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Abstract

We consider a weighted stationary spherical Boolean model in R
d to which a Matérn-

type thinning is applied. Assuming that the radii of the balls in the Boolean model have
regularly varying tails, we establish the asymptotic behavior of the tail of the contact
distribution of the thinned germ–grain model under four different thinning procedures of
the original model.
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1. Introduction

We consider hard-core global thinning of a stationary spherical Boolean model in R
d ,

constructed as follows. Let � be a Poisson point process on R
d × R+ × R+ with mean

measure

m(dx, dr, dw) = λ dxG(dr, dw). (1.1)

Here λ > 0 is the spatial intensity and G is a probability law on R+ ×R+. Such a Poisson point
process is often simply called a Poisson process, or a Poisson random measure. In fact, the
‘measure aspect’ is particularly important for us in this paper, and we occasionally emphasize
it in the sequel. Let (Xn, Rn, Wn), n = 1, 2 . . . be a measurable enumeration of the points
of �. We view Xn ∈ R

d as the center of the nth ball, and Rn its radius. In the sequel we use
the notation Br(x) for a closed ball of radius r > 0 centered at x ∈ R

d , so the nth point of �

corresponds to the closed ball BRn(Xn). The last component, Wn, is the weight of the nth ball,
and it is used below in resolving collisions between balls. Let F(·) = G(· × R+) be the law of
the radius marking a spatial Poissonian point. We assume that

∫ ∞

0
rdF (dr) < ∞. (1.2)

It is well known that, under this assumption, with probability 1, a realization of the random
field � has the property that only finitely many balls of the type BRn(Xn) intersect any compact
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set in R
d . This implies that the union

D =
∞⋃

n=1

BRn(Xn) (1.3)

is a random closed subset of R
d . We refer the reader to [3] for this fact and as a general reference

on Boolean and related models.
It is common to refer to a random configuration of the type we have constructed as a germ–

grain model; such a model does not need to involve a spatial Poisson point process or spherical
shapes. In the Boolean model above each Xn is a germ, and the corresponding closed ball
BRn(0) is its grain. The set D in (1.3) is the grain cover of the space.

Some of the balls BRn(Xn) in the Boolean model as above overlap. In order to obtain a
hard-core germ–grain model, i.e. a configuration in which no two grains overlap, it is possible
to thin the Boolean model, by removing (at least) one ball in each pair of balls involved in an
overlap. We follow the global thinning procedure introduced in [6]; it is in this procedure that
the weight component Wn of the nth ball is used. Informally, for every pair of different balls,
BRn(Xn) and BRm(Xm) with a nonempty intersection, the ball BRn(Xn) is deleted if Wn ≤ Wm;
this procedure deletes both balls if Wn = Wm. To be a bit more formal, we use the notation
borrowed from [5]: let

Nx,r,w = {(x′, r ′, w′) ∈ R
d × R+ × R+ \ (x, r, w) : Br ′(x′) ∩ Br(x) �= ∅} (1.4)

(the notation is somewhat informal: a ball of the type Br(x) is not a subset of R
d ×R+ ×R+; it

is really a subset of that product space with w fixed, so a proper notation would be Bw
r (x), but

as long as no confusion is likely to arise, we use the informal notation because it is simpler).
We view the set Nx,r,w as the collection of centers, radii, and weights of balls that could,
potentially, intersect a reference ball Br(x) with weight w. Then the thinned Boolean model
we are considering is given by

�th = {(x, r, w) ∈ � : w > w′ for all (x′, r ′, w′) ∈ � ∩ Nx,r,w}. (1.5)

By construction, all the remaining grains (balls) in the thinned random field �th are disjoint.
The corresponding grain cover can be written in the form

Dth =
⋃

(x,r,w)∈�th

Br(x). (1.6)

The thinning procedure we are using is sometimes referred to as the Matérn type II con-
struction. A discussion of different Matérn type constructions and their extensions has been
given in [8]. This model was studied in [1] and [6]. Chiu et al. [3] provided a survey of Matérn
thinnings. Teichmann et al. [10] used probabilistic thinning rules to generalize Matérn type
constructions and presented a detailed second order analysis for these general models. Our
inspiration for the present work came from Kuronen and Leskelä [5], and we refer the reader
to this paper for an illuminating discussion of the importance and applications of hard-core
germ–grain models. Specifically, the latter paper considered the case of power-law grain sizes;
in our notation we can describe this setup as follows. Recalling that we denote by F the
marginal distribution of the probability measure G in (1.1) corresponding to the random radius
of a Poisson ball, the power-law distribution of the grain sizes of [5] is the assumption of regular
variation of the tail

F̄ (r) := 1 − F(r) = r−αL(r), (1.7)
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672 Y. DONG AND G. SAMORODNITSKY

where α > d and L is a slowly varying function; recall that a measurable eventually positive
function L is slowly varying at ∞ if, for any c > 0, L(cx)/L(x) → 1 as x → ∞. The
restriction α > d ensures that the integrability condition (1.2) holds. We refer the reader
to [9] for information on regular varying tails. In the sequel we extensively use two facts
about regularly varying functions that quantify their similarity with power functions. The first
property is referred to as Potter’s bounds: if (1.7) holds then, for any fixed δ > 0, there exists
x0 > 0 such that, for all x, y ≥ x0,

F̄ (y)

F̄ (x)
≤ (1 + δ) max

{(
y

x

)−α+δ

,

(
y

x

)−α−δ}
; (1.8)

see [2, Theorem 1.5.6]. We also use one of the properties referred to as Karamata’s theorem,
specifically the version that says that if F̄ satisfies (1.7), then it integrates similarly to a power
function, namely, if α > 1, then∫ ∞

x
F̄ (t) dt

xF̄ (x)
→ 1

α − 1
as x → ∞;

see [2, Proposition 1.5.10].
Under the assumption (1.7) of regular variation, Kuronen and Leskelä [5] discovered the

appearance of power-like decay of the covariance function of the thinned grain cover (1.6)
defined by

kth(z) = P(0 ∈ Dth, z ∈ Dth) − P(0 ∈ Dth)P(z ∈ Dth) as ‖z‖ → ∞.

This was the case under three out of four choices of the joint law G in (1.1) they considered;
we return to these choices in a moment.

In this paper we are interested in the contact distribution for the thinned Boolean model
described above. It is a probability law H on R+ whose complementary cumulative distribution
function is defined by

H̄ (r) = P(Br(0) ∩ Dth = ∅ | 0 /∈ Dth), r > 0. (1.9)

Of course, the contact distribution can be defined for any germ–grain model. It differs only by
a possible atom at zero from the empty space function, a probability law on [0, ∞) defined by

H̄e(r) = P(Br(0) ∩ Dth = ∅), r ≥ 0. (1.10)

Contact distributions are important characteristics of germ–grain models; a survey on the topic
can be found in [4]. Explicit formulae for the contact distributions are mostly available only
for Poisson-based models such as Poisson cluster models. For example, for the nonthinned
Boolean model Dth = D, we have

H̄e(r) = exp

{
−λvd

[
rd + d

∫ ∞

r

xd−1F̄ (x − r) dx

]}
, r ≥ 0.

Here vd is the volume of the d-dimensional unit Euclidean ball. Our goal in this paper is to
understand the tail behavior of the contact distribution H for the thinned Boolean model with
a power-law distribution of the grain sizes. Specifically, we are interested in answering the
question whether a power-law distribution of the grain sizes results in a power-law behavior of
the contact distribution for the thinned Boolean model. Note that for the original Boolean model
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with the grain cover (1.3) the tail of the contact distribution decays, obviously, exponentially
regardless of the distribution of the radius of a ball. It turns out that certain choices of the joint
law G of the radius of a ball and its weight lead to appearance of a power-law-like decay of the
contact distribution, while other choices do not.

One possible choice of the law G in (1.1) is given by setting Wn = Rn almost surely (a.s.)
for all n, so that G is concentrated on the diagonal r = w of R+ × R+. With this choice
of G, balls with a larger radius have a larger weight. We refer to this situation as the case
of heavy large balls. It is useful to mention that the results concerning this case remain true
if Wn is any strictly increasing function of Rn (and even more general possibilities fall under
the same framework). Another possible choice of G is given by setting Wn = 1/Rn a.s. for
all n. With this choice of G, balls with a smaller radius have a larger weight. As above, the
results concerning this case remain true if Wn is any strictly decreasing function of Rn. A third
possible choice of the law G is to make it a product law, and to make the marginal law of the
weights continuous (e.g. standard uniform). That is, the weights are independent of the radii of
the balls. Finally, one could make the weights of the balls constant (e.g. Wn = 1 a.s. for all n).
In this case, only isolated balls in the original Boolean model (i.e. the balls that do not overlap
with any other ball) stay in the thinned germ–grain model �th. This last thinning mechanism
is known as the Matérn type I construction.

It is interesting that, as shown in [5], when the radii of the balls are regularly varying as in
(1.7), the covariance function of the thinned grain cover (1.6) has a power-like decay under all
of the above thinning mechanisms apart from the case of heavy small balls.

In a certain sense the above situation is preserved when one is interested in the tail of the
contact distribution. In Section 2 we show that this tail has a power-like decay in all cases apart
from the case of heavy small balls. Interestingly, the power of the rate of decay is different for
the three thinning mechanisms considered here. Finally, in Section 3, on the other hand, we
show that in the situation when a ball with a large radius has a smaller weight than a ball with
a small radius, the tail of the contact distribution decays exponentially.

2. Power law of the contact distribution

We start this section by showing that, in the case when a ball with a larger radius in a Boolean
model has a larger weight than a ball with a smaller radius, the contact distribution of the thinned
model has a tail with power-like decay.

Theorem 2.1. Assume that the distribution of the radii of the balls in the Boolean model satisfies
(1.7) with α > d. If Wn = Rn a.s. (i.e. if larger balls have larger weights) then the contact
distribution of the thinned germ–grain model satisfies

0 < lim inf
r→∞

H̄ (r)

(rd F̄ (r))2
≤ lim sup

r→∞
H̄ (r)

(rd F̄ (r))2
< ∞. (2.1)

Proof. Throughout the proof, we can and do work with the tail of the empty space function
(1.10) instead of the tail of the contact distribution. Further, we use c to denote a finite positive
constant whose value is not important and that may change from one appearance to the next.
We also introduce a notational simplification. The Poisson point process � is a measure in the
(d + 2)-dimensional space R

d × R+ × R+, but in the present context the ‘weight’ coordinate
is a function of the ‘radius’ coordinate, so it is simpler to view � as a measure in the (d + 1)-
dimensional space R

d ×R+, described by the location of the center of a ball and its radius. We
use the appropriate notation throughout the proof.
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674 Y. DONG AND G. SAMORODNITSKY

We start by proving the lower bound in (2.1). We construct a scenario under which the ball
Br(0) does not intersect �th. The idea of the construction is that a single ball with a large
radius in � ‘eliminates’ all the other balls in � that intersect Br(0), and then another ball
in � of an even larger radius ‘eliminates’ the first ball of a large radius, but does not itself
intersect Br(0). That leaves Br(0) disjoint from �th. The two large balls have centers in sets
of sizes proportional to r , and also radii of the size proportional to r , which explains the order
of magnitude of the tail in (2.1).

For r > 0 we consider three disjoint subsets of R
d × R+:

A(1)
r = {(x, t) : t ≥ ‖x‖ + r}, (2.2)

A(2)
r = {(x, t) : max{r, ‖x‖ − r} ≤ t < ‖x‖ + r}, (2.3)

A(3)
r = {(x, t) : ‖x‖ − r ≤ t < r}. (2.4)

Note that only those balls BRn(Xn) in � for which (Xn, Rn) ∈ A
(1)
r ∪ A

(2)
r ∪ A

(3)
r intersect

Br(0). Further, any ball BRn(Xn) in � for which (Xn, Rn) ∈ A
(1)
r contains the entire ball Br(0)

as a subset. The set A
(1)
r is most important for us in proving the lower bound in (2.1). Consider

the event
Br = {�(A(1)

r ) = 1, �(A(2)
r ) = 0}.

On the event Br we can define a random vector (X(r), R(r)
) ∈ A

(1)
r corresponding to the location

of the center and the radius of the single ball in � for which that pair is in the set A
(1)
r . We

extend the definition of (X(r), R(r)
)

to the outside of the event Br in an arbitrary measurable
way (e.g. define it on Bc

r to be the pair (0, 1)). Clearly, this vector has the law

P((X(r), R(r)) ∈ · | Br) = (Leb × F)(·)
(Leb × F)(A

(1)
r )

over A(1)
r .

Here Leb denotes d-dimensional Lebesgue measure. Note that

H̄e(r) = P(Br(0) ∩ Dth = ∅) ≥ P(Br ∩ B̂r ), (2.5)

where

B̂r = {there is a �-ball BRn(Xn) with (Xn, Rn) ∈ (A(1)
r ∪ A(2)

r ∪ A(3)
r )

c

and Rn > R(r) that intersects BR(r) (X
(r))}.

Recall that vd is the volume of the unit ball in R
d . By switching to spherical coordinates we

see that, for the large r ,

E[�(A(1)
r )] = λdvd

∫ ∞

0
xd−1F̄ (x + r) dx

= λdvdrd

∫ ∞

0
td−1F̄ (r(t + 1)) dt

∼ crdF̄ (r)

→ 0. (2.6)

In the last step we have used the Potter bounds for regularly varying functions; see [9] or (1.8).
Therefore, for large r ,

P(Br) ∼ E[�(A(1)
r )] ∼ crdF̄ (r). (2.7)
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Similarly,
E[�(A(2)

r )] ∼ crdF̄ (r) → 0 as r → ∞.

Next, for (y, w) ∈ A
(1)
r , define Ar,(y,w) to be the event

{(x, t) ∈ (A(1)
r ∪ A(2)

r ∪ A(3)
r )

c : t > w, the ball Bt(x) intersects the ball Bw(y)}.
Then since a Poisson point process, viewed as a random measure, assigns independent values
to disjoint sets,

P(B̂r | Br) = 1

(Leb × F)(A
(1)
r )

∫ ∫
(y,w)∈A

(1)
r

P(�(Ar,(y,w)) > 0) dyF(dw)

≥ 1

(Leb × F)(A
(1)
r )

∫
B3r (0)\B2r (0)

∫ 5.5r

5r

(1 − exp{−m(Ar,(y,w))}) dyF(dw)

because, clearly,
(B3r (0) \ B2r (0)) × (5r, 5.5r) ⊂ A(1)

r .

It follows from (2.6) that

(Leb × F)[(B3r (0) \ B2r (0)) × (5r, 5.5r)]
(Leb × F)(A

(1)
r )

≥ c for all large r.

Therefore, the lower bound in (2.1) will follow from (2.5) and (2.7) once we have shown that
there is a constant c such that for all r large enough

m(Ar,(y,w)) ≥ crdF̄ (r) for all (y, w) ∈ (B3r (0) \ B2r (0)) × (5r, 5.5r). (2.8)

To this end, for such a pair (y, w), consider the point

ỹ = y

‖y‖ (‖y‖ + w) ∈ R
d ,

and the ball Br(ỹ). Let ‖z‖ ≤ r . Note that the distance from the point ỹ + z ∈ Br(ỹ) to the
ball Bw(y) does not exceed ‖z‖ ≤ r , while the distance from that same point to ball Br(0) is
greater than ‖y‖ + w − r > w + r . Taking into account the bounds on w we have chosen, we
see that any ball centered at a point ỹ + z ∈ Br(ỹ) with a radius t ∈ (5.5r, 6r) will intersect
the ball Bw(y) but not the ball Br(0). We conclude that for a pair (y, w) as above,

Ar,(y,w) ⊃ {(x, t) : x ∈ Br(ỹ), t ∈ (5.5r, 6r)},
implying that

m(Ar,(y,w)) ≥ crd(F̄ (5.5r) − F̄ (6r)) ∼ crdF̄ (r) as r → ∞,

by the regular variation property of F̄ (·). This proves (2.8).
We now prove the upper bound in (2.1). Let K > 0 be a fixed number to be specified

momentarily. Denote

A(4)
r (K) =

{
(x, t) : max

{
r

K
, ‖x‖ − r

}
≤ t < ‖x‖ + r

}
.
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The same argument using regular variation and the Potter bounds as in (2.6) shows that, for
large r ,

E[�(A(4)
r (K))] ≤ crdF̄ (r) (2.9)

for some K-dependent constant c. This bound, together with (2.6), tells us that, for large r ,

P(�(A(1)
r ) ≥ 2) ≤ c(rd F̄ (r))2, P(�(A(4)

r (K)) ≥ 2) ≤ c(rd F̄ (r))2,

P(�(A(1)
r ) ≥ 1,�(A(4)

r (K)) ≥ 1) ≤ c(rd F̄ (r))2.

Thus, the upper bound in (2.1) follows once we prove the three inequalities below for large r:

P(Br(0) ∩ Dth = ∅, �(A(1)
r ) = 1) ≤ c(rd F̄ (r))2, (2.10)

P(Br(0) ∩ Dth = ∅, �(A(4)
r (K)) = 1) ≤ c(rd F̄ (r))2, (2.11)

P(Br(0) ∩ Dth = ∅, �(A(1)
r ) = �(A(4)

r (K)
) = 0) ≤ c(rd F̄ (r))2. (2.12)

We show that (2.10) and (2.11) hold for any K > 0, specifying K when we prove (2.12).
First we prove (2.10). For the event in that probability to occur, the only �-ball in A

(1)
r must

overlap with another �-ball that has a larger radius and lies outside A
(1)
r . Since restrictions of

a Poisson point process to disjoint sets are independent, and since the only �-ball in A
(1)
r has

radius at least r , the probability in (2.10) is bounded above by

P(�(A(1)
r ) = 1) sup

s≥r
P(�(A(5)

s ) > 0),

where

A(5)
s = {(x, t) ∈ R

d × R+ : t > s, the ball Bt(x) intersects the ball Bs(0)}, (2.13)

the center of the ball of radius s being irrelevant due to stationarity. It is elementary that, for
large s, by the regular variation of F̄ and Karamata’s theorem on integration of regularly varying
functions (see, e.g. [9]),

m(A(5)
s ) = c

∫ ∞

0
xd−1F̄ (s ∨ (x − s)) dx (2.14)

= c(2s)d F̄ (s) + c

∫ ∞

2s

xd−1F̄ (x − s) dx

≤ csdF̄ (s).

Therefore, for large s,
P(�(A(5)

s ) > 0) ≤ csdF̄ (s),

and (2.10) follows from (2.6). Clearly, all the ingredients involved in the proof of (2.10) are
also available for the proof of (2.11), so we need only prove (2.12).

Now we explain how to choose K: we choose it together with several other constants.
Choose sequentially positive real numbers 0 < θ < d/α and 0 < τ < θ(α − d), a positive
integer I > 2(α − d)/τ − 1, and, finally, K > 2I+1. We start by considering the concentric
balls Br2−i (0), i = 0, 1, . . . , I . For i = 0, 1, . . . , I, let

Mi = sup{Rn : BRn(Xn) is a �-ball, ‖Xn‖ + Rn < r2−i}.
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Then
P(Mi ≤ (r2−i )θ ) = exp{−m

({(x, t) : ‖x‖ + t < r2−i , t > (r2−i )θ })},
and since θ < 1,

m({(x, t) : ‖x‖ + t < r, t > rθ }) ≥ m
({

(x, t) : ‖x‖ < 1
2 r, rθ < t ≤ 1

2 r
})

= crd
(
F̄ (rθ ) − F̄

( 1
2 r

))
∼ crdF̄ (rθ ) as r → ∞.

From the choice of θ , we see that

P(Mi ≤ (r2−i )θ ) = o([rd F̄ (r)]2), i = 0, 1, . . . , I,

so (2.12) follows once we prove the finiteness of

lim sup
r→∞

P(Br(0) ∩ Dth = ∅, �(A
(1)
r ) = �(A

(4)
r (K)) = 0, Mi > (r2−i )

θ
, i = 0, 1, . . . , I )

[rd F̄ (r)]2 .

(2.15)
For i = 0, 1, . . . , I , define the events

Hi = {the �-ball fully inside Br2−i (0) and of largest radius,

is eliminated by a �-ball not fully inside Br2−i (0)}.
Note that, on the event Hc

i , the largest �-ball fully inside Br2−i (0) stays in the thinned process,
hence, Br(0)∩Dth �= ∅. Therefore, in order to prove (2.15), it is enough to prove the finiteness
of the limsup as r → ∞ of

P({�(A
(1)
r ) = �(A

(4)
r (K)) = 0, Mi > (r2−i )

θ
, i = 0, 1, . . . , I } ∩ H0 ∩ · · · ∩ HI )

[rd F̄ (r)]2 . (2.16)

Consider first the probability

P({�(A(1)
r ) = �(A(4)

r (K)) = 0, Mi > (r2−i )θ , i = 0, 1, . . . , I } ∩ HI )

≤ P({�(A(1)
r ) = �(A(4)

r (K)) = 0, MI > (r2−I )θ } ∩ HI ).

On the latter event HI , we can define a random vector (X̃I , R̃I ) as the center and the radius of
the largest �-ball fully within Br2−I (0). Note that R̃I > (r2−I )θ . The random vector (X̃I , R̃I )

is determined by the Poisson process � on the set

{(x, t) : ‖x‖ + t < r2−I },
and the corresponding �-ball can only be eliminated by a �-ball in the complement of that set.
Since restrictions of a Poisson point process to disjoint sets are independent, we conclude, in
the notation of (2.13), that, for large r ,

P({�(A(1)
r ) = �(A(4)

r (K)) = 0, MI > (r2−I )θ } ∩ HI ) ≤ sup
s≥(r2−I )θ

P(�(A(5)
s ) > 0)

≤ c(r2−I )
θd

F̄ ((r2−I )θ )

≤ cr−τ ,

where in the last two steps we used (2.14), the choice of τ , and the regular variation of F̄ .
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Next consider the probability

P( {�(A(1)
r ) = �(A(4)

r (K)) = 0, Mi > (r2−i )θ , i = 0, 1, . . . , I } ∩ HI−1 ∩ HI )

≤ P({�(A(1)
r ) = �(A(4)

r (K)) = 0, Mi > (r2−i )θ , i = I − 1, I } ∩ HI−1 ∩ HI ).

Note that the condition �(A
(1)
r ) = �(A

(4)
r (K)) = 0 in the above event means that the largest �-

ball completely within Br2−I (0) could only be eliminated by a �-ball centered at a point whose
norm is in the range r2−I ± r/K , while the largest �-ball completely within Br2−(I−1) (0) could
only be eliminated by a �-ball centered at a point whose norm is in the range r2−(I−1) ± r/K .
These two ranges are disjoint by the choice of K . Use again the fact that restrictions of a
Poisson point process to disjoint sets are independent, and an argument as above yields

P({�(A(1)
r ) = �(A(4)

r (K)) = 0, Mi > (r2−i )θ , i = I − 1, I } ∩ HI−1 ∩ HI ) ≤ c(r−τ )2.

Continuing in the same manner, we finally obtain

P({�(A(1)
r ) = �(A(4)

r (K)) = 0, Mi > (r2−i )θ , i = 0, 1, . . . , I } ∩ H0 ∩ · · · ∩ HI )

≤ c(r−τ )I+1 for large r.

From the choice of I , we see that the finiteness property of (2.16) follows. �
We turn next to consider the case of isolated balls remaining. Once again, the contact

distribution has a power-like decaying tail, but the corresponding power is different from the
power obtained in Theorem 2.1. This is, perhaps, not surprising, since keeping only isolated
balls results in fewest balls remaining in the thinned model, hence larger ‘open space’.

Theorem 2.2. Assume that the distribution of the radii of the balls in the Boolean model
satisfies (1.7) with α > d . If. in the thinned model. only isolated balls remain then the contact
distribution of this thinned germ–grain model satisfies

0 < lim inf
r→∞

H̄ (r)

rd F̄ (r)
≤ lim sup

r→∞
H̄ (r)

rd F̄ (r)
< ∞. (2.17)

Proof. We use the same conventions as in the proof of Theorem 2.1. In particular, we work
with the tail of the empty space function, and view the Poisson point process � as a measure
in the (d + 1)-dimensional space R

d × R+.
As earlier, we start with a lower bound. One scenario under which the ball Br(0) is disjoint

from the grain cover in the thinned model is the existence of both a �-ball that covers the entire
ball Br(0) and a �-ball that is entirely within the ball Br(0). Since

m({(x, t) : Bt(x) ⊂ Br(0)}) → ∞ as r → ∞,

we conclude from (2.6) that

P(Br(0) ∩ Dth = ∅) ≥ (1 − o(1)
)
P(�(A(1)

r ) ≥ 1) ∼ E(�(A(1)
r )) ∼ crdF̄ (r).

This proves the lower bound in (2.17).
The argument for the upper bound in (2.17) is based on several facts. First, since the thinned

random field �th is a.s. nonempty, for any ε > 0 and large enough a > 0,

P(there is Bv(x) ∈ �th with ‖x‖ ≤ ε and v ≤ a) > 0. (2.18)
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Second, there is a constant c > 0 such that for any 0 < a ≤ r there exist at least [crd/ad ]
closed balls of radius a completely within Br(0), such that the Euclidean distance between any
two different balls is at least a (this fact is readily verified by considering a regular grid of size a

inside Br(0)).
Let M(r) be the largest radius of a �-ball intersecting Br(0) (defined to be 0 if no �-ball

intersects Br(0)). Clearly, for any t > 0,

P(M(r) > t) = 1 − exp{−m(A
(6)
r,t )},

where

A
(6)
r,t = {(x, s) ∈ R

d × R+ : s > t, the ball Bs(x) intersects the ball Br(0)}.
An argument similar to the one for (2.14) shows that

m(A
(6)
r,t ) ≤ crdF̄ (t), (2.19)

with a similar lower bound but with a different constant c. Write

P(Br(0) ∩ Dth = ∅) ≤ P(M(r) > r) +
∫ r

0
P(Br(0) ∩ Dth = ∅ | M(r) = t)FM(r)(dt),

where FM(r) is the law of M(r). It follows from (2.19) that we have to prove that

lim sup
r→∞

∫ r

0 P(Br(0) ∩ Dth = ∅ | M(r) = t)FM(r)(dt)

rd F̄ (r)
< ∞. (2.20)

It follows from Mecke’s characterization of the Poisson process [7] that there is a version
of the regular conditional law of the Poisson process � given M(r) such that, on the event
{M(r) > 0}, given that M(r) = t for t > 0, the point process � restricted to the set A

(6)
t =

{(x, s) : s < t} is still a Poisson point process on that set with the same mean measure m,
restricted to that set. Take a > 0 such that (2.18) holds, and choose ε = a. Let 0 < p < 1 be
the corresponding value of the probability in (2.18). Consider a < t < r . There are [crd/td ]
closed balls of radius t completely within Br(0), such that the Euclidean distance between any
two different balls is at least t . For each of these [crd/td ] balls, with probability at least p, there
is an isolated �-ball with a center in it, and radius not exceeding t . The events that such �-balls
exist are independent, and the presence of such a �-ball guarantees that Br(0) ∩ Dth �= ∅.
Therefore, for any t > a,

P(Br(0) ∩ Dth = ∅ | M(r) = t) ≤ (1 − p)[crd/td ] ≤ (1 − p)cr
d/td−1.

It is clear that
P(M(r) ≤ a) ≤ e−crd = o(rd F̄ (r)).

Further,
∫ r

a
P(Br(0) ∩ Dth = ∅ | M(r) = t)FM(r)(dt) is bounded above by

c

∫ r

a

e−rd/ctd FM(r)(dt) ≤ crd

∫ r

0
e−rd/ctd t−(d+1)F̄M(r)(t) dt

≤ cr2d

∫ r

0
e−rd/ctd t−(d+1)F̄ (t) dt

= crd

∫ 1

0
e−1/csd

s−(d+1)F̄ (rs) ds

∼ crdF̄ (r)

∫ 1

0
e−1/csd

s−(α+d+1) ds as r → ∞,
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by the regular variation of F̄ and the Potter bounds. This completes the proof of (2.20) and,
hence, of the upper bound in the theorem. �

Finally, we consider the case when the weights are independent of the radii of the balls.

Theorem 2.3. Assume that the distribution of the radii of the balls in the Boolean model satisfies
(1.7) with α > d. If the weight of a ball in the model is independent of its radius and has a
continuous distribution, then the contact distribution of the thinned germ–grain model satisfies

0 < lim inf
r→∞

H̄ (r)

F̄ (r)
≤ lim sup

r→∞
H̄ (r)

F̄ (r)
< ∞. (2.21)

Proof. The structure of the argument is similar to that in Theorem 2.1. We also follow the
conventions in the proof of Theorem 2.1 by working with the tail of the empty space function.
However, since in this case the weight of a �-ball is not a function of its radius, we have to view
the Poisson point process � as a measure in the full (d +2)-dimensional space R

d ×R+ ×R+.
As before, we start by proving the lower bound in (2.21). We use a scenario similar to what

we used to prove the lower bound in Theorem 2.1. Specifically, this scenario uses two particular
balls: one ball has a large radius and large weight that ‘eliminates’ all the other �-balls that
intersect Br(0), while the other ball in �, of even larger weight, ‘eliminates’ the first ball but
does not itself intersect Br(0). Now recall the definition of the sets A

(1)
r , A

(2)
r , and A

(3)
r in

(2.2)–(2.4). As before, on the event

Br = {�(A(1)
r × R+) = 1},

we can define a random vector (X(r), R(r), W(r)
)

corresponding to the location of the center,
radius, and weight of the former ball in � for which the pair (X(r), R(r)

)
is in the set A

(1)
r .

Therefore,
P(Br(0) ∩ Dth = ∅) ≥ P(Br ∩ B̂r ),

where now
B̂r = {W(r) > max{w : (x, t, w) ∈ �((A(2)

r ∪ A(3)
r ) × R+)

and there is (x, t, w) ∈ �((A(1)
r ∪ A(2)

r ∪ A(3)
r )c)

and w > W(r) such that Bt(x) intersects BR(r) (X
(r))}.

A standard computation shows that if (for example) 2r ≤ R(r) ≤ 3r , then the expected number
of the Boolean balls that intersect BR(r) (X(r)) but not Br(0) is at least crd . Similarly,

P(�(A(1)
r × (0, ∞)) = 1, 2r ≤ R(r) ≤ 3r) ≥ crdF̄ (r).

Since
m((A(2)

r ∪ A(3)
r ) × R+) ≤ crd,

in order to establish the lower bound in (2.21) it is enough to prove the following statement.
Let c1, c2 be positive numbers, and let N1, N2 be independent Poisson random variables with
respective means c1r

d and c2r
d . Let W0, W

(1)
n , n = 1, 2, . . . , and W

(2)
n , n = 1, 2, . . . , be

independent and identically distributed standard uniform random variables independent of the
Poisson random variables. Then for some positive c,

P

(
sup

n≤N2

W(2)
n > W0 > sup

n≤N1

W(1)
n

)
≥ cr−d . (2.22)

https://doi.org/10.1017/jpr.2017.26 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.26


Contact distribution in a thinned Boolean model 681

To this end, observe that by symmetry, for any fixed n1 ≥ 1, n2 ≥ 1,

P

(
sup
n≤n2

W(2)
n > W0 > sup

n≤n1

W(1)
n

)
= n2

n1 + n2 + 1

1

n1 + 1
. (2.23)

Now (2.22) follows from the facts that

P
(
N2 ≥ 1

2c2r
d
) → 1 and P(N1 ≤ 2c1r

d) → 1 as r → ∞.

This completes the proof of the lower bound.
Now we prove the upper bound in (2.21). Let K1 be a large positive number to be specified

below. Define the event A
(7)
r (K1) by{

(x, s, w) ∈ R
d × R+ × R+ : s ≥ r

K1
, the ball Bs(x) intersects the ball Br(0)

}
.

As in (2.9), we have
E[�(A(7)

r (K1))] ≤ crdF̄ (r) (2.24)

(with a K1-dependent constant c). Therefore, if l1 ≥ α/(α − d) then

P(�(A(7)
r (K1)) > l1) = o(F̄ (r)) as r → ∞,

and, hence, we need to prove that

lim sup
r→∞

P(Br(0) ∩ Dth = ∅, �(A
(7)
r (K1)) ≤ l1)

F̄ (r)
< ∞. (2.25)

Fix θ ∈ (d/α, 1), and let

A(8)
r (K1, θ) =

{
(x, s, w) ∈ R

d × R+ × R+ : rθ < s <
r

K1
,

the ball Bs(x) intersects the ball Br(0)

}
.

As above, for large r ,
E[�(A(8)

r (K1, θ))] ≤ crdF̄ (rθ ).

From the choice of θ , we see that if l2 ≥ α/(θα − d) then

P(�(A(8)
r (K1, θ)) > l2) = o(F̄ (r)) as r → ∞.

Therefore, in order to establish (2.25), it is enough to prove that, for every j = 0, 1, . . . , l1,

lim sup
r→∞

P(Br(0) ∩ Dth = ∅, �(A
(7)
r (K1)) = j, �(A

(8)
r (K1, θ)) ≤ l2)

F̄ (r)
< ∞. (2.26)

Now specify K1 by setting K1 > l2. Note that for every choice of l2 and K1 as above, the
complement in Br(0) of the union of at most l2 balls of radii not exceeding r/K1 contains a
ball of radius γ r for some γ = γ (l2, K1) > 0 (we can choose γ = 1

2 (1/l2 − 1/K1)).
We first consider the j = 0 case of (2.26). Let �r,θ be the restriction of the Poisson point

process � to the set R
d × (0, rθ ] × R+. Again using the property of a Poisson point process
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that its restrictions to disjoint sets are independent, we see that (2.26) with j = 0 follows so
soon as we have shown that

lim sup
r→∞

P(Bγ r(0) ∩ Dr,θ,th = ∅)

F̄ (r)
< ∞, (2.27)

where Dr,θ,th is the grain cover corresponding to the thinning of �r,θ (with the weights still
being independent of the radii). The fact that we are allowed to use the ball centered at the
origin in (2.27), instead of a randomly centered ball described in the previous paragraph, is a
consequence of the translation invariance of �r,θ .

In order to prove (2.27), we need one more simple estimate. Let t be a large number,
t ≤ 1

3γ r . Consider concentric balls Bt/3(0), Bt (0), and B3t (0). Then there is 0 < q < 1 such
that

P( sup{w : (x, s, w) ∈ �r,θ ((Bt (0) \ Bt/3(0)) × R+)}
> max{sup{w : (x, s, w) ∈ �r,θ ((Bt/3(0) \ Bt/9(0)) × R+)},

sup{w : (x, s, w) ∈ �r,θ ((B3t (0) \ Bt(0)) × R+)})
≥ q for all t large enough.

(2.28)

Indeed, the Poisson point process �r,θ assigns mean measures of the order ctd to each of the
three annuli in question (with c K1-dependent), so (2.28) follows by using conditioning and a
computation analogous to (2.23).

Now it is clear that the probability in the numerator in (2.27) can be bounded from above
by (1 − q)cr

1−θ
for some c > 0 because we can fit into Bγr(0) triple annuli as above with the

radial separation between neighboring triples exceeding rθ , which makes, by the definition of
�r,θ , the events whose probabilities are computed in (2.28), independent. Therefore, (2.27)
holds, and so we have proved (2.26) with j = 0.

Next we consider (2.26) with j = 1. It follows from (2.24) that

P(�(A(7)
r (K1)) = 1) = O(rdF̄ (r)), r → ∞.

Therefore, we need to prove the following version of (2.27): consider the grain cover Dr,θ,th
and a random variable W independent of it, whose law is the distribution of the weight in the
Boolean model (W is the weight of the single ball in �(A

(7)
r (K1)). We eliminate all the balls

in Dr,θ,th whose weight is smaller or equal to W , and we call the resulting grain cover D̂r,θ,th.
Then (2.26) with j = 1 follows once we have proved that

lim sup
r→∞

rd
P(Bγ r(0) ∩ D̂r,θ,th = ∅) < ∞. (2.29)

In order to see that this is true, we use an argument similar to the one used to prove (2.27).
Consider the three annuli in (2.28). Since we already know that the probability that fewer than
cr1−θ events in (2.28) occur is o(r−d), we need only consider what happens if at least cr1−θ

of the events occur. In the latter case, the only possibility for Bγr(0) ∩ D̂r,θ,th = ∅ is that the
weight of the heaviest �-ball in the union of cr1−θ of annuli of radii of order cr and width
of order crθ does not exceed W . Since the mean measure of the Poisson point process �r,θ

assigns the weight of the order crd to that union, the latter probability does not exceed cr−d ,
once again, by conditioning and a computation analogous to (2.23).

Therefore, (2.29) is true, and so we have proved (2.26) with j = 1. The cases j = 2, . . . , l1,
are similar and easier, since the probabilities

P(�(A(7)
r (K1)) = j)

become asymptotically smaller as j increases, proving the upper bound in (2.21). �
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3. Heavy small balls and exponential decay of the contact distribution

In this section we prove that if the weight of a ball is a strictly decreasing function of its radius
then the tail of the contact distribution decays exponentially. This turns out to be unrelated to
the fact that the tail of the radii of the balls is regularly varying.

Theorem 3.1. Assume that the distribution of the radii of the balls in the Boolean model satisfies
(1.2). If Wn = 1/Rn a.s. (i.e. if larger balls have smaller weights), then for some c > 0 the
contact distribution of the thinned germ–grain model satisfies

H̄ (r) ≤ e−crd

for all large enough r. (3.1)

Proof. Once again, we work with the tail of the empty space function. Since the weight of
a ball is a function of its radius, we again switch to viewing the Poisson point process � as a
measure in the (d + 1)-dimensional space R

d × R+. Choose a finite number γ > 0 such that

F((0, γ )) > 0.

Let �γ be the restriction of the Poisson point process � to the set {(x, s) : s ≤ γ }. As in the
proof of Theorem 2.2, for some c > 0 that depends on γ , we can find at least crd disjoint balls
of radius γ within Br(0), such that the distance between any two different balls exceeds 2γ .
Let us call these balls Bi, i = 1, . . . , n, with n ≥ crd . For such i, let Hi denote the event

{�γ ({(x, s) : Bs(x) ∩ Bi �= ∅}) = 1, �γ ({(x, s) : Bs(x) ∩ [(Bi + Bγ (0)) \ Bi] �= ∅}) = 0}.
Here Bi +Bγ (0) is simply the ball concentric with Bi of radius 2γ . Note that, on the event Hi ,
the single �γ -ball in the description on the event cannot be ‘eliminated’ by any other �-ball.
Indeed, if another �γ -ball intersected it, the latter ball would be in the set [(Bi + Bγ (0)) \ Bi],
which is impossible on the event Hi . Further, any �-ball which is not a �γ -ball has simply too
large a radius. Therefore,

P(Br(0) ∩ Dth = ∅) ≤ P

( n⋂
i=1

Hc
i

)
= (1 − P(H1))

n ≤ (1 − P(H1))
crd

.

The equality in this calculation follows from the fact that the balls Bi are sufficiently far away
from each other so that different events Hi are determined by restrictions of the Poisson point
process �γ to disjoint sets and, hence, are independent.

In order to prove the theorem we need only check that P(H1) > 0. Since �γ is translation
invariant, we replace, in the calculation below, B1 by Bγ (0) and B1 + Bγ (0) by B2γ (0). Note
that the event H1 is defined as the intersection of two independent events, so we need only
check that each of these events has positive probability.

It is clear that

�γ (Bγ (0) × (0, γ ]) ⊂ �γ ({(x, s) : Bs(x) ∩ Bγ (0) �= ∅}) ⊂ �γ (B2γ (0) × (0, γ ]),
so that

0 < E[�γ ({(x, s) : Bs(x) ∩ Bγ (0) �= ∅})] < ∞
and, hence,

P(�γ ({(x, s) : Bs(x) ∩ Bγ (0) �= ∅}) = 1) > 0.

Further,

�γ ({(x, s) : Bs(x) ∩ (B2γ (0)) \ Bγ (0)) �= ∅}) ⊂ �γ (B3γ (0) × (0, γ ]),
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so that
E[�γ ({(x, s) : Bs(x) ∩ (B2γ (0)) \ Bγ (0)) �= ∅}] < ∞

and, hence,
P(�γ ({(x, s) : Bs(x) ∩ (B2γ (0)) \ Bγ (0)) �= ∅} = 0) > 0.

This implies that P(H1) > 0, and the proof of the theorem is complete. �
Note that a lower bound of the type

H̄ (r) ≥ e−crd

for large r

(with, possibly, a different exponent c than in (3.1)) is trivially true since it holds for the original
spherical Boolean model even before thinning.
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