) and later the open boundary condition was improved (Liu et al. 2012).

A further common, important and natural phenomenon associated with shallow-
water flows in river, coastal regions, etc., is wetting–drying processes in water flows
such as wave run-up and flooding. A real situation is that the long wave front
trajectory, as a moving wet–dry boundary, is decided by a number of factors, such as
external forces, dispersion effect due to wave breaking on steep slopes, etc. External
forces usually include gravity, bed friction, wind stress and the Coriolis force in
certain circumstances, and they greatly influence the position and movement of water
fronts. In addition, a long wave could be dispersed through wave breaking, which
also leads to the difficulty in water front prediction. Therefore, the movement of
wetting–drying fronts is a highly complex phenomenon and correct simulation of
such processes plays a crucial role in practical engineering. Consequently, water flow
modelling involving a wet–dry interface has attracted much attention. Hibberd &
Peregrine (1979) developed a computational model based on the NLSW equations
for wave run-up problems. Liu et al. (1995) presented an experimental and numerical
study of the interactions of solitary waves climbing up a circular island. Kânoǧlu
& Synolakis (1998) analytically and experimentally studied long-wave evolution and
run-up on piecewise linear bathymetries. Li & Raichlen (2002) investigated solitary
wave run-up using the weighted essentially non-oscillatory (WENO) shock capturing
scheme. Carrier et al. (2003) used a semi-analytic solution technique to evaluate
tsunami run-up and draw-down motions on a uniformly sloping beach based on
nonlinear shallow-water wave theory.

However, most existing numerical methods for simulating the phenomenon are not
based on physical derivation and are unable to correctly include the effect of external
forces such as bed friction and wind shear stress on the processes in the simulations,
which violates the physics of real flows and undoubtedly introduces further errors in
numerical solutions. For example, Kennedy et al. (2000) used a so-called ‘slot method’
and allowed the water level to be below the beach surface, which is apparently not
consistent with the real situation. Lynett et al. (2002) used a linear extrapolation
scheme, which is a pure mathematical manipulation to deal with the wet–dry front.
Madsen et al. (1997) prescribed a thin water film at a dry bed in the treatment,
which is again based on an artificial assumption. Frandsen (2008) incorporated both
the linear extrapolation scheme and the thin water film into the 1D lattice Boltzmann
shallow-water model to investigate the behaviour of free-surface waves. Finally,
Shafiai (2011) adopted similar ideas and conducted intensive simulations using the
lattice Boltzmann model for the shallow-water equations.

In addition, there is a Godunov-type method by solving Riemann problems at a
wet–dry interface, which is mathematically rigorous. Based on a well-balanced high-
order finite volume scheme, Gallardo et al. (2007) treated wet–dry fronts through
solving specific nonlinear Riemann problems at the corresponding intercells. LeVeque
& George (2008) developed a Riemann solver for the shallow-water equations that is
able to handle the moving wet–dry interface. George (2008) presented an augmented
approximate Riemann solvers for the shallow-water equations, which maintains depth
non-negativity and extends naturally to Riemann problems with an initial dry state.
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FIGURE 1. Lattice pattern: (a) D1Q3; (b) D2Q9.

Nevertheless, the algorithms in such schemes are relatively complicated, making it
difficult or inefficient to some extent to apply to practical large flow problems.

In this study, we describe a new approach to simulation of the wetting–drying
process in the lattice Boltzmann model for shallow-water flows based on the theory
of the lattice Boltzmann dynamics. The Chapman–Enskog analysis and the Taylor
expansion are applied to set up a relation of the particle distribution functions
between a dry bed cell and its neighbouring wet cells in a manner consistent with
the LBM. External forces such as bed friction can be included straightforwardly in the
approach. The additional advantages of the present scheme are that it does not require
a negative water depth like the so-called slot method, or complex Riemann solvers in
the Godunov-type method. This new approach may be regarded as a supplement to
the LBM for shallow-water flows, which originally cannot automatically deal with the
wet–dry interface. Seven numerical tests involving bed friction and different terrains
are carried out for its validation.

2. Lattice Boltzmann approach for nonlinear shallow-water equations
In this section, the LBM for NLSW equations is briefly described in one and

two dimensions based on D1Q3 and D2Q9 lattices, respectively (see figure 1). As
illustrated in (Junk et al. 2005), the lattice Boltzmann equation is second-order
accurate in space and first-order accurate in time. In the LBM, the streaming and the
collision processes can be considered as two separate steps. In the streaming step, the
particles move to the neighbouring lattice points in the directions of their individual
velocity governed by

fα(x+ eα1t, t+1t)= f ′α(x, t)+Wα

1t
C2

s

eαiFi(x, t). (2.1)

Here fα is the particle distribution function; f ′α is the value of fα after collision; e=
1x/1t; 1x is the lattice size; Fi is the force term in the i direction; 1t is the time
step; eα is the vector of the particle velocity; eαi is the component of eα (for the
D1Q3 lattice (see figure 1(a)), e0 = 0, e1 = e and e2 =−e; for the D2Q9 lattice (see
figure 1(b)), eα is defined in table 1); Cs is the local sound speed defined by

Cs = e√
3
, (2.2)
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α 0 1 2 3 4 5 6 7 8

eαx 0 e e 0 −e −e −e 0 e
eαy 0 0 e e e 0 −e −e −e

TABLE 1. The velocity vector for the D2Q9 lattice.

which is analogous to the kinematic viscosity through (2.9); and Wα is the weighting
factor, which for the D1Q3 lattice is 1/4 and for the D2Q9 lattice is given by

Wα =


1
9
, α = 1, 3, 5, 7,

1
36
, α = 2, 4, 6, 8.

(2.3)

In the collision step, considering the simplicity and efficiency and using the
Bhatnagar–Gross–Krook (BGK) relaxation term (Bhatnagar et al. 1954) as a simple
collision operator, the particles arriving at the points interact with one another and f ′α
can be written as

f ′α(x, t)= fα(x, t)− 1
τ
(fα − f eq

α ), (2.4)

where f eq
α is the local equilibrium distribution function and τ is the single relaxation

time. If f eq
α is computed from either

f eq
α =



h− hu2

e2
− gh2

2e2
, α= 0,

gh2

4e2
+ hu2

2e2
+ hu

2e
, α = 1,

gh2

4e2
+ hu2

2e2
− hu

2e
, α = 2,

(2.5)

for the D1Q3 lattice or

f eq
α =



h− 5gh2

6e2
− 2h

3e2
uiui, α = 0,

gh2

6e2
+ h

3e2
eαiui + h

2e4
eαieαjuiuj − h

6e2
uiui, α = 1, 3, 5, 7,

gh2

24e2
+ h

12e2
eαiui + h

8e4
eαieαjuiuj − h

24e2
uiui, α = 2, 4, 6, 8,

(2.6)

for the D2Q9 lattice, the following NLSW equations can be recovered by using the
Chapman–Enskog procedure (Zhou 2004):

∂h
∂t
+ ∂(huj)

∂xj
= 0, (2.7)

∂(hui)

∂t
+ ∂(huiuj)

∂xj
= −g

2
∂h2

∂xi
+ ν ∂

2(hui)

∂xj∂xj
+ Fi. (2.8)
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In the above equations, the Cartesian coordinate system and the Einstein summation
convention over indices are used; ν is the kinematic viscosity of water defined as

ν =C2
s1t

(
τ − 1

2

) ; (2.9)

h is the water depth; xi and ui are the distance and the velocity, respectively; and the
force Fi is given by

Fi =−gh
∂zb

∂xi
− τbi

ρ
, (2.10)

where zb is bed elevation above datum and ρ is fluid density. The bed shear stress τbi
is determined by the depth-averaged velocity

τbi = ρCbui
√

ujuj, (2.11)

in which Cb is the bed friction coefficient.
From the distribution function, the water depth h and flow velocity u can be

calculated from

h=
∑
α

fα, ui = 1
h

∑
α

eαifα. (2.12)

3. Treatment of the wet–dry interface
The long-wave run-up and run-down are influenced by a number of factors. The

momentum of a wave is mainly depleted by slope gravity and bed friction, whereas
wind stress could have a positive or negative effect on wave strength. For a large-scale
water body, the Coriolis force should be considered. It can be seen that external forces
play an important role in long-wave run-up or run-down. Different from the water
body, the wet–dry front of a wave, due to its special position, needs delicate treatment
of the external forces in order to correctly model a long-wave run-up and run-down.

3.1. One-dimensional scheme
During wetting–drying processes in flows, a cell at or near to the interface between
wet and dry cells may become a wet cell when h > 0 from a dry cell h = 0, and
vice versa. In order to treat this properly, we propose a scheme to determine the
particle distribution functions at a dry cell based on the dynamics of particles at its
neighbouring wet cell, enabling the physical variables at the dry cell to be calculated
directly to avoid h= 0 in (2.12) when it turns to a wet cell.

As seen in figure 2, nodes d1 and d2 (white dots) are within the dry bed, whereas
nodes w1 and w2 (blue dots) are wet nodes at time t. After one iteration or time
step, f t+1t

0 (d2), f t+1t
1 (d2) and f t+1t

1 (w1) (shown in red) are still unknown at the wet–
dry interface. In order to obtain f t+1t

1 (w1) at t + 1t, one has to be calculate f t
1(d2).

Although d2 initially is dry, i.e. f t,eq
1 (d2) = 0, the f t

1(d2) can be derived through the
non-equilibrium part of the particle distribution function f t,neq

1 (d2).
Setting 1t= ε and applying the Taylor expansion to the first term on the left-hand

side of (2.1) in time and space at point (x, t) results in

ε

(
∂

∂t
+ eα

∂

∂x

)
fα + ε

2

2

(
∂

∂t
+ eα

∂

∂x

)2

fα + o(ε3)=−1
τ
(fα − f (0)α )+ 1t

2e2
eαF, (3.1)
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d1 d2

f0 f1 f1

w1 w2

d1 d2 w1 w2

FIGURE 2. (Colour online) Sketch of the one-dimensional wet–dry interface (d and w
denote dry and wet cells, respectively).

where f (0)α = f eq
α . Also, fα can be expanded around f (0)α using the Chapman–Enskog

expansion

fα = f (0)α + εf (1)α + o(ε2). (3.2)

If higher orders of ε are neglected, substitution of (3.2) into (3.1) leads to

ε

(
∂

∂t
+ eα

∂

∂x

)
(f (0)α + εf (1)α )+ ε

2

2

(
∂

∂t
+ eα

∂

∂x

)2

(f (0)α + εf (1)α )

=−1
τ

f (1)α +
1t
2e2

eαF. (3.3)

The above equation to order ε is(
∂

∂t
+ eα

∂

∂x

)
f (0)α =−

1
τ

f (1)α +
eαF
2e2

. (3.4)

For the dry bed cell, because

f (0)α = 0, (3.5)

and using the backward scheme

∂f (0)α

∂t
= f (0)α (t)− f (0)α (t− 1)

1t
= 0, (3.6)

from (3.4), one can derive that

f (1)α = τ
(

1
2e2

eαF− eα
∂f (0)α

∂x

)
. (3.7)

With reference to (2.10), (3.5) and (3.6), after (3.7) is put into (3.2), one can obtain
the particle distribution function as

fα = f (0)α + εf (1)α = ετ
(

1
2e2

eα

(
−gh

∂zb

∂x
− τb

ρ

)
− eα

∂f (0)α

∂x

)
, (3.8)
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in which

∂zb

∂x
= zb(x+ eα1t)− zb(x)

eα1t
(3.9)

and

∂f (0)α

∂x
= f (0)α (x+ eα1t)− f (0)α (x)

eα1t
. (3.10)

If ε is replaced with 1t, substitution of (3.9) and (3.10) into (3.8) results in

fα = −ghτ
2e2

(zb(x+ eα1t)− zb(x))− 1tτ
2e2

eαCbu|u| − τ(f (0)α (x+ eα1t)− f (0)α (x)).

(3.11)

Equation (3.11) can be used to determine f t
1(d2), provided that f t

2(d2) is positive, i.e.
the fluid at w1 has enough momentum to reach the neighbouring dry node. Otherwise,
the standard bounce-back scheme is used to compute f t

1(d2), which leads to first-order
accuracy of the solution in an arbitrary domain. One can calculate f t

0(d2) by the
average f t

0 of its neighbouring nodes as

f t
0(d2)= f t

0(d1)+ f t
0(w1)

2
. (3.12)

Using (2.12) will decide if the dry node d2 remains dry if h 6 0 or becomes wet if
h>0, for which the velocity can further be calculated from the equation. The opposite
situation whether wet cell w1 becomes dry or not can be similarly determined. It
may be noted that this approach is a consistent extension of the LBM to simulating
wetting–drying processes without a non-physical assumption, which has a unique
advantage of natural and straightforward incorporation of an additional external force
for the phenomenon in complex flows.

3.2. Two-dimensional case
The extension of the 1D scheme to the 2D framework on Cartesian meshes is
straightforward. As the effect of the bed slope is usually anisotropic in shallow-water
modelling, the bed level is incorporated into the lattice Boltzmann equation to improve
the accuracy and eliminate the calculation of the derivative related to the bed slope
(Zhou 2011). As seen from (2.10), Fi contains a first derivative related to the bed
level, which is inconsistent with simple arithmetic calculations required in the lattice
Boltzmann hydrodynamics. In order to overcome the drawback, the lattice Boltzmann
(2.1) is modified as

fα(x+ eα1t, t+1t)

= fα(x, t)− 1
τ
(fα(x, t)− f eq

α (x, t))−Wα

gh̄
C2

s

(zb(x+ eα1t)− zb(x))

+Wα

1t
C2

s

eαiFi, (3.13)

where h̄= (h(x+ eα1t, t+1t)+ h(x, t))/2.
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Assuming that 1t is small and ε=1t, (3.13) can be expressed as

fα(x+ eαε, t+ ε)
= fα(x, t)− 1

τ
(fα(x, t)− f eq

α (x, t))−Wα

gh̄
C2

s

(zb(x+ eαε)− zb(x))

+Wα

ε

C2
s

eαiFi. (3.14)

Taking a Taylor expansion of the left-hand side of the above equation in time and
space around point (x, t) leads to

ε

(
∂

∂t
+ eα

∂

∂xj

)
fα + ε

2

2

(
∂

∂t
+ eα

∂

∂xj

)2

fα + o(ε3)

=−1
τ
(fα(x, t)− f eq

α (x, t))−Wα

gh̄
C2

s

(zb(x+ eαε)− zb(x))+Wα

ε

C2
s

eαiFi. (3.15)

Using the Chapman–Enskog procedure again, fα can be expanded around f (0)α ,

fα = f (0)α + εf (1)α + ε2f (2)α + o(ε3). (3.16)

If the Taylor expansion is also applied to the second term and the force term Fi on
the right-hand side of (3.14), one can obtain

Wα

g
C2

s

(
h+ ε

2

(
∂h
∂t
+ eαj

∂h
∂xj

))(
εeαj

∂zb

∂xj
+ ε

2

2
eαieαj

∂2zb

∂xixj

)
+ o(ε3) (3.17)

and

Fi = Fi

(
x+ 1

2
eαε, t+ 1

2
ε

)
= Fi + ε2

(
∂Fi

∂t
+ eα

∂Fi

∂xi

)
+ o(ε2), (3.18)

in which the centred scheme is used for force term Fi (Zhou 2004). After inserting
(3.16)–(3.18) into (3.15), the equation to order ε0 is

f (0)α = f eq
α , (3.19)

to order ε1 is (
∂

∂t
+ eαj

∂

∂xj

)
f (0)α =−

1
τ

f (1)α −Wα

gheαj

C2
s

∂zb

∂xj
+Wα

eαjFj

C2
s

(3.20)

and to order ε2 is(
∂

∂t
+ eαj

∂

∂xj

)
f (1)α +

1
2

(
∂

∂t
+ eαj

∂

∂xj

)2

f (0)α

=−1
τ

f (2)α −Wα

geαj

2C2
s

(
∂h
∂t
+ eαi

∂h
∂xi

)
∂zb

∂xj
−Wα

gheαieαj

2C2
s

∂2zb

xixj

+Wα

eαi

2C2
s

(
∂Fi

∂t
+ eαj

∂Fi

∂xi

)
. (3.21)
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Substitution of (3.20) into (3.21) and rearrangement produces(

1− 1
2τ

)(
∂

∂t
+ eαj

∂

∂xj

)
f (1)α =−

1
τ

f (2)α . (3.22)

Taking
∑

α((3.20)+ ε× (3.22)) provides

∂

∂t

∑
α

f (0)α +
∂

∂xj

∑
α

eαjf (0)α = 0. (3.23)

Evaluation of the terms in the above equation using (2.6) results in the second-order
accurate continuity (2.7).

Then, taking
∑

α eαi((3.20)+ ε× (3.22)), one can obtain

∂

∂t

∑
α

eαif (0)α +
∂

∂xj

∑
α

eαieαjf (0)α + ε
(

1− 1
2τ

)
∂

∂xj

∑
α

eαieαjf (1)α

= Fi − gh
∂zb

∂xi
. (3.24)

After the terms are evaluated with (2.6) and some algebra, the above equation becomes
another form of the momentum equations (2.8),

∂(hui)

∂t
+ ∂(huiuj)

∂xj
=−g

2
∂h2

∂xi
− gh

∂zb

∂xi
+ ν ∂

2(hui)

∂xj∂xj
+ Fi, (3.25)

which is second-order accurate with Fi. The following semi-implicit form is used for
determining h̄ in order to eliminate the implicitness,

h̄= 1
2
(h(x+ eα1t, t)+ h(x, t)), (3.26)

which is simple and demonstrated to produce accurate solutions and hence it is
preferred in practice (Zhou 2004).

Since, in a lattice Boltzmann model, rotational symmetry and moment isotropy are
satisfied up to fourth order (Chen et al. 2008), the proposed technique for the one-
dimensional case can be applied to the two-dimensional case in both diagonal and
off-diagonal directions. Two cases for a dry node at wet–dry boundaries with n < 4
and n> 4 are illustrated in figure 3, where n denotes the number of wet-neighbouring
nodes. The unknown distribution functions at dry nodes moving towards wet nodes
can be calculated using (3.27), which is similar to (3.11), i.e. for α= 1, 2, 8 at t+1t
in figure 3(a), we have

fα = −Wαghτ
C2

s

(zb(x+ eα1t)− zb(x))− Wα1tτ
C2

s

eαiCbui
√

ujuj

− τ(f (0)α (x+ eα1t)− f (0)α (x)). (3.27)

However, there may still be additional unknown distribution functions without facing
wet nodes in their moving directions, like f3 and f7 at the interface shown in
figure 3(a). In this case, they can be obtained by using the average value of its
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FIGURE 3. (Colour online) Sketch of the two-dimensional wet–dry interface (d and w
denote dry and wet cells, respectively; and n is the number of the neighbouring wet nodes
of a dry node): (a) n< 4; (b) n > 4.

neighbouring nodes as in (3.28), which is necessary for n < 4. When n > 4 as
depicted in figure 3(b), only f0 is unknown and needs to be calculated by

fα = 1
8

8∑
β=1

fα(x+ eβ1t). (3.28)

The solution procedure for the scheme involves only explicit calculations, which
makes programming easy and efficient. In general, it includes the following steps:

1. Set initial values of u and h within the wet domain.
2. Calculate f eq

α from (2.5) or (2.6) for each wet cell.
3. If fᾱ > 0 at the dry cell next to the wet–dry interface (ᾱ stands for the direction

from wet cell to dry cell, i.e. the opposite direction to α), calculate fα at the dry
cell from (3.11) and (3.12) in one dimension or from (3.27) and (3.28) in two
dimensions. Otherwise, the standard bounce-back scheme is used.

4. Calculate fα at both collision and streaming steps through the lattice Boltzmann
(2.1) with the relaxation time τ .

5. Use step 3 again to supplement the unknown fα at t+1t at the dry cell.
6. Update u and h using (2.12) within the wet domain.
7. Return to step 2 and repeat the above steps until the solution of the desired target

time is obtained.
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4. Verification
4.1. Sloshing over a 1D parabolic container

Analytical solutions of the NLSW equations for perturbed flow in a container with
parabolic bed topography and bed friction were derived by Sampson et al. (2006).
It is a very useful benchmark test for validating the wetting and drying process in
a numerical model. Since bed friction and bed slope are involved, the analytical
solutions can also be used to verify the scheme involving force terms. As stated in
Sampson et al. (2006), the bed profile of the domain is defined by

zb(x)= h0

( x
a

)
, (4.1)

in which zb is uniform in the y direction, and h0 and a are constants. A bed friction
parameter τb is related to the bed friction coefficient as

Cb = hτb

|u| , (4.2)

and a hump amplitude parameter p=√8gh0/a is used in the analytical solutions of
the water surface above a horizontal datum,

η(x, t) = h0 + a2B2e−τbt

8g2h0

(
−sτb sin 2st+

(
τ 2

b

4
− s2

)
cos 2st

)
− B2eτbt

4g

− eτbt/2

g

(
Bs cos st+ τbB

2
sin st

)
x, (4.3)

where B is a constant and s=√p2 − τ 2
b /2. When t→∞, (4.3) defines the still-water

elevation above the datum, i.e. η(t)→ h0. The moving shorelines actually are two
parallel straight lines on the horizontal plane and could be calculated by

x=−a2e−τbt/2

2gh0

(
Bs cos st+ τbB

2
sin st

)
± a. (4.4)

The oscillatory flow is damped due to bed friction, resulting in x→ a as t→∞.
The computations are carried out using a uniform lattice with 200 nodes over a

10 000 m domain. The coefficients involved in the simulation are h0=10 m, a=3 km,
τb= 0.001 s−1 and B= 5 m s−1. The simulation lasts 6000 s and the time step 1t is
0.5 s. Initially, the water surface is set according to (4.3) and the velocity is zero. As
presented in figure 4, the moving wet–dry interfaces caused by the sloshing motions
are well reproduced, thus validating the new approach to treat the wet–dry interface
as well as the accuracy of calculating the force terms.

4.2. A 1D tidal wave over a variable sloping bed
This example was proposed initially by Leclerc et al. (1990) with the purpose of
reproducing the shoreline movement under a tide over a variable sloping bed. The
channel is 500 m long and the slope (S= ∂zb/∂x) in the longitudinal direction is given
in table 2.
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FIGURE 4. Comparisons of the water surface for sloshing motions: (a) t = 500 s; (b)
t= 1000 s; (c) t= 1500 s; (d) t= 2000 s; (e) t= 3000 s; (f ) t= 6000 s.

A steady state with the water level of 1.75 m is considered as the initial condition.
The solid boundary is set at x= 0 m and the inlet boundary at x= 500 m is associated
with the variation of the water depth following the tide (see figure 5) as

h(500, t)= h0 + λ cos
(

2π
t
T

)
, (4.5)
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FIGURE 5. Bed elevation and inlet boundary condition.

x (m) 0–100 100–200 200–500

S −0.001 −0.01 −0.001

TABLE 2. Bed slopes.

where h0 = 1 m is the reference water surface, λ = 0.75 m is the amplitude of
the tidal wave and T = 3600 s is the tidal period. In addition, n = 0.03 is taken
as the Manning roughness coefficient. According to the study by Brufau et al.
(2002), the computational domain is covered with 100 lattices. Several values of
the single relaxation time τ are tested, as shown in figure 6. Compared with the
well-documented numerical tests by Leclerc et al. (1990) referred to as the reference
data in figure 6 and Heniche et al. (2000), the results based on τ = 0.7 agree well
and hence are taken for further study. The water surface and the velocity are depicted
in figure 7. The results are very close to those obtained by Leclerc et al. (1990) and
Heniche et al. (2000), who used a completely different numerical algorithm based on
finite element methods, and the accuracy is improved compared with those computed
by Brufau et al. (2002), who used a finite volume type of technique. These results
have well illustrated the capability of the proposed model to reproduce both temporal
and spatial movement of the wetting–drying interface.

4.3. A 1D solitary wave run up over a plane sloping beach
Disastrous geophysical activities such as seabed earthquakes and extensive landslides
may cause massive displacement of the water surface, resulting in huge long waves,
which are known to cause extensive flooding and loss of life (Titov & Synolakis
1995). Such disastrous waves can be approximated as a solitary wave (Synolakis 1987;
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FIGURE 6. Comparisons of (a) the water level and (b) the velocity for different values
of τ at time t= 54 min.

Mahdavi & Talebbeydokhti 2009). A detailed experimental study of solitary wave run
up on a plane beach has been undertaken by Synolakis (1986), in which the run-up
of non-breaking and breaking solitary waves are intensively investigated. A number
of researchers used his data for validating numerical models (Zelt 1991; Rogers et al.
2001; Mahdavi & Talebbeydokhti 2009). In the present study, an incident wave of
H/h0 = 0.0185 is considered with a beach slope of 1/19.85, where H is the solitary
wave height, h0 is the still-water level, θ is the beach slope, R is the run-up height
measured above the still-water level and L is the wavelength (see figure 8).

The initial wave crest of the solitary wave is located at a distance x0 from the toe
of the beach and the wave height can be defined as

η(x, 0)= H
h0

sech2

(√
3H
4h0

(x− x0)

)
, (4.6)

where x0 may be computed by

x0 =
√

4D
3H

arccosh

(√
1

0.05

)
. (4.7)

In addition, the velocity is given by

u(x, 0)= η(x, 0)
√

g
h0

(4.8)
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FIGURE 7. Snapshots of the wet–dry fronts for a tide over a variable bed: (a) t= 0 min;
(b) t= 12 min; (c) t= 24 min; (d) t= 36 min; (e) t= 48 min; (f ) t= 54 min.

and the non-dimensional time is defined as

t∗ = t
√

g
h0
. (4.9)

For comparison purposes, the same parameters as those used by Shafiai (2011)
are also taken in the present numerical simulation, i.e. τ = 1, 1t = 0.01 s and
1x= 0.05 m. A constant Manning roughness coefficient n= 0.01 is commonly used
in practice, although it may introduce some errors into an unsteady and non-uniform
problem. This can be used to estimate the friction coefficient Cb = g/Cz through the
Chézy coefficient Cz = h1/6/n. Snapshots of water surface elevation are presented
in figure 9. Compared with the experimental data, the model with the proposed
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R

h0

H

FIGURE 8. (Colour online) Sketch of solitary wave run up on a plane sloping beach.

Time Thin film Linear extrapolation Proposed technique
t∗ = 35 0.0173 0.0173 0.0172
t∗ = 50 0.0675 0.0368 0.0184
t∗ = 70 0.0767 0.0265 0.0243

TABLE 3. The average error of water depth for three techniques investigated.

technique for treating the wet–dry front generates accurate results in the whole
process of the solitary wave run-up and run-down. In figure 10, the results of the
present scheme, the thin-film technique and the linear extrapolation technique are
compared. As shown, the proposed technique not only improves the wet–dry front
prediction by providing water surfaces in good agreement with the experimental data,
but also predicts excellent trends and a more realistic wet–dry front, whereas the
other methods undershoot the run-up heights and produce wrong run-up trends. If the
differences between the numerical results and the experimental data are quantified by
the average error, the results obtained by the proposed technique are an improvement,
as shown in table 3 for t∗ = 35, 50 and 70. In order to quantify the effect of the
bed friction, the surface elevations predicted using different Manning coefficients at
t∗ = 50 are presented in figure 11. It shows that the wave run-up height becomes
lower with the increase of the bed friction, which correctly reflects the effect of bed
friction on wave run-up, further demonstrating the advantage of the proposed scheme
over existing methods.

4.4. Tsunami run up on a plane beach
This test represents a tsunami wave running up and drawing down on a plane beach,
which was initially semi-analytically studied by Carrier et al. (2003). It is also used
to verify numerical schemes by Frandsen (2008) and Delis et al. (2008). The initial
shoreline position is located at x = 0 m. A tsunami wave is induced by a non-zero
initial water surface with flow velocity equal to zero. The slope of the beach is a
constant 0.1. The form of the leading depression N-shaped wave (see figure 12),
caused by a submarine landslide, can be described by

η= a1e−k1(x−x1)
2 − a2e−k2(x−x2)

2
, (4.10)

where a1= a2/3= 0.006, k1= 0.4444, k2= 4, x1= 4.1209 and x2= 1.6384, as indicated
by Carrier et al. (2003).
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FIGURE 9. Comparisons of the water surface for the run-up process of a solitary wave:
(a) t∗ = 25; (b) t∗ = 30; (c) t∗ = 35; (d) t∗ = 40; (e) t∗ = 45; (f ) t∗ = 50; (g) t∗ = 55;

(h) t∗ = 60; (i) t∗ = 65; (j) t∗ = 70.
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FIGURE 10. Comparisons of the water surfaces generated by using different numerical
techniques.
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FIGURE 11. Effect of bed friction on wave run-up by using different Manning coefficients.

The computational domain x∈ [−500 m, 50 000 m] is divided into 100 000 uniform
lattices. The time step 1t is set to 0.002 s. The computational time is taken up
to 350 s. The water surface and velocity obtained from the numerical scheme are
compared with the exact result by Carrier et al. (2003). Overall, the numerical result
based on the proposed scheme is close to the analytical solution. Figure 13 shows
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FIGURE 12. Initial water surface condition for tsunami run-up.
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FIGURE 13. (a) The position and (b) the velocity of the wave front at different times.
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FIGURE 14. (a) A three-dimensional view of the water surface and the bed configuration;
and (b) the water surface profile along the x direction for y= 5 after the simulation time
reaches 50 s.

the movement of the wave front in terms of time series of its position and velocity,
demonstrating a good agreement over the whole period, despite the fact that the
maximum run-down and the corresponding velocity are slightly underestimated.

4.5. A 2D stationary case with wet–dry boundaries
In this numerical test, a simple case of still water over a variable bottom with a
wet–dry boundary is investigated. A numerical scheme is considered to be well
balanced if it can reproduce an exact solution to a stationary case in an uneven bed,
which is referred to as the N property (Zhou 2004). This is a desirable basic test
for a numerical scheme. To confirm that the proposed model satisfies this property,
we consider a stationary case in 2D terrain consisting of an obstacle in the centre,
which is defined by

zb(x)= 0.5e−4(r−5)2, (4.11)

where r=√x2 + y2 on a 10 m× 10 m basin. The initial water level has been taken
as 0.3 m in the basin. The simulation has been run for 50 s on 200× 200 lattices. As
expected, the use of the proposed wet–dry treatment generates no spurious solution at
the wet–dry boundary and the water surface exactly preserves the stationary state (see
figure 14).

4.6. A 2D long-wave resonance in a parabolic basin
A long-wave resonance driven by gravity in a parabolic basin provides a useful
numerical test for the verification of a 2D shallow-water model for forecasting
wetting–drying processes. Thacker (1981) described an analytical solution for such a
case based on the NLSW equations. The free-surface displacement is given by

η(r, t)= h0

(
(1− A2)0.5

1− A cos(ωt)
− 1− r2

a2

(
1− A2

(1− A cos(ωt))2
− 1
))

(4.12)
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FIGURE 15. Comparisons of the water surfaces at different times: (a) t= 0.5T; (b) t= T;
(c) t= 1.5T; (d) t= 2T; (e) t= 2.5T; (f ) t= 3T; (g) t= 3.5T; (h) t= 4T .
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FIGURE 16. Water depth at the centre point.

and the bottom is defined as

zb(r)=−h0

(
1− r2

a2

)
, (4.13)

in which

A= a4 − r4
0

a4 + r4
0
, ω= 1

a

√
8gh0, (4.14)

where h0 is the water depth at the centre of the basin, r is the distance from the
centre point and r0 is the distance from the centre point to the point at the shoreline
initially. In addition, a, r0 and h0 are set to 1, 0.8 m and 0.1 m, respectively, which
are similar to those used by Marche et al. (2007). Through a grid convergence test,
little difference in the numerical results can be found when the space step is changed
from 0.005 to 0.01 m, and then the numerical model uses a 600 × 600 lattice on
a 3 m × 3 m basin for study in detail. The relaxation time τ and the time step 1t
are set to 0.62 and 0.001 s. As shown in figure 15, the overall agreements are good
and wetting–drying processes for up to four cycles of oscillation period (T) have
been successfully reproduced. Although the numerical results slightly deviate from
the analytical solution as time increases, the error grows slowly, with the root-mean-
square error over the whole period (4T) being about 0.5 % (see figure 16). Finally,
figure 17 shows the three-dimensional views of the water surfaces at times 2T and
2.5T , respectively.

4.7. A 2D solitary wave run up on a conical island
As a final test of the two-dimensional wetting and drying scheme, the solitary
wave run up onto a conical island is simulated, which was studied experimentally
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FIGURE 17. Three-dimensional views of the water surface: (a) t= 2T; (b) t= 2.5T .
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FIGURE 18. (Colour online) Conical island layout showing the gauge locations (black
dots).

by Briggs et al. (1995) and Liu et al. (1995). A schematic diagram of the conical
island and the locations of four gauges are plotted in figure 18, where a wave maker
is placed at the left boundary and the two dashed circles are island base and initial
shoreline. The island has 0.625 m height and 1/4 side slope. The diameters of
the base and crest are 7.2 m and 2.2 m, respectively. The experimental results of
h0 = 0.32 m and H/h0 = 0.045, 0.096 and 0.18 are used to validate the scheme. The
computational domain consists of 250× 300 lattices with 1x=1y= 0.1 m. The time
step 1t= 0.01 s and τ = 0.9 are used.

The maximum run-up levels around the island have been validated against the
experimental data and plotted in figure 19 for all three cases. The time series of
the water surface displacement at four gauges are compared and presented in figures
20–22. As seen from these figures, the lead wave height and shape are well predicted,
which are comparable to the results by Lynett et al. (2002) and Bradford & Sanders
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FIGURE 19. (Colour online) A bird’s eye view of the maximum wave run-up around the
conical island, with comparisons between the numerical results in lines and the measured
data in dots: (a) H/h0 = 0.045; (b) H/h0 = 0.096; (c) H/h0 = 0.018.
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FIGURE 20. Comparisons of the water surface displacement for H/h0 = 0.045 at various
gauges: (a) gauge 6; (b) gauge 9; (c) gauge 16; (d) gauge 22.

(2002) using finite difference and finite volume methods, respectively. However,
the secondary depression wave and the following perturbations of the surface are not
accurately simulated compared with those presented by Hubbard & Dodd (2002) using
a finite volume model with adaptive mesh refinement. This deviation is probably due
to the fact that wave absorbers were placed at the boundaries in order to reduce wave
reflection in the experiment, which is not taken into account in the present numerical
simulations. Finally, the three-dimensional views of the water surface around the
conical island have been shown in figure 23.

5. Conclusions
An approach to simulating wetting–drying processes in shallow-water flows is

developed using the lattice Boltzmann method (LBM). The proposed scheme
is derived from the theory of the LBM by linking the non-equilibrium particle
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FIGURE 21. Comparisons of the water surface displacement for H/h0 = 0.096 at various
gauges: (a) gauge 6; (b) gauge 9; (c) gauge 16; (d) gauge 22.
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FIGURE 22. Comparisons of the water surface displacement for H/h0 = 0.18 at various
gauges: (a) gauge 6; (b) gauge 9; (c) gauge 16; (d) gauge 22.

distribution function of dry cells to those of their neighbouring wet cells, retaining
the advantages of the LBM. This consequently yields a consistent incorporation of an
external force into the scheme with the LBM, which ensures the correct simulation
of the wet–dry phenomenon. The numerical results indicate that the scheme is able
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FIGURE 23. (Colour online) Three-dimensional views of the water surfaces around the
conical island (water depth is shown in colour): (a) t= 10 s; (b) t= 14 s.

to predict different wetting–drying fronts over various bed configurations with bed
frictions in good agreements with analytical solutions, other numerical results and
experimental data. As additional forces can be correctly included in a straightforward
way, the method will be attractive for modelling general complex wetting–drying
processes occurring in practical shallow-water flows.

Acknowledgements

The financial support of the National Basic Research Program of China (973)
(2011CB403304), the National Natural Science Foundation of China (51379001) and
the National Key Technology Research and Development Program (2011BAC12B02)
are gratefully acknowledged.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

68
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.682


58 H. Liu and J. G. Zhou

REFERENCES

BHATNAGAR, P., GROSS, E. P. & KROOK, M. K. 1954 A model for collision processes in gases: I.
Small amplitude processes in charged and neutral one-component system. Phys. Rev. A 94,
511–525.

BRADFORD, S. F. & SANDERS, B. F. 2002 Finite-volume model for shallow-water flooding of
arbitrary topography. J. Hydraul. Eng. ASCE 128, 289–298.

BRIGGS, M. J., SYNOLAKIS, C. E., HARKINS, G. S. & GREEN, D. R. 1995 Laboratory experiments
of tsunami runup on a circular island. Pure Appl. Geophys. 144, 569–593.

BRUFAU, P., VÁZQUEZ-CENDÓN, M. E. & GARCÍA-NAVARRO, P. 2002 A numerical model for the
flooding and drying of irregular domains. Int. J. Numer. Methods Fluids 39, 247–275.

CARRIER, G. F., WU, T. T. & YEH, H. 2003 Tsunami run-up and draw-down on a plane beach.
J. Fluid Mech. 475, 79–99.

CHEN, H., GOLDHIRSCH, I. & ORSZAG, S. 2008 Discrete rotational symmetry, moment isotropy,
and higher order lattice Boltzmann models. J. Sci. Comput. 34, 87–112.

DELIS, A. I., KAZOLEA, M. & KAMPANIS, N. A. 2008 A robust high-resolution finite volume
scheme for the simulation of long waves over complex domains. Int. J. Numer. Methods
Fluids 56, 419–452.

DELLAR, P. 2002 Non-hydrodynamic modes and a priori construction of shallow water lattice
Boltzmann equations. Phys. Rev. E 65, 036309.

FRANDSEN, J. B. 2008 A simple LBE wave runup model. Prog. Comput. Fluid Dyn. 8, 222–232.
GALLARDO, J. M., PARÉS, C. & CASTRO, M. 2007 On a well-balanced high-order finite volume

scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 227,
574–601.

GEORGE, D. L. 2008 Augmented Riemann solvers for the shallow water equations over variable
topography with steady states and inundation. J. Comput. Phys. 227, 3089–3113.

HENICHE, M., SECRETAN, Y., BOUDREAU, P. & LECLERC, M. 2000 A two-dimensional finite
element drying–wetting shallow water model for rivers and estuaries. Adv. Water Resources
23, 359–372.

HIBBERD, S. & PEREGRINE, D. H. 1979 Surf and run-up on a beach: a uniform bore. J. Fluid
Mech. 95, 323–345.

HUBBARD, M. E. & DODD, N. 2002 A 2d numerical model of wave run-up and overtopping. Coast.
Eng. 47, 1–26.

JUNK, M., KLAR, A. & LUO, L.-S. 2005 Asymptotic analysis of the lattice Boltzmann equation.
J. Comput. Phys. 210, 676–704.
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