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In this paper, we develop a general approach to compute the probabilities of un-
resolved clones in random pooling designs+ This unified and systematic approach
gives better insight for handling the dependency issue among the columns and among
the rows+Consequently,we identify some faster computation formulas for four ran-
dom pooling designs proposed in the literature, and we derive some probability dis-
tribution functions of the number of unresolved clones that were not available before+

1. INTRODUCTION

A pooling designis a ~binary! incidence matrix where each column represents a
clone and each row represents a pool+ A 1-entry in cell~i, j ! signifies that clonej is
contained in pooli +A clone represents a short DNA fragment+ It can be apositiveif
it contains a specific DNA sequence as a subsequence, or anegativeif otherwise+All
clones contained in a pool are tested together as a group+ Theoutcomeis positive if
and only if the pool contains a positive~otherwise, the outcome is negative!+ The
goal of a pooling design is to identify all positives with as few pools as possible+
Note that all pools in the matrix can be tested simultaneously+

Random pooling designs have been proposed@1–5# for their wide applicability+
However, they do not guarantee to identify all clones+ Suppose that there ared
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positives amongn clones+ Let PN denote the numbers ofunresolved negativesand OP
the number ofunresolved positives+ Then, it is important to estimateOP and PN for
evaluating a random pooling design+

Four types of random design have been studied in the literature+ Consider a
t 3 n binary matrixM:

1+ Random incidence design~RID!+ Each cell inM has probabilityp of being
one+

2+ Random k-set design~RkSD!+ Each column is a randomk-set of the set@t # 5
$1, + + + , t % ; that is, there are exactlyk 1-entries in each column, with the lo-
cations of these 1’s being equally likely to be any of theS t

kD possibilities+
3+ Random distinct k-set design~RDkSD!+RkSD with all columns being distinct+
4+ Random r-size design~RrSD!+ Each row is a randomr-set of the set@n# 5

$1, + + + , n% +

RID was first proposed by Erdös and Rényi@3# in search problems+ Balding,
Bruno, Knill , and Torney@1# proposed RkSD and showed it to have much smallerOP
and PN ~i+e+, it identified many more positive clones!; hence, it is much more pow-
erful than RID+Both@1# and@2# alluded to bounding of intersections~pools in which
two columns coincide! of two columns to avoid heavy similarity without giving any
analysis+ Hwang@4# carried out the idea by studying the RDkSD in which the sam-
pling is without replacement to avoid some apparent inefficiency+ Another motiva-
tion to study RDkSD is that some other pooling designs@6,7# are special cases of
RDkSD+ Hwang also proposed RrSD to compare its row structure with the column
structure of RkSD+ Further,RrSD is suitable for the situation when the size of a pool
is restricted+Note that one can also propose random distinctr-size design~RDrSD!+
However, since Hwang and Liu@5# found that the performances of RkSD and RDkSD
are about the same, and the performance of RrSD is much worse, there is not much
motivation to study RDrSD+

The basic probabilities to be computed for these four models areP~ PN 5 u!
andP~ OP 5 v!+ In particular, we are interested inP~ PN 5 0! andP~ OP 5 0!, the cases
that all negatives and all positives, respectively, are identified+ From P~ PN 5 u!
andP~ OP 5 v! we also obtainE~ PN! andE~ OP!, which in turn yield the following

P2 [
E~ PN!

n 2 d
, the probability that a random negative clone is unresolved and

P1 [
E~ OP!

d
, the probability that a random positive clone is unresolved+

However, sinceE~ PN! andE~ OP! are usually quite messy, it is often easier to
argue forP2 andP1 directly+

We will also look into the problem of choosingp, k, andr to minimize these
probabilities+ Due to the messiness of the probability function, only limited results
have been obtained+
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2. A GENERAL APPROACH TO COMPUTE THE PROBABILITIES
OF UNRESOLVED CLONES

LetM be at3n matrix andD a set ofd positives+We say that the rows~columns! are
i+d+ if the distribution of the number of 1-entries are identical for all rows~columns!+
Furthermore, if the distribution is independent between the rows~columns!, then we
say the rows~columns! are i+i+d+ In the random designs we study here, the rows and
the columns are always i+d+

We say a row and a columnintersectif the intersection cell contains a 1-entry+
Partition the rows ofM into three partsX,Y,Z according to whether a pool intersects
D at least twice, exactly once, or not+ Define f ~z! 5 P~6Z65 z!+

Theorem 2.1: Suppose that the rows are i.d. Then,

f ~z! 5 S t

zD(
i5z

t

~21! i2zSt 2 z

i 2 zD
3 P~i specified rows including Z not intersecting D!+

Proof: f ~z! is computed by an inclusion–exclusion formula+ n

Corollary 2.2: Suppose that the rows are i.d. and the columns are i.i.d. Then,

f ~z! 5 S t

zD(
i5z

t

~21! i2zSt 2 z

i 2 zD
3 @P~a column not intersecting the i rows including Z!# d+

Proof: The event “thei rows includingZ not intersectingD” can also be expressed
as “d columns not intersecting thei rows includingZ+” n

When the rows are i+i+d+, thenf ~z! is much simpler+

Lemma 2.3: Suppose that the rows are i.i.d. Then,

f ~z! 5 S t

zD @P~a row not intersecting D!# z@12 P~a row not intersecting D!# t2z+

Next, we giveP~ PN 5 u! and thenP~ OP 5 v!+

Theorem 2.4: Suppose that the columns and rows are both i.d. Then,

P~ PN 5 u! 5 (
z50

t

f ~z!Sn 2 d

u DP~exactly u negative columns not in Z!+

Proof: A negative column not inZ is an unresolved negative+ n

Either the column i+i+d+ or the row i+i+d+ will bring some simplification+
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Corollary 2.5: Suppose that the rows are i.d. and the columns are i.i.d. Then,

P~ PN 5 u! 5 (
z50

t

f ~z!Sn 2 d

u D @P~a negative column not in Z!# u

3 @P~a negative column in Z!# n2d2u+

Corollary 2.6: Suppose that the columns are i.d. and the rows are i.i.d. Then,

P~ PN 5 u! 5 (
z50

t

f ~z!Sn 2 d

u D(
j5u

n2d

~21! j2uSn 2 d 2 u

j 2 u D
3 FP~a pool in Z does not contain any of the

j specified negative clones including PN! G z

+

Let f ~z, y! denoteP~6Z65 z,6Y65 y! andqS the number of rows inSnot con-
taining any unresolved negative+

Theorem 2.7: Suppose that the columns and rows are both i.d. Then,

P~ Tp 5 v! 5 (
z50

t

(
y50

t2z

f ~z, y! (
u50

n2d

P~ PN 5 u6z! (
qY50

y

P~qY6y,u!P~ OP 5 v6qY!,

where

P~ OP 5 v6qS! 5Sd

vD d2qS (
l50

d2v

~21! lS d 2 v

d 2 v2 lD~d 2 v2 l !qS+

Proof: Note thatP~ OP5 v6qY! is the probability thatv positives do not appear in the
qY rows, hence unresolved+ P~ OP 5 v6qY! can also be viewed as the probability of
gettingv empty holes in rollingqY balls intod holes+ n

Although, in principle, the computation ofy andq can be combined into one
step, such a computation would be difficult to carry out unless the rows are inde-
pendent+ Here, we give the i+i+d+ version+

Corollary 2.8: Suppose that the columns are i.d. and the rows are i.i.d. Then,

P~ OP 5 v! 5 (
z50

t

f ~z! (
u50

n2d

P~ PN 5 u6z! (
qXøY50

t2z St 2 z

qXøY
D

3 @P~E!# qXøY @12 P~E!# t2z2qXøYP~v6qXøY!,

where E is the event that a row in XøY contains a single positive but no unresolved
negative.

We next discuss the computation ofP2 andP1+ For convenience, in computing
P2, the negative whose resolvability is in concern will be denoted byC+ In comput-
ing P1, D1 is the positive in concern+We first give a general formula for comput-
ing P2+
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Theorem 2.9: Suppose that the rows are i.d. Then, P2~C!5(z50
t f ~z!P~Z does not

contain C!.

Corollary 2.10: P2 is independent of n if and only if f~z! is independent of n.

Corollary 2.11: P2 is independent of n if the columns are independent.

Proof: f ~z! is determined by the columns ofD, hence independent ofn if the col-
umns are independent+ n

Corollary 2.12: Suppose that the rows are i.i.d. Then,

P2~C! 5 (
z50

t

f ~z!@P~a pool of Z does not contain C!# z+

However,we can do better by combining the computation of the probabilities of
z and of the property+

Theorem 2.13: Suppose that the rows are i.i.d. Then,

P2~C! 5 @12 P~a pool contains C, but none of D!# t+

Even without the row i+d+,we can interpret Theorem 2+9 in a way such that there
is no need to computef ~z!+ Let theweightof a column be the number of its 1-entries+

Theorem 2.14: Suppose that C has weight k. Then,

P2~C! 5 (
i50

k

~21! iSk

iDP~the i specified rows each not intersecting D!+

Proof: The i specified rows are in thek rows contained inC+ n

Corollary 2.15: Suppose that the columns are i.i.d. Then,

P2~C! 5 (
i50

k

~21! iSk

iD @P~the i appearances of C does not intersect D1!# d+

To computeP1, let Y1 be the subset ofYcontainingD1 but no otherDj + Define

f ~z, y1! 5 P~6Z65 z,6Y165 y1!+

Theorem 2.16: Suppose that the rows are i.d. Then,

P1~D1! 5 (
z50

t

(
y150

t2z

f ~z, y1! (
i50

y1

~21! iSy1

i D
3 PSall negatives either appearing in Z or not

appearing in the i specified rows of Y1
D+

Proof: The last sum gives the probability that no row inY1 satisfies the condition
that every negative either appears inZ ~hence resolved! or does not appear in the row
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of Y1 ~hence not obstructing the identification ofD1!+ Note that the condition char-
acterizes the identification ofD1+ n

Corollary 2.17: Suppose that the rows are i.d. and the columns are i.i.d. Then,

P1~D1! 5 (
z50

t

(
y150

t2z

f ~z, y1! (
i50

y1

~21! iSy1

i D
3 


P~a negative appears in Z!

1 PSa negative does not appear in Z,
nor in the specified rows of Y1

DGn2d

With the row i+i+d+, we obtain a different set of formulas+

Theorem 2.18: Suppose that the rows are i.i.d. Then,

P1~D1! 5 (
z50

t

f ~z! (
u50

n2d

P~ PN 5 u6z!

3 F12 PSa row in Xø Y contains D1 but no other Di ,
nor any of the u unresolved negatives DG t2z

+

Proof: The @ # term is the probability thatD1 is not identified by any of thet 2 z
rows, hence unresolved+ n

Theorem 2.19: Suppose that the columns are i.d. and the rows are i.i.d. Then,

P1~D1! 5 (
u50

n2dSn 2 d

u D(
j5u

n2d

~21! j2uSn 2 d 2 u

j 2 u D
3 


P~a pool is positive and does not identify D1 given PN 5 u!

1 PSa pool is negative and does not contain a
specified set of j negatives including PN DGt

+

Proof:

P1~D1! 5 (
u50

n2d

P~ PN 5 u!P~P1~D1!6 PN 5 u!

5 (
u50

n2dSn 2 d

u D(
j5u

n2d

~21! j2uSn 2 d 2 u

j 2 u D
3 P~besides PN, j 2 u additional negative clones not in Z!

3 P~P1~D1!6 PN 5 u!+

The second equality is true by Corollary 2+6+
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Define the following:

A: the event that besidesPN, exactlyj 2 u additional clones not inZ

B: the eventD1 not identified given PN 5 u

SinceB depends onD and PN, andA depends onj 2 u clones not inD ø PN, A andB
are independent events+ Hence,

P~A!P~B! 5 P~AB!

5 FPSa pool does not identify D1 given PN 5 u+
If the pool is negative, then a specified
set of j negatives including PN is not in it

DG t

5 


P~a pool is positive and does not identify D1, given PN 5 u!

1 PSa pool is negative and does not contain a
specified set of j negatives including PN DG t

+ n

Theorem 2+19 can also be obtained from Theorem 2+18 by replacingP~ PN5u6z!
with the terms in Corollary 2+6 and summing overz+ The proof we gave here is more
insightful+

3. RANDOM INCIDENCE DESIGN

Let M be at 3 n RID+Note that both rows and columns are i+i+d+Using the row i+i+d+,
the following is easily obtained:

Lemma 3.1:

f ~z! 5 S t

zD~12 p!dz@12 ~12 p!d# t2z+

Hwang@4# gave the following theorem+

Theorem 3.2:

P~ PN 5 u! 5 (
z50

t S t

zD~12 p!dz@12 ~12 p!d# t2z

3 Sn 2 d

u D~12 p!zu@12 ~12 p!z# n2d2u +

Proof: The proof follows immediately from Corollary 2+5 and Lemma 3+1+ n
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The special caseu 5 0 was first given by Balding et al+ @1# +

Corollary 3.3:

P~ PN 5 0! 5 (
z50

t S t

zD~12 p!dz@12 ~12 p!d# t2z@12 ~12 p!z# n2d+

Corollary 3.4: E~ PN! 5 ~n 2 d!@12 p~12 p!d# t+

Proof:

E~ PN! 5 (
z50

t S t

zD~12 p!dz@12 ~12 p!d# t2z

3 (
u50

n2d

uSn 2 d

u D~12 p!zu@12 ~12 p!z# n2d2u

5 (
z50

t S t

zD~12 p!dz@12 ~12 p!d# t2z~n 2 d!~12 p!z

5 ~n 2 d!F(
z50

t S t

zD~12 p!~d11!z@12 ~12 p!d# t2zG
5 ~n 2 d!@~12 p!d11 1 1 2 ~12 p!d# t

5 ~n 2 d!@12 p~12 p!d# t+
n

Corollary 3.5: P2 5 @12 p~12 p!d# t+

Note that Corollary 3+5 can also be argued directly from Theorem 2+13 by noting
thatp~12 p!d is the probability that a row containsC but none ofD+ Then, Corol-
lary 3+5 can be obtained by multiplying by~n 2 d!+We did it the hard way just for
demonstration purposes+

Let p*
2 minimizeP2 ~or E~ PN!!+ Balding et al+ @1# gave the following:

Theorem 3.6: p*
2 5 ~d 1 1!21+

Proof: Clearly, to minimizeP2 is to maximizep~12 p!d+ Set

d

dp
p~12 p!d 5 ~12 p!d 2 pd~12 p!d21 5 0+

We obtainp*
2 5 ~d 1 1!21+ n
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Let p0
2 minimizeP~ PN 5 0!+ No analytic solution ofp0

2 is known+
The corresponding probabilities of unresolved positives are considerably messier+

Theorem 3.7:

P~ OP 5 v! 5 (
z50

t S t

zD~12 p!dz@12 ~12 p!d# t2z

3 Sn 2 d

u D(
u50

n2d

~12 p!zu@12 ~12 p!z# n2d2u

3 (
q50

t2zSt 2 z

q DF dp~12 p!d211u

12 ~12 p!d GqF12
dp~12 p!d211u

12 ~12 p!d G t2z2q

3 Sd

vD d2q (
l50

d2v

~21! lS d 2 v

d 2 v2 lD~d 2 v2 l !q+

Proof: This is proved by Corollary 2+8+ n

BecauseP~ OP 5 v! is unwieldy to maneuver, it is desirable to deriveP1 and
E~ OP! independently+ We give several such derivations and compare their terms’
complexities+ First, a lemma is needed+

Lemma 3.8:

f ~z, y1! 5 S t

z, y1
D~12 p!dz@ p~12 p!d21# y1 @12 ~12 p!d21# t2z2y1+

Proof: A pool is not inZ ø Y1 if and only if it contains a positive other thanD1+
n

We can use the column i+i+d+ to computeP1+

Theorem 3.9:

P1 5 (
z50

t

(
y150

t2z S t

z, y1
D~12 p!dz@ p~12 p!d21# y1 @12 ~12 p!d21# t2z2y1

3 (
i50

y1

~21! iSy1

i D @12 ~12 p!z 1 ~12 p!z1i # n2d+

Proof: 12 ~12 p!z is the probability that a negative appears inZ, and~12 p!z1i

is the probability that a negative does not appear inZ or in the i specified rows
of Y1+ Theorem 3+9 follows immediately from Corollary 2+17+ n

Note thatP1 in Theorem 3+9 can be computed inO~t 3! time+
Alternatively,we can use the row i+i+d+ formula in Corollary 2+6 ~after summing

overz!+
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Theorem 3.10:

P1 5 (
u50

n2dSn 2 d

u D(
j5u

n2d

~21! j2uSn 2 d 2 u

j 2 u D
3 @12 ~12 p!d 2 p~12 p!d211u 1 ~12 p!d1j # t+

Proof: 1 2 ~1 2 p!d is the probability that a pool contains a positive; hence, it
is positive+ In a positive pool, D1 is identified if and only if it is the only positive
in the pool and no unresolved negative is in the pool+ The probability of this is
p~1 2 p!d211u, given there areu negative pools+ Therefore, 1 2 ~1 2 p!d 2
p~12 p!d211u is the probability that a pool is positive but not identifyingD1 given
PN 5 u+

On the other hand, ~12 p!d is the probability that a pool is negative and~12 p! j

is the probability that it does not contain thej specified negatives includingPN+Hence,
~12 p!d1j is the probability that both events happen+ Theorem 3+10 follows imme-
diately from Theorem 2+19+ n

Note thatP1 in Theorem 3+10 can be computed inO~n2! time+
Finally, we can also use the other row i+i+d+ formula+

Theorem 3.11:

P1 5 (
z50

t S t

zD~12 p!dz@12 ~12 p!d# t2z

3 (
u50

n2dSn 2 d

u D~12 p!zu@12 ~12 p!z# n2d2u

3 F12
p~12 p!d211u

12 ~12 p!d G t2z

+

Proof: p~12p!d211u is the unconditional probability that a pool containsD1 but no
otherDi nor any unresolved negative+ Its division by 12 ~1 2 p!d given the same
probability conditional on the pool is positive~in X ø Y!+ Theorem 3+11 follows
immediately from Theorem 2+18+ n

P1 in Theorem 3+11 can be computed inO~tn! time+ Sincet is usually much
smaller thann, Theorem 3+11 seems to be an improvement over Theorem 3+10 with
respect to computation+ Note that Theorem 3+9 uses the column independence with
time complexity a function oft, Theorem 3+10 uses the row independence with time
complexity a function ofn, and Theorem 3+11 uses both column and row indepen-
dence with time complexity a function of botht andn+

Corollary 3.12: E~ OP! 5 dP1

No analytic solution has been given to minimize eitherP1 or P~ OP 5 0!+
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4. RANDOM k-SET DESIGN

The columns in RkSD are i+i+d+, but the rows are only i+d+

Lemma 4.1:

f ~z! 5 S t

zD(
i5z

t

~21! i2zSt 2 z

i 2 zD3 S
t 2 i

k D
S t

kD 4
d

+

Proof: Since the rows are not independent, the inclusion–exclusion formula is used
to compute the exact probability ofz+ n

Theorem 4.2:

P~ PN 5 u! 5 (
z50

t S t

zD(
i5z

t

~21! i2zSt 2 z

i 2 zD3 S
t 2 i

k D
S t

kD 4
d

3 Sn 2 d

u D3 S
t 2 z

k D
S t

kD 4
u

312

St 2 z

k D
S t

kD 4
n2d2u

+

Proof: The probability that a negative does not appear in a row ofZ is

St 2 z
k
DYS t

k
D+ Theorem 4+2 now follows immediately from Corollary 2+4+ n

It is easier to argue forP2 independently than fromP~ PN 5 u!+

Theorem 4.3:

P2 5 (
i50

k

~21! iSk

iD3 S
t 2 i

k D
S t

kD 4
d

+

Proof: The probability that a positive does not appear ini of thek appearances of

C is St 2 i
k
DYS t

k
D+ Theorem 4+3 follows immediately from Corollary 2+15+ n

Corollary 4.4: E~ PN! 5 ~n 2 d!P2+

Let k*
2 minimizeP2+Our formula forP2 is very similar to that Macula@8# gave

for the probability of a positive being unresolved under the representative decoding
@6# + Hence, we imitate the approximation he gave:
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P2 ; (
i50

k

~21! iSk

iDS12
i

tDkd

; (
i50

k

~21! iSk

iDe~2kd0t ! i

5 ~12 e~2kd0t ! !k+

Then, k'5 ~t ln 2!0d minimizes~12 e2kd0t!k+
To computeP~ OP5 v!, we needf ~z, y!+ Let P~ y,d! denote the set of partitions

p 5 y1, + + + , yd of y 5 (j51
d yj distinct objects intod distinct parts with 0# yj # k+

To computeP1, we needf ~z, y1!+

Lemma 4.7:

f ~z, y1! 5 S t

z, y1
D S

t 2 z2 y1

k 2 y1
D

S t

kD
(
h50

t2z2y1

~21!hSt 2 z2 y1

h D3 S
t 2 z2 y1 2 h

k D
S t

kD 4
d21

+

Proof: By definitions ofzandy1, each of the remainingt 2 z2 y1 pools must con-
tain aDi , i Þ1+The last sum in Lemma 4+7 gives this probability using the inclusion–

exclusion formula,whereSt 2 z2 y1 2 h

k
DYS t

k
D is the probability thatDi does not appear

in a specified set ofz1 y11 h pools~including the pools inZ ø Y1!+ Finally,D1 must
appear in they1 rows ofY1+ Its otherk2 y1 appearances must not be inZ ø Y1+ n

Theorem 4.8:

P1~D1! 5 (
z50

t

(
y150

k S t

z, y1
D S

t 2 z2 y1

k 2 y1
D

S t

kD
3 (

h50

t2z2y1

~21!hSt 2 z2 y1

h D3 S
t 2 z2 y1 2 h

k D
S t

kD 4
d21

3 (
i50

y1

~21! iSy1

i D3 S
t

kD2St 2 z

k D1St 2 z2 i

k D
S t

kD 4
n2d

+
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Proof: FS t
k
D2 St 2 z

k
DGYS t

k
D is the probability that a negative appears inZ+

St 2 z2 i
k

DYS t
k
D is the probability that a negative does not appear inz or in thei spec-

ified pools ofY1+ Theorem 4+8 follows immediately from Corollary 2+17+ n

Note thatP1 in Theorem 4+8 can be computed inO~t 2k2! time+

Corollary 4.9: E~ OP! 5 dP1+

No analytic solution has been given to minimize eitherP1 or P~ OP 5 0!+

5. RANDOM r -SIZE DESIGN

The rows of RrSD are i+i+d+, but the columns are only i+d+

Lemma 5.1:

f ~z! 5 S t

zD3 S
n 2 d

r D
Sn

rD 4
z

312

Sn 2 d

r D
Sn

rD 4
t2z

+

Proof: Sn 2 d
r
DYSn

r
D is the probability that a pool does not contain any positive;

hence, it is in Z+ n

Theorem 5.2:

P~ PN 5 u! 5 (
z50

t S t

zD3 S
n 2 d

r D
Sn

rD 4
z

312

Sn 2 d

r D
Sn

rD 4
t2z

3 Sn 2 d

u D(
j5u

n2d

~21! j2uSn 2 d

j 2 uD3 S
n 2 d 2 j

r D
Sn 2 d

r D 4
z

+

Proof: Sn 2 d 2 j
r

DYSn 2 d
r
D is the probability that a pool inZ does not contain any of

the j specified negatives, including the givenu ones+ Theorem 5+2 now follows
immediately from Corollary 2+6 and Lemma 5+1+ n

It is simpler to deriveP2 directly+
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Theorem 5.3:

P2 5 312

Sn 2 d 2 1

r 2 1 D
Sn

rD 4
t

+

Proof: A pool containsC, but none ofD must take its otherr 2 1 clones from the
othern2d21 negatives+Theorem 5+3 now follows immediately from Theorem 2+13+

n

Let r*
2 minimizeP2+ Lin ~private communication! observed the following:

Theorem 5.4: r*
2 [ $[r *] , {r *}% where r* 5 ~n 2 d!0~d 1 1!.

Proof: Clearly, minimizing P2 is the same as maximizingSn 2 d 2 1
r 2 1

DYSn
r
D [ g~r !+

g~r 1 1!

g~r !
5

Sn 2 d 2 1

r DSn

rD
Sn 2 d 2 1

r 2 1 DS n

r 1 1D
5

~n 2 d 2 r !~r 1 1!

r ~n 2 r !
5 S12

d

n 2 r
DS11

1

r
D+

Whenr increases, both factors decrease+ Hence, the ratio decreases inr, and maxi-
mumg~r ! is obtained at the two integers that flank ther * satisfyingg~r 11!0g~r ! 5
1; that is, r *5 ~n 2 d!0~d 1 1!+ n

Note thatr * divided by the number of negatives yieldsP*
2 in RID+

For the unresolved positive, we have the following theorem+

Theorem 5.5:

P~ OP 5 v! 5 (
z50

t S t

zD3 S
n 2 d

r D
Sn

rD 4
z

312

Sn 2 d

r D
Sn

rD 4
t2z

(
u50

n2dSn 2 d

u D(
j5u

n2d

~21! j2u

3 Sn 2 d 2 u

j 2 u D3 S
n 2 d 2 j

r D
Sn 2 d 2 u

r D 4
z

(
q50

t2zS t

qD3 dSn 2 d 2 u

r 2 1 D
Sn

rD2Sn 2 d

r D 4
q

3 312

dSn 2 d 2 u

r 2 1 D
Sn

rD2Sn 2 d

r D 4
t2z2q

Sd

vD d2q (
l50

d2v

~21! lS d 2 v

d 2 v2 lD~d 2 v2 l !q+
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Proof: Theorem 5+5 follows from Corollary 2+8+We will only comment on the term
P~E! ~defined as in Corollary 2+8!, as the other terms have been obtained earlier+

Sn 2 d 2 z
r 2 1 D is the number of ways of choosing a~positive! pool containingD1 but

no otherDj nor any unresolved negative+ d times this quantity counts the number of
ways of choosing a simple positive~not necessarilyD1!, but no unresolved nega-
tives+ Sn

rD 2 Sn 2 d
r D is the number of ways of choosing a positive row+ Thus, the ratio

dSn 2 d 2 z

r 2 1 D
Sn

rD2Sn 2 d

r D
gives the conditional probability that a positive pool contains a single positive and
no unresolved negative~hence, the positive is identified!+ n

Again, we deriveP1 independently+

Theorem 5.6:

P1~D1! 5 (
u50

n2dSn 2 d

u D(
j5u

n2d

~21! j2uSn 2 d 2 u

j 2 u D

3 3 S
n

rD2Sn 2 d

r D2Sn 2 d 2 u

r 2 1 D
Sn

rD
1

Sn 2 d 2 j

r D
Sn

rD 4
t

+

Proof: Sn
rD 2 Sn 2 d

r D is the number of ways of choosing a positive pool+ Sn 2 d 2 u
j 2 u D is

the number of ways of choosing a pool containingD1 but no otherDj nor an un-
resolved negative~D1 is identified!+ Hence,

Sn

rD2Sn 2 d

r D2Sn 2 d 2 u

r 2 1 D
is the number of ways of choosing a positive pool not identifyingD1+ Sn 2 d 2 j

r D is the

number of ways of choosing a negative pool not containing any of thej specified
negatives including PN+ Theorem 5+6 now follows immediately from Theorem 2+19+

n

P1 in Theorem 5+6 can be computed inO~n2! time+
Analytic solutions for optimalr to minimize eitherP1 or P~ OP 5 0! are not

known+
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6. RANDOM DISTINCT k -SET DESIGN

RDkSD is neither column independent, nor row independent+ Hence the computa-
tion of the probabilities of unresolved clones poses both a challenge but also an
opportunity to expand the formulas beyond the independence threshold+

Lemma 6.1:

f ~z! 5 S t

zD(
i5z

t

~21! i2zSt 2 z

i 2 zD
1S

t 2 i

k D
d

2
1S

t

kD
d
2
+

Proof: All k appearances of a positive must be outside ofZ+ There areSt 2 i
k D such

distinct k-sets from which to choosed+ Since the rows are not independent, the
inclusion–exclusion formula is required+ n

Theorem 6.2:

P~ PN 5 u! 5 (
z50

t S t

zD(
i5z

t

~21! i2zSt 2 z

i 2 zD3 1
St 2 i

k D
d

2
1S

t

kD
d
2 4

3

1S
t 2 z

k D2 d

u
2 1S

t

kD2St 2 z

k D
n 2 d 2 u

2
1S

t

kD2 d

n 2 d
2

+

Proof: There areSt 2 z
k D k-sets not intersectingZ+ d of them are chosen by the posi-

tives+ Theu unresolved negatives must be chosen from the remaining ones, and the
n 2 d 2 u resolved negatives must be chosen from theS t

kD 2 St 2 z
k D k-sets intersect-

ing Z+ Theorem 6+2 now follows from Theorem 2+4+ n
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We argue forP2 independently+

Theorem 6.3:

P2 5 12 (
i51

k

~21! i21Sk

iD
1S

t 2 i

k D
d

2
1S

t

kD2 1

d
2
+

Proof: i is the number of rows intersectingC+ The ratio represents the probability
that no positive appears in thesei rows+ n

We do not have a formula forP~ OP 5 v!, even f ~z, y! seems too difficult to
attempt+ Hwang and Liu@5# gave formulas forP1 andf ~z, y1!+ Let ex 5 1 if x 5 0,
otherwiseex 5 0+

Lemma 6.4:

f ~z, y1! 5 S t

z, y1
D S

t 2 z2 y1

k 2 y1
D2 ey1

~d 2 1!

S t

kD2 ~d 2 1!

3 (
h50

t2z2y1

~21!hSt 2 z2 y1

h D 1S
t 2 z2 y1 2 h

k D
d 2 1

2
1 S

t

kD
d 2 1

2
+

Proof: The sum in Lemma 6+4 gives this probability using the inclusion–exclusion

formula, whereSSt 2 z2 y1 2 h

k
D

d 2 1
DYS S t

kD
d 2 1

D is the probability that noDj , j Þ 1, appears in

a specified set ofz 1 y1 1 h pools ~including the pools inZ ø Y1!+ There are

St 2 z2 y1

k 2 y1
D ways of choosingD1+ However, if y1 5 0, thenD1 is also chosen from the

St 2 z
k D k-sets, hence~d 2 1! k-sets, which have been selected as positives, should be

subtracted+ n
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Theorem 6.5:

P1 5 (
z50

t

(
y150

k S t

z, y1
D S

t 2 z2 y1

k 2 y1
D2 ey1

~d 2 1!

S t

kD2 ~d 2 1!

3 (
h50

t2z2y1

~21!hSt 2 z2 y1

h D 1S
t 2 z2 y1 2 h

k D
d 2 1

2
1 S

t

kD
d 2 1

2

3 (
i50

y

~21! iSy1

i D
1S

t

kD2St 2 z

k D1St 2 z2 i

k D2 ~d 2 1! 2 ei

n 2 d
2

1S
t

kD2 d

n 2 d
2

+

Proof: S t
kD 2 St 2 z

k D is the number ofk-sets intersectingZ, andSt 2 z2 i
k D is the number

of k-sets intersecting neitherZ nor thei specified rows+ Thus, ak-set taken from the
union of the two sets satisfies the condition in Theorem 2+16+However, the~d21!Dj ,
j Þ 1, are also taken from the second set+ Therefore, thesed 2 1 k-sets must be
subtracted before then2 d negatives can be chosen+ Further, if i 5 0, thenD1 is also
chosen from the second set; hence, one morek-set should be subtracted+ n

No analytic solution for optimalk to minimize anyP2, P~ PN 5 0!, P1, and
P~ OP 5 0! is known+

7. SUMMARY AND NUMERICAL DATA

The method in@5# first computes the probabilityu~ j ! that there arej unresolved
negatives and then computesf ~z, y1! from (j u~ j ! f ~z, y16 j !+ The summation overj
requiresO~n! times+ The general approach we proposed in this article takes advan-
tage of column independence in RID and RkSD to focus on the probability of a
single negative blocking the identification of the positive and then to multiply that
probability~n2 d!-fold to account for all negative clones+ Thus, there is no need to
sum overj+
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Bruno et al+ @2# eliminated the summation overj for RkSD, not through the
argument we offered but simply through combinatorial maneuvering+ However,
they overlooked something that resulted in an unnecessary inflation of the time
complexity toO~t 4!+ For RkSD and RDkSD, the range ofy1 is from 1 tok, where
k is typically much smaller thant+ Thus, the summation overy1, as well as the
summation overO~ y1! terms when computing the probability that ally1 appear-
ances intersect with some unresolved negatives, should both involveO~k! terms
instead ofO~t !+ This brings a reduction of time complexity toO~k2t 2!+ Bruno
et al+ may have missed this point by using the variablez1 y1 instead ofy1, which
somehow obscured the number of terms+We should also point out that the substi-
tution of O~k! for O~t ! in two summations in RkSD and RDkSD was also not
observed in Hwang and Liu@5# +

Figure 1. Comparison between RkSD and RDkSD~dashed line! with n 5 5000,
t 5 70, andd 5 3 ~a! or d 5 5 ~b!+
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For RDkSD, although the columns are not independent, they are structured well
enough so that we can argue over then 2 d negatives collectively—again, no need
to introducej+ For RrSD, our general approach takes advantage of row independence
to focus on the probability that a positive cannot be identified in a certain pool, and
then to multiply that probabilityt-fold to account for all pools+ Hence, the time
complexity is reduced toO~n2!, which is independent oft; the old method needs
O~n2t 3! times+

The general approach helps us speed up the computation+We can only compute
for n # 100 in@5# , whereas we can compute forn $ 1000, even forn 5 10,000 for
some designs now+Our program is written by Mathematica and not optimized+Hence,
there is still the possibility for computation of larger parameters+

We present some numerical data in this section+First,we draw the RkSD and the
RDkSD together in Figure 1 for easier comparison+ As mentioned in Section 1, the

Figure 2. Comparison between RID~dashed line! and RkSD~solid line! with n5
5000, t 5 70, andd 5 3 ~a! or d 5 5 ~b!+
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difference between RkSD and RDkSD is slight+ Hence, during the pool’s construc-
tion, rejecting anyk-set that already occurs in the design@1# becomes unnecessary+

Then, the comparison ofP1 between RID and RkSD is presented in Figure 2+
Because the range of possiblep is from zero to one and the range of possiblek is from
zero tot, we makek5 t 3 p for normalization+With thek restriction on the column
weight, RkSD performs better than RID+ Sometimes, the difference between these
two designs is very significant and can be critical for their suitability+ For example,
in Figure 3a,whenn510,000, t585, andd55, the optimalP1 of RkSD is less than
0+1 and makes it a good design, whereas that of RID is about 0+69+

Figure 4 presents the comparison ofP1 between RID and RrSD+Here,we make
r 5 n3 p+ The performance of RrSD is about the same with RID, hence worse than
RkSD+ It seems to suggest that the column structure~of RkSD! is much more im-
portant than the row structure~of RrSD!, although we have no explanation for it+

The data we show in Figure 4 has parametersn 5 1298 andt 5 47, which are
much smaller than that we use in the comparison between RID and RkSD+ This is
because the time complexity of computingP1 for RrSD is O~n2!, whereas for
RkSD, it is O~k2t 2!+ Whenn is large, kt is usually much smaller thann, so that
P1 of RkSD is still computable and it takes an unacceptably long time to compute
P1 for RrSD+

Although the time complexity of our formula for computingP1 of RkSD is
claimed to beO~k2t 2!, which is independent ofn, this ignores the fact that whenn
grows, the numbers in the formula have more bits and the division of large numbers
takes longer to compute+Right now,we can compute forn#10,000 withkt;1500+
We still need more efficient equations to deal with larger parameters~e+g+, for n is in
the order of 106!+

In case that no explicit exact formulas can be obtained, we need good approx-
imations in explicit forms+ The reason of the need for explicit forms is not only for

Figure 3. The performance difference between RID~dashed line! and RkSD~solid
line! with n 5 10,000, t 5 85, andd 5 5+
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faster computation but also for being able to solve for optimal design parametersp,
k, andr analytically+ The numerical evidence certainly suggests that a unique opti-
mum exists for each design+

Percus, Percus, Bruno, and Torney@9# gave an approximation whose leading
term givesP2 if the rows were independent, then correction terms and some higher-
order terms+ For example, the approximation ofP2 for RkSD is Eq+ ~42! of @9# + The
first term isP2 for RkSD if the rows were independent+The second term corrects for
this independence assumption and the third term reflects the consequences of dis-
persion and nondiscreteness of the number of positives+
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