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Circular hydraulic jumps: where does surface
tension matter?
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Recently, an unusual scaling law has been observed in circular hydraulic jumps and has
been attributed to a supposed missing term in the local energy balance of the flow (Bhagat
et al., J. Fluid Mech., vol. 851, 2018, R5). In this paper, we show that – though the
experimental observation is valuable and interesting – this interpretation is presumably not
the right one. When transposed to the case of an axial sheet formed by two impinging liquid
jets, the assumed principle leads in fact to a velocity distribution in contradiction with the
present knowledge for this kind of flow. We show here how to correct this approach by
maintaining consistency with surface tension thermodynamics: for Savart–Taylor sheets,
when adequately corrected, we recover the well-known 1/r liquid thickness with a constant
and uniform velocity dictated by Bernoulli’s principle. In the case of circular hydraulic
jumps, we propose here a simple approach based on Watson’s description of the flow in
the central region (Watson, J. Fluid Mech., vol. 20, 1964, pp. 481–499), combined with
appropriate boundary conditions on the circular front formed. Depending on the specific
condition, we find in turn the new scaling by Bhagat et al. (2018) and the more conventional
scaling law found long ago by Bohr et al. (J. Fluid Mech., vol. 254, 1993, pp. 635–648).
We clarify here a few situations in which one should hold rather than the other, hoping to
reconcile the observations of Bhagat et al. with the present knowledge of circular hydraulic
jump modelling. However, the question of a possible critical Froude number imposed at the
jump exit and dictating logarithmic corrections to scaling remains an open and unsolved
question.
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1. Introduction

Stationary axisymmetric liquid structures formed by jet impacts have motivated an
enormous amount of literature. Three examples that will be important here are sketched
in figure 1. The first is the well-known circular hydraulic jump (Rayleigh 1914; Tani 1949;
Watson 1964; Craik et al. 1981; Bohr, Dimon & Putkaradze 1993; Bush & Aristoff 2003;
Duchesne, Lebon & Limat 2014; Mohajer & Li 2015; Bhagat et al. 2018; Salah et al.
2018; Wang & Khayat 2019, 2021), shown in figure 1(a), with a well-developed liquid
film extending all around. The second, in figure 1(b), is its equivalent on a ‘dry’ surface
(atomization rim), obtained by superhydrophobic treatment (Maynes, Johnson & Webb
2011; Sen et al. 2019). A related, but different, configuration can be reached by simply
impinging a vertical jet from below on a horizontal ceiling (Button et al. 2010; Jameson
et al. 2010). The final example is the well-known radial liquid sheet (Savart 1833; Huang
1970; Clanet & Villermaux 2002; Villermaux, Pistre & Lhuissier 2013), formed either
by impinging two opposite symmetrical liquid jets having the same central axis, or by
impinging a liquid jet on a solid surface with a diameter similar to the jet diameter; this is
depicted in figure 1(c).

These three geometries are of course linked by the same general equation for the energy
balance. In this article, we will therefore show that apparent paradoxes raised by the
modelling of the surface tension on the circular hydraulic jump by Bhagat et al. (2018)
may be solved or at least clarified by considering the geometry depicted in figure 1(c).

The selection of jump radius RJ in the circular hydraulic jump case (figure 1a) has
motivated many studies. The two best-known approaches are that of Watson and Bush
(Watson 1964; Bush & Aristoff 2003), in which the height of the outer film remains a
control parameter, and that of Bohr et al. (1993), devised instead for a liquid film extending
all around at a large distance, and inspired by boundary-layer theories. As is well known,
this second approach leads to a scaling law dependence of RJ upon the flow rate Q and the
physical parameters (the kinematic viscosity of the fluid ν, the gravity g), which reads as
follows:

RJ ∼ Q5/8ν−(3/8)g−(1/8). (1.1)

Later, Duchesne et al. (2014) emphasized the importance of logarithmic corrections to
scaling, due to viscous dissipation in the outer film, yet observed numerically by Bohr.
They also showed that the prefactor was experimentally linked to the value of the Froude
number at the jump location (precisely at the immediate exit of the jump, in the outer part
of the flow), which seemed to be locked to a critical value. This phenomenon was recovered
by Mohajer & Li (2015) and by Argentina et al. (2017) with a nonlinear modelling of film
flow equations including the first finite slope terms.

Very recently, an attempt to revise this picture has been published by Bhagat et al.
(2018), who performed new experiments and reported the observation of a different
scaling, where surface tension γ was involved, but not gravity:

RJ ∼ Q3/4ρ1/4ν−(1/4)γ −(1/4), (1.2)

where ρ is the liquid density. To rationalize this finding, these authors claimed that most
available approaches to the influence of surface tension lead to only small corrections
(Bush & Aristoff 2003) and that the description of the circular hydraulic jump had thus to
be completely reconsidered. They introduced an energy balance, between two radii r and
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Figure 1. Three axisymmetric film flows are discussed in the present article: (a) the classical circular hydraulic
jump formed by a jet impacting a solid disk at its centre; (b) atomization ring formed by a jet impacting a dry
surface, possibly superhydrophobic; (c) liquid sheet formed by impact of two liquid jets of opposite direction.

r + δr, which reads[
ρ

ū2

2
ūrh
]r+δr

r
= [

γ rū
]r+δr

r − [
pūh

]r+δr
r −

[
ρg

h2

2
rū
]r+δr

r
− rτWūδr, (1.3)

with the notation [A]r+δr
r = A(r + δr) − A(r), and where ū designates the flux-average

radial velocity, r the distance to the axis, h(r) the thickness of the liquid layer, p(r) the
pressure at z = 0 and τW the wall shear stress. The last term on the right designates the
viscous dissipation by friction on the substrate, while the first one is an additional term
compared to previous approaches, which is presumed to be ‘at the origin’ of the new
scaling (1.2). This conjecture has been contested (Duchesne, Andersen & Bohr 2019; Bohr
& Scheichl 2021) (see also the answer in Bhagat & Linden (2020)), and it is also known
that a scaling like (1.2) can also appear without such an assumption, as shown for instance
by Button et al. (2010) for liquid bells formed below a ceiling.

Here it is useful to have a look at what would happen in the simplified geometry of
figure 1(c), when applying this principle. As we shall show in § 2, this modelling leads
to a velocity distribution in complete contradiction to the present knowledge of liquid
sheets (and with Bernoulli’s principle), which suggests that the argument of Bhagat et al.
is flawed. In fact the flow field obtained is not new; it was previously proposed by Bouasse
(1923), who attributed the calculation to Hagen (1849) (it is worth noticing that this error
has recently been pointed out by Bohr & Scheichl 2021). It will be instructive here to
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recall the argument followed by Hagen and Bouasse in a Lagrangian frame, analysing an
expanding circular piece of film; we describe this argument in § 3. We will then show, in
the same section, how one can correct the argument to get the more classical and now
admitted result deduced from Bernoulli’s principle of a uniform radial velocity around
the impact point, and how, if some terms in the balance are missed, one can get the
flawed result of Bouasse and Hagen. Finally, coming back to an Eulerian description,
we will explain how these considerations affect the principle proposed in (1.3). We
will show that an extra term exactly equal and opposite to the capillary contribution
should cancel this one, in a way consistent with classical thermodynamics (i.e. surface
tension can only produce a non-zero amount of global work when the surface area of the
associated interface changes), leading to the expression usually written from the balance
of momentum.

This does not mean, however, that the scaling discovery of Bhagat et al. is of no interest.
In §§ 4 and 5, we will try to specify to which capillary structures – different from the
stationary hydraulic jump observed by Bohr – it could apply, and a possible way to justify
its occurrence.

2. A look at a simple situation: the axisymmetric liquid sheet

Let us try to apply the principle suggested in (1.3) to the case suggested in figure 1(c),
i.e. to an axisymmetric sheet formed by the coaxial impact of two jets in a situation of
negligible gravity. The viscous shear on the substrate having disappeared, (1.3) reduces to
a very simple balance that reads as follows:

[
ρrh

u3

2

]r+δr

r
= [

γ ru
]r+δr

r , (2.1)

where the horizontal velocity u has no dependence upon the transverse direction, and
coincides with any of its average values. This implies that the following quantity is constant
all over the sheet:

ρrh
u3

2
− γ ru = Cte. (2.2)

Combined with the mass balance Q = 2πrhu, this leads to the following expression for u:

u = 2π
γ

ρQ
r +

√
u2

0 − 4π
γ

ρQ
r0u0 + 4π2 γ 2

ρ2Q2 r2, (2.3)

where r0 designates the jet radius at impact and u0 the asymptotic value for u,
reached when r = r0, which satisfies the equality Q = πr2

0u0 in a quasi-elastic shock
approximation (Villermaux et al. 2013). In the limit of large jet velocity, i.e. u2

0 �
2γ /(ρr0), this expression reduces to the following approximation, which is slowly varying
upon r:

u ≈ u0 + 2π
γ

ρQ
(r − r0). (2.4)

This is known to be false, as it has been checked experimentally that the velocity is
constant all over the sheet, recovering Bernoulli’s principle (see in particular figure 3 in
Villermaux et al. 2013). It is surprising, however, that a similar expression was proposed by
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(a) (b)
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Figure 2. Lagrangian (a) and Eulerian (b) frames used in the text for discussing energy balance in an annular
portion of a liquid film.

Bouasse (1923), who attributed this result to Hagen (1849), but with a slight sign change
that is in fact due to a mistake of his own:

u ≈ u0 − 2π
γ

ρQ
(r − r0). (2.5)

Though obtained erroneously, this expression is very seductive, and Bouasse used it to
calculate the radius of the liquid sheet RLS assuming that the sheet border should stay
at the place where u vanishes, which leads to RLS = (ρQu0)/(2πγ ) = (ρr2

0u2
0)/(2γ ).

Surprisingly, this result coincides with the correct one, which is in fact obtained, now,
by assuming a constant velocity, dictated by Bernoulli’s principle, and the balance of
momentum at the sheet perimeter, i.e. ρhu2 = γ (Villermaux et al. 2013). But on the other
hand, we would like to stress that the radial velocity is uniform in the sheet of figure 1(c),
which means that the principle proposed in (1.3), and therefore the basis of the theory
developed by Bhagat et al. (2018), is flawed.

3. Reconsidering Hagen’s argument, and its implications for hydraulic jump

We now try to understand the fault underlying the principle of Bouasse and Hagen. Their
line of thought is easier to explain if we consider a Lagrangian frame, and more precisely
the balance of energy on an annular piece of fluid convected by the radial flow; this is in
fact the method proposed by Bouasse himself in his treatise on fluid mechanics (Bouasse
1923).

Let us consider an annular piece of film as in figure 2(a), convected and distorted by the
flow. Mass conservation implies that, at any time hrδr = Cte, while the balance of energy
for the whole annulus reads, in the limit of δr small enough to satisfies the condition
δr(∂u/∂r) � u of a slowly varying velocity field:

∂

∂t

[
2π

(
1
2
ρu2rhδr + γ rδr

)]
≈ 2πγ δru. (3.1)

The first term in the left-hand side of this equation stands for kinetic energy, and the
second for the surface energy enclosed between r and r + δr. The right-hand term comes
from the work of surface forces, and does not vanish. Indeed, the same surface tension
force is pulling on a different arc length, as the external boundary has a larger perimeter
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than the other (note that this is the intuitive argument underlying the analysis of Bhagat
et al.). Still in the limit of a slowly varying velocity field at the scale δr, after noting that
∂/∂t = u∂/∂r, (3.1) reads

rhδru
∂

∂r

(
ρu2

2

)
+ γ uδr ≈ γ uδr. (3.2)

In fact, the two surface tension terms are cancelling each other, which means that the
work provided to the annulus by the surface tension of the outer interfaces is completely
transformed into the surface energy stored at the free surface of the annulus, in agreement
with simple thermodynamic considerations. As a result, the fluid velocity is unaffected by
surface tension balance and remains constant, as one would deduce from a more classical
argument in terms of Bernoulli’s principle; i.e. u(r) is in fact independent of r:

u(r) = u0 = Cte. (3.3)

Note here that skipping from (3.1) to (3.2) is not completely trivial, as there is an extra γ

term remaining, but this vanishes for the constant and uniform u0 solution.
To reconnect with Bouasse, if instead one forgets the internal surface energy

contribution in the left-hand member of (3.2), one obtains the following equation for u:

rhδr
∂

∂r

(
ρu2

2

)
≈ γ δr. (3.4)

After simplifying δr, and using the fact that Q = 2πruh, this equation leads to

∂u
∂r

≈ 2π
γ

ρQ
, (3.5)

which leads finally to (2.4). Alternatively, (2.5) is obtained when one forgets the work
provided to the annulus by the outer parts of the liquid sheet, i.e. when one neglects the
right-hand member of (3.2), following the intuitive but erroneous idea of Hagen (1849)
that surface tension could slow down the flow. Historically, Bouasse followed the first
argument but made a sign error, obtaining (2.5), which was presumably physically more
natural, in view of what Hagen said long ago.

To summarize, a correct treatment of the expansion of liquid annuli in the flow leads to
the classical result of a uniform velocity, while the approximations defended by Hagen and
Bouasse would follow from neglecting one or the other of the capillary terms. We believe
that a similar problem is involved in (1.3). If we now consider an Eulerian description of
the flow, as suggested in figure 2(b), the balance of energy will instead read

[
ρ

ū2

2
ūrh + γ rū

]r+δr

r
= [

γ rū
]r+δr

r − [
pūh

]r+δr
r −

[
ρg

h2

2
rū
]r+δr

r
− rτWūδr, (3.6)

where, in the left-hand side, we have added the surface energy convected by the film. It is
true that one can consider a capillary force, as in Bhagat et al., in the right-hand member,
but in this case, one should not miss the surface flux crossing the two circles displayed in
figure 2(b) in the left-hand side of the equation. And just as in a Lagrangian frame, the
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physics being the same in both frames, the capillary effects should exactly compensate for
each other in this equation, which should then reduce to the more conventional form

[
ρ

ū2

2
ūrh
]r+δr

r
= − [pūh

]r+δr
r −

[
ρg

h2

2
rū
]r+δr

r
− rτWūδr. (3.7)

This, apart from some coefficients that will depend on the detailed structure of the flow
profile, is consistent with what people are used to writing starting instead from the
balance of momentum (Bohr et al. 1993). Therefore, in the interpretation of (1.2), we
do not consider that one should add a new capillary force distributed throughout space as
proposed by Bhagat et al. (2018). In our opinion, this would merely reproduce the initial
mistake of Hagen and Bouasse. However, in the same way that Bouasse’s approach leads
to the correct radius for the liquid sheet but with a biased approach, we may be able to
show that the scaling of Bhagat et al. can be recovered by properly taking into account the
boundary conditions. We now develop this idea further.

4. Alternative explanation of unusual scaling: the boundary condition at the ‘jump’
radius; comparison with atomization rings

To interpret the occurrence of the scaling of Bhagat et al. (2018), we propose an alternative
approach. We simply treat the two ideal situations of figures 1(a) and 1(b) with the same
method, and see what happens. We will then see that the situation obtained in figure 1(b)
may be compared to the one suggested by Bhagat et al. (2018).

To simplify the analysis, the ‘internal’ flow for r0 < r < RJ is assimilated to the one
discussed long ago by Watson (1964), in which fluid inertia is progressively dissipated by
viscous friction; i.e. for r < RJ ,

u(r, z) = 27c3

8π4
Q2

ν(r3 + l3)
f
( z

h

)
, (4.1)

where c ≈ 1.402, l = 0.567r0R (with R the Reynolds number of the jet) and f is the
function f (η) = √

3 + 1 − 2
√

3/(1 + cn(31/4c(1 − η))). Mass conservation implies that
the flux of momentum is given by

ρh〈u2〉 = 27
√

3c3

16π6
ρQ3

rν(r3 + l3)
, (4.2)

where 〈u2〉 = ∫ h
0 u2 dz. In the case of figure 1a, this flow must be matched for r > RJ to a

film flow under the action of gravity that, according to lubrication (Duchesne et al. 2014),
has a thickness distribution H(r) given by

H(r)4 = H4
∞ + 6

π

νQ
g

ln
(

R∞
r

)
, (4.3)

where R∞ designates the outer radius of the substrate and the thickness H reaches a value
called H∞ that will depend on the specific geometrical conditions of the flow there (see
figure 1a for the graphical definition). At r = RJ , one must write some matching condition
that is consistent with the approximations made on each side of r = RJ , and stands for a
shock (Bélanger 1841; Rayleigh 1914). If we assume h � H and neglect the surface tension
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at the shock (i.e. for sufficiently large circular hydraulic jumps , such as those considered
by Bhagat et al. 2018), this shock condition reads

ρh(r)〈u(RJ)
2〉 ≈ ρgH(RJ)

2. (4.4)

In the limit of negligible values for H∞ and r0, compared to the other scales, it is easy
to check that these equations lead to the following scaling law for RJ:

RJln
(

R∞
RJ

)1/8

= (3c)3/4

29/8π11/8
Q5/8

ν3/8g1/8 . (4.5)

This is the scaling obtained by Bohr et al. (1993), modified by logarithmic corrections.
We now consider the regime described in figure 1(b), which may be obtained in a

stationary regime with a particular superhydrophobic treatment (Maynes et al. 2011; Sen
et al. 2019). In this regime the force opposed to fluid inertia at the boundaries is dictated
only by surface tension and not by gravity; there is no developed shock, no liquid ‘wall’.
In other words, the flux of momentum is balanced only by surface tension, which means
that (4.3) and (4.4) are now simply replaced by

ρh(r)〈u(RJ)
2〉 ≈ γ (1 − cos θ), (4.6)

with θ the static contact angle. This equation also applies to water bells obtained from the
impact of a vertical jet below a ceiling, as detailed in Button et al. (2010). In that case, the
local contact angle has no influence and the flux of momentum is simply balanced by γ .
This means that (4.6) is still valid in this configuration if we assume θ = π/2.

Using (4.2) in the limit r = RJ � r0, this condition yields a new scaling that reads as
follows:

RJ =
(

27
√

3c3

16π6

)1/4

(1 − cos θ)1/4Q3/4ν−(1/4)ρ1/4γ −(1/4). (4.7)

This scaling is very close to the one suggested by Bhagat et al. (2018) and previously by
Button et al. (2010). The only difference is an additional factor linked to the contact angle
(= 1 for water bells as previously explained). This explains why the scaling obtained by
Bhagat et al. (2018) applies to the experimental data of Jameson et al. (2010) even if the
theory leading to this scaling is not the right one.

We thus do not believe that there is a ‘universal’ scaling that should hold for any
circular ‘print’ formed around an impacting jet. Sometimes one may find Bohr’s scaling
and sometimes that of Bhagat et al. and Button et al.; what matters is the analysis of the
conditions surrounding the impact.

5. Another possible occurrence of the scaling of Bhagat et al. and Button et al.

We now show that the scaling of Bhagat et al. may also be observed in classical circular
hydraulic jumps. In Bhagat et al. (2018), the authors consider an intermediate regime
where the liquid has not yet reached the edge of the plate (see figure 3). In their
experimental evidence the authors consider partial wetting conditions (they use Perspex,
glass and Teflon) and aqueous solutions. Given that the front propagation speed is rather
small, we can suppose that the liquid front height is approximately given by

hcap ≈
√

2
(

γ

ρg

)1/2

(1 − cos θ)1/2, (5.1)

as explained, for instance, in de Gennes, Brochard-Wyart & Quéré (2004).
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hcap θ

Figure 3. Sketch of the intermediate regime for a low-viscosity liquid in partial wetting.

According to Duchesne et al. (2014) (and as also used in Mohajer & Li (2015) and
Ipatova, Smirnov & Mogilevskiy (2021)), at low viscosity and moderate flow rate, H(r) is
nearly constant and approximately reduces to

H(r) ≈ H∞ ≈ hcap. (5.2)

Therefore the (simplified) shock condition (4.4) previously obtained leads to

ρh(r)〈u(RJ)
2〉 ≈ 1

2ρgh2
cap. (5.3)

Surprisingly, this argument leads again to the ‘surface-tension-dominated’ scaling with
only a factor of 21/4 in between:

RJ =
(

27
√

3c3

16π6

)1/4

21/4(1 − cos θ)1/4Q3/4ν−(1/4)ρ1/4γ −(1/4). (5.4)

Now, recovering a result from Bhagat et al. (2018), one can also deduce that the Weber
number satisfies

We ≈ ρh(r)〈u(RJ)
2〉

γ
≈ Cte; (5.5)

i.e. a constant Weber number replaces the constant Froude number encountered in a fully
established hydraulic jump with a complete, flowing outer film.

Taking θ = π/2, we obtain
We ≈ 1, (5.6)

which is the result for the Weber number obtained by Bhagat et al. (2018).

6. Conclusion

In summary, we have reconsidered the problem of scaling law selection of the ‘radius
of influence’ in the problem of vertical jet impact on a horizontal solid surface. In our
opinion, the ideal law (1.1) proposed by Bohr and colleagues (to which one should not
forget to add logarithmic corrections as in Duchesne et al. 2014) corresponds to the ideal
situation of a stationary hydraulic jump formed inside a liquid film extending across the
whole solid surface. On the other hand, the scaling (1.2) suggested in Bhagat et al. (2018)
holds in different situations, such as the following:

(i) stationary impact of a jet on a dry surface, possibly superhydrophobic (fully or
partially as in Sen et al. 2019), without formation of the outer film (atomization
ring);

(ii) stationary impact of a jet on a dry surface in inverse gravity (impact of a jet on a
ceiling);
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(iii) transient regime of circular hydraulic jump formation for low-viscosity liquids in
partial wetting.

It would be interesting to explore in more detail these three situations, and to identify
possible other ones. In our opinion, there is no need to imagine some universal extra
capillary term imposing the scaling (1.2) as imagined in Bhagat et al. (2018). Though this
extra term really exists, it is in practice compensated for by another one (in a way consistent
with classical thermodynamics) when the control volume contains the free surface of the
film instead of excluding it. As usual in free surface flows, there is no increase or decrease
of velocity that could be due solely to the action of surface tension, except when Marangoni
effects are involved (Marmottant, Villermaux & Clanet 2000). To continue in this direction
would be simply to reproduce, for thin film flows on a solid, the initial mistake of Hagen
and Bouasse.

Returning to the matter of Bohr scaling, we have set aside somewhat the questions of
the logarithmic corrections and the possible existence of a critical Froude number at the
jump exit, as suggested in Duchesne et al. (2014). The possible existence of this critical
Froude number leads to a different exponent for the logarithmic corrections (3/8 instead of
1/8), and this question is still not resolved. As stated in the introduction, recent nonlinear
analytical treatment of the film flow suggests that such a critical Froude number could
exist, but this remains to be established and convincingly explained.

A specific problem of great interest where these considerations should matter is the
question of jet impacts on inclined plates. It is not obvious in this kind of problem whether
or not a perfect hydraulic jump can exist, and the two scalings should compete against each
other in a way that merits investigation. The influence of an external field, here the tangent
component of gravity, on a circular shock is a fundamental question of great interest.
Specific efforts should be made in this direction (Wilson et al. 2012; Duchesne, Lebon &
Limat 2013).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Alexis Duchesne https://orcid.org/0000-0002-8044-0916.

REFERENCES

ARGENTINA, M., CERDA, E., DUCHESNE, A. & LIMAT, L. 2017 Scaling the viscous circular hydraulic jump.
APS Division of Fluid Dynamics (Fall) 2017 Meeting, Abstract ID A19.008.

BÉLANGER, J.B. 1841 Notes sur l’Hydraulique. Ecole Royale des Ponts et Chaussées, Paris, France, session
1842, 223.

BHAGAT, R.K., JHA, N.K., LINDEN, P.F. & WILSON, D.I. 2018 On the origin of the circular hydraulic jump
in a thin liquid film. J. Fluid Mech. 851, R5.

BHAGAT, R.K. & LINDEN, P.F. 2020 The circular capillary jump. J. Fluid Mech. 896, A25.
BOHR, T., DIMON, P. & PUTKARADZE, V. 1993 Shallow-water approach to the circular hydraulic jump.

J. Fluid Mech. 254, 635–648.
BOHR, T. & SCHEICHL, B. 2021 Surface tension and energy conservation in a moving fluid. Phys. Rev. Fluids

6, L052001.
BOUASSE, H. 1923 Jets, Tubes et Canaux. Librairie Delagrave.
BUSH, J.W.M. & ARISTOFF, J.M. 2003 The influence of surface tension on the circular hydraulic jump.

J. Fluid Mech. 489, 229–238.
BUTTON, E.C., DAVIDSON, J.F., JAMESON, G.J. & SADER, J.E. 2010 Water bells formed on the underside

of a horizontal plate. Part 2. Theory. J. Fluid Mech. 649, 45–68.
CLANET, C. & VILLERMAUX, E. 2002 Life of a smooth liquid sheet. J. Fluid Mech. 462, 307–340.
CRAIK, A.D.D., LATHAM, R.C., FAWKES, M.J. & GRIBBON, P.W.F. 1981 The circular hydraulic jump.

J. Fluid Mech. 112, 347–362.

937 R2-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

13
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-8044-0916
https://orcid.org/0000-0002-8044-0916
https://doi.org/10.1017/jfm.2022.136


Circular hydraulic jumps: where does surface tension matter?

DUCHESNE, A., ANDERSEN, A. & BOHR, T. 2019 Surface tension and the origin of the circular hydraulic
jump in a thin liquid film. Phys. Rev. Fluids 4 (8), 084001.

DUCHESNE, A., LEBON, L. & LIMAT, L. 2013 Jet impact on an inclined plate: contact line versus hydraulic
jump. In European Coating Symposium, ECS 2013, pp. 48–51. UMONS, Université de Mons.

DUCHESNE, A., LEBON, L. & LIMAT, L. 2014 Constant Froude number in a circular hydraulic jump and its
implication on the jump radius selection. Europhys. Lett. 107 (5), 54002.

DE GENNES, P.-G., BROCHARD-WYART, F. & QUÉRÉ, D. 2004 Capillarity and Wetting Phenomena: Drops,
Bubbles, Pearls, Waves, vol. 336. Springer.

HAGEN, G. 1849 Ueber die scheiben, welche sich beim zusammenstossen von zwei wasserstrahlen bilden und
über die auflösung einzelner wasserstrahlen in tropfen. Ann. Phys. 154 (12), 451–476.

HUANG, J.C.P. 1970 The break-up of axisymmetric liquid sheets. J. Fluid Mech. 43 (2), 305–319.
IPATOVA, A., SMIRNOV, K.V. & MOGILEVSKIY, E.I. 2021 Steady circular hydraulic jump on a rotating disk.

J. Fluid Mech. 927, A24.
JAMESON, G.J., JENKINS, C.E., BUTTON, E.C. & SADER, J.E 2010 Water bells formed on the underside of

a horizontal plate. Part 1. Experimental investigation. J. Fluid Mech. 649, 19–43.
MARMOTTANT, P., VILLERMAUX, E. & CLANET, C. 2000 Transient surface tension of an expanding liquid

sheet. J. Colloid Interface Sci. 230 (1), 29–40.
MAYNES, D., JOHNSON, M. & WEBB, B.W. 2011 Free-surface liquid jet impingement on rib patterned

superhydrophobic surfaces. Phys. Fluids 23, 052104.
MOHAJER, B. & LI, R. 2015 Circular hydraulic jump on finite surfaces with capillary limit. Phys. Fluids 27

(11), 117102.
RAYLEIGH, LORD 1914 On the theory of long waves and bores. Proc. R. Soc. Lond. A 90 (619), 324–328.
SALAH, S.O.T., DUCHESNE, A., DE COCK, N., MASSINON, M., SASSI, K., ABROUGUI, K., LEBEAU,

F. & DORBOLO, S. 2018 Experimental investigation of a round jet impacting a disk engraved with radial
grooves. Eur. J. Mech. B/Fluids 72, 302–310.

SAVART, F. 1833 Mémoire sur le choc d’une veine liquide lancée contre un plan circulaire. Ann. chim. 54,
56–87.

SEN, U., CHATTERJEE, S., CROCKETT, J., GANGULY, R., YU, L. & MEGARIDIS, C.M. 2019 Orthogonal
liquid-jet impingement on wettability-patterned impermeable substrates. Phys. Rev. Fluids 4, 014002.

TANI, I. 1949 Water jump in the boundary layer. J. Phys. Soc. Japan 4, 212–215.
VILLERMAUX, E., PISTRE, V. & LHUISSIER, H. 2013 The viscous savart sheet. J. Fluid Mech. 730, 607–625.
WANG, Y. & KHAYAT, R.E. 2019 The role of gravity in the prediction of the circular hydraulic jump radius

for high-viscosity liquids. J. Fluid Mech. 862, 128–161.
WANG, Y. & KHAYAT, R.E. 2021 The effects of gravity and surface tension on the circular hydraulic jump

for low-and high-viscosity liquids: a numerical investigation. Phys. Fluids 33 (1), 012105.
WATSON, E.J. 1964 The radial spread of a liquid over a horizontal plane. J. Fluid Mech. 20, 481–499.
WILSON, D.I., LE, B.L., DAO, H.D.A., LAI, K.Y., MORISON, K.R. & DAVIDSON, J.F. 2012 Surface flow

and drainage films created by horizontal impinging liquid jets. Chem. Engng Sci. 68 (1), 449–460.

937 R2-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

13
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.136

	1 Introduction
	2 A look at a simple situation: the axisymmetric liquid sheet
	3 Reconsidering Hagen's argument, and its implications for hydraulic jump
	4 Alternative explanation of unusual scaling: the boundary condition at the `jump' radius; comparison with atomization rings
	5 Another possible occurrence of the scaling of Bhagat et al. and Button et al.
	6 Conclusion
	References

