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This note shows that Lemma 3 in the paper by Tiago N. Sequeira [R&D spillovers in an
endogenous growth model with physical capital, human capital and varieties,
Macroeconomic Dynamics (2011)] is insufficient to guarantee stability and provides an
alternative sufficient condition for stability.
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1. A COUNTEREXAMPLE

The model and notation, as well as the equation numbers, are taken from Sequeira
(2011). His Lemma 3 provides a sufficient condition for saddle-path stability of
the steady state: namely, 1/α < 1 + (1 − β − η)/η. However, the following
counterexample shows that this condition is insufficient to guarantee stability.

Example 1

The parameterization β = 0.12, η = 0.32, α = 0.37, ξ = 0.035, ρ = 0.023,
θ = 2, δ = 0.1, and φ = 0.02 fulfills the sufficient stability condition of Lemma 3
in Sequeira (2011). The steady state is r∗ = 0.0390, χ∗ = 0.2784, g∗

n = 0.0041,
and ψ∗ = 1.1468. The eigenvalues of the coefficient matrix J of the linearized
system (19) are 0.0008 ± 0.1433i, 6.3405 and 0.0310. Hence, the steady state is
unstable.
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Sequeira (2011) uses the Gershgorin disk theorem to derive his Lemma 3. He
proves that disk (23) is contained in the left half of the complex plane and then
argues that one eigenvalue lies in this disk. However, the sufficient condition should
have included other conditions that guarantee that disk (23) is disjoint from all the
other disks.1 Though the proof of Lemma 3 can be completed by enforcing this
requirement, the ensuing sufficient conditions for stability are rather complex.2

Therefore, in the next section, we provide an alternative Lemma 3 that yields a
simple meaningful condition by using the Routh–Hurwitz theorem.

2. AN ALTERNATIVE LEMMA 3

LEMMA 3. A sufficient condition to rule out the instability outcome is αβ(1 −
φ) ≥ (1 − α)η.

Proof. Let Jij denote the (i, j)-element in the coefficient matrix J of the lin-
earized system (19). Lemma 2 shows that J33 = ξ − (1 − φ)g∗

n > 0 is an
unstable root of J . The other three roots of J are those of the matrix J̄ that
results from eliminating the third row and column from J . Therefore, the number
of stable roots of J is equal to that of J̄ . The characteristic equation of J̄ is
p(λ) = −λ3 +�2λ

2 −�1λ+�0 = 0. Here, �2 = tr(J̄ ) is the trace of J̄ ,

�1 = J11J22 − J14J41 + (J11 + J22) J44

is the sum of all 2 × 2 leading minors of J̄ , and �0 = det(J̄ ) = det(J )/J33 > 0
is the determinant of J̄ , where the sign follows from Lemmas 1 and 2.

Using the Routh–Hurwitz theorem, the number of stable roots is equal to the
number of variations of sign in the scheme

1 tr(J̄ ) 
 ≡ �1 − det(J̄ )/tr(J̄ ) det(J̄ ).

We now show that a sufficient condition to rule out the case of no stable roots
is that �1 < 0. If tr(J̄ ) < 0, then there are two variations of sign in the preceding
scheme—irrespective of the sign of 
. If tr(J̄ ) > 0, then 
 < 0, so there are two
variations in sign in the scheme. If tr(J̄ ) = 0, we replace it with ε > 0, and so,

 = �1 − det(J̄ )/ε. Taking the limit as ε → 0, we have that 
 → −∞ and,
therefore, there are two variations in sign in the scheme. After simplification, we
can obtain that

J11 + J22 = r∗ − g∗
K + η(1 − α)

β
r∗ = ξ − (1 − φ)g∗

n + η(1 − α)

β
r∗ > 0,

where the first equality follows from (6), and the second results from (12). Because
J11J22 < 0, J14J41 > 0, and J44 = B2(ξ + φg∗

n)/φ, using that B3 = −B2g
∗
n by

(13), a sufficient condition for �1 < 0 is B2 ≤ 0, which yields the desired
result.
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It should be noted that the main implication of Lemma 3 in Sequeira (in press),
the fact that stability is more likely the lower the markup, is maintained despite
the incompleteness of the sufficient condition. The remaining contributions of the
paper also remain valid.

NOTES

1. A similar argument also applies to the alternative sufficient condition given in note 3 in Sequeira
(in press).

2. A complete proof is available upon request. Other sufficient conditions can be derived by means
of the Gershgorin theorem; these are also available from the authors.
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