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A semi-infinite body, modelling the leading edge of a cutting tool or submerged hydrofoil,

lies beneath a free surface in a uniform stream of infinitely-deep inviscid incompressible

fluid flowing steadily under gravity. The body has horizontal upper and lower surfaces. The

oncoming flow is partly diverted over, and partly under the body. The flow in that portion that

travels over the body can be supercritical or subcritical. When it is supercritical it approaches

a stream of some (to be determined) speed in a channel of some (to be determined) depth.

When it is subcritical, there is also a train of waves on that stream, whose amplitude is

also to be determined. Semi-analytic high-speed and low-speed solutions are obtained, and a

numerical solution for finite speeds. There is a ‘forbidden’ intermediate speed range, within

which steady flow may not be possible.

1 Introduction

The main motivation for the present study is to try to understand near-bow flows for

ships or other bodies moving near a free surface. The actual ship-bow problem in general

involves a splash that is thrown upward and backward (Dias & Vanden-Broeck 1993),

and the task of computing this splash is quite formidable, especially if we must take into

account the subsequent impact of the splash on the water ahead of the bow (c.f. Ting &

Keller 1974). Fully-submerged bodies such as submarines or hydrofoils are less subject to

these difficulties, but similar problems occur as their submergence is reduced toward the

point where some part of the body breaks through the surface (Parkin et al., 1956).

When a submerged body is very close to the surface, only a thin layer of fluid passes

over its top surface, and this thin layer may in fact be considered as the submerged-body

equivalent of the bow splash. Although its ultimate fate is quite different, and there is

no question of impact on the water ahead, the generation mechanism for the splash

created by a surface-piercing bow is similar to that for the upper layer passing over a

shallowly-submerged body (c.f. Tuck, 1991).

In particular, in both cases, there is a submerged stagnation point on the front face of

the body, to which is attached a bifurcating streamline originating far upstream, such that

all of the fluid lying above that streamline is drawn into the splash (or upper fluid layer),

whereas all of the fluid lying below it passes beneath the body. An important objective of

this study is determination of the depth of that bifurcating streamline, and hence the size

of the splash (or upper fluid layer).
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Figure 1. Sketch of ploughing flow, showing nomenclature.

It is also interesting to think of this class of shallowly-submerged bodies as a model of

an agricultural plough, or of an industrial milling or chiselling process, or of a domestic

cheese-cutter or knife. Although some of these non-naval applications are at first sight

somewhat more of a solid rather than fluid nature, there is at least an analogy with the

fluid case, and in some cases (e.g. in the ploughing of particulate media) a fluid model may

be quite relevant. In many cases, the viscoelastic properties of the fluid can be expected

to play a significant role but the present potential flow calculations provide a first step in

the modelling of such applications. It is convenient to refer to this general class of flows

as ploughing flows, and occasionally to the body as a plough.

If the body is being moved with constant speed U in the −x direction, we view the

problem in a frame of reference moving with the body, so that the body appears to be

at rest with its leading edge at x = 0 in an otherwise uniform stream of magnitude U

flowing in the +x direction. Suppose that this stream has a free surface which, in the

absence of the body, is the plane y = 0.

In the present paper, we use a simplified two-dimensional model of the geometry of the

plough as sketched in Figure 1, namely an infinitely wide, semi-infinitely long, rectangular

body of thickness H . Although the 90◦ corners of this body make it somewhat impractical,

at least as a model for the naval applications, smoothing off of the corners makes little

difference to the particular flow properties of interest here, and in extended work (Simakov

and Tuck 1996) we have computed ploughing flows (without gravity) for a plough with an

arbitrary smooth front face. Another flow option with a sharp upper corner is that the flow

separates there, forming a splash jet, and this has also been investigated without gravity

by Simakov and Tuck (1996). The rectangular geometry is chosen here for computational

convenience, and allows certain aspects of the flow to be determined analytically by

hodograph methods, c.f. Gilbarg 1960.

Suppose we submerge this rectangular body in the stream U, so that its ‘draft’ is

D, i.e. its bottom surface is y = −D, and top surface is y = −D + H . These top and

bottom surfaces are joined by a vertical front face x = 0,−D < y < −D + H . Usually

H < D so that the body is fully submerged when at rest. However, this is not a necessary

requirement, and it is possible when U > 0 to have H > D, with the top surface of the
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body covered by a sheet of fluid lying wholly above the undisturbed plane y = 0. Such a

sheet of moving fluid occurs in the flow over the top of the body for all values of the ratio

H/D, and it is one of our primary tasks to compute its height h and speed U0, neither of

which is known in advance. As we shall see, there are flows for which there is a train of

waves in the flow over the top of the body. In such cases we will define h and U0 as the

average depth and velocity far downstream. If H < D, then h = D − H at rest, but the

value of h may change dramatically when the body is in motion. If H > D, the body is

surface piercing when at rest, even if submerged when in motion.

Gravity g plays an important role in this problem, and an important non-dimensional

parameter is the Froude number

FD =
U√
gD

(1.1)

based on the body’s draft, which may be considered given. The Froude number

Fh =
U0√
gh

(1.2)

is also of importance, but is not known in advance. The flow in the sheet of fluid passing

over the top of the body is supercritical if Fh > 1, and subcritical if Fh < 1; in the latter

case, it is possible for waves to appear on the free surface far downstream.

There are two extremes, where the influence of gravity relative to inertia is either

dominant (FD → 0) or negligible (FD → ∞). In each of these limits, there is a simplified

boundary-value problem which can be solved almost in closed form, and these limiting

problems are discussed in detail below.

The problem is then solved numerically for finite FD . Solutions are found which are

supercritical, generalising the FD → ∞ limit into a range FD > F2, with the property that

Fh > 1. There are also solutions which are subcritical, generalising the FD → 0 limit into a

range FD < F1 such that Fh < 1. The computed range-ends F1 and F2 each depend only on

the single ratio H/D specifying the body geometry, and in general F1 < F2 strictly. That

is, there is a (generally quite wide) ‘forbidden’ range of speeds such that F1 < FD < F2,

within which we are unable to find solutions. Since our results have Fh ↓ 1 as FD ↓ F2, it

is believed that F2 is indeed a lower bound for existence of supercritical solutions.

For subcritical flows, there are waves on the free surface whose steepness increases as

F increases. We believe that the waves break when F reaches F1.

2 Non-dimensional formulation and conformal maps

The flow is as sketched in the complex z = x+ iy plane in Figure 2. Given the assumption

of an inviscid incompressible fluid in steady irrotational two-dimensional motion, our task

is to solve Laplace’s equation for the velocity potential φ(x, y), or equivalently, to find

an analytic complex potential f(z). We normalise velocities so that the uniform stream

is of magnitude U = 1, and distances so that the net volume flux in the portion of the

flow going over the body is of magnitude π. Hence the flow in the complex potential

f = φ+ iψ plane is as in Figure 3, with the streamline ψ = π being the free surface, and

the streamline ψ = 0 bifurcating from a single stagnation streamline originating upstream

into two branches, on the upper and lower body surfaces. This plane is then mapped to
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Figure 2. Ploughing flow in the physical z = x+ iy plane.

Figure 3. Ploughing flow in the complex potential f = φ+ iψ plane, where φ is the velocity

potential, and ψ is the stream function.

Figure 4. Ploughing flow in an artificial ζ = ξ + iη plane, such that the flow takes place in the

lower half-plane η < 0.

a lower half ζ-plane by the conformal mapping

f = ζ − log ζ (2.1)

and the flow in the ζ-plane is as shown in Figure 4.

Prominent features of Figures 2–4 are the stagnation point S (ζ = 1) and the upper and

lower corners of the body, A (ζ = a) and B (ζ = b) respectively. These figures are sketched

with the stagnation point on the forward face of the body, i.e. a < 1 < b, although it is

also possible for the stagnation point to be located on the upper surface (a > 1) or lower

surface (b < 1) of the body.
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The origin FG in the ζ-plane is actually the far downstream end of the channel flow

above the body. Similarly, the region CDE at infinity in the lower half ζ-plane corresponds

to the lower portion of the actual flow, with C far downstream on the lower surface of

the body, D far upstream on the stagnation streamline, and E far upstream on the free

surface.

The flow problem is solved in the lower-half ζ-plane, with the logarithmic hodograph

Ω = τ− iθ = log f′(z) = log(u− iv) (2.2)

as dependent variable. Note that the fluid velocity magnitude is q = exp(τ), and θ is

the angle that this velocity bears to the positive x-axis. In the numerical solution with

non-zero gravity, we actually reduce the problem to an integral equation for the unknown

θ(ξ) on the negative real axis ζ = ξ − i0, ξ < 0, that is, on the free surface, noting that θ

is wholly known on the positive real axis ξ > 0, i.e on the body.

The free-surface boundary condition, to be satisfied on the negative real ζ-axis, is

constancy of pressure. The pressure can be related to the fluid velocity by Bernoulli’s

equation, and for the general case this is done later. Note that since this relationship be-

tween velocity and pressure is quadratic, the free-surface boundary condition is nonlinear,

and this is the ultimate reason why gravitational free-surface problems of the present type

present mathematical and computational difficulties. First we give the somewhat simpler

results which apply when gravity is either negligible or dominant.

3 Analytic solution at infinite Froude number

Very large Froude number corresponds to low effective importance of gravity relative to

other forces such as inertia. When gravity is absent, the free-surface boundary condition

is that of unit velocity magnitude, or τ = 0. Although standard hodograph tools (Gilbarg,

1960) can be used to solve the resulting boundary-value problem systematically, the

simplest procedure here is to quote the solution and verify its properties. Namely, the

complex velocity expΩ = u− iv is given by

u− iv =

[
ζ1/2 − 1

ζ1/2 + 1

] [
ζ1/2 + a1/2

ζ1/2 − a1/2

]1/2 [
ζ1/2 + b1/2

ζ1/2 − b1/2

]1/2

. (3.1)

This is an analytic function which approaches the uniform stream u− iv = 1 as ζ →∞.

Its properties on the real axis ζ = ξ − i0 are of prime interest. It clearly has a stagnation

point at ζ = 1 and gives infinite velocity at ζ = a, b in such a way as to guarantee a

right-angle corner at these points. For example, it is real both for 0 < ξ < a and ξ > b,

so v = 0 on the upper and lower body surfaces, and imaginary for a < ξ < b, so u = 0

there. Finally, for ξ < 0, setting ζ1/2 = −i|ξ|1/2, we see that each of the three factors in

(3.1) has unit magnitude, so |u− iv| = 1 as required.

Expression (3.1) gives velocities as a function of the artificial mapping variable ζ. To

relate these to the physical plane z, we need to express z as a function of ζ, by integrating

dz

dζ
=
df

dζ
/
df

dz
=

1− ζ−1

u− iv . (3.2)

Once this integration is done by standard numerical quadrature, we can then plot stream-

lines ψ =constant by finding appropriate values of ζ for each f = ζ − log ζ. This is
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Figure 5. Computed streamlines with g = 0, at a = 0.26644 (H/D = 0.5).

actually easiest done by allowing β = arg(ζ) to vary between −π and 0, determining

|ζ| = (ψ + β)/ sin β and hence ζ for each such value of β.

The above flow is characterised by just two parameters a, b. However, it is not physically

acceptable for every choice of these parameters, and only one of a and b can be taken as

an input, the other being determined by the relationship

a1/2 + b1/2 = 2. (3.3)

The reason for this requirement can be seen by evaluating the hodograph variable θ,

whose tangent v/u is the gradient of the free-surface streamline, on the negative real axis

ξ < 0. Namely, after some manipulation of the logarithm of Eq. (3.1), we find

θ = −2 arctan(−ξ)1/2 + arctan

[
−ξ
a

]1/2

+ arctan

[
−ξ
b

]1/2

. (3.4)

For large positive −ξ, i.e. far upstream, this becomes

θ →
[
2− a1/2 − b1/2

]
(−ξ)−1/2 + O((−ξ)−3/2) . (3.5)

But far upstream, x→ ξ, so (3.5) implies that the slope dy/dx of the free surface behaves

like |x|−1/2, and hence y behaves like |x|1/2. Thus the free surface is not asymptotically

plane at upstream infinity, but behaves like a parabola. That is so unless the coefficient

in Eq. (3.5) vanishes, which is the relation (3.3).

This requirement is easily tested by actual computation of streamlines, including the

free-surface streamline ψ = π, and indeed only when (3.3) holds are the streamlines

horizontal far upstream. Figures 5 and 6 give examples of acceptable streamlines for

a = 0.26644 and a = 0.02013 respectively. Some details of these streamline computations

need care, e.g. it is necessary to provide an accurate starting approximation far upstream,

equivalent to continuing the expansion (3.5) to at least two further terms. It is also

quite a delicate computational task in the numerical integration of (3.2) to carry those

streamlines which are close to the dividing streamline past the stagnation point and

corners with sufficient accuracy.

An important property of the g = 0 solutions that satisfy Eq. (3.3) is that their non-

dimensional draft is D = π. Since the stream (of unit magnitude) above the body also has

height h = π, this means that the body simply displaces streamlines upward by exactly
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Figure 6. Computed streamlines with g = 0, at a = 0.02013 (H/D = 2.0).

its thickness H . Any fluid particle lying above the lower surface of the body when far

upstream, is doomed to rise above the body.

Such is, of course, the usual expectation when chiselling or ploughing a continuous

solid medium, and we now see that it also must occur in a fluid medium in the absence

of significant gravitational effects. However, gravity if present does allow the possibility

of some such particles falling below the body, in a liquid or particulate medium. One

interpretation of our later finite-g generalisation is that it determines to what extent this

phenomenon, which may be undesirable in some contexts, actually occurs.

The actual body thickness H is in the present case a function of the sole dimensionless

parameter a, and is available by numerical integration of Eq. (3.2) from the bottom corner

ζ = b to the top corner ζ = a. For example, the case a = 0.26644 of Figure 5 corresponds

to H/D = 0.5, and the case a = 0.02013 of Figure 6 to H/D = 2.0.

4 Analytic solution at zero Froude number

Very low Froude number corresponds to dominant influence of gravity relative to inertia

at the free surface. The free surface is ‘stiff’, and cannot easily be displaced. In the limit, it

becomes a plane rigid horizontal wall on which θ = 0. The body lies below that plane wall,

and there is a channel between it and the wall, in which there is a flow of to-be-determined

velocity U0 far downstream. The method of images indicates that this is also the flow

generated by a stream U flowing toward a pair of parallel identical semi-infinite bodies.

As with the opposite extreme of the previous section, hodograph methods yield the

solution readily, and indeed the present case is somewhat simpler than the previous one,

such that a fully analytic solution can be written down. The complex velocity is simply

u− iv = (ζ − 1) [(ζ − a)(ζ − b)]−1/2 , (4.1)

and the resulting expression in Eq. (3.2) can be integrated explicitly to give

z = R − c̄ log [R + ζ − c̄] + c∗ log

[
R +

c̄

c∗
ζ − c∗

]
− c∗ log ζ (4.2)
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Figure 7. Computed streamlines with FD = 0, for (a, b) = (0.25, 4.0), having the same outgoing as

incoming speed, U0 = U.

where

R = [(ζ − a)(ζ − b)]1/2 . (4.3)

The constants (c̄, c∗) in Eq. (4.2) are respectively the arithmetic and geometric means of

(a, b), i.e.

c̄ = (a+ b)/2, c∗ =
√
ab. (4.4)

With f = f(ζ) by (2.1) and z = z(ζ) by Eq. (4.2) we have an analytic implicit solution for

the required complex potential f = f(z).

In particular, it is immediate that the draft of the body is D = πc̄, and the height of the

channel above the body is h = πc∗, so the height of the body is H = D − h = π(c̄ − c∗).
The velocity of the outgoing stream above the body is U0 = 1/c∗. Thus, irrespective of

the particular non-dimensionalisation used to derive these results, we have

H/D = 1− c∗/c̄ and U0/U = 1/c∗. (4.5)

Streamlines can again be plotted directly, as in the previous section, but more easily since

there is no numerical integration to be performed.

Given the assumption that the free surface is fully rigid, and can support any pressure,

the present flow provides a fully-acceptable two-parameter family, with both a and b (or

equivalently both c̄ and c∗) as input parameters. However, there are two distinguished

one-parameter sub-families, namely that with c∗ = 1 and that with c̄ = 1. The former

sub-family is of some minor interest in that U0 = 1, so that the outgoing stream has the

same velocity (and hence in the absence of gravity the same pressure) as the incoming

stream U = 1. Figure 7 shows an example of such a flow, with (a, b) = (0.25, 4). Note that

in this and any other sub-family except that to be discussed below, the effect of the body

is felt as an apparent source at infinity far beneath the body, and those streamlines going

below the body are deflected downward by it.

The sub-family with c̄ = 1 is however such that there is no apparent source at infinity.
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Figure 8. Computed streamlines with FD = 0, for (a, b) = (0.134, 1.866), such that H/D = 0.5 and

U0/U = 2.0

This is explicitly seen by a far-field expansion of Eq. (4.1), namely

u− iv = 1 + (c̄− 1)ζ−1 + O(ζ−2) (4.6)

in which the term in ζ−1 ≈ z−1 represents a source. If c̄ = 1, this term is absent. Physically,

with U0 > 1, there is just sufficient extra flux absorbed into the stream above the body to

prevent downward deflection of those streamlines passing below the body. Figure 8 shows

an example of such a flow, with (a, b) = (0.134, 1.866) or (c̄, c∗) = (1.0, 0.5), i.e. thickness

H/D = 0.5 and channel speed U0/U = 2.0.

If the plane boundary were genuinely rigid, a flow in the last category could only be

produced by suction in the downstream channel, since (‘neglecting’ gravity) an increased

velocity U0 > 1 demands a decreased pressure. However, gravity is dominant, not negligi-

ble in this flow, and it turns out that this sub-family is the one that is approached in the

true limit as the Froude number tends to zero. In that limit, the extreme stiffness of the

free surface allows it to bear the increased velocity by a small deflection.

5 The Nekrasov integral equation for non-zero gravity

The free-surface boundary condition with gravity is constancy of pressure, or from

Bernoulli’s equation,

1

2
(u2 + v2) + gy =

1

2
. (5.1)

In the ζ-plane, this holds for all real negative ζ, and can be differentiated with respect to

ζ and manipulated to the form

τ(ζ) =
1

3
log

[
1− 3g

∫ ζ

−∞

(
1− 1

ξ

)
sin θ(ξ)dξ

]
. (5.2)

A second relationship between the harmonic conjugates τ and θ follows from Cauchy’s

theorem, which for real ζ states

τ(ζ) =
1

π

∫ ∞
−∞

θ(ξ)

ξ − ζ dξ (5.3)
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where the integral is a Cauchy principal value. In Eq. (5.3), θ is known for ξ > 0, but is to

be determined for ξ < 0. In particular, for the rectangular box geometry, θ = 0, π/2,−π/2
and 0, for 0 < ξ < a, a < ξ < 1, 1 < ξ < b and ξ > b respectively. Thus Eq. (5.3)

becomes

τ(ζ) =
1

π

∫ 0

−∞

θ(ξ)

ξ − ζ dξ +
1

2
log

∣∣∣∣ (1− ζ)2

(a− ζ)(b− ζ)

∣∣∣∣ . (5.4)

Equating Eqs. (5.2) and (5.4) yields a nonlinear singular integral equation for θ(ξ)

on ξ < 0, sometimes called a Nekrasov equation (Wehausen and Laitone 1960, p.750).

Explicitly, this equation is

1

3
log

[
1− 3g

∫ ζ

−∞

(
1− 1

ξ

)
sin θ(ξ)dξ

]
=

1

π

∫ 0

−∞

θ(ξ)

ξ − ζ dξ +
1

2
log

∣∣∣∣ (1− ζ)2

(a− ζ)(b− ζ)

∣∣∣∣ (5.5)

or on exponentiation,

1− 3g

∫ ζ

−∞

(
1− 1

ξ

)
sin θ(ξ)dξ =

∣∣∣∣ (1− ζ)2

(a− ζ)(b− ζ)

∣∣∣∣3/2 exp

[
3

π

∫ 0

−∞

θ(ξ)

ξ − ζ dξ
]
. (5.6)

It is only necessary to provide appropriate numerical quadratures for the integrals,

and to collocate on a suitable grid of values of ζ, to reduce the Nekrasov equation to

a solvable set of nonlinear algebraic equations. Such a procedure is described in the

following section.

It is interesting to observe small-g and large-g limits of Eq. (5.5). Note that since we

have non-dimensionalised velocities and lengths by setting the incident stream U = 1, and

the flux in the outgoing channel flow equal to π, the parameter g in Eq. (5.5) is actually

a non-dimensional measure of gravity, equivalent to an inverse square Froude number.

The high Froude number limit is thus g = 0, in which case the left-hand side of Eq. (5.5)

vanishes, i.e. τ = 0 as required. But then θ is determined simply by finding the inverse

Hilbert transform of the logarithmic expression on the right of Eq. (5.5), and it is not

hard to verify that this is given by Eq. (3.4).

On the other hand, the low Froude number limit corresponds to letting g → ∞ in

Eq. (5.5). This immediately demands from the left-hand side that θ → 0, whereupon τ is

given by the logarithmic expression on the right. Analytically continuing this expression

gives the complex velocity as in Eq. (4.1).

6 Numerical procedure for solution of the Nekrasov equation

In principle, any grid on −∞ < ξ < 0 can be used. This consists of a set of nodes ξ = ξj
and collocation points ζj , with j = 0, 1, . . . , N and ξj−1 < ζj < ξj . There is a need for a

concentration of nodes near ξ = 0. For this purpose, we have used both a power law grid,

with ξj ∝ (N− j)α for some α > 1, and a grid which is constructed to be of equal spacing

in φ, i.e. where ξ = ξj is obtained by numerical solution of the transcendental equation

ξ − log |ξ| = φ = X− + (j/N)(X+ −X−) (6.1)

for some range (X−, X+) of φ approximating (−∞,∞). The collocation points are then

mid-points with respect to φ, i.e. ξ = ζi satisfy grid (6.1) with j replaced by (i− 1/2).

The power law grid is in principle good for supercritical cases, if α is carefully chosen,
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because then the approach of θ to zero far downstream is via such a power of ξ, as ξ → 0.

However, the uniform-φ grid (6.1) proved to be just as good in the supercritical case,

and better for the subcritical case, so was preferred. Note that as ξ → 0, or j becomes

large, the grid spacing in ξ prescribed by grid (6.1) tends to zero exponentially rapidly.

In practice, (X−, X+) = (−30, 15) and N = 80 was adequate for three-figure accuracy in

most cases.

The N unknowns are θj = θ(ξj), j = 1, 2, . . . , N − 1, and b. These N unknowns are

determined using the NAG routine C05NBF to solve the N nonlinear algebraic equations

obtained by forcing the Nekrasov equation (5.5) to hold at the N collocation points

ζ = ζi, i = 1, 2, . . . , N. As at g = 0, we assume that only one of the two parameters, here

a, can be fixed in advance, and allow the other parameter b to be determined by the

program.

The end values of θ are determined separately; in particular, θ0 = θ(ξ0) is assumed

inverse-square extrapolable from θ1, as discussed further below. The value of θN = θ(0)

is not actually needed for the integral on the left of Eq. (5.5), and plays only a relatively

minor role in the integral on the right of Eq. (5.5), so long as the grid spacing approaches

zero as ξ → 0. In the supercritical case, we can be sure that θ(0) = 0, and this is assumed.

This assumption is also accurate in the subcritical case so long as there are no waves, but

when waves are present in the channel flow far downstream, θ(0) is undefined.

Choices for the upstream grid commencement point ξ0 ≈ X− and corrections for

behaviour of the flow beyond that distance upstream turn out to be of some importance.

It is not hard to see that for all non-zero g (in contrast to the case g = 0 where Eq. (3.5)

indicates inverse 3/2 power decay), the angle θ decays like the inverse square of distance

upstream, and hence like ξ−2. We write for large |ξ| therefore

θ ≈ B

g
ξ−2 + O(ξ−3 log |ξ|) (6.2)

for some constant B to be determined. Now if B is known, in both integrals (5.2) and

(5.4) we can replace −∞ by ξ0, correcting explicitly for this approximation by estimating

the contributions to these integrals from the range (−∞, ξ0) by use of Eq. (6.2).

The corresponding far-upstream asymptote for the harmonic conjugate to θ is

τ ≈ Bζ−1 + O(ζ−2 log |ζ|) (6.3)

and (after some numerical experimentation) it was found that the best way to carry out the

truncation correction during the computation was to fit Eq. (6.3) to the furthest upstream

collocation value of τ, i.e. to determine a provisional value of B by setting τ(ζ1) = B/ζ1,

and then to use that value of B in Eq. (6.2) as described above. This procedure has the

effect of providing a very smooth upstream termination to the computational domain, so

avoiding any tendency to generate spurious upstream waves at that point. However, once

final converged solutions for θ(ξ) are achieved, a more accurate final estimate for B itself

is obtainable by letting ζ → −∞ in Eq. (5.4), i.e.

B = −1

π

∫ 0

−∞
θ(ξ)dξ − 1 +

1

2
(a+ b). (6.4)

The actual numerical quadratures used are as follows. For the ‘running’ integral in

Eq. (5.2), we first fit a quadratic function of ξ to the full integrand at each set of three
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Figure 9. Outgoing supercritical Froude number Fh = U0/
√
gh based on channel depth, as a

function of (high) input Froude number FD = U/
√
gD based on body draft, for various values of

body dimensions H/D.

nodes (ξi−1, ξi, ξi+1). Then we integrate that quadratic over a collocation region (ζi−1, ζi)

which is entirely interior to the above nodal set, enabling us to advance the integration

very accurately from ζ = ζi−1 to ζ = ζi. On the other hand, for the full-range integration

of Eq. (5.4) (and (6.4)), we simply assume that θ(ξ) is stepwise linear on each interval

(ξj−1, ξj).

Once the N unknowns (θj , b) are determined, all required physical-plane parameters are

available by simple post-processing operations. In particular, it follows from the far-field

asymptote (6.3) that the body’s draft is given by D = π(1 + B), where B is determined

from Eq. (6.4). The body’s height H is obtained by numerical integration of Eq. (3.2) from

ζ = b to ζ = a. In practice, it proved convenient to build in a fixed (input) value of the

ratio H/D, simply by adding an extra unknown (a) to the list of unknowns handled by

C05NBF, and an extra equation H/D =given.

For each given body, this leaves the (non-dimensional) gravitational constant g as the

only input parameter, and results were obtained by varying g within suitable ranges.

Generally, smaller (order 0.1) input g yielded supercritical outputs, and larger (order 10)

g subcritical outputs, which we now describe.

7 Super-critical results

The program was mainly designed for small-g use, and generally behaved very well in

that range. The only potential problem occurs with the upstream truncation correction,

and, as described earlier, a tendency to generate spurious upstream waves was alleviated

by careful provisional estimation of the coefficient B in the truncation correction. Any

residual difficulties are solved simply by using a bigger and bigger value of |X−|, but

X− = −30 was adequate.

The results for the free-surface shape are in close agreement with the g = 0 results of

§ 3 when g ≈ 0.001 or less. As we increase g beyond that range, we compute each time

the Froude numbers FD and Fh, and Figure 9 shows a graph of Fh versus FD , for various

bodies specified by their H/D values. The g = 0 limit would correspond to Fh → ∞ as
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Figure 10. Plot of the lowest possible Froude number based on draft FD = F2 at which

supercritical solutions can occur, as a function of body dimensions H/D.

FD →∞ on that graph. In that limit, irrespective of the value of H/D, we have seen that

U0 = U and h = D, so that all curves in Figure 9 approach the 45◦ line Fh = FD . It is

also true that the smaller is H/D, the closer is the curve to this line for all FD , since as

H/D → 0, the plough becomes slender and ultimately approaches an infinitely thin knife

which does not disturb the stream, and again U0 = U and h = D. This zero-disturbance

limit of a horizontal semi-infinite submerged flat plate differs from a similar geometry

examined by Vanden-Broeck and Dias (1991) where there was a non-trivial flow in that

limit induced by pressure differences (the configuration considered by Vanden-Broeck and

Dias (1991) differs from ours because it is in finite depth and the flow is supercritical

upstream).

For finite FD > 1 and non-zero H/D, we find Fh < FD , and for each H/D, supercritical

flows are obtained only when FD > F2 for some F2 > 1. That is, Fh approaches the critical

value Fh = 1 as FD approaches from above a limiting value FD = F2 which depends only

on the ratio H/D. Figure 10 shows F2 as a function of H/D. Equivalently, there is a

critical value g = g2 of the input gravitational parameter such that Fh → 1 as g → g2

from below. The program is unable to generate solutions when the input g lies in a range

of values just above g2, or equivalently for Fh < F2. Since the graph in Figure 9 of Fh
versus FD becomes vertical as FD approaches F2, it seems very likely that there are no

solutions at all in a range of FD just below F2.

In view of this locally-vertical character to the graphs in Figure 9, it is also possible (c.f.

Vanden-Broeck, 1987; Dias & Vanden-Broeck, 1989; Asavanant & Vanden-Broeck, 1994)

that these curves actually turn back into a parameter region with Fh < 1 and FD > F2.

If this were to happen, it would indicate a lack of uniqueness, with both supercritical

and subcritical solutions in existence at the same given value of the input parameter

FD > F2 > 1. However, no subcritical solutions with FD > 1 have been found in the

present study.

In any case, Figure 10 gives for each body, the lowest draft-based Froude number

F2 at which a smooth steady supercritical ploughing flow can take place. In practice,

presumably some kind of hydraulic jump or unsteady flow will occur as the critical speed

F2 is approached from above.

Various other output quantities of interest are also available. For example, Figure 11

gives, for various H/D, the variation with Froude number FD of the outgoing speed U0

relative to the incoming speed U. For H/D values of the order of 1, there is a significant
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Figure 11. Outgoing channel-flow velocity as a function of Froude number based on draft.

drop in U0 as FD decreases, noting that U0 → U as FD →∞. For example, at H/D = 1.0,

the outgoing speed drops to about 60% of the incoming speed as FD → F2, with most

of this drop occurring quite close to F2. Meanwhile, however, the actual height h of the

outgoing stream changes only a relatively small amount from the value h = D which it

must take in the large-FD limit. In fact, as FD decreases, at first h decreases below H , by

an amount of less than 10%, before increasing again until it finally exceeds H by about

10% close to the limiting Froude number F2. Clearly the main cause for the drop in the

outgoing Froude number Fh is stream speed reduction, not stream height increase. Indeed,

the whole free-surface shape is never more than about 10% different from the g = 0 case

discussed in § 3.

We conclude this section by mentioning that analytical informations on the forces acting

on the submerged object can obtained by using the principle conservation of momentum

and Bernoulli equation. The details are presented in the Appendix.

8 Sub-critical results

The numerical scheme of § 6 was primarily designed for supercritical flows. It also gives

also good results for subcritical flows at low Froude numbers, but becomes sensitive as

soon as waves appear on the downstream free surface. An alternative version of the

numerical scheme was then derived which enabled us to compute accurate solutions with

waves. We shall refer to this new version as scheme B. When there are no waves, the

results predicted by scheme B are in good agreement with those given by the scheme of

§ 6.

To derive scheme B, we first rewrite Eq. (5.1) as

1

2
e2τ + g

∫ φ

−∞
e−τ(φo) sin θ(φo)dφo =

1

2
. (8.1)

We define the mean depth h and the mean velocity U0 in the downstream flow by

1

2

π2

h2
+ g(h− D +H)− 1

2
= 0. (8.2)

If the flow approaches a uniform stream in the far field, then h is the actual depth and
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Figure 12. Values of Fh versus FD for H/D = 0.5 (top curve) and H/D = 0.2 (bottom curve).

U0 the actual velocity of that stream. This can easily be shown as follows. Let us denote

by d, the uniform depth in the far field. Since the dimensionless flux in the sheet of fluid

on top of the object is π, the velocity in the far field is then π/d. Substituting this value

of the velocity in Eq. (5.1), we find that the difference of ordinates between the levels of

the free surface far downstream and far upstream is

1

2g

[
1−

(π
d

)2
]

Equating this value to d+H − D yields Eq. (8.2) with d = h, and

U0 =
π

h
. (8.3)

Therefore we can interpret h in Eq. (8.2) as the undisturbed depth far downstream.

Equations (5.4) and (8.1) define a nonlinear integral equation for the unknown function

θ on the free surface. The main difference in the approach of scheme B is that we do not

combine Eq. (5.4) and Eq. (8.1) into a Nekrasov equation as we did in § 5. The rest of

the numerical procedure is similar to that of § 6.

We used the numerical scheme B to compute solutions for various values of g and

H/D. We present results for H/D = 0.2 and H/D = 0.5. Most of the calculations were

done with N = 540.

In Figure 12, we show values of Fh versus FD for H/D = 0.2 and H/D = 0.5. Typical

free surface profiles are shown in Figures 13–18. Our results show that there is a train of

waves on the downstream free surface. For F small, the waves are of very small amplitude

and the free surfaces are essentially flat (see Figure 13 for an example). Such solution can

also be computed by the scheme of § 6. In Figure 14, the waves are close to linear sine
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Figure 13. Computed free surface profile for H/D = 0.5. The values of the Froude numbers are

Fh = 0.16 and FD = 0.056.

Figure 14. Computed free surface profile for H/D = 0.5. The values of the Froude numbers are

Fh = 0.44 and FD = 0.14.
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Figure 15. Computed free surface profile for H/D = 0.5. The values of the Froude numbers are

Fh = 0.79 and FD = 0.198.

Figure 16. Computed free surface profile for H/D = 0.5. The values of the Froude numbers are

Fh = 0.83 and FD = 0.201.
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Figure 17. Computed free surface profile for H/D = 0.5. The values of the Froude numbers are

Fh = 0.84 and FD = 0.201.

Figure 18. Computed free surface profile for H/D = 0.2. The values of the Froude numbers are

Fh = 0.73 and FD = 0.43.
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waves. However in Figures 16 and 17 the waves are clearly nonlinear with broad troughs

and sharp crests.

As Fh increases, the wavelength of the waves increases and more and more mesh points

are needed for the computations. We stopped the calculations around Fh = 0.8.

The numerical results of Figures 12–18, show that the waves steepened as FD increases.

This suggests that there is an upper bound F1 at which the waves break and that the

subcritical solutions are confined to FD < F1.

9 Conclusion

We have presented here semi-analytic solutions at zero and infinite Froude number, and

numerical solutions via integral equations at finite Froude number. These results are for an

idealised sharp-cornered body. For general smoother bodies, other numerical techniques,

e.g. desingularised boundary integral equations, as in Scullen & Tuck (1995), may be

preferable, and are under investigation.

However, the general conclusion of this paper is unlikely to be affected by such

improvements. Namely, there are both high and low Froude number solutions. The

former involve smooth and wave-less supercritical flows above the body, and exist only

above a certain well-defined speed. The latter exist only below a certain speed, and involve

a subcritical stream above the body, on which waves occur.

A somewhat similar conclusion about existence of both supercritical and subcritical

solutions was obtained by King & Bloor (1987) in a study of flow over a step. That

flow is analogous to the upper portion of the flow in the present geometry, namely that

lying above the location of the stagnation streamline. However, for a step geometry in

water that is of finite depth both upstream and downstream as studied by King & Bloor

(1987) there is no doubt about when to expect supercritical and when to expect subcritical

flow over the step; subcritical upstream yields subcritical downstream, and supercritical

upstream yields supercritical downstream. In the present case, the depth upstream is

infinite, and the Froude number FD based on body draft has no particular indicative

significance. Nevertheless, we have found supercritical solutions only for relatively high

FD , and subcritical solutions only for relatively low FD .

Appendix A

In this appendix, we present an analytical formula for the forces acting on the submerged

object. The analysis assumes that there are no waves on the free surface. Therefore the

results apply directly only to the supercritical flows of § 7.

The principle of conservation of momentum in dimensional variables implies that∫ [
V(V.n) + gyn +

p

ρ
n

]
ds = 0 (A 1)

Here V is the vector velocity, p the pressure and ρ the density. The integral is along

a closed contour inside the fluid, n is the outward unit normal and s is the arclength.

We choose the contour to consist of the free surface Sf , a vertical line Sl at x = −∞, a

horizontal line Sh at y = −∞, a vertical line S1
r at x = ∞ from the top of the body to the
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free surface, a vertical line S2
r at x = ∞ from the bottom of the body to y = −∞ and the

surface Sb of the body. Furthermore, Bernoulli’s equation in dimensional variables gives

the additional relation

1

2
(u2 + v2) + gy +

p

ρ
=
U2

2
(A 2)

Taking the component of (A.1) along the x-axis we have∫ [
Vx(V.n) + gynx +

p

ρ
nx

]
ds = 0 (A 3)

Here Vx and nx are, respectively, the components of V and n in the x-direction. It is

convenient to replace Sh by a horizontal line at y = −L− D where L is very large and D

is defined in Figure 1.

Along Sl , u = U, v = 0, nx = −1 and equation (A.2), gives p/ρ+ gy = 0. Therefore the

contribution to Eq. (A.3) from Sl is

−U2(D + L) (A 4)

Similarly, the contributions to (A.3) from S1
r and S2

r are(
U2

2
+
U2

0

2

)
h+U2L (A 5)

Along Sf , p = 0, V.n = 0 and nxds = −dy. Using these results we find that the contribution

to Eq. (A.3) from Sf is

−g
2

(h+H − D)2 (A 6)

Along Sh and along the top and bottom parts of the body V.n = 0 and nx = 0. Therefore

these surfaces do not contribute to (A.3). Finally, the contribution to Eq. (A.3) from the

front part of the object is

−U2DCD −
g

2
(D −H)2 +

g

2
D2 (A 7)

Here

CD =
1

U2D

∫
p

ρ
dy (A 8)

is the drag. The integral in Eq. (A.8) is on the the front part of the object. Combining the

contributions (A.4)–(A.7) we obtain

CD =
1

2F2
D

[
−1− 2

(
H

D

)2

− α2 + 4
H

D
− 2α

H

D
+ 2α− 2F2

D + αF2
D + F2

h α
2

]
(A 9)

Here α = h/D. This quantity can be evaluated by using Eq. (A.2) on the free surface at

x = ±∞. This gives

α =
F2
D + 2− 2H

D

F2
h + 2

(A 10)

Formulae (A.9) and (A.10) define the drag analytically as a function of FD , Fh and H/D.

Numerical values can be obtained from the data of Figure 9. In the particular case g → 0,

(A.9) gives CD = −1 + α. On the other hand the results of § 3 show that α = 1 when

g = 0. Therefore CD = 0 when g = 0.
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The transverse force on the body is in general unbounded unless the difference of

pressure ∆p across the object at x = ∞ is zero. From Bernoulli’s equation (A.2), we obtain

∆p =
U2 −U2

0

2
ρ− ρgH (A 11)

Using (1.1), (1.2) and (A.11) we find that ∆p = 0 when

2
H

D
= F2

D − F2
h α (A 12)

where α is given by (A.10). Substituting Eq. (A.10) into Eq. (A.12) gives a necessary

relation between FD , Fh and H/D for the transverse force on the object to be finite. It

can be shown that this relation is not satisfied in general for the numerical data of Figure

9. This does not invalidate our calculations since in the applications mentioned in the

introduction the flow of Figure 1 is viewed as a local solution near the leading edge of a

long object of finite length. For such a finite object, the condition ∆p = 0 does not apply

and the transverse force can be expected to be finite, although it cannot be calculated

from the local solution presented here.
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