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Abstract. Under a suitable bunching condition, we establish that stable holonomies inside
center-stable manifolds for C1+β diffeomorphisms are uniformly bi-Lipschitz and, in fact,
C1+Hölder. This verifies the ergodicity of suitably center-bunched, essentially accessi-
ble, partially hyperbolic C1+β diffeomorphisms and verifies that the Ledrappier–Young
entropy formula holds for C1+β diffeomorphisms of compact manifolds.

Key words: holonomies, partial hyperbolicity, ergodicity, entropy
2020 Mathematics Subject Classification: 37C86 (Primary); 37C40, 37D30 (Secondary)

1. Introduction
In this paper we establish that ‘fake’ stable holonomies inside ‘fake’ center-stable
manifolds for sufficiently bunchedC1+β diffeomorphismsare uniformly bi-Lipschitz and,
in fact, C1+Hölder. This establishes two folklore results in smooth ergodic theory, the
primary motivation for this paper. We explain these two folklore results in the remainder
of this introduction in order to motivate our main technicalresult.

1.1. Ergodicity of partially hyperbolic diffeomorphisms. In [BW1], Burns and Wilkin-
son established the ergodicity (and K-property) of partially hyperbolic, center-bunched,
essentially accessible, C2 volume-preserving diffeomorphisms. This extends a number
of earlier results, including [GPS, PS2]. A similar result (with stronger center-bunching
conditions) was announced for C1+δ-diffeomorphisms. However, it seems that the bunch-
ing condition given in [BW1, Theorem 0.3] is possibly too weak for the method of
proof. A proof of the technical result needed to establish [BW1, Theorem 0.3] was
circulated as an unpublished note in [BW2]. It seems some of the details of the proof
in [BW2] are incorrect, specifically [BW2, Lemma 1.1]. We replace this lemma with
Lemma 3.1 below; however, we note that our Lemma 3.1 requires a stronger bunching
condition imposed by condition (6) below. The results of this note replace the main result
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in [BW2] and we obtain a proof of [BW1, Theorem 0.3] (under a stronger bunching
hypothesis).

We refer the reader to [BW1] for definitions and complete arguments. Let M be a
compact manifold and, for β > 0, let f : M → M be a C1+β diffeomorphism. We assume
f admits a continuous, (Df )-equivariant partially hyperbolic splitting

TxM = Es(x) ⊕ Ec(x) ⊕ Eu(x);

in particular, there are continuous functions

μ(x) < ν(x) < γ (x) < γ̂ (x)−1 < ν̂(x)−1 < μ̂(x)−1

with ν̂(x), ν(x) < 1 such that:
• μ(x)‖v‖ < ‖Dxf v‖ < ν(x)‖v‖, for all v ∈ Es(x);
• γ (x)‖v‖ < ‖Dxf v‖ < γ̂ (x)−1‖v‖, for all v ∈ Ec(x);
• ν̂(x)−1‖v‖ < ‖Dxf v‖ < μ̂(x)−1‖v‖, for all v ∈ Eu(x).

THEOREM 1.1. Let f : M → M be a volume-preserving, essentially accessible, partially
hyperbolic C1+β diffeomorphism. Let θ̄ < β be such that

ν(x)γ −1(x) < μ(x)θ̄ , ν̂(x)γ̂ −1(x) < μ̂(x)θ̄ . (1)

Assume f satisfies the strong center-bunching hypothesis: there exists 0 < θ < θ̄ such that
for all x ∈ M ,

ν(x)θ > ν(x)βγ (x)−β , ν̂(x)θ > ν̂(x)β γ̂ (x)−β , (2)

and

max{ν(x), ν̂(x)}θ < γ (x)γ̂ (x). (3)

Then f is ergodic and has the K-property.

In [BW1, Theorem 0.3], the conclusion of Theorem 1.1 is asserted to hold under the
bunching condition

max{ν(x), ν̂(x)}θ̄ < γ (x)γ̂ (x) (4)

where θ̄ satisfies (1). Since 0 < max{ν(x), ν̂(x)} < 1, if θ < θ̄ we have

max{ν(x), ν̂(x)}θ̄ < max{ν(x), ν̂(x)}θ

and (3) implies (4). In many applications one expects γ (x) < 1, whence

ν(x) < ν(x)γ (x)−1 < ν(x)βγ (x)−β < 1.

In particular, condition (2) is non-trivial even when (1) holds and the bunching condition
(3) is strictly stronger than (4). Our proof seems to require a stronger bunching condition
in (3) implied by the additional estimate (2).

For justification of Theorem 1.1, we refer the reader to the paragraph preceding [BW1,
Theorem 0.3]. See also the discussion in the paragraph preceding ‘Step 2’ on page 467 of
[BW1] where Theorem 2.4 below replaces [BW1, Proposition 3.1(vii)].
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We note that if θ̄ satisfies (1) then θ = θ̄β satisfies (2) and we have the following
corollary.

COROLLARY 1.2. If, in Theorem 1.1, we have

max{ν(x), ν̂(x)}θ̄β < γ (x)γ̂ (x)

then f is ergodic and has the K-property.

Remark 1.3. Theorem 2.4 below establishes the smoothness of stable holonomies inside
center-stable manifolds for a choice of ‘globalized’ dynamics. In the language of [BW1],
this establishes the smoothness of holonomy maps by fake stable manifolds inside fake
center-stable manifolds. See the discussion in [BW1, Proposition 3.1(vii)]. We note that
dynamical coherence and the existence of ‘genuine’ center manifolds is neither assumed
nor required in the proof of [BW1].

In the case where the partially hyperbolic diffeomorphism f : M → M is dynamically
coherent, one could likely adapt the proof of Theorem 2.4 to show that the holonomy maps
by ‘genuine’ stable manifolds inside ‘genuine’ center-stable manifolds are C1+Hölder.

We emphasize that in the case where f : M → M is dynamically coherent, the
center-stable and center manifolds discussed in what follows are not the center-stable and
center manifolds for the dynamics of f. In particular, while f might admit compact center
manifolds, the ‘fake’ center manifolds we consider will never be compact.

1.2. Ledrappier–Young entropy formula. In two seminal papers [LY1, LY2], Ledrappier
and Young established remarkable results relating the metric entropy of a C2 diffeomor-
phism f : M → M of a compact manifold M , its Lyapunov exponents, and the geometry
of conditional measures along unstable manifolds. In [LY1], the Sinai–Ruelle–Bowen
(SRB) property of measures satisfying the Pesin entropy formula is established for C2

diffeomorphisms and measures with zero Lyapunov exponents. This extends Ledrappier’s
result from [Led] which established the SRB property for hyperbolic measures invariant
under C1+β diffeomorphisms satisfying the Pesin entropy formula. In [LY2], a more
general formula (in terms of Lyapunov exponents and transverse conditional dimensions)
for the entropy hμ(f ) of f with respect to a general ergodic f -invariant probability measure
μ is derived.

As remarked in [LY1, pp. 526], there is one crucial step in which the C2 hypothesis
rather than the C1+β hypothesis on the dynamics is used: establishing the Lipschitzness of
unstable holonomies inside center-unstable sets. In [LY2], the corresponding estimate is
the Lipschitzness of the holonomies along intermediate unstable foliations inside the total
unstable manifolds. In the case of hyperbolic measures, the entropy formula from [LY2] is
known to hold for C1+β diffeomorphisms as it is sufficient to establish the Lipschitzness
of Wi holonomies inside the Wi+1 manifolds (corresponding to Lyapunov exponents λi >

λi+1 > 0) on Pesin sets; this Lipschitzness of holonomies along intermediate unstable
manifolds was established in [BPS, Appendix]. However, the proof in [BPS, Appendix]
does not imply Lipschitzness of unstable holonomies inside center-unstable sets which
is essential in the proof of the main technical result of [LY1]: that the entropy of f is
‘carried entirely by the unstable manifolds’; see [LY1, Corollary 5.2]. The results of this
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note establish the Lipschitzness of unstable holonomies inside center-unstable sets which
confirms that the results of [LY1, LY2] hold for C1+β diffeomorphisms and invariant
measures with zero Lyapunov exponents. See §4 for a brief formulation and justification
of the Lipschitzness of unstable holonomies inside center-unstable sets.

To formulate results, fix β > 0 and let f : M → M be a C1+β diffeomorphism of a
compact k-dimensional manifold M. Let μ be an ergodic, f -invariant Borel probability
measure. We have the following generalizations of the main results of [LY1, LY2].

THEOREM 1.4. [LY2, Theorem A] hμ(f ) satisfies the Pesin entropy formula if and only
if μ has the SRB property.

THEOREM 1.5. [LY2, Theorem C′] For a general ergodic, f-invariant probability measure
μ, the entropy formula of [LY2, Theorem C′] remains valid.

1.3. Outline. In §2 we present an abstract setup in which the dynamics is assumed
to be a perturbation of linear dynamics. Our main result, Theorem 2.2, establishes that
stable holonomies are uniformly Lipschitz and, in fact, C1+Hölder under certain bunching
conditions. We formulate our main result, Theorem 2.2, in a sufficiently abstract setting so
that it may be applied to a number of settings. We reduce the proof of Theorem 2.2 to the
special case of Theorem 2.4. Section 3 is then devoted to the proof of Theorem 2.4. In §4
we briefly formulate and justify the main technical fact needed to establish Theorems 1.4
and 1.5.

2. Statement of main theorem
Our main result, Theorem 2.2 below, concerns the smoothness of stable holonomies inside
center-stable manifolds for sequences of C1+β diffeomorphisms that are assumed to be
perturbations of linear maps Ln : Rk → R

k with prescribed hyperbolicity properties. We
briefly explain the relationship between this setup and the results outlined above.

Consider a C1+β diffeomorphism f : M → M of a compact manifold and x ∈ M .
Using exponential charts expx : TxM → M we identify the local dynamics of f near x
with a C1+β diffeomorphism fx from a neighborhood of 0 in TxM to a neighborhood of
0 in Tf (x)M . Interpolating between fx and Dxf via a bump function, we extend fx to a
C1+β diffeomorphism

Fx : TxM → Tf (x)M

which coincides with Dxf outside a neighborhood of the origin. Taking the domain of the
bump function sufficiently small, we may further assume ‖Fx − Dxf ‖C1 and ‖Fx

−1 −
(Dxf )−1‖C1 are sufficiently small. If ‖Fx − Dxf ‖C1 and ‖Fx

−1 − (Dxf )−1‖C1 are
sufficiently small, hyperbolicity properties of Df along the orbit {f n(x) : n ∈ Z} induce
analogous hyperbolicity properties for the sequence of diffeomorphisms {Ff n(x) : n ∈ Z}.
In particular, if f admits a partially hyperbolic splitting then the sequence of maps
{Ff n(x) : n ∈ Z} admits a partially hyperbolic splitting. Moreover, if f satisfies bunching
conditions as in (1), (2), and (3) then the sequence of maps {Ff n(x) : n ∈ Z} satisfy
analogous bunching conditions.
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In the setting of non-uniformly hyperbolic dynamics, given a bi-regular point x for
the derivative cocycle, one may perform a further sequence of coordinate changes on
each Tf n(x)M; these are the so-called Lyapunov charts discussed in §4. Relative to these
new coordinates one may assume the globalized dynamics {Ff n(x) : n ∈ Z} is uniformly
partially hyperbolic and the hyperbolicity estimates are related to the Lyapunov exponents
of the sequence of linear maps {Df n(x)f : n ∈ Z}.

We formulate our main theorem for dynamics {Ff n(x) : n ∈ Z} that are perturbations
of linear maps, usually thinking of them as globalizations of local dynamics in local
coordinates. We establish smoothness of stable holonomies inside center-stable manifolds
for these globalized dynamics. If f is a partially hyperbolic diffeomorphism satisfying
sufficient bunching conditions then, in the language of [BW1, Proposition 3.1], this
establishes smoothness of ‘fake’ stable holonomies inside ‘fake’ center-stable manifolds
associated to an orbit {f n(x) : n ∈ Z}.

2.1. Setup. Fix k ∈ N and let Rk be decomposed into subvector spaces

R
k = R

s ⊕ R
c ⊕ R

u.

For each n ∈ Z, let An : Rs → R
s , Bn : Rc → R

c, and Cn : Ru → R
u be invertible linear

maps and let

Ln =
⎛
⎝ An 0 0

0 Bn 0
0 0 Cn

⎞
⎠

be the associated invertible linear map preserving the decomposition R
k = R

s ⊕ R
c ⊕ R

u.
We assume each component of the decomposition R

k = R
s ⊕ R

c ⊕ R
u is non-trivial,

though the results can be formulated (with fewer conditions) in the case where R
u is

degenerate.
We assume there are constants

−μ < η′
n < κ ′

n < γ ′
n ≤ γ̂ ′

n < κ̂ ′
n < η̂′

n < μ

such that for every n ∈ Z,
(1) eη′

n ≤ m(An) ≤ ‖An‖ ≤ eκ ′
n ,

(2) eγ ′
n ≤ m(Bn) ≤ ‖Bn‖ ≤ eγ̂ ′

n ,
(3) eκ̂ ′

n ≤ m(Cn) ≤ ‖Cn‖ ≤ eη̂′
n .

Here ‖ · ‖ is the operator norm induced by the standard norm on the corresponding
Euclidean spaces and m(A) := ‖A−1‖−1 denotes the associated conorm of A. Throughout,
we will further assume that sup{κ ′

n} < 0. We do not impose any assumptions on the signs†

of γ ′
n, γ̂ ′

n, κ̂ ′
n and η̂′

n.
We assume, moreover, that

inf{|κ ′
n − γ ′

n|, κ̂ ′
n − γ̂ ′

n} > 0.

† In the context of Theorem 1.1, we may assume that inf{κ̂ ′
n} > 0. In the context of Theorems 1.4 and 1.5, given

any fixed ε > 0, we may assume that γ ′
n = −ε < 0 < ε = γ̂ ′

n and that inf{κ̂ ′
n} > 0. We also note in the case

where sup{γ̂ ′
n} < 0, our main result, Theorem 2.2 below, should follow from [BPS, Appendix], perhaps with

stronger bunching conditions.
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Fix some

0 < ε0 ≤ inf{|κ ′
n − γ ′

n|, κ̂ ′
n − γ̂ ′

n, |κ ′
n|, 1}/10.

Anticipating perturbing the linear maps Ln below, we set

κn = κ ′
n + ε0, κ̂n = κ̂ ′

n − ε0, ηn = η′
n − ε0, η̂n = η̂′

n + ε0,

γn = γ ′
n − ε0, γ̂n = γ̂ ′

n + ε0.

2.2. Bunching criteria. Fix 0 < β < 1, which will be the Hölder regularity of the
derivatives of perturbations of Ln below. We assume that γ̂ ′

n − γ ′
n and ε0 are sufficiently

small so that there exists 0 < θ̄ < β satisfying

sup(κn − ηnθ̄ − γn) < 0 and sup(−κ̂n + η̂nθ̄ + γ̂n) < 0 (5)

and θ < θ̄ with

sup(κnβ − κnθ − γnβ) < 0 (6)

and

sup(γ̂n − γn + κnθ) < 0. (7)

These are the analogues of (1), (2), and (3) above.
Condition (5) ensures that certain invariant distributions defined below are uniformly

θ̄ -Hölder. Condition (7) is a standard bunching condition. Note that with θ = θ̄ , (7) is
the bunching condition stated in [BW1, Theorem 0.3]. Our proof, however, requires a
stronger bunching criteria imposed by (6). In particular, we use heavily (6) in our proof of
Lemma 3.1 below. Note from (5) that θ = βθ̄ satisfies (6).

2.3. Family of perturbations. We introduce the dynamics fn we study for the remainder
as C1 small perturbations of the linear maps Ln. We begin with some notational
conventions used throughout the paper.

2.3.1. Notational conventions. We let ‖ · ‖ denote the standard Euclidean norm on
R

k and write d for the induced distance. Given a subspace U ⊂ R
k , we write SU for

the unit sphere in U relative to the Euclidean norm ‖ · ‖. If T : U → V is linear we
write T∗ : SU → SV for the induced map. We recall that if T : U → V is a linear
isomorphism with a ≤ m(T ) ≤ ‖T ‖ ≤ b then T∗ is bi-Lipschitz with constants b−1a and
ba−1. Finally, if N ⊂ R

k is an embedded submanifold we write SN := ST N for the unit
sphere bundle over N. Given a diffeomorphism g : N1 → N2, we write g∗ : SN1 → SN2

for the renormalized derivative map

g∗(x, v) =
(

g(x),
1

‖Dxg(v)‖Dxg(v)

)
.

In what follows, we consider C1+β diffeomorphisms f : R
k → R

k with uniform
estimates on the (1 + β)-norms: namely, viewing x 
→ Dxf as a map from R

k to the space
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of linear maps, we assume that supx∈Rk ‖Dxf ‖ < ∞ and that Df is β-Hölder continuous
with

Hölβ(Df ) := sup
x �=y

{‖Dxf − Dyf ‖
d(x, y)β

}
< ∞.

Given submanifolds N1 and N2 and a diffeomorphism h : N1 → N2 then, as the linear
maps Dxh and Dyh have different domains for x �= y ∈ N1, we define the Hölder variation
of Dh and h∗ as functions between metric spaces: Assuming N1 has bounded diameter,
define the β-Hölder variation of Dh : T N1 → T N2 to be

Hölβ(Dh) := sup
(x,v) �=(y,u)∈SN1

{
d(Dh(x, v), Dh(y, u))

d((x, v), (y, u))β

}

where, given (x, v) and (y, u) in TR
k , we write

d((x, v), (y, u)) = max{d(x, y), d(v, u)}.
Similarly define Hölβ(h∗). The C1+β -norm of h is max{‖h‖C1 , Hölβ(Dh)}.

2.3.2. Families of perturbations. For the remainder of §2 and throughout §3, we fix
fn : Rk → R

k to be a sequence of C1+β diffeomorphisms with fn(0) = 0 for each n. Fix
ε′ > 0 sufficiently small satisfying Proposition 2.1 below. We assume there is a C0 > 1
such that for each n ∈ Z:
(1) ‖fn − Ln‖C1 ≤ ε′, and ‖fn

−1 − Ln
−1‖C1 ≤ ε′;

(2) Hölβ(Dfn) < C0, and Hölβ(Dfn
−1) < C0.

Note then that for some C1 ≥ C0 > 1 we have:
(3) Hölβloc((fn)∗) ≤ C1, and Hölβloc((fn

−1)∗) ≤ C1;
(4) ‖(Dxf

±1
n )∗‖C1 ≤ C1 and ‖Dxf

±1
n ‖ ≤ C1 for every x.

Here, Hölβloc(f∗) is the local Hölder variation of f∗ : SRk → SRk defined as

Hölβloc(f∗) := sup
0<d((x,v),(y,u))≤1

{
d(f∗(x, v), f∗(y, u))

d((x, v), (y, u))β

}
.

Moreover, as it holds in all applications we have in mind, one may assume that fn(y) =
Ln(y) for all y with ‖y‖ ≥ 1.

From the graph transform method, given ε′ > 0 sufficiently small and a sequence fn

of diffeomorphisms as above, we may construct foliations of R
k by pseudo-stable and

pseudo-unstable manifolds. (See [HPS, Theorem 5.1], [BW1, Proposition 3.1], or [PS1,
Theorem 3.16] for more details.) To summarize, we have the following proposition.

PROPOSITION 2.1. There exist β ′ > θ̄ and β ′′ > 0 so that for every sufficiently small
ε′ > 0 and every C0 > 1 as above there is a Ĉ > 0 such that for every n ∈ Z, � =
{u, c, s, cu, cs}, and x ∈ R

k there are manifolds W�
n(x) containing x with:

(1) eκ̂nd(x, y) ≤ d(fn(x), fn(y)) ≤ eη̂nd(x, y) for y ∈ Wu
n (x);

(2) eγnd(x, y) ≤ d(fn(x), fn(y)) ≤ eη̂nd(x, y) for y ∈ Wcu
n (x);

(3) eγnd(x, y) ≤ d(fn(x), fn(y)) ≤ eγ̂nd(x, y) for y ∈ Wc
n(x);

(4) eηnd(x, y) ≤ d(fn(x), fn(y)) ≤ eγ̂nd(x, y) for y ∈ Wcs
n (x);
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(5) eηnd(x, y) ≤ d(fn(x), fn(y)) ≤ eκnd(x, y) for y ∈ Ws
n(x);

(6) fn(W
�
n(x)) = W�

n+1(fn(x)) for every x ∈ R
k and n ∈ Z.

(7) If y ∈ W�
n(x) then W�

n(x) = W�
n(y). In particular, the partition into W�

n -manifolds
foliates Rk; moreover, the partition into Ws

n -manifolds subfoliates each Wcs
n (x).

(8) Each W�
n(x) is the graph of a C1+Hölder function G�

n(x) : R
� → (R�)⊥ with

‖DuG
�
n(x)‖ ≤ 1

3 for all u ∈ R
� and

(a) Hölβ(DG�
n(x)) ≤ Ĉ for � = s;

(b) Hölβ
′
(DG�

n(x)) ≤ Ĉ for � = cs, c, cu;
(c) Hölβ

′′
(DG�

n(x)) ≤ Ĉ for � = u.
Moreover, the functions G�

n(x) depend continuously (in the C1+Hölder topology)
on x.

For a discussion of the C1+Hölder-regularity of individual leaves in property (8) (of
Proposition 2.1), see for instance [PS1, §6]. Note, in particular, that while the foliation of
R

k into W�
n -leaves is only continuous, each leaf W�

n(x) is a uniformly C1+Hölder-embedded
submanifold.

Write E�
n(x) := TxW

�
n(x). From our choice of θ̄ > 0 satisfying (5), it follows (for

example, from the Cr -section theorem [HPS, p. 30]; see also discussion following [BW1])
that the tangent spaces E�

n(x) are Hölder continuous with exponent θ̄ and constant uniform
in x ∈ R and n ∈ Z for � = cu, cs, and hence for � = c. For � = s, u, the distributions
E�

n(x) are Hölder continuous with exponent satisfying analogues of (5). As discussed in
[PS1, Theorem 6.6], each Wcu

n (x) is C1+β ′
whenever 0 < β ′ ≤ β satisfies

sup{κn − (1 + β ′)γn} < 0.

Since ηn < γn, we have

sup{κn − (1 + β ′)γn} < sup{κn − γn − β ′ηn}
and equation (5) implies each Wcu

n (x) is C1+β ′
for some β ′ > θ̄ . Similarly, equation (5)

implies each Wcs
n (x) is C1+β ′

for some β ′ > θ̄ ; thus each Wc
n(x) is C1+β ′

. We also note
in the case where inf{κ̂n} > 0, we may take β ′′ = β.

We write

W�
n(x, R) := {y ∈ W�

n(x) : d(x, y) < R}.

2.4. C1+Hölder holonomies inside center-stable manifolds. Fix R > 0. Fix p ∈ R
k ,

n ∈ Z, and q ∈ Ws
n(p, R). Let D̂1 and D̂2 be two uniformly C1+β ′

embedded,
dim(Rcu)-dimensional manifolds without boundary and with p ∈ D̂1 and q ∈ D̂2. We
assume the diameter of each Di is less than 1 and that each subspace TxD̂i is sufficiently
transverse to R

s : Given v ∈ TxD̂i , write v = vs + vcu where vs ∈ R
s and vcu ∈ R

cu;
we then assume ‖vcu‖ ≥ 3‖vs‖. Let D1 = Wcs

n (p) ∩ D̂1 and D2 = Wcs
n (q) ∩ D̂2. Given

x ∈ D1, let hD1,D2(x) denote the unique point y in D2 with y ∈ Ws
n(x) if such a point

exists. Note that the domain and codomain of hD1,D2 are open subsets of D1 and
D2. By restriction of domain and codomain we may assume hD1,D2 : D1 → D2 is a
homeomorphism.

Our main result is the following theorem.

https://doi.org/10.1017/etds.2021.99 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.99


Smoothness of stable holonomies 3601

THEOREM 2.2. The map hD1,D2 is a C1+α̂ diffeomorphism for some α̂ > 0. Moreover, the
C1+α̂-norm of hD1,D2 is uniform across all choices of n, p, q, D1, and D2 as above.

In particular, we have the following corollary.

COROLLARY 2.3. The map hD1,D2 is bi-Lipschitz with Lipschitz constants uniform in all
choices of n, p, q, D1, and D2 as above.

2.5. Main theorem. As discussed below, it is sufficient to prove a special case of
Theorem 2.2.

Recall that each Wc
n(x) is a uniformly C1+β ′

-embedded manifold and intersects Ws
n(y)

for every y ∈ Wcs
n (x). Moreover, each Ecu

n (y) is uniformly transverse to both R
s and

Es
n(y). It suffices to prove Theorem 2.2 for the distinguished family of transversals to Ws

n

given by the family of center manifolds. Given n ∈ Z, p ∈ R
k , and q ∈ Ws

n(p), we write
hs

p,q,n : Wc
n(p) → Wc

n(q) for the stable holonomy map between center manifolds. More
precisely, given z ∈ Wc

n(p), let

hs
p,q,n(z) = Wcu

n (q) ∩ Ws
n(z).

As both {Ws
n(x) : x ∈ Wcs

n (p)} and {Wc
n(x) : x ∈ Wcs

n (p)} subfoliate Wcs
n (p), it follows

that hs
p,q,n(z) ∈ Wc

n(q). Moreover, by the global transverseness of the manifolds, the maps
hs

p,q,n have domain all of Wc
n(p) and map onto Wc

n(q).
The main result of this paper is the following theorem.

THEOREM 2.4. There exist 0 < R0 < 1 and α̂ > 0 with the following property. Let p ∈
R

k and q ∈ Ws
n(p, R0). Then the holonomy map

hs
p,q,n : Wc

n(p, 1) → Wc
n(q)

is a C1+α̂-diffeomorphism onto its image. Moreover, the C1+α̂-norm of hs
p,q,n is uniform

across the choice of p, q and n.

The R0 > 0 for which the theorem holds is given by criteria in §3.1.2 below.
We recall that the composition of finitely many C1+α̂ diffeomorphisms is again a C1+α̂

diffeomorphism. Since R0 > 0, for any fixed R > 0 and any q ∈ Ws
n(p, R), the holonomy

map

hs
p,q,n : Wc

n(p, 1) → Wc
n(q)

is the composition of finitely many C1+α̂-diffeomorphisms and the C1+α̂-norm of hs
p,q,n

is uniform across the choice of p, q and n.
Taking α̂ < β ′ and using that holonomies are uniformly C1+α̂ , we use Journé’s theorem

[Jou] or related discussions in [PSW, §6] to conclude that leaves of the partition
{Ws

n(x), x ∈ R
k} restrict to a C1+α̂-foliation inside each Wcs

n (p). The smoothness of
holonomies for arbitrary transversals in Theorem 2.2 then follows by considering foliation
charts. In particular, given arbitrary transversals D1 and D2 to {Ws

n(x), x ∈ Wcs
n (p)} inside

Wcs
n (p) as above, it follows that the holonomy map hs

D1,D2
is uniformly C1+α̂ on its

domain.
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3. Proof of Theorem 2.4
We retain all notation from the previous section. In particular, fix 0 < θ < θ̄ < β

satisfying (5), (6), and (7).

3.1. Initial approximations, additional notation, and sequence of approximate holonomies.

3.1.1. Initial approximations. Given n ∈ Z and arbitrary p, q ∈ R
k with q ∈ Ws

n(p, 1),
we assume there exists a uniformly C1+β ′

initial approximation

πp,q,n : Wc
n(p, 1) → Wc

n(q)

to the stable holonomy map hs
p,q,n with the following properties. There is a constant C2 >

1 such that for every n ∈ Z, p ∈ R
k , and q ∈ Ws(p, 1) we have:

(1) d(πp,q,n(p), q) ≤ C2d(p, q) and d(p, πp,q,n(p)) ≤ C2d(p, q);
(2) d((πp,q,n)∗(v), v) ≤ C2d(p, q)θ̄ for all v ∈ SWc

n(p);
(3) |‖Dπp,q,n‖ − 1| ≤ C2d(p, q)θ̄ ;
(4) if p′ ∈ Wc

n(p) and q ′ ∈ Ws
n(p′, 1) ∩ Wc

n(q) then πp,q,n and πp′,q ′,n coincide on
Wc

n(p, 1) ∩ Wc
n(p′, 1).

For instance, we may define such a system of approximating maps {πp,q,n} by linear
projection: for z ∈ Wc

n(p, 1), define πp,q,n(z) to be the unique point of intersection of
Wc

n(q) and z + R
u ⊕ R

s . One may verify that the above properties hold for this choice of
πp,q,n.

3.1.2. Additional constants. Fix α > 0 and 0 < θ̂ < θ < θ̄ < β̂ < β for the remainder
with

sup
{

(1 + α)(γ̂n − γn)

−κn

}
< θ̂ (8)

and

sup
{

κn

κn − γn

θ

}
< β̂. (9)

The existence of such α and θ̂ follow from (7); the existence of such a β̂ follows from (6).
Set κ̄ = sup{κn} < 0. Set

ω = sup{κnθ + (1 + α)(γ̂n − γn)}, ω̂ = sup{κnθ̂ + (1 + α)(γ̂n − γn)}. (10)

We have ω < ω̂ < 0 from the choice of θ̂ < θ in (8).
For the remainder of §3, fix 0 < δ < 1 such that for all n ∈ Z we have

1 + e−(γ̂n−γn)C1δ
β−β̂ ≤ eα(γ̂n−γn). (11)

Such a δ > 0 exists since inf{eα(γ̂n−γn)} > 1.
Given p, q, and n with q ∈ Ws

n(p), define

ρ(p, q, n) := sup{d(x, hs
p,q,n(x)) : x ∈ Wc

n(p, 1)}.
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Take 0 < ρ0 < 1 such that

(3C2C1 + 1)θ̄
−1

ρ0 ≤ δ (12)

where C1 ≥ 1 is as in §2.3 and C2 ≥ 1 is as above. Fix 0 < R0 < 1 so that for all n ∈ Z,
p ∈ R

k , and q ∈ Ws
n(p, R0) we have

ρ(p, q, n) ≤ ρ0.

With this R0 we establish Theorem 2.4.

3.1.3. Additional notation. It is enough to prove Theorem 2.4 in the case where n = 0.
For the remainder of §3, we fix p and q in R

k with q ∈ Ws
0 (p, R0) as in Theorem 2.4.

Write h := hs
p,q,0.

Given n, j ∈ Z, write:
• f

(j)
n := id, j = 0;

• f
(j)
n := fn+j−1 ◦ · · · ◦ fn, j > 0;

• f
(j)
n := fn+j

−1 ◦ · · · ◦ fn−1
−1, j < 0;

• for z ∈ R
k , write zn = f

(n)
0 (z);

• write Dn ⊂ Wc
n(pn) := f

(n)
0 (Wc

0 (p, 1));

• let κ
(j)
n =

⎧⎪⎨
⎪⎩

κn+j−1 + · · · + κn, j > 0,
0, j = 0,
−κn+j − · · · − κn−1, j < 0;

• similarly, define κ̂
(j)
n , γ

(j)
n , and γ̂

(j)
n .

Note that if x ∈ Wc
0 (p, 1) = D0 and y = h(x) ∈ Wc

0 (q) then for all n ≥ 0 we have

d(xn, yn) ≤ eκ
(n)
0 d(x, y) ≤ eκ

(n)
0 ρ(p, q, 0) < ρ0.

Since d(xn, yn) < 1, we obtain initial approximations πxn,yn,n satisfying the properties
in §3.1.1. By property (4) of the approximate holonomy maps πpn,qn,n, it follows that
the collection of maps {πxn,yn,n : xn ∈ Dn} coincide with the restriction of a single
approximation which we denote by πn : Dn → Wc

n(qn) for the remainder. Note that
πn : Dn → Wc

n(qn) has all the properties enumerated in §3.1.

3.1.4. Approximate holonomies. For n ≥ 0, we define hn : Wc
0 (p, 1) → Wc

0 (q) to be
successive approximations to h given by

hn : x 
→ f (−n)
n (πn(xn)) = f (−n)

n (πn(f
(n)
0 (x))).

Note that each hn is a C1+β ′
diffeomorphism onto its image. Although the (1 +

β ′)-norms of the sequence hn may not be controlled, Theorem 2.2 follows by show-
ing that hn converges to h : Wc

0 (p, 1) → Wc
0 (q) in the C1 topology. We then show

Dh : SWc
0 (p, 1) → T Wc

0 (q) is Hölder continuous with uniform estimates for some Hölder
exponent 0 < α̂ < β ′.
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3.2. An auxiliary lemma. Given ξ = (x, v) and ζ = (y, w) in SRk , recall that we write
d(ξ , ζ ) = sup{d(x, y), d(v, w)}. Given ξ = (x, v) ∈ SRk , we write

ξn = (xn, vn) := (f
(n)
0 )∗(ξ) ∈ SRk .

Similarly, write ζn := (yn, wn).
Recall the parameters 0 < δ < 1 satisfying (11) and α and β̂ satisfying (8).

LEMMA 3.1. Given x ∈ R
k , ξ = (x, v), ζ = (y, w) ∈ SWc

0 (x), 0 ≤ r ≤ δ, and n ≥ 0,

suppose that d(xn, yn) ≤ reκ
(n)
0 , d(ξn, ζn) ≤ rθ̄ eκ

(n)
0 θ , and for all 0 ≤ k ≤ n that

d(xk , yk) ≤ δ.

Then, for all 0 ≤ k ≤ n,

d(xk , yk) ≤ reκ
(n)
0 −γ

(n−k)
k and d(ξk , ζk) ≤ rθ̄ eκ

(n)
0 θ+(1+α)(γ̂

(n−k)
k −γ

(n−k)
k ).

In particular,

d(ξ , ζ ) ≤ rθ̄ eκ
(n)
0 θ+(1+α)(γ̂

(n)
0 −γ

(n)
0 ).

Proof. For the final assertion, note that

reκ
(n)
0 −γ

(n)
0 ≤ rθ̄ eκ

(n)
0 θ+(1+α)(γ̂

(n)
0 −γ

(n)
0 )

follows from inequality (5) as θ ≤ ((κn − γn)/ηn) ≤ ((κn − γn)/κn) holds for all n.
We prove the first two assertions by backwards induction on k starting with k = n. We

clearly have

d(x(k−1), y(k−1)) ≤ e−γk−1d(xk , yk) ≤ reκ
(n)
0 −γ

(n−(k−1))
k−1 .

Moreover, we have

d(ξ(k−1), ζ(k−1)) = d((f
(−1)
k )∗(xk , vk), (f

(−1)
k )∗(yk , wk))

≤ d((f
(−1)
k )∗(xk , vk), (f

(−1)
k )∗(xk , wk))

+ d((f
(−1)
k )∗(xk , wk), (f

(−1)
k )∗(yk , wk))

≤ e(γ̂k−1−γk−1)d(vk , wk) + C1d(xk , yk)
β

≤ e(γ̂k−1−γk−1)(d(vk , wk) + e−(γ̂k−1−γk−1)C1d(xk , yk)
β)

≤ e(γ̂k−1−γk−1)(1 + e−(γ̂k−1−γk−1)C1d(xk , yk)
β−β̂ )

· max{d(xk , yk)
β̂ , d(vk , wk)}

≤ e(1+α)(γ̂k−1−γk−1) max{rβ̂eβ̂κ
(n)
0 −β̂γ

(n−k)
k , rθ̄ eκ

(n)
0 θ+(1+α)(γ̂

(n−k)
k −γ

(n−k)
k )}.

The last line follows from the induction hypothesis and the choice of δ > 0 in (11).
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From (9) we have

β̂κ
(n)
0 − β̂γ

(n−k)
k = β̂κ

(k)
0 + β̂κ

(n−k)
k − β̂γ

(n−k)
k

≤ β̂κ
(k)
0 + θκ

(n−k)
k

≤ θκ
(n)
0

≤ θκ
(n)
0 + (1 + α)(γ̂

(n−k)
k − γ

(n−k)
k ).

Hence

rβ̂eβ̂κ
(n)
0 −β̂γ

(n−k)
k ≤ rθ̄ eκ

(n)
0 θ+(1+α)(γ̂

(n−k)
k −γ

(n−k)
k )

and the result follows.

3.3. Step 1: C0 convergence. Recall the ‘true’ holonomies hs
p,q,n. We fix h = hs

p,q,0 and
let hn be the approximate holonomies in §3.1.4. We have the following lemma.

LEMMA 3.2. hn → h uniformly on Wc
0 (p, 1).

Proof. First (by equivariance of Ws
n -manifolds) we have f

(−n)
n ◦ hs

pn,qn,n ◦ f
(n)
0 = hs

p,q,0.
For x ∈ Wc

0 (p, 1) we have

d(xn, f
(n)
0 (h(x))) = d(xn, hs

pn,qn,n(xn)) ≤ eκ
(n)
0 ρ(p, q, 0) ≤ eκ

(n)
0 .

By property (1) of the maps πn,

d(hn(x), h(x)) = d(f
(−n)
0 (πn(xn)), f (−n)

n (hs
pn,qn,n(xn)))

≤ e−γ
(n)
0 d(πn(xn), hs

pn,qn,n(xn))

≤ e−γ
(n)
0 C2d(xn, hs

pn,qn,n(xn))

≤ C2e
κ

(n)
0 −γ

(n)
0 ρ0.

3.4. Step 2: Convergence of the projectivized derivative. Consider now the projectivized
derivatives (hn)∗ : SWc

0 (p, 1) → SWc
0 (q). We show that the sequence (hn)∗ is Cauchy.

Set

L1 = C2 +
∞∑

n=0

3C2C1e
ωn (13)

where ω < 0 is as in (10).

LEMMA 3.3. The sequence of maps (hn)∗ : SWc
0 (p, 1) → SWc

0 (q) is uniformly Cauchy.
Moreover, defining h∗ : SWc

0 (p, 1) → SWc
0 (q) to be the limit h∗ = limn→∞(hn)∗, for

(x, v) ∈ SWc
0 (p, 1) we have

d((x, v), h∗(x, v)) ≤ L1d(x, h(x))θ̄ .

Proof. With ξ = (x, v), let y = h(x) and let ζ n = (yn, wn) = (hn)∗(ξ).
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We have

d(yn, yn+1) = d(f (−n)
n (πn(xn)), f

(−n−1)
n+1 (πn+1(xn+1)))

and, using property (1) of the maps πn,

d(πn(xn), f
(−1)
n+1 (πn+1(xn+1))) ≤ d(xn, πn(xn)) + (f

(−1)
n+1 (xn+1), f

(−1)
n+1 (πn+1(xn+1)))

≤ C2e
κ

(n)
0 d(x, y) + C1C2e

κ
(n+1)
0 d(x, y)

≤ 2C1C2e
κ

(n)
0 d(x, y).

Similarly,

d(ζ n, ζ n+1) = d((f (−n)
n )∗(πn)∗(ξn), (f

(−n−1)
n+1 )∗(πn+1)∗(ξn+1)) (14)

and

d((πn)∗(ξn), (f
(−1)
n+1 )∗(πn+1)∗(ξn+1))

≤ d(ξn, (πn)∗(ξn)) + d((f
(−1)
n+1 )∗ξn+1, (f

(−1)
n+1 )∗(πn+1)∗(ξn+1)). (15)

With (πn+1)∗(xn+1, vn+1) = (y′, w′) we have

d((f
(−1)
n+1 )∗ξn+1, (f

(−1)
n+1 )∗(πn+1)∗(ξn+1))

= d((f
(−1)
n+1 )∗(xn+1, vn+1), (f

(−1)
n+1 )∗(y′, w′))

≤ d((f
(−1)
n+1 )∗(xn+1, vn+1), (f

(−1)
n+1 )∗(xn+1, w′))

+ d((f
(−1)
n+1 )∗(xn+1, w′), (f

(−1)
n+1 )∗(y′, w′))

≤ C1d(vn+1, w′) + C1d(xn+1, y′)β

≤ C1C2d(xn+1, yn+1)
θ̄ + C1(C2d(xn+1, yn+1))

β (16)

≤ C1C2e
κ

(n+1)
0 θ̄ d(x, y)θ̄ + C1C

β

2 eβκ
(n+1)
0 d(x, y)β

≤ 2C1C2e
θ̄κ

(n+1)
0 d(x, y)θ̄

where the first term in (16) follows from property (2) of the approximate holonomies
in §3.1.1 and the second term in (16) uses property (1) of the approximate holonomies.
Combined with (15) and using property (2) of the approximate holonomies πn, we then
have

d((πn)∗(ξn), (f
(−1)
n+1 )∗(πn+1)∗(ξn+1))

≤ C2e
θ̄κ

(n)
0 d(x, y)θ̄ + 2C1C2e

θ̄κ
(n+1)
0 d(x, y)θ̄

≤ 3C2C1e
θ̄κ

(n)
0 d(x, y)θ̄ .

Applying Lemma 3.1 (with r = (3C1C2)
θ̄−1

d(x, y)) to (14) with the choice of ρ0

satisfying (12), it follows that

d((hn)∗ξ , (hn+1)∗ξ) = d(ζ n, ζ n+1) ≤ eκ
(n)
0 θ+(1+α)(γ̂

(n)
0 −γ

(n)
0 )3C2C1d(x, y)θ̄ . (17)
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By (10),

κ
(n)
0 θ + (1 + α)(γ̂

(n)
0 − γ

(n)
0 ) ≤ nω,

and it follows that (hn)∗ is uniformly Cauchy on SWc
0 (p, 1).

Moreover, for any ξ = (x, v) ∈ SWc
0 (p, 1) we have

d(ξ , h∗(ξ)) ≤ d(ξ , (π0)∗ξ) +
∞∑

n=0

d((hn)∗ξ , (hn+1)∗ξ)

= d(ξ , (π0)∗ξ) +
∞∑

n=0

d(ζ n, ζ n+1)

≤ C2d(x, y)θ̄ +
∞∑

n=0

eκ
(n)
0 θ+(1+α)(γ̂

(n)
0 −γ

(n)
0 )3C2C1d(x, y)θ̄

≤ C2d(x, y)θ̄ +
∞∑

n=0

enω3C2C1d(x, y)θ̄

where we use properties (1) and (2) of the approximate holonomies π0 to bound
d(ξ , (π0)∗ξ) ≤ C2d(x, y)θ̄ . Thus, with L1 as above, for any ξ = (x, v) ∈ SWc

0 (p, 1) and
with y = h(x) we have

d(ξ , h∗(ξ)) ≤ L1d(x, y)θ̄ .

Note that the convergence of the projectivized derivative of the stable holonomies in
Lemma 3.3 is independent of the choice of p, q ∈ R

k or n ∈ Z in Theorem 2.2. Thus for
all n ∈ Z, p′ ∈ R

k , and q ′ ∈ Ws
n(p′, R0), let (hs

p′,q ′,n)∗ denote the projectivized derivative
of stable holonomies constructed as above. We have for all ξ ′ = (x′, v′) ∈ SWc

n(p′, 1) that

d(ξ , (hs
p′,q ′,n)∗(ξ)) ≤ L1d(x′, hs

p′,q ′,n(x
′))θ̄ .

Moreover, from the definition of the limit in Lemma 3.3 defining (hs
p′,q ′,n)∗, we have that

(hs
p′,q ′,n)∗ is a holonomy for the projectivized derivative cocycle:

(fn)∗ ◦ (hs
p′,q ′,n)∗ = (hs

fn(p′),fn(q ′),n+1)∗ ◦ (fn)∗. (18)

Indeed, return to the case n = 0, let h = hs
p,q,0, and consider ξ = (x, v) ∈ SWc

0 (p, 1).
Then

(f0)∗ ◦ h∗(ξ) = lim
n→∞(f0)∗ ◦ (hn)∗(ξ)

= lim
n→∞(f0)∗(f (−n)

n ◦ πn ◦ f
(n)
0 )∗(ξ)

= lim
n→∞(f (−(n−1))

n ◦ πn ◦ f
(n−1)
1 )∗(f0)∗(ξ)

= (hs
f0(p),f0(q),1)∗ ◦ (f0)∗(ξ).

To show that the holonomies are C1, we next show that each (hs
p′,q ′,n)∗ coincides with

the projectivization of a continuous Dhs
p′,q ′,n : T Wc

n(p′, 1) → T Wc
n(q ′).
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3.5. Step 3: The sequence of maps Dhn is uniformly Cauchy. We return to the
notation in Step 2. In particular, we recall our distinguished p, q ∈ R

k and the maps hn

approximating h = hs
p,q,0.

We first derive two simple distortion estimates. Fix ξ = (x, v) ∈ SWc
0 (p, 1). With

ξn := (f
(n)
0 )∗(ξ), let y = h(x), ζ = (y, w) := h∗(ξ), ζn = (yn, wn) = (f

(n)
0 )∗(ζ ) =

(hs
pn,qn,n)∗(ξn), and ζ̂ n = (hn)∗(ξ) = (ŷn, ŵn). Write ζ̂ n

i = (f
(i)
0 )∗ζ̂ n. Then

ζ̂ n
n := (f

(n)
0 )∗(ζ̂ n) = (ŷn

n , ŵn
n) = (πn)∗(ξn).

From property (1) of the approximate holonomies πn,

d(yn, ŷn
n) ≤ C2d(xn, yn) ≤ C2e

κ
(n)
0 d(x, y) ≤ eκ

(n)
0 δ. (19)

From Lemma 3.3, we have

d(ξn, ζn) ≤ L1e
θ̄κ

(n)
0 d(x, y)θ̄ .

By properties (1) and (2) of the approximate holonomies πn,

d(ξn, ζ̂ n
n ) ≤ max{d(xn, ŷn

n), d(vn, ŵn
n)} ≤ C2e

θ̄κ
(n)
0 d(x, y)θ̄ .

Hence,

d(ζn, ζ̂ n
n ) ≤ (C2 + L1)e

θ̄κ
(n)
0 .

Let n0 be such that (C2 + L1)e
θ̄κ

(n0)

0 ≤ eθκ
(n0)

0 δθ̄ so that for n ≥ n0 we have

d(ζn, ζ̂ n
n ) ≤ eθκ

(n)
0 δθ̄ . (20)

Given ξ = (x, v) ∈ TR
k , define ‖ξ‖ = ‖v‖. For each i, the map SRk → R given by

ζ → log ‖Dfi(ζ )‖ is β-Hölder on SRk with uniform Hölder constant C3. Recall θ̂ < θ

satisfying (8) and ω̂ satisfying (10). Let

K1 :=
∞∑

k=0

C3(δ
θ̄ eω̂k)β .

LEMMA 3.4. For all n ≥ n0,

exp(−K1e
β(θ−θ̂ )κ

(n)
0 ) ≤

∏n−1
i=0 ‖Dfiζ̂

n
i ‖∏n−1

i=0 ‖Dfiζi‖
≤ exp(K1e

β(θ−θ̂ )κ
(n)
0 ).

(Note, in particular, that the middle ratio goes to 1 as n → ∞.)
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Proof. Recalling Lemma 3.1 (with r = δ and estimates (19) and (20)), for n ≥ n0 we have

∣∣∣∣ log
∏n−1

i=0 ‖Dfiζ̂
n
i ‖∏n−1

i=0 ‖Dfiζi‖

∣∣∣∣ =
∣∣∣∣

n−1∑
i=0

log ‖Dfiζ̂
n
i ‖ − log ‖Dfiζi‖

∣∣∣∣

≤
n−1∑
i=0

C3d(ζ̂ n
i , ζi)

β

≤
n−1∑
i=0

C3(δ
θ̄ eκ

(n)
0 θ+(1+α)(γ̂

(n−i)
i −γ

(n−i)
i ))β

≤ eβκ
(n)
0 (θ−θ̂ )K1

where we use that

κ
(n)
0 θ + (1 + α)(γ̂

(n−i)
i − γ

(n−i)
i )

≤ κ
(n)
0 (θ − θ̂ ) + κ

(n−i)
i θ̂ + (1 + α)(γ̂

(n−i)
i − γ

(n−i)
i )

≤ κ
(n)
0 (θ − θ̂ ) + ω̂(n − i)

in the last inequality.

Similarly, letting

K2 = exp
( ∞∑

i=1

C3L
β

1 eκ̄θ̄βi

)
,

we have the following lemma.

LEMMA 3.5. For all n > 0,

K2
−1 ≤

∏n−1
i=0 ‖Dfiξi‖∏n−1
i=0 ‖Dfiζi‖

≤ K2.

Proof. From Lemma 3.3 we obtain

∣∣∣∣ log
∏n−1

i=0 ‖Dfiξi‖∏n−1
i=0 ‖Dfiζi‖

∣∣∣∣ =
∣∣∣∣

n−1∑
i=0

log ‖Dfiξi‖ − log ‖Dfiζi‖
∣∣∣∣

≤
n−1∑
i=0

C3d(ξi , ζi)
β

≤
n−1∑
i=0

C3[L1d(xi , yi)
θ̄ ]β

≤
n−1∑
i=0

C3L
β

1 (eκ
(i)
0 θ̄ )βd(x, y)β

≤ log(K2).

https://doi.org/10.1017/etds.2021.99 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.99


3610 A. Brown

We now approximate the derivatives Dh : T Wc
0 (p) → T Wc

0 (q) by the bundle maps

�n : T Wc
0 (p, 1) → T Wc

0 (q)

defined as follows: given n ≥ 0 and (x, v) ∈ T Wc
0 (p, 1), let

�n : (x, v) 
→ Df (−n)
n

((‖Df
(n)
0 (v)‖(hs

pn,qn,n)∗((f
(n)
0 )∗(x, v

‖v‖ ))
))

.

From (18) the projectivization of each �n coincides with (hs
p,q,0)∗ = h∗. With h =

hs
p,q,0 and (x, v) ∈ SWc

0 (0), let h∗(x, v) = (y, w). We have

‖�n(x, v)‖ = ‖Dxf
(n)
0 (v)‖

‖Dyf
(n)
0 (w)‖

and �n(x, v) = (y, ‖�n(x, v)‖w). From Lemma 3.5, ‖�n‖ is uniformly bounded over the
choice of (x, v) ∈ SWc

0 (p, 1) and n.
Given ξ = (x, v) ∈ SWc

0 (p), we have

‖Dhn(ξ)‖ = ‖�n(ξ)‖ ·
∏n−1

i=0 ‖Dfiζi‖∏n−1
i=0 ‖Dfiζ̂

n
i ‖ · ‖Dπpn,qn,n((f

(n)
0 )∗(x, v))‖.

It then follows from Lemma 3.4 and property (3) of the approximate holonomies πn that

‖Dhn(ξ)‖ − ‖�n(ξ)‖ → 0

uniformly in ξ ∈ SWc
0 (p). Combined with Lemma 3.3, we thus obtain the following

CLAIM 3.6. supξ∈SWc
0 (p,1){‖Dhn(ξ) − �n(ξ)‖} → 0 as n → ∞.

It follows that the sequence Dhn converges uniformly if and only if the sequence �n

converges uniformly.

LEMMA 3.7. The sequence of maps �n : SWc
0 (p, 1) → T Wc

0 (q) is uniformly Cauchy.

Proof. Given ξ = (x, v) ∈ SWc
0 (p, 1) with ξn = (xn, vn) ∈ SDn, let ζ = (y, w) =

h∗(ξ) ∈ SWc
0 (q) and ζn = (yn, wn) = (hs

pn,qn,n)∗(ξn). Observe that both �n(x, v) and
�n+1(x, v) have footprint y. Then

‖�n(x, v) − �n+1(x, v)‖

= ‖Dxf
(n)
0 (v)‖

‖Dyf
(n)
0 (w)‖

‖Dynfn(wn)‖−1

· |||Dyn(fn)(wn)‖ − ‖Dxn(fn)(vn)|||
≤ K2C1(|||Dxn(fn)(vn)‖ − ‖Dxn(fn)(wn)|||

+ |||Dxn(fn)(wn)‖ − ‖Dyn(fn)(wn)|||)
≤ K2C1(C1L1e

θ̄κ
(n)
0 + C0e

κ
(n)
0 β)

≤ K2C12C1L1e
θ̄κ

(n)
0 (21)

≤ K2C12C1L1e
θ̄ κ̄n
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where we use Hölder continuity of x 
→ Dxf to bound ‖Dxn(fn)(wn)‖ − ‖Dyn(fn)(wn)‖
and Lemma 3.3 to bound

|||Dxn(fn)(vn)‖ − ‖Dxn(fn)(wn)||| ≤ C1‖vn − wn‖ ≤ C1L1d(xn, yn)
θ̄ .

From Claim 3.6 and Lemma 3.7 it follows that the sequence of maps Dhn converges
uniformly. As hn converges to h we have that h = hs

p,q,n is differentiable and that Dhn

converges to Dh. Furthermore, ‖Dhs
p,q,n‖ ≤ K2. This completes the proof of the C1

properties in Theorem 2.4.

3.6. Step 4: Hölder continuity of Dh. We now show that Dh is Hölder continuous. We
begin with the following estimate.

CLAIM 3.8. There is a c0 > 0 such that if d(xk , yk) ≤ 1 for all 0 ≤ k ≤ n − 1 and
d((x, v), (y, w)) ≤ 1, then

d((f
(n)
0 )∗(x, v), (f

(n)
0 )∗(y, w)) ≤ ec0nd((x, v), (y, w))β .

Proof. We have

d((f
(n)
0 )∗(x, v), (f

(n)
0 )∗(y, w))

≤ d((f
(n)
0 )∗(x, v), (f

(n)
0 )∗(x, w)) + d((f

(n)
0 )∗(x, w), (f

(n)
0 )∗(y, w))

≤ (C1)
2nd(v, w) + d((f

(n)
0 )∗(x, w), (f

(n)
0 )∗(y, w)).

We have

d((f
(1)
0 )∗(x, w), (f

(1)
0 )∗(y, w)) ≤ C1d(x, y)β .

Proceeding inductively, for k ≥ 2 we claim that

d((f
(k)
0 )∗(x, w), (f

(k)
0 )∗(y, w)) ≤ kC

(1+β)k

1 d(x, y)β .

Indeed,

d((f
(k)
0 )∗(x, w), (f

(k)
0 )∗(y, w))

= d((Dxk−1fk−1)∗(Dxf
(k−1)
0 )∗(w), (Dyk−1fk−1)∗(Dyf

(k−1)
0 )∗(w))

≤ d((Dxk−1fk−1)∗(Dxf
(k−1)
0 )∗(w), (Dyk−1fk−1)∗(Dxf

(k−1)
0 )∗(w))

+ d((Dyk−1fk−1)∗(Dxf
(k−1)
0 )∗(w), (Dyk−1fk−1)∗(Dyf

(k−1)
0 )∗(w))

≤ C1d(xk−1, yk−1)
β + C1(k − 1)C

(1+β)(k−1)

1 d(x, y)β (22)

≤ C1(C1)
kβd(x, y)β + (k − 1)C

(1+β)k

1 d(x, y)β

≤ kC
(1+β)k

1 d(x, y)β

where the inductive hypothesis is used in (22). Take c0 = 2 log C1 + 1.

We now show that the maps h∗ : SWc
0 (p, 1) → SWc

0 (q) and Dh : SWc
0 (p, 1) →

T Wc
0 (q) are Hölder continuous.

Fix any ε1 > 0 (to appear only in the proof of Claim 3.10 below).
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• Take a0 = max{sup{(κn − γ̂n)/κn}, sup{(κn − βγ̂n − ε1)/βκn}, sup{(κn − c0 − ε1)/

βκn}} > 0. Observe that

a0 ≥ sup
{

1 − c0(κn)
−1 − ε1(κn)

−1

β

}
≥ β−1 > 1.

• Set ᾱ = min{inf{(κn − γn)/a0κn}, inf{(θκn + (1 + α)(γ̂n − γn))/κna0}, θ̄/a0}. We
have 0 < ᾱ < θ̄ < 1.

• Recall our fixed 0 < ρ0 < 1 satisfying (12) and R0 > 0 such that ρ(p, q, n) ≤ ρ0 for
all p and q ∈ Ws

n(p, R0).
• Set ρ1 = ρ

1/β

0 < ρ0.

CLAIM 3.9. The function (hs
p,q,n)∗ is ᾱ-Hölder with Hölder constant uniform in all

choices of p, q ∈ Ws
n(p, R0), and n ∈ Z.

Proof. It is enough to consider the case n = 0. Fix p ∈ R
k and q ∈ Ws

0 (p, R0).
Given n ∈ N, set

rn := ρ1e
κ

(n)
0 a0 .

Consider any pair ξ := (x, v) and ξ ′ := (x′, v′) in SWc
0 (p, 1). It is enough to consider ξ

and ξ ′ sufficiently close so that for some 1 ≤ n,

d(x, x′) ≤ rn, d(v, v′) ≤ rn,

and either

d(x, x′) ≥ rn+1 or d(v, v′) ≥ rn+1.

Let

ζ = (y, w) = h∗(ξ) and ζ n = (yn, wn) = (hn)∗(ξ).

Similarly define ζ ′ = (y′, w′) = h∗(ξ ′) and ζ ′n = (y′n, w′n) = (hn)∗(ξ ′). From (17) and
(13) we have

d(ζ , ζ n) ≤
∞∑

j=n

d(ζ j , ζ j+1)

≤
∞∑

j=n

eκ
(j)
0 θ+(1+α)(γ̂

(j)
0 −γ

(j)
0 )3C2C1d(x, y)θ̄

≤ eκ
(n)
0 θ+(1+α)(γ̂

(n)
0 −γ

(n)
0 )

∞∑
j=0

eωj 3C2C1d(x, y)θ̄

≤ eκ
(n)
0 θ+(1+α)(γ̂

(n)
0 −γ

(n)
0 )L1d(x, y)θ̄

≤ eᾱa0κ
(n)
0 L1ρ

θ̄
0

= L1ρ
βθ̄−α

1 rᾱ
n

≤ L1ρ
βθ̄−ᾱ

1 eμᾱa0rᾱ
n+1,
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and similarly,

d(ζ ′, ζ ′n) ≤ L1ρ
βθ̄−ᾱ

1 eμᾱa0rᾱ
n+1.

Note that for all 0 ≤ k ≤ n we have

d(xk , x′
k) ≤ eγ̂

(k)
0 rn = ρ1e

a0κ
(n)
0 +γ̂

(k)
0 ≤ ρ1e

κ
(k)
0 ≤ ρ0e

κ
(k)
0 < δ < 1.

From Claim 3.8 and the choice of a0, for all 0 ≤ k ≤ n we have

d(vk , v′
k) ≤ d(ξk , ξ ′

k) ≤ ec0k(rn)
β = ec0kρ

β

1 eκ
(n)
0 a0β ≤ ρ0e

κ
(n)
0 .

From properties (1) and (2) of the maps πn we have

• d(xn, yn
n) ≤ C2e

κ
(n)
0 ρ0,

• d(x′
n, y′n

n ) ≤ C2e
κ

(n)
0 ρ0,

• d(vn, wn
n) ≤ C2e

κ
(n)
0 θ̄ ρθ̄

0 , and

• d(v′
n, w′n

n ) ≤ C2e
κ

(n)
0 θ̄ ρθ̄

0 .
Thus

d(yn
n , y′n

n ) ≤ (1 + 2C2)e
κ

(n)
0 ρ0 < δ

and

d(wn
n , w′n

n ) ≤ (ρ0e
κ

(n)
0 + 2C2ρ

θ̄
0 eκ

(n)
0 θ̄ ) ≤ (1 + 2C2)e

κ
(n)
0 θρθ̄

0 .

From Lemma 3.1 (with r = (1 + 2C2)ρ0) we have

d(yn, y′n) ≤ (1 + 2C2)e
κ

(n)
0 −γ

(n)
0 ρ0

≤ (1 + 2C2)e
ᾱa0κ

(n)
0 ρ0

≤ (1 + 2C2)e
μᾱa0ρ

β−ᾱ

1 (rn+1)
ᾱ

and (from Lemma 3.1 with r = (1 + 2C2)
θ̄−1

ρ0 < δ)

d(wn, w′n) ≤ (1 + 2C2)ρ
θ̄
0 eκ

(n)
0 θ+(1+α)(γ̂

(n)
0 −γ

(n)
0 )

≤ (1 + 2C2)ρ
θ̄
0 eᾱa0κ

(n)
0

≤ (1 + 2C2)e
μa0ᾱρ

θ̄β−ᾱ

1 (rn+1)
ᾱ .

It follows that there is some uniform K3 > 0 so that

d(ζ , ζ ′) ≤ d(ζ , ζ n) + d(ζ n, ζ ′n) + d(ζ ′, ζ ′n) ≤ K3r
ᾱ
n+1

whence d(ζ , ζ ′) ≤ K3d(ξ , ξ ′)ᾱ .

CLAIM 3.10. The function SWc
n(p, 1) → SWc

n(q) given by

(x, v) 
→ ‖Dxh
s
p,q,n(v)‖

is (ᾱa0
−1)-Hölder with Hölder constant uniform in all choices of p, q ∈ Ws

n(p, R0), and
n ∈ Z.
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Proof. Again, it is enough to consider the case n = 0. Fix p ∈ R
k , q ∈ Ws

0 (p, R0), and
set h = hs

p,q,0.
We retain the previous notation: given n ∈ N, set

rn := ρ1e
κ

(n)
0 a0

and consider ξ := (x, v) and ξ ′ := (x′, v′) in SWc
0 (p, 1) with d(ξ , ξ ′) ≤ rn and d(ξ , ξ ′) ≥

rn+1. Write ζ = (y, w) = h∗(ξ) and ζ ′ = (y′, w′) = h∗(ξ ′).
Recall that for all (x, v) ∈ SWc

0 (p) we have ‖�n(x, v)‖ − ‖Dxh(v)‖ → 0 as n → ∞.
Moreover, from (21) and using that ᾱa0 ≤ θ̄ , we have for some uniform K4 and K5 that

|||�n(x, v)‖ − ‖Dxh(v)||| ≤ K4e
θ̄κ

(n)
0 ≤ K5(rn+1)

ᾱ (23)

We have that

log(‖�n(x, v)‖) =
n−1∑
j=0

log ‖Dxj
fjvj‖ − log ‖Dyj

fjwj‖.

There exists a uniform choice of L2 ≥ 1 with

Lip(h|Wc
0 (p,1)) := Höl1(h|Wc

0 (p,1)) ≤ L2.

Then for all 0 ≤ j ≤ n we have the following assertions.

• d(xj , x′
j ) ≤ eγ̂

(j)
0 d(x, x′) ≤ ρ1e

γ̂
(j)
0 +a0κ

(n)
0 , whence d(yj , y′

j ) ≤ L2ρ1e
γ̂

(j)
0 +a0κ

(n)
0 .

• By Claim 3.8,

d(vj , v′
j ) ≤ ec0j d((x, v), (x′, v′))β ≤ ec0j ρ

β

1 ea0βκ
(n)
0 .

• From Claims 3.9 and 3.8,

d(wj , w′
j ) ≤ K3d(ξj , ξ ′

j )
ᾱ ≤ K3e

ᾱc0j ea0ᾱβκ
(n)
0 .

We remark that v 
→ log ‖Dxf (v)‖ is C2
1 -Lipschitz for every x. Then for some uniform

choice of K6, K7, and K8 we have

| log ‖�n(x, v)‖ − log ‖�n(x
′, v′)‖|

≤
n−1∑
j=0

| log ‖Dxj
fjvj‖ − log ‖Dyj

fjwj‖ − log ‖Dx′
j
fj v

′
j‖ + log ‖Dy′

j
fjw

′
j‖|

≤
n−1∑
j=0

| log ‖Dxj
fjvj‖ − log ‖Dx′

j
fj v

′
j‖| +

n−1∑
j=0

| log ‖Dyj
fjwj‖ − log ‖Dy′

j
fjw

′
j‖|

≤
n−1∑
j=0

C2
1d(vj , v′

j ) + C3d(xj , x′
j )

β + C2
1d(wj , w′

j ) + C3d(yj , y′
j )

β

≤ (K6n) max
j

{(eβγ̂
(j)
0 +βa0κ

(n)
0 + ec0j ea0βκ

(n)
0 + eᾱc0j eᾱa0βκ

(n)
0 )}

≤ K7 max
j

{(eε1n+βγ̂
(j)
0 +βa0κ

(n)
0 + e(ε1+c0)nea0βκ

(n)
0 + eᾱ(ε1+c0)neᾱa0βκ

(n)
0 )} (24)

≤ K7(e
κ

(n)
0 + eκ

(n)
0 + eᾱκ

(n)
0 )

≤ K8(rn+1)
ᾱa0

−1
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where we bound the first term of (24) by

ε1 + βγ̂� + βa0κ� ≤ κ�

when 0 ≤ � < j and

ε1 + βa0κ� ≤ βa0κ� + ε1 + c0 ≤ κ�

when j ≤ � < n. Combined with (23), it follows that

(x, v) 
→ ‖Dxh(v)‖
is (ᾱa0

−1)-Hölder on SWc(p, 1).

4. Lyapunov charts and Ledrappier–Young entropy formula
For β > 0, let f : M → M be a C1+β diffeomorphism of a compact k-dimensional
manifold M without boundary. Let μ be an ergodic, f -invariant Borel probability measure.
We briefly discuss the ‘Lipschitz property of unstable manifolds inside center-unstable
sets’ discussed in §1.2 and justify Theorems 1.4 and 1.5.

4.1. Lyapunov charts. Fix M, f : M → M , and μ as above. Let � denote the set of
bi-regular points for μ, let λ1 > λ2 > · · · > λp denote the Lyapunov exponents, and
let TxM = ⊕p

i=1 Ei(x) denote Oseledec’s splitting for x ∈ �. Fix a decomposition
R

k = ⊕p

i=1 Ri where dim Ri = mi is the dimension of Ei(x) for x ∈ �. Define the
norm ‖ · ‖′ on R

k as follows: writing v = ∑p

i=1 vi where vi ∈ Ri for every 1 ≤ i ≤ p, set
‖v‖′ = max{‖vi‖} where ‖vi‖ restricts to the standard Euclidean norm on each Ri . Let
λ0 = max{|λ1|, |λp|}. We denote by B(0, r) the ball in R

k of radius r centered at 0 in the
norm ‖ · ‖′.

Fix a background Riemannian metric and induced distance on M. We have the following
standard construction which follows from the construction of a Lyapunov inner product and
standard estimates. (See, for example, [LY1, Appendix] or [FHY, §2].)

PROPOSITION 4.1. For every sufficiently small 0 < ε̂ < 1 there is a measurable function
�̂ : � → [1, ∞) and a measurable family of C∞ embeddings {�̂x , x ∈ �} with the
following properties:

(i) �̂x : B(0, �̂(x)−1) → M is a C∞ diffeomorphism onto a neighborhood of x with
�̂x(0) = x;

(ii) D0�̂xRi = Ei(x);
(iii) the map f̂x : B(0, e−λ0−3ε̂ �̂(x)−1) → B(0, �̂(f (x))−1) given by

f̂x(v) = �̂−1
f (x) ◦ f ◦ �̂x(v)

is well defined;
(iv) D0f̂xRi = Ri , and for v ∈ Ri ,

eλi−ε̂‖v‖′ ≤ ‖D0f̂xv‖′ ≤ eλi+ε̂‖v‖′;

(v) Hölβ(Df̂x) ≤ ε̂(�̂(x))β whence Lip(f̂x − D0f̂x) ≤ ε̂;
(vi) similar statements to (iii), (iv), and (v) hold for f −1;
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(vii) there is a uniform k0 so that Lip(�̂x) ≤ k0 and Lip(�̂−1
x ) ≤ �̂(x);

(viii) e−ε̂ ≤ �̂(f (x))

�̂(x)
≤ eε̂ .

Given 0 < ε̂ < 1 and corresponding function �̂ : � → [1, ∞) as in Proposition 4.1,
define new charts �x : B(0, 1) → M by rescaling:

�x(v) := �̂x(�̂(x)−1v).

We check that with ε = 4ε̂ and with �(x) = (�̂(x))2, for every x ∈ � the following hold:
(a) �x : B(0, 1) → M is a C∞ diffeomorphism onto a neighborhood of x with

�x(0) = x;
(b) D0�xRi = Ei(x);
(c) the map f̃x : B(0, e−λ0−2ε) → B(0, 1) given by

f̃x(v) := �−1
f (x) ◦ f ◦ �x(v) = �̂(f (x))(f̂x(�̂(x)−1v))

is well defined;
(d) D0f̃xRi = Ri , and for v ∈ Ri ,

eλi−ε‖v‖′ ≤ ‖D0f̃xv‖′ ≤ eλi+ε‖v‖′;

(e) Hölβ(Df̃x) ≤ ε, whence Lip(f̃x − D0f̃x) ≤ ε;
(f) similar statements to (c), (d), and (e) hold for f −1;
(g) there is a uniform k0 so that Lip(�x) ≤ k0 and Lip(�−1

x ) ≤ �(x);

(h) e−ε ≤ �(f (x))

�(x)
≤ eε .

Indeed, (a), (b), (c), (g), and (h) follow immediately from construction. For (d) and (e),
note that for u ∈ B(0, 1) and ξ ∈ R

k with ‖ξ‖′ = 1,

Duf̃x(ξ) = �̂(f (x))D
�̂(x)−1u

f̂x(�̂(x)−1ξ) = �̂(f (x))

�̂(x)
D

�̂(x)−1u
f̂x(ξ),

hence

D0f̃x(ξ) = �̂(f (x))

�̂(x)
D0f̂x(ξ)

and

‖Duf̃x(ξ) − Dvf̃x(ξ)‖′ = �̂(f (x))

�̂(x)
‖D

�̂(x)−1u
f̂x(ξ) − D

�̂(x)−1v
f̂x(ξ)‖′

≤ �̂(f (x))

�̂(x)
Hölβ(Df̂x)‖�̂(x)−1u − �̂(x)−1v‖′β

≤ �̂(f (x))

�̂(x)
ε̂�̂(x)β(�̂(x)−1)β‖u − v‖′β

= �̂(f (x))

�̂(x)
ε̂‖u − v‖′β .
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The family of maps {�x , x ∈ �} is called a family of (ε, �)-charts. Fix a suitable
bump function � : Rk → [0, 1] with �(v) = 0 if ‖v‖′ ≥ e−λ0−2ε and �(v) = 1 if ‖v‖′ ≤
1
2e−λ0−2ε . Let

Fx = D0f̃x + � · (f̃x − D0f̃x)

and write φx = � · (f̃x − D0f̃x). We have Lip(φx) ≤ Lip(f̃x − D0f̃x), whence ‖φx‖C1 ≤
ε. Taking ε > 0 sufficiently small, Fx is a diffeomorphism and

F−1
x − (D0f̃x)

−1 = −(D0f̃x)
−1 ◦ φx ◦ (F−1

x ).

In particular, given ε′ > 0 (sufficiently small to apply Proposition 2.1), we may take ε > 0
sufficiently small so that for every x ∈ �:
(1) Fx(u) = f̃x(u) and F−1

x (u) = (f̃x)
−1(u) for all u with ‖u‖ ≤ 1

2e−2λ0−4ε ;
(2) ‖Fx − D0f̃x‖C1 < ε′;
(3) ‖Fx

−1 − (D0f̃x)
−1‖C1 < ε′.

Additionally, there is C0 > 0 so that:
(4) Hölβ‖·‖′(DFx) ≤ C0;
(5) Hölβ‖·‖′(DF−1

x ) ≤ C0.
Furthermore, taking ε > 0 sufficiently small, we can ensure all relevant estimates remain
true in the Euclidean norm ‖ · ‖.

Given sufficiently small ε > 0, fix a family of (ε, �)-charts {�x : x ∈ �} as above. Let
0 < δ < 1 be a reduction factor. (Say δ < 1

4e−3λ0−6ε to adapt the arguments in [LY1,
equations (2.2) and (2.3)].) For x ∈ �, let

Scu
δ,x := {y ∈ R

k : ‖�−1
f −n(x)

◦ f −n ◦ �x(y)‖ < δ for all n ≥ 0}.

For x ∈ �, � ∈ {s, u, c, su, cu}, and v ∈ R
k , let W̃ �

x (v) be the corresponding ‘fake’
manifold through the point v constructed in Proposition 2.1 using the sequence of
globalizations {Ff j (x)} along the orbit f j (x).

From the uniformly partially hyperbolic dynamics inside charts we obtain the following
claim.

CLAIM 4.2. For all sufficiently small δ > 0 and almost every x we have Scu
δ,x ⊂ W̃ cu

x (0).

From Corollary 2.3, it follows (for sufficiently small δ > 0) that the Lipschitz property
of holonomies along unstable manifolds inside the center-unstable sets Scu

δ,x derived in
[LY1, equation (4.2)] for C2 maps holds for C1+β maps. We similarly obtain that the
holonomies along ‘fake’ Wi manifolds is Lipschitz inside Wi+1 manifolds for λi >

λi+1 > 0; this replaces the Lipschitz estimates [LY2, Lemma 8.2.5 and equation (8.4)].
Note also that since the coordinate changes intertwining the charts �x and �̂x are
linear we also obtain an analogous Lipschitzness of holonomies relative to the original
charts �̂x . In particular, [LY1, Proposition 5.1] and [LY2, Proposition 11.2] remain valid
for C1+β diffeomorphisms. It follows that the results of [LY1, LY2] hold for C1+β

diffeomorphisms.
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