Probability in the Engineering and Informational Scienceé8 2004 161-183Printed in the USA.

A GENERAL APPROACH TO
COMPUTE THE PROBABILITIES OF
UNRESOLVED CLONES IN RANDOM
POOLING DESIGNS*

F. K. HwaNG AND Y. C. Liu

Department of Applied Mathematics
National Chiao Tung University
Hsinchu 30050 Taiwan, Republic of China
E-mail: fhwang@math.nctu.edu.tw;
u87225 18@math.nctu.edu.tw

In this paperwe develop a general approach to compute the probabilities of un-
resolved clones in random pooling desighbis unified and systematic approach
gives better insight for handling the dependency issue among the columns and among
the rows Consequentlywe identify some faster computation formulas for four ran-
dom pooling designs proposed in the literataned we derive some probability dis-
tribution functions of the number of unresolved clones that were not available before

1. INTRODUCTION

A pooling designis a (binary) incidence matrix where each column represents a
clone and each row represents a p@al-entry in cell(i, j ) signifies that clong is
contained in pool. A clone represents a short DNA fragmeltican be goositiveif
it contains a specific DNA sequence as a subsequenemegativef otherwise All
clones contained in a pool are tested together as a gfdwgoutcomes positive if
and only if the pool contains a positifetherwise the outcome is negatiyeThe
goal of a pooling design is to identify all positives with as few pools as possible
Note that all pools in the matrix can be tested simultaneously

Random pooling designs have been propgded] for their wide applicability
However they do not guarantee to identify all cloneduppose that there ark
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positives among clones Let N denote the numbers ahresolved negativesndP
the number ofunresolved positivedhen it is important to estimat® andN for
evaluating a random pooling design

Four types of random design have been studied in the litera@opsider a
t X n binary matrixM:

1. Random incidence desigRID). Each cell inM has probabilityp of being
one

2. Random k-set desigiRkSD). Each column is a randokaset of the sefit | =
{1,...,t}; that is there are exactlk 1-entries in each columnvith the lo-
cations of these 1's being equally likely to be any of (b}apossibilities

3. Random distinct k-set desigRDkSD). RkSD with all columns being distinct

4, Random r-size desigiRrSD). Each row is a randomset of the sefn] =
{1,...,n}.

RID was first proposed by Erdés and Réfgi in search problemsBalding
Bruna Knill, and Torney 1] proposed RkSD and showed it to have much sm&ller
andN (i.e,, it identified many more positive clongshenceit is much more pow-
erful than RID Both[1] and[2] alluded to bounding of intersectiofyools in which
two columns coincideof two columns to avoid heavy similarity without giving any
analysisHwang[4] carried out the idea by studying the RDkSD in which the sam-
pling is without replacement to avoid some apparent inefficieAnpther motiva-
tion to study RDKSD is that some other pooling desighZ] are special cases of
RDkSD. Hwang also proposed RrSD to compare its row structure with the column
structure of RkSDFurther RrSD is suitable for the situation when the size of a pool
is restrictedNote that one can also propose random distirgize desigiRDrSD).
Howeversince Hwang and Li[6] found that the performances of RkSD and RDkSD
are about the samand the performance of RrSD is much wagreere is not much
motivation to study RDrSD

The basic probabilities to be computed for these four modelPére= u)
andP(P = v). In particular we are interested iR(N = 0) andP(P = 0), the cases
that all negatives and all positivesespectively are identified From P(N = u)
andP(P = v) we also obtairE(N) andE(P), which in turn yield the following

E(N)

T = Py the probability that a random negative clone is unresolved and

E(P
Pt = % the probability that a random positive clone is unresolved

However sinceE(N) andE(P) are usually quite messit is often easier to
argue forP~ andP™ directly.

We will also look into the problem of choosing k, andr to minimize these
probabilities Due to the messiness of the probability functionly limited results
have been obtained
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2. A GENERAL APPROACH TO COMPUTE THE PROBABILITIES
OF UNRESOLVED CLONES

LetM be at X nmatrix andD a set ofd positives We say that the romolumns are
i.d. if the distribution of the number of 1-entries are identical for all r¢adumns.
Furthermoreif the distribution is independent between the rqaslumnsg, then we
say the rowgcolumng are ii.d. In the random designs we study hgifee rows and
the columns are alwaygi

We say a row and a colunintersectif the intersection cell contains a 1-entry
Partition the rows oM into three part¥, Y, Zaccording to whether a pool intersects
D at least twiceexactly onceor not Definef(z) = P(|Z| = 2).

THEOREM 2.1: Suppose that the rows are i.d. Then,

t) t , t—z
- ()2 v(; )

X P(i specified rows including Z not intersecting D

Proor: f(z)is computed by an inclusion—exclusion formula u

CoROLLARY 2.2: Suppose that the rows are i.d. and the columns are i.i.d. Then,

t) t  [(t—z
f(z) = (z)z(_l)lz<i - z)

X [P(a column not intersecting the i rows including]?

Proor: The event “the rows includingZ not intersectindd” can also be expressed
as “d columns not intersecting thierows includingzZ.” u

When the rows areiid., thenf(z) is much simpler

LEMMA 2.3: Suppose that the rows are i.i.d. Then,
t
f(z) = , [P(a row not intersecting D}*[1 — P(a row not intersecting ' 2

Next, we giveP(N = u) and therP(P = v).

THEOREM 2.4: Suppose that the columns and rows are both i.d. Then,

t n—d
P(N=u)=> f(z)< " ) P(exactly u negatie columns not in Z
z=0

Proor: A negative column not iZ is an unresolved negative u

Either the column.i.d. or the row ii.d. will bring some simplification
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CoROLLARY 2.5: Suppose that the rows are i.d. and the columns are i.i.d. Then,

t —
PN=u=2 f(Z)(
z=0
X [P(a negatie column in Z]"~9-Y,
CoROLLARY 2.6: Suppose that the columns are i.d. and the rows are i.i.d. Then,

_ t n—d\n-d i n—d-u
P<N=u>=§0f<z>< ’ >§u(_” ( i )

P(a pool in Z does not contain any of the
j specified negatie clones includindN)

)[P(a negatie column not in ZJ"

Letf(z y) denoteP(|Z| = z,|Y| = y) andgs the number of rows s not con-
taining any unresolved negative

THEOREM 2.7: Suppose that the columns and rows are both i.d. Then,

t—z n—d

g ; (zy) E P(N=u|2) E P(ay|y, WP(P =v|ay),

u=0 aGy=0

'OI
II

where

_ d d-v d—v
P(P=v|qgs) = d=9% > (-1) (d=v—1)%
v = d—v—I
Proor: Note thatP(P =uv|qy) is the probability that positives do not appear in the
gy rows hence unresolved(P = v|gy) can also be viewed as the probability of

gettingv empty holes in rollingyy balls intod holes |

Although in principle the computation of andq can be combined into one
step such a computation would be difficult to carry out unless the rows are inde-
pendentHerg we give the ii.d. version

CoRrOLLARY 2.8: Suppose that the columns are i.d. and the rows are i.i.d. Then,

t n—d t—2z
=212 X P(N=ul2) ) < )

Oxuy

= Axuy=0
X [P(E)]™ov[1—P(E)]"* %P(v|dxuy),

where E is the event that a row in X contains a single positive but no unresolved
negative.

We next discuss the computation®f andP*. For conveniencgn computing
P~, the negative whose resolvability is in concern will be denote@hy comput-
ing P*, D, is the positive in concerrWe first give a general formula for comput-
ingP~.
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THEOREM 2.9: Suppose thatthe rows arei.d. Then,(B) =3._, f(z)P(Z does not
contain O.
CoroLLARY 2.10: P~ is independent of n if and only if£) is independent of n.
CoroLLARY 2.11: P~ is independent of n if the columns are independent.

Proor: f(z) is determined by the columns BY, hence independent ofif the col-
umns are independent [ ]

CoROLLARY 2.12: Suppose that the rows are i.i.d. Then,
t
P~(C) = > f(2)[P(a pool of Z does not contain){%
z=0

Howeverwe can do better by combining the computation of the probabilities of
zand of the property

THEOREM 2.13: Suppose that the rows are i.i.d. Then,
P~(C) = [1— P(a pool contains Cbhut none of D]t

Even without the row.d., we can interpret Theorem2in a way such that there
is no need to compufd z). Let theweightof a column be the number of its 1-entries

THEOREM 2.14: Suppose that C has weight k. Then,

k k
P~(C) = > (1) <i>P(the i specified rows each not intersecting.D
i=0

Proor: Thei specified rows are in thkerows contained irC. u

CoRrOLLARY 2.15: Suppose that the columns are i.i.d. Then,
k k
P=(C)=> (1) <i>[P(the i appearances of C does not intersegi]®
i=0

To computeP ™, let Y; be the subset of containingD, but no otheD;. Define
f(z y1) = P(1Z] = Y| = ya).
THEOREM 2.16: Suppose that the rows are i.d. Then,
t t-z Y1 A
P* (D) =2 X f(zy) 2 (D' .
z=0y,=0 i=0 |

all negatves either appearing in Z or nat
appearing in the i specified rows of Y /°

Proor: The last sum gives the probability that no rowMpsatisfies the condition
that every negative either appear&ithence resolvexbr does not appear in the row

https://doi.org/10.1017/50269964804182028 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804182028

166 F. K. Hwang and Y. C. Liu

of Y; (hence not obstructing the identificationDf). Note that the condition char-
acterizes the identification ;. u

CoroLLARY 2.17: Suppose that the rows are i.d. and the columns are i.i.d. Then,

P+(D1)—Z E f(z, yl)E( 1)'< )

z=0y;=0

X -SP(a negatve appears in Z
P a negatie does not appear in,X |
nor in the specified rows of,Y

With the row ii.d., we obtain a different set of formulas

THEOREM 2.18: Suppose that the rows are i.i.d. Then,

n—d

P*(D,) = Z f(2) E P(N=ul2)

% [1 _ (a row in XU Y contains DQ but no other D,)]T‘

nor any of the u unresoéd negaties

Proor: The[ ]term is the probability thab, is not identified by any of the — z
rows hence unresolved u

THEOREM 2.19: Suppose that the columns are i.d. and the rows are i.i.d. Then,

n-d/n—d\nd ~ (n—d-u
P+(Dl>=2< y )2(—1)1-U< iy )
u=0 j=u

X -SP(a pool is positie and does not identify yivenN = u)

<a pool is negatie and does not contain ]t
specified set of j negatés includingN

PRrROOF:
n—d

P*(Dy) = 2 P(N=uwP(P"(Dy)|N=u)

u=0

- —d\ n= n—d-u

2_:( )2(1)“]( j—u >

X P(besidesN, j — u additional negatie clones notin X
X P(P™(D,)|N=u).

The second equality is true by Corollarys2
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Define the following

A: the event that besiddg exactlyj — u additional clones not iZ

B: the evenD; not identified givenN = u

SinceB depends o andN, andA depends of — u clones not irD U N, AandB
are independent eventdence

P(A)P(B) = P(AB)
[ (a pool does not identify DgivenN = u. )]t
P

If the pool is negatie, then a specified
set of j negaties includingN is not in it

-SP(a pool is positie and does not identify DgivenN = u)

<a pool is negatie and does not contain ]t -

specified set of j negatés includingN

Theorem 219 can also be obtained from Theorerh®by replacind®(N = u|z)
with the terms in Corollary 5 and summing ovez. The proof we gave here is more
insightful.

3. RANDOM INCIDENCE DESIGN

LetM be at X nRID. Note that both rows and columns asied. Using the rowii.d.,
the following is easily obtained

LEmma 3.1:
t
f(2) = (Z>(1— P“1-1-p] 2

Hwang[4] gave the following theorem

THEOREM 3.2:
t/t
PIN=u) = ZO<Z>(1— P@1-1-p?]?

n—d
X ( ’ )(1— A= A-p7" e

Proor: The proof follows immediately from Corollary.2 and Lemma 3. u
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The special case = 0 was first given by Balding et al1].

COROLLARY 3.3:

L/t
PIN=0)= zo<z> (1= p¥1— 1- P11 - (@-p?]"
CoroLLARY 3.4: E(N) = (n—d)[1— p(1-p)9].

PROOF:
t /[t
E(N) = ZO(Z>(1— p@[1-1-p9]
n—d
X2 U< ! )(1— p*L1-(1-p]ne

t o/t
=2 <Z>(1— PZ[1-(1-p?]"%n—d)(1-p?

t/t
= (n—d) {go@u— P Ve[1— (1P

=(n-d)[A-p*t+1-1-p?]
=(n—d)[1-p@1-p°].

COROLLARY 3.5: P~ =[1—p(1—p)9]t

Note that Corollary 3 can also be argued directly from Theorerd@by noting
thatp(1— p)¢ is the probability that a row contair®but none ofD. Then Corol-
lary 3.5 can be obtained by multiplying by — d). We did it the hard way just for
demonstration purposes

Let p, minimizeP~ (or E(N)). Balding et al[1] gave the following
THEOREM 3.6: p; = (d+ 1)L

Proor: Clearly to minimizeP ™ is to maximizep(1 — p)9. Set

d -1 _
dp pl—p?=(1-p?-pdl-p**t=0.

We obtainp, = (d+ 1)1 [}
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Let p; minimize P(N = 0). No analytic solution opy is known
The corresponding probabilities of unresolved positives are considerably messier

THEOREM 3.7:
P(P=0v)=2 ( )(1 PL1-1-p]e

—d
) 2 (]_ — p)ZU[l — (1 _ p)z]nfdfu
u u=0
a-o\ ¢ 1-1-p° 1-(1—p?

d d—v d—v
><< >dq2(—1)'< >(d—v—|)q.
v =0 d—v—1

Proor: This is proved by Corollary 8. u

BecauseP(P = v) is unwieldy to maneuveit is desirable to derivé®* and
E(P) independentlyWe give several such derivations and compare their terms’
complexities First, a lemma is needed

LeEmmA 3.8:

t
f(z,y1) = (Z yl> 1-p¥[pl—ptn[1-1-po ]tz

Proor: A poolis notinZ U Y; if and only if it contains a positive other thddy.
|

We can use the columri.d. to computeP ™.

THEOREM 3.9:

-z

i t

z=0y,=0

t
p+ <z y )(1— P p(l—pin[l- (1—pdi]tzn

XZ( 1)'( >[1 1-p*+@Q-p=']"e

Proor: 1— (1— p)?is the probability that a negative appearZjrand(1 — p)?*
is the probability that a negative does not appeaZ ior in thei specified rows
of Y;. Theorem 3 follows immediately from Corollary.27. u

Note thatP* in Theorem 3 can be computed i®(t3) time.
Alternatively we can use the rowiid. formula in Corollary 26 (after summing
overz).

https://doi.org/10.1017/50269964804182028 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804182028

170 F. K. Hwang and Y. C. Liu

+_n7d n—d\n-d i n—d—u
(M )Z e ()

X[1-A-p?=pl-p" ™+ 1A-p*].

Proor: 1 — (1 — p)¢ is the probability that a pool contains a positivesnce it
is positive In a positive poal D, is identified if and only if it is the only positive
in the pool and no unresolved negative is in the pddle probability of this is
p(1 — p)9~t*tu given there arau negative poolsTherefore 1 — (1 — p)¢ —
p(1—p)9-1*Uis the probability that a pool is positive but not identifyiBg given
N=u.

On the other hand1— p)¢is the probability that a pool is negative afid- p)!
is the probability that it does not contain ffepecified negatives includirig Hence
(1— p)9* is the probability that both events happ&heorem 310 follows imme-
diately from Theorem 29. u

THEOREM 3.10:

Note thatP* in Theorem 310 can be computed i@(n?) time.
Finally, we can also use the other rowd. formula

THEOREM 3.11:
t [t
P = Z( ><1— pOL— (1 p)]
z=0\Z
n-d/n—d
X > ( )(1— p*1-(1-p]" e
u=0 u

d—1+u|t-z
" [1_ p(L-p }
1-(1-p°
Proor: p(1—p)9 1*Yisthe unconditional probability that a pool contaisbut no
otherD; nor any unresolved negativiss division by 1— (1 — p)¢ given the same
probability conditional on the pool is positivén X U Y). Theorem 311 follows
immediately from Theorem.28. |

P* in Theorem 311 can be computed i®(tn) time. Sincet is usually much
smaller tham, Theorem 311 seems to be an improvement over Theoret® Svith
respect to computatiomote that Theorem.9 uses the column independence with
time complexity a function of, Theorem 310 uses the row independence with time
complexity a function oh, and Theorem 31 uses both column and row indepen-
dence with time complexity a function of botlandn.

COROLLARY 3.12: E(P) = dP*

No analytic solution has been given to minimize eitRéror P(P = 0).
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4. RANDOM Ak-SET DESIGN
The columns in RKSD areiid., but the rows are only.d.

t—i\ 14
t—2z ( K )
f(2) =< )Z( ( Z) . .
(4
Proor: Since the rows are notindependghe inclusion—exclusion formulais used
to compute the exact probability af u

THEOREM 4.2:
t—i\]d
k

_ t t—z
PIN=u 2 2( '
7=0 -z t
t—z\u t—z\ndu
n—d k k
X — .
") t
k k
Proor: The probability that a negative does not appear in a rowZofs

(t’kz>/<|‘(> Theorem 42 now follows immediately from Corollary.2. u

It is easier to argue fdP~ independently than froR(N = u).

t—i\ ¢
o ()
()|
i=0 I t
(¥
Proor: The probability that a positive does not appeair @f thek appearances of
Cis (t; I)/(L) Theorem 43 follows immediately from Corollary .25. u

LEMMA 4.1:

THEOREM 4.3:

CorOLLARY 4.4: E(N) = (n—d)P".

Letk; minimizeP~. Our formula forP~ is very similar to that Maculg8] gave
for the probability of a positive being unresolved under the representative decoding
[6]. Hence we imitate the approximation he gave
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k ) k | kd
oz
K [k _

= (1— ekd)k
Then k' = (tIn 2)/d minimizes(1 — e ¥k,
To computeP(P = v), we need (z,y). LetII(y,d) denote the set of partitions

T =VY1,...,Yg of y = E,—‘Ll y; distinct objects intal distinct parts with = y; = k.
To computeP*, we need (z, y;).

LEmmMmA 4.7:
t—z—y; t—z—y,—h\7]9?
AGE ) o men[C)
f(zy1) = (27 yl) N E,O (1)“< h ) N
(4 (4
Proor: By definitions ofzandy,, each of the remaining— z — y; pools must con-
tainaD;, i # 1. The last sum in Lemma# gives this probability using the inclusion—

exclusion formulawhere<" Z’kyl’ h>/<|t<) is the probability thab; does not appear

in a specified set af+ y; + h pools(including the pools iz U Y;). Finally, D; must
appear in the, rows ofY;. Its otherk — y; appearances must not bedru v;,. B

t—z—y,
L)
z,y1> t

(4

<t—z—yl—h> d-1
t—z—y; -z-vy k
8 Zo (_1)h<t h y> t
(4
t t—z t—z—i\]nd
o b))
x__Eo(—l)iC) . .
()
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PROOF: [(i)— <t‘kz)]/<l‘<) is the probability that a negative appears Zn

(t’i’ '>/<L is the probability that a negative does not appeardnin thei spec-

ified pools ofY;. Theorem 48 follows immediately from Corollary 27. u
Note thatP* in Theorem 48 can be computed i®(t%k?) time.
COROLLARY 4.9: E(P) = dP™,

No analytic solution has been given to minimize eitRéror P(P = 0).

5. RANDOM r-SIZE DESIGN

The rows of RrSD areiid., but the columns are onlyd.

ol L)

LeEmMmA 5.1:

1 —
n n
PRrOOF: (”;d>/(?) is the probability that a pool does not contain any positive
henceitisin Z [ |

f(z) =

THEOREM b5.2:

<n —d—j\7]?
n—d nid ~ (n—d r
X —1iv| — .
u J:u( ) J—u n—d
r
PROOF: (”’f”')/(”:d) is the probability that a pool i does not contain any of

the j specified negativesncluding the givenu ones Theorem 32 now follows
immediately from Corollary & and Lemma 3. u

It is simpler to deriveP ™ directly.
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THEOREM 5.3:

Proor: A pool containsC, but none oD must take its other — 1 clones from the

othermn — d— 1 negativesTheorem 53 now follows immediately from Theorem123.
[ |

Letr, minimizeP~. Lin (private communicationobserved the following
THEOREM 5.4: r. € {[r*],[r*]} where rf = (n—d)/(d + 1).

Proor: Clearly, minimizing P~ is the same as maximizir(d:j’f)/(?) =g(r).

<n—d—1><n>
gr+1) _ r r :(n—d—r)(r+1):<l_ d ><1+}>
g(r) n—-d-—-1 n r(n—r) n—r

< r—1 ><r+1)

- -
Whenr increasesboth factors decreasklence the ratio decreases mand maxi-
mumg(r) is obtained at the two integers that flank thesatisfyingg(r +1)/g(r) =
1; thatisr*=(n—d)/(d + 1). u

Note thatr * divided by the number of negatives yields in RID.
For the unresolved positiyeve have the following theorem

AT o
ol “ﬂnf;)q
(") (— =(o W

THEOREM 5.5:

~ t
PP = u)=z_20<z>

<n—d—u> t-z—q

d

r—1 d d—v d—v

L -q —1)! —py—1)a

1 . p— <>d 20( 1) (d—v—l>(d v—1)4
()-()
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Proor: Theorem 5 follows from Corollary 28. We will only comment on the term
P(E) (defined as in Corollary .8), as the other terms have been obtained earlier

(":fl’ Z) is the number of ways of choosing positive) pool containingd, but

no otherD; nor any unresolved negativétimes this quantity counts the number of
ways of choosing a simple positiyaot necessarilyD,), but no unresolved nega-

tives (?) - (” ; d) is the number of ways of choosing a positive rd@us the ratio
n—-d-z
d
r—1

n n—d

r] r
gives the conditional probability that a positive pool contains a single positive and
no unresolved negativdence the positive is identifield u

Again, we deriveP" independently

THEOREM b5.6:

o (D n-d/n—d\nd v n—d-u
(1)_20 u jzu(_) ji—u
n n—d n—-d-u n—d—j\
r B r a r—1 r
+ :
n n
o ()
Proor: (1) — (") is the number of ways of choosing a positive pc(élrf; “)is

the number of ways of choosing a pool containldgbut no otherD; nor an un-
resolved negativéD; is identified. Hence

n n—d n—d-u
r] r - r—1
is the number of ways of choosing a positive pool not identif;@ag("‘f“) is the

number of ways of choosing a negative pool not containing any of specified
negatives including\. Theorem 5% now follows immediately from Theorem12.
[ |

P* in Theorem 3 can be computed i®(n?) time.
Analytic solutions for optimal to minimize eitherP™ or P(P = 0) are not
known
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6. RANDOM DISTINCT k-SET DESIGN

RDKSD is neither column independenbr row independentence the computa-
tion of the probabilities of unresolved clones poses both a challenge but also an
opportunity to expand the formulas beyond the independence threshold

ol
(e i

LEmMmA 6.1:

k
d

Proor: All k appearances of a positive must be outsid&.dfhere are(‘;‘) such
distinct k-sets from which to choosé. Since the rows are not independethte
inclusion—exclusion formula is required u

THEOREM 6.2:

o002
o

Proor: There are(f(z) k-sets not intersecting. d of them are chosen by the posi-

tives Theu unresolved negatives must be chosen from the remaining andshe
n— d — u resolved negatives must be chosen from(tb& (ILZ) k-sets intersect-

ing Z. Theorem & now follows from Theorem 2.
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We argue folP~ independently

THEOREM 6.3:

()

K Kk d
s ()t
()
d

Proor: i is the number of rows intersectir@ The ratio represents the probability
that no positive appears in theiseows u

We do not have a formula fdP(P = v), evenf(z y) seems too difficult to
attempt Hwang and Liy 5] gave formulas foP* andf(z,y,). Lete, = 1if x=10,
otherwisee, = 0.

LEMMA 6.4:

t—z—-y;
t (k—y1>_€y1(d_l)
)
(k)_<d_1>
(t—z—yl—h)

k
t—z—y, t—z—yl d_l
_lh
oy )< h ) (t>
d

f(z,y1) = (Zy
s Y1

k
-1

Proor: The sum in Lemma.@ gives this probability using the inclusion—exclusion

formula Where(<tzkyl h))/( <It<>

d-1 d-1
a specified set of + y; + h pools (including the pools inZ U Y;). There are

<t7 - yl) ways of choosindD,. However if y; = 0, thenD; is also chosen from the

) is the probability that n®;, j # 1, appears in

K=y
(ILZ) k-sets hence(d — 1) k-sets which have been selected as positivd®ould be
subtracted u
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THEOREM 6.5:
t—z—vy,

< )—ey(d—l)
tok t k—=y1 !

t—z-y; t—z—yl d_l
_1h
8 hgo( )< h ) t
k
d

-1
t t—z t—z—i
()= () () e
y . n—d
<Eeu(l) t
()
n—d

PROOF: (;i) - (t;Z> is the number ok-sets intersecting, and("i’i> is the number

of k-sets intersecting neith@mor thei specified rowsThus ak-set taken from the
union of the two sets satisfies the condition in TheorehéHoweverthe(d—1)D;,
j # 1, are also taken from the second.sEherefore thesed — 1 k-sets must be
subtracted before the— d negatives can be chosdturtherif i = 0, thenD, is also
chosen from the second sbence one morek-set should be subtracted |

No analytic solution for optimak to minimize anyP—, P(N = 0), P*, and
P(P = 0) is known

7. SUMMARY AND NUMERICAL DATA

The method if5] first computes the probability( j) that there arg unresolved
negatives and then compufeg, y;) from >; u(j)f(z, y;|j). The summation over
requiresO(n) times The general approach we proposed in this article takes advan-
tage of column independence in RID and RkSD to focus on the probability of a
single negative blocking the identification of the positive and then to multiply that
probability(n — d)-fold to account for all negative cloneBhus there is no need to
sum ovetj.
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Bruno et al [2] eliminated the summation ov¢rfor RkSD, not through the
argument we offered but simply through combinatorial maneuvetiayvever
they overlooked something that resulted in an unnecessary inflation of the time
complexity toO(t#). For RkSD and RDkSDthe range ofy, is from 1 tok, where
k is typically much smaller thah Thus the summation ovey;, as well as the
summation oveO(y;) terms when computing the probability that gl appear-
ances intersect with some unresolved negatishsuld both involveO(k) terms
instead ofO(t). This brings a reduction of time complexity ©(k?t2). Bruno
et al may have missed this point by using the variabte y, instead ofy;, which
somehow obscured the number of terM& should also point out that the substi-
tution of O(k) for O(t) in two summations in RkSD and RDkSD was also not
observed in Hwang and LiLbE].

P+
o
w

P+

FiGURE 1. Comparison between RkSD and RDk&dashed lingwith n = 500Q
t=70 andd=3(a) ord =5 (b).
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For RDkSD although the columns are not independémy are structured well
enough so that we can argue over the d negatives collectively—agaimo need
tointroducg. For RrSDQ our general approach takes advantage of row independence
to focus on the probability that a positive cannot be identified in a certain podl

then to multiply that probabilityt-fold to account for all poolsHence the time

complexity is reduced t®(n?), which is independent of the old method needs
O(n?t®) times

The general approach helps us speed up the computgtsoan only compute
for n=100 in[5], whereas we can compute fo=100Q even forn = 10,000 for
some designs nav@ur program is written by Mathematica and not optimizéeince
there is still the possibility for computation of larger parameters

We present some numerical data in this secttirst, we draw the RkSD and the
RDkSD together in Figure 1 for easier comparisds mentioned in Section, the

0.9
0.8
0.7 ‘\‘
0.6 \
o 0.5 !
0.4
0.3
0.2
0.1 "
————
3 6 9 12 15 18 21 24 27 30 k
0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 P
(a)
0.9 S~ T
0.8
0.7
0.6
0.5
0.4
3 6 9 12 15 18 21 k
005 0.1 015 02 025 03 p

(b)

FIGURE 2. Comparison between Rl@lashed lingand RkSD(solid line) with n =
500Qt= 70, andd =3 (a) ord =5 (b).
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difference between RkSD and RDKSD is sligHence during the pool’s construc-
tion, rejecting anyk-set that already occurs in the des[dfh becomes unnecessary

Then the comparison oP* between RID and RkSD is presented in Figure 2
Because the range of possibliss from zero to one and the range of posshikefrom
zero tot, we makek =t X p for normalizationWith thek restriction on the column
weight RkSD performs better than RIIZometimesthe difference between these
two designs is very significant and can be critical for their suitabifigr example
in Figure 3awhenn = 10,000 t = 85, andd = 5, the optimalP* of RkSD is less than
0.1 and makes it a good desigmhereas that of RID is about@®.

Figure 4 presents the comparisorPof between RID and RrSIHere we make
r =n X p. The performance of RrSD is about the same with RiBnce worse than
RKSD. It seems to suggest that the column struci@feRkSD) is much more im-
portant than the row structufef RrSD), although we have no explanation for it

The data we show in Figure 4 has parametets1298 and = 47, which are
much smaller than that we use in the comparison between RID and RK8®is
because the time complexity of computifg for RrSD is O(n?), whereas for
RKSD, it is O(k?t?). Whenn is large kt is usually much smaller tham, so that
P+ of RKSD is still computable and it takes an unacceptably long time to compute
P* for RrSD.

Although the time complexity of our formula for computiy™ of RKkSD is
claimed to beD(k?t?), which is independent af, this ignores the fact that wham
grows the numbers in the formula have more bits and the division of large numbers
takes longer to comput®ight now we can compute fan = 10,000 withkt~ 150Q
We still need more efficient equations to deal with larger paramétggsfor nis in
the order of 16).

In case that no explicit exact formulas can be obtaimezineed good approx-
imations in explicit formsThe reason of the need for explicit forms is not only for

0.9
0.8
0.7 R
0.6
0.5
0.4
0.3
0.2
0.1

P+

3 6 9 12 15 18 k
0.05 0.1 0.15 0.2 p

FiGcure 3. The performance difference between Rtashed lingand RkSD(solid
line) with n = 10,000, t = 85, andd = 5.
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(@)

0.95
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0.85
0.8

0.75
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0.1 0.3 0.5 P

(b)

Ficure 4. Comparison between RI@ashed lingand RkSD(solid line) with n =
1298t =47, andd = 2 (a) ord = 4 (b).

faster computation but also for being able to solve for optimal design parampeters
k, andr analytically The numerical evidence certainly suggests that a unique opti-
mum exists for each design

Percus Percus Brung and Torne)[ 9] gave an approximation whose leading
term givesP ~ if the rows were independerihen correction terms and some higher-
order termsFor examplethe approximation o~ for RkSD is Eq (42) of [9]. The
firsttermisP~ for RkSD if the rows were independefihe second term corrects for
this independence assumption and the third term reflects the consequences of dis-
persion and nondiscreteness of the number of positives
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