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Abstract

Requirement planning is one of the most critical tasks in the product development process. Despite its significant impact on
the outcomes of the design process, engineering requirement planning is often conducted in an ad hoc manner without much
structure. In particular, the requirement planning phase suffers from a lack of quantifiable measures for evaluating the qual-
ity of the generated requirements and also a lack of structure and formality in representing engineering requirements. The
main objective of this research is to develop a formal Web Ontology Language ontology for standard representation of en-
gineering requirements. The proposed ontology uses explicit semantics that makes the ontology amenable to automated
reasoning. To demonstrate how the proposed ontology can support requirement analysis and evaluation in engineering de-
sign, three possible services enabled by the ontology are introduced in this paper. These services are information content
measurement, specificity and completeness analysis, and requirement classification. The proposed ontology and its asso-
ciated algorithms and tools are validated experimentally in this work.

Keywords: Engineering Requirements; Information Content, Ontological Reasoning; Ontology; Requirement Manage-
ment

1. INTRODUCTION

Requirement planning is one of the most critical activities in
the product development process. Engineering requirements
describe the attributes, behaviors, and functionalities that a
product has to possess in order to satisfy the needs of product
stakeholders (Pahl et al., 1984). Despite its significant impact
on the outcome of the design process, requirement planning,
particularly in the early design stages, suffers from a lack of
quantifiable measures for evaluating the quality of the gener-
ated requirements and also a lack of structure and formality in
representing engineering requirements. The quality of the
generated requirements in terms of clarity, specificity, feasi-
bility, traceability, and completeness is often appraised on a
consensual basis. In addition, requirements are usually repre-
sented informally in natural language without following any
standard protocol or terminology. Even in the same company,
different design teams may follow different methods and
conventions for representing engineering requirements.
Engineering requirements, represented in natural language,
can be imprecise and ambiguous and contain contradictory

information (Tseng & Jianxin, 1998). Resolving ambiguities
and inconstancies may lead to costly engineering changes in
later stages of product development. In the absence of formal
methods and models for engineering requirement representa-
tion, management of requirements becomes inefficient and
tedious especially when designing complex products with
multiple subsystems.

There are multiple formal requirements models in the do-
main of software engineering developed with the objective
of improving the process of requirement elicitation, analysis,
communication, validation, control, and reuse (Jureta et al.,
2009). However, there is no universally accepted standard
or formalism for requirement modeling and representation
in engineering design (Jianxin & Chun-Hsien, 2006). A
formal standard for requirement representation assists design-
ers in retrieving, reusing, updating, and sharing engineering
requirements within and across design projects. Furthermore,
it can be used for creating searchable requirement repositories
that are directly linked to design solutions. Linking design
solutions to engineering requirements enables traceability of
design attributes to stakeholder needs. Finally, formal re-
quirement models enable integration of requirement planning
tools with computer-aided engineering and design tools to
support objective evaluation of design alternatives early in
the conceptual design phase.
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The main objective of this research is to introduce a formal
ontology for standard representation of engineering require-
ments. The particular focus is on the requirements, or “expec-
tations,” that are generated in the early stages of the design
process, and they are not translated into engineering attributes
and product specifications yet. The proposed ontology uses
explicit semantics that makes the ontology amenable to auto-
mated reasoning. The most obvious benefit of a shared ontol-
ogy is streamlined information exchange across the product
value chain at a semantic level. Through using well-defined
syntax and semantics, onotologies help avoid ambiguity
and divergent semantic interpretation. However, this paper
explores other utilities of a formal ontology beyond informa-
tion sharing and semantic interoperability. More specifically,
ontology-enabled requirement analysis is the main focus of
this paper. To demonstrate how the proposed ontology can
support requirement analysis, three possible services enabled
by the proposed ontology are introduced in this paper. These
services are information content measurement, specificity
and completeness analysis, and requirement classification.
Information-content measurement service can be used for
quantifying the rate of uncertainty reduction, or information
gain, throughout a design project. Because design is essen-
tially an information transformation and generation process,
it can be argued that an information-based metric can better
reflect the progress of the design process compared to other
indirect measures such as cost or time. Specificity and com-
pleteness analysis service can help designers evaluate the de-
veloped requirement in terms of the level of details incorpo-
rated in formulating the requirement. Too much specificity in
requirement planning reduces designers’ freedom during the
ideation process, thus hindering innovation. Conversely, ge-
neric requirements cannot effectively define the feasible de-
sign space. Finally, requirement classification service can en-
able more effective design search and retrieval because
design solutions are oftentimes attributed to a set of recurring
requirements. Through automated classification of require-
ments, a designer can more readily search for design solutions
that are associated with certain classes of requirements such
as safety or durability.

The paper is divided into the following sections. Section 2
provides a discussion of the related works. The requirement
ontology is described later with detailed examples and proto-
cols related to converting requirement statements into onto-
logical representation. In the latter sections of the paper, onto-
logical analysis of requirements is introduced in three areas,
namely, information content measurement, specificity analy-
sis, and requirement classification. The paper ends with a
conclusion and the outline for further work.

2. RELATED WORKS

Requirement modeling and representation is more rigorously
studied in the software engineering domain, and several mod-
els and methods for structured and formal representation of
requirements have been proposed and implemented (Schatz

et al., 2005; Kossmann et al., 2008; Jureta et al., 2009; Mir
et al., 2011; Qureshi et al., 2011). The main objective of re-
quirement engineering in the software development domain
is to materialize the vision for self-adaptive systems, the sys-
tems that can continuously adapt their behavior at runtime in
response to changing user’s requirements, operating contexts,
and resource availability. Mir et al. (2011) proposed an ontol-
ogy based on SysML for seamless integration of requirement
model and system model in software development. Zhang
and Zhang (2007) developed an ontology based on descrip-
tion logic for capturing and maintaining requirement-related
knowledge in software engineering.

The body of research work in requirements representation
and modeling in engineering design has been rather sparse.
Yannou (2012) introduced a model-based approach using
UML and SysML for requirement representation. In this
work, property-based requirement theory (Micouin, 2008)
was used to provide the underlying formalism of the require-
ment model. This work addresses “well-formed” require-
ments that are distinguished from “expectations.” A well-
formed requirement is defined as “a constraint applied to a
property of an object (or system) when a condition is occurred
(event) or is achieved (state).” Well-formed requirements are
typically generated in the latter stages of design. In early
stages, however, when requirements are still in the form of ex-
pectations, the proposed approach is not applicable.

Lamar and Mocko (2010) studied engineering require-
ments from a linguistic perspective and proposed a formal-
ized syntax for requirement representation based on parts
of speech, grammatical functions, and sentence structure.
This study decomposes a requirement statement into four syn-
tactical elements, namely, artifact, necessity, function, and
condition. Using the proposed syntax and its associated anal-
ysis methods, one can assess the quality of requirement state-
ments with respect to completeness, unambiguity, and trace-
ability.

Morkos et al. (2012) developed a computational reasoning
tool to help designers predict change propagation in the engi-
neering domain. This tool uses the syntactical elements of re-
quirements to build relationships between requirements. The
syntactical elements used in Morkos’ model include subject,
modifier, verb (modal and transitive), object, and condition.

Lin et al. (1996) proposed an ontology for representing re-
quirements that supports a generic requirements management
process in engineering design. First-order logic is used as the
knowledge representation formalism. In this ontology, engi-
neering requirements are classified into four main categories:
physical, structural, functional, and cost. The proposed ontol-
ogy can be used for checking completeness, consistency, and
satisfiability of engineering requirements.

Darlington and Culley (2008) proposed an ontology for or-
ganizing the terms used for capturing design requirements.
The objective of this ontology is to eliminate the ambiguity
about various concepts related to engineering requirements
such as target market, requirement resource, stakeholder,
and the like. The envisioned applications for this ontology
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include streamlining communication among design en-
gineers, supporting software application development (in
particular, developing case-based reasoning systems for engi-
neering requirements), and improving the performance of
search engines. This ontology, however, is high level and
cannot be used for breaking down requirement statements
into their elemental components. Other related works in re-
quirement representation include the requirement taxonomy
(Hauge & Stauffer, 1993), the customer attribute hierarchy
(Yan et al., 2001), and the functional requirement topology
(Tseng & Jianxin, 1998).

The literature study reveals that, despite some efforts for
structured representation of engineering requirement, there
is still a wide gap to be filled before requirement modeling
can be fully formalized and integrated with other phases of
the engineering design process. This work attempts to par-
tially fill the gap through providing a formal ontology for rep-
resenting top-level requirements, or expectations, that are di-
rectly elicited from customer need statements. The developed
ontology provides a smooth transition between textual repre-
sentation and model-based representation of engineering re-
quirements.

3. REQUIREMENT ONTOLOGY (ReqOn)

ReqOn is a formal ontology aimed at representation of engi-
neering requirements generated during the requirement plan-
ning phase when design concepts are not conceived yet. Due
to its formal semantics, ReqOn is amenable to automated rea-
soning and machine processing. Therefore, it could be used

for automation of requirement management. A linguistic
and grammatical approach is adopted for ontology concep-
tualization (Morkos et al., 2012). Accordingly, parts of
speech (verbs and nouns) and grammatical functions (subject,
object, complement, and adjuncts) define the core classes of
the ontology. The scope of ReqOn is currently limited to con-
sumer products with medium complexity. However, the core
classes of ReqOn are designed such that it can be evolved into
a comprehensive requirements ontology that covers a wider
range of artifacts. Web Ontology Language (OWL) is used
as the ontology language of ReqOn.

3.1. ReqOn classes and properties

In ReqOn, each requirement statement is represented by the
Requirement class, which has two disjoint subclasses:
FunctionalRequirement and NonFunctional
Requirement. A functional requirement is related to
the use of a product and describes the necessary task, activity,
or action that should be accomplished. For example, “The elec-
tric kettle boils water quickly” is a functional requirement be-
cause it pertains to the action of boiling water. Nonfunctional
requirements describe the attributes of the product such as
size, color, recyclability, or ease of repair. The requirement
“The electric kettle is light” is an example of a nonfunctional re-
quirement. The concept diagrams in Figure 1 and Figure 2 show
the properties of the FunctionalRequirement and Non
FunctionalRequirement classes, respectively.

Both types of requirements inherit hasProduct and is
Functional properties from their common superclass (i.e.,

Fig. 1. Concept diagram for the FunctionalRequirement class.
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Requirement). The property hasProduct refers to the
product to which the requirement statement applies, and its
range is limited to instances of the Product class. Each
requirement statement has exactly one instance of the
Product class associated with it. The property isFunc
tional is a Boolean property used for indicating whether
or not the requirement is functional. describesBehav
ior is a property specific to the FunctionalRequire
ment class, and its range is limited to instances of the class
Behavior. The behavior of a product describes the casual
process through which the function is achieved (Sen et al.,
2010). The Behavior class in the ontology is designed
such that a series of subjects and objects that are involved
in delivering the function can be linked to the behavior.
Each behavior has exactly one action verb, either transitive
or nontransitive. Because the functional basis (FB; Hirtz
et al., 2002) provides a widely accepted functional schema
in the engineering design community, this schema is adopted
in ReqOn for breaking down the Verb class into more spe-
cific subclasses such as Connect, Convert, Support,
and Branch. There are three possible types of functional re-
quirements that can be modeled in ReqOn. Type 1 functional
requirement describes the behavior of a product as a whole,
Type 2 functional requirement describes the behavior of a
part of a product, and Type 3 functional requirement
describes the expected behavior of a product when it is the ob-
ject of an action performed by the user.

Table 1 provides examples of different types of require-
ments that can be modeled in ReqOn. A functional require-

ment with a transitive verb has a primary subject and may
have one or more secondary subjects. For example, if a func-
tional requirement describes the behavior of the wheel of a bi-
cycle, then the wheel is the primary subject and the bicycle is
the secondary subject, because the requirement directly ap-
plies to the wheel and not to the bicycle itself. The require-
ment statements that have a transitive verb must have a pri-
mary object and may have one or more secondary objects.
For example, in the requirement “The electric wok has a lid
that can be flipped easily” the verb flip is Transitive
Verb, the noun lid is PrimaryObject, and the noun
electric wok is Object. Both object and subject can have
different types such as user, product, part, material, energy,
or signal. For instance, in the requirement “A left-hand user
easily handles the electric kettle,” the user is the primary sub-
ject. The taxonomy of the material, energy, and signal classes
are directly imported from the FB. It is important to incorpo-
rate various class hierarchies in ReqOn because it allows for
more accurate evaluation of the information content based on
the depth of classes in the hierarchy.

The specificity of functional requirements can be improved
by using adjuncts. An adjunct usually modifies a verb and in-
dicates the time, manner, place, frequency, reason, degree, or
condition pertaining to the requirement. For example, in the
requirement statement “the hand truck holds boxes securely
on steep slopes,” securely is an Adverbial Adjunct
while on steep slopes is a Locative Adjunct. As the re-
quirements evolve, designers add more details to the require-
ment through introducing various types of adjuncts.

Fig. 2. Concept diagram for the NonFunctionalRequirement class.
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A NonFunctionalRequirement uses describes
Attribute property to describe the attributes of the
product. There are three subclasses for the Attribute
class in the requirements ontology, namely, BooleanAt
tribute, QualityAttribute, and QuantityAt
tribute. For example, in the requirement “the phone is
small in size,” size is the quality attribute, with small as its
value. Grammatically, small is the subject complement in
this example. However, if the actual dimensions, or ranges,
are given for the size of the phone, then size can be regarded
as a quantity attribute. A Boolean attribute is used for indicat-
ing if a product possesses a certain property. For example, in
the requirement the printer is easy to repair, ease of repair can
be treated as a Boolean attribute with a true value. Table 2
describes five possible types of nonfunctional requirement
that can be represented in ReqOn. It should be noted that re-
quirements that are developed at the early stages of the con-
ceptual design phase are expected to be form-free to avoid
premature anchoring of suboptimal solutions. Some of the ex-
ample requirements provided in Table 2 contain solution-
specific nouns such as cord, handle, and window. Those re-
quirements are representative of the later stages of design
when some solution fragments are identified.

Table 3 describes the protocol for identifying different
components of natural language requirement statements and
converting them into ontological representation.

3.2. ReqOn editor

ReqOn instances can be created and edited through Protégé
ontology editor. However, working with Protégé requires

OWL modeling knowledge that is a barrier for its widespread
use. To facilitate ReqOn instance creations and manipulation,
a Java-based tool was developed that uses OWL application
program interface for interacting with the ontology.

The tool provides two different interactive user interfaces for
functional and nonfunctional requirements. Figure 3 shows the
functional requirement editor. The user simply has to identify
the grammatical components of the requirement statement such
as subject, object, verb, and adjunct. The user is encouraged to
reuse the existing verbs in the provided verb taxonomy. How-
ever, if the appropriate verb cannot be found in the taxonomy,
the tool can accept new verbs introduced by the user. In this
way, the ontology evolves as new instances of requirements
are added to the ontology. The tool and the ontology were val-
idated through creating more than 300 instances of both func-

Table 1. Different types of functional requirements

Type 1: The product has a behavior as a whole.
Example: The electric kettle boils water quickly.

Product Electric kettle
Subject Electric kettle
Verb Boils
Object Water
Adverbial adjunct Quickly

Type 2: The product has a part that has a behavior.
Example: The electric kettle has a handle that insulates electricity.

Product Electric kettle
Primary subject Handle
Subject Electric kettle
Verb Insulates
Object Electricity

Type 3: The product (or its part) is the object in an action done by the user.
Example: A left-hand user easily handles the electric kettle.

Product Electric kettle
Primary subject Left-handed user
Verb Handles
Object Electric kettle
Adverbial adjunct Easily

Table 2. Different types of nonfunctional requirements

Type 1: The product has a qualitative attribute.
Example: The electric kettle is light.

Product Electric kettle
Qualitative attribute Weight (implied)
Primary subject Electric kettle
Value Low
OR

Product Electric kettle
Boolean attribute isLight
Value True

Type 2: The product has a quantitative attribute.
Example: The electric kettle’s capacity is 1 liter.

Product Electric kettle
Primary subject Electric kettle
Qualitative attribute Volume
Value 1
Unit Liter

Type 3: The product has a part that has an attribute
(qualitative, quantitative, or Boolean).

Example: The electric kettle has a cord that is long.

Product Electric kettle
Primary subject Cord
Subject Electric kettle
hasPart Cord
hasQualityAttribute Length
hasValue High

Type 4: The product has a physical component.
Example: The electric kettle has a dual water window.

Product Electric kettle
Primary subject Electric kettle
hasPart Dual water window

Type 5: The product (or one of its components) has a particular material.
Example: The electric kettle has a plastic handle.

Product Electric kettle
Primary subject Handle
Subject Electric kettle
hasPart Handle
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tional and nonfunctional requirements related to about 20 pro-
ducts. The students from a senior design course participated in
the test and validation process.

4. INFORMATION CONTENT MEASUREMENT

One metric for evaluating the performance of engineering de-
sign organizations is information generation and transforma-
tion rate (Collopy & Eames, 2001). A design project results in
generation of different types of artifacts that embody design
information. Hence, in order to study information transforma-
tion rate, first, the information content of the created artifacts
should be objectively measurable so that given a step, where,
say, requirements are transformed into function models, the
amount of information input to and output from the step
could be measured. Design artifacts are represented in various
forms, such as text, sketch, or graphs (Chandrasegaran et al.,
2013). This research is based on the premise that information
is a form-neutral entity, and therefore, a design artifact such as
a requirement statement, conveys the same amount of infor-
mation to the designer irrespective of its form such as text
or sketch, and that this amount could be measured. ReqOn
provides a form-neutral and formal representation that is
amenable to automated information content measurement.
It exposes various parts of speech in the requirement state-
ment as ontological classes that can be contemplated as
containers of information. Because requirements typically
evolve during the lifetime of a design project, it is useful to
monitor the growth of information content of requirements
as a way for evaluating the performance of the design team.
It should be noted that maximizing the information content

of requirements, particularly in the early stages of design, is
undesirable because it could prevent creative thinking. How-
ever, as designers gain more insight into customer needs, both
explicit and implicit, and learn about internal and external
constraints, design requirements are typically loaded with
more information.

The proposed information content measurement technique
in this work is based on the entropy metric used in Shannon’s
information theory (Shannon, 1948). In information theory,
entropy is the measure of uncertainty in a model. Shannon’s
metric measures information contained in a finite message
composed of discrete symbols drawn from a finite vo-
cabulary, such as the dots and dashes in a telegraph message
(Shannon, 1948). According to this theory, the entropy of a
discrete random variable X with a probability distribution
p(x) is defined by

H Xð Þ ; �
X
x[X

p xð Þ log2 p xð Þ: (1)

Values of X with higher likelihood of occurrence have lower
entropy according to this definition. Shannon’s metric intends
to measure the information content of a message in terms of the
size of the unique vocabulary that the message is drawn from.
In the context of measuring the information content of engi-
neering requirements, each requirement statement can be treated
as a finite message, composed of distinct terms drawn from
a finite vocabulary such as ReqOn. The ReqOn representation
of a requirement statement is essentially a graph in which graph
nodes are the ontological instances and the arcs are the relation-
ships between those instances. Figure 4 show a graph associ-
ated with a functional requirement. Measuring the information

Table 3. Protocol for creating requirement in ReqOn

1. Identify the type of the requirement statement.
2. Rephrase the statement if necessary to match with one of the requirement patterns.

a. Don’t use the modals “can” or “must.” Use simple present (third person) for the verb tense. For example, instead of “the cup can hold liquid,” use “the cup
holds liquid.”

b. If the user is implied in a requirement statement, make it explicit.
c. Rewrite the statements in active voice (not passive voice). For example, instead of “the electric wok is handled easily by left-handed users,” use “left-hand

users easily handle the electric wok.”
d. When the product is the subject, start the statement with the name of the product.

3. Identifying requirements components.
e. Product: It is the product for which the requirement is defined.
f. Subject: the subject associated with a verb; it is either the product itself, a part of the product, or the user. In a nonfunctional requirement, subject is the

entity to which the attribute pertains.
i. A requirement can have multiple subjects, but it can only have one primary subject. The primary subject is the entity that is directly involved in the

action. For example, in the statement “the pin of the paper punch makes holes in paper,” both the paper punch and the pin are subjects but the pin is the
primary subject because it performs the action “making hole” directly.

g. Object: the object associated with transitive verbs; the primary object is the direct object that received the action of the action verb. If the direct object
receives the action through a chain of objects, then those objects are regarded as secondary (indirect) objects.

h. Verb: describes the action; it can be transitive or intransitive. Requirements with linking verbs (such as “is” and “are”) are often represented as nonfunctional
requirements (e.g., bicycle “is” easy to repair).

i. Adjunct: identify the adjuncts that further modify the verb, object, or subject.
i. For transitive verbs, try to use the verbs already available in the functional basis taxonomy.

j. Attribute: a feature, property, quality, or component related to the product or its parts; a quality attribute can also be written as a Boolean attribute. For
example, bicycle has low weight can be written as bicycle is light (isLight attribute with True value).
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content of a requirement statement entails measuring the infor-
mation content of the nodes of this graph.

Each node of the graph can be treated as a variable. The
proposed information content measurement method is based

on the assumption that the value of each design variable is se-
lected from a set of known and finite options defined by the
ontology. To assign a value to the variable, the type (class) of
value should be determined and then a particular value needs

Fig. 3. Screenshot of the requirement editor for functional requirement.

Fig. 4. Graph associated with an example functional requirement.
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to be selected from the set of possible values for that particu-
lar class. The first selection requires traversing the class struc-
ture and arriving at a particular type (node), and the second se-
lection entails exploring the solution space for the selected class.
Because the information content of each node is a function of the
inherent uncertainty (or entropy) of the node, the underlying
probability distribution of each node has to be known. A uni-
form probability distribution is assumed for the leaf classes of
the ontology. In this way, the probability of an upper level class
can be calculated through aggregation of the probabilities of its
direct and indirect subclasses. The uniform probability is based
on the assumption that all classes in the reference vocabulary
can be encountered with equal likelihood. This assumption
makes sense in the context of conceptual design because design-
ers are usually encourages to avoid any bias in favor of any par-
ticular design idea during the ideation process.

The entropy associated with the structure of a class is re-
ferred to as taxonomy entropy in this work, and the entropy
attributed to the number of direct class instances is called
size entropy. The classes that have more complex subclass
structure introduce more uncertainty. In addition, the classes
that are instantiated more frequently have higher entropy be-
cause the probability of encountering a particular instance
would be low. The taxonomy entropy of a class is based on
the probability that a particular class is selected when travers-
ing the class structure, and the size entropy is based on the
probability that the selected class assumes a certain value.
The total entropy of a class (Eci) is calculated as the summa-
tion of taxonomy entropy (TEci) and size (SEci) entropy.

Eci ¼ TEci þ SEci: (2)

4.1. Calculating taxonomy entropy

The following steps are used for calculating the taxonomy en-
tropy of a class. The Verb class is used as an example here.
The hierarchical structure of Verb is shown later in Eq. (5).

† Count the number of leaf classes under each parent class
(N ). A leaf class is one that does not have any subclasses.
For example NonTransitiveVerb, Divide, and
Import are examples of leaf classes. In Figure 5, parent
class Verb has 36 leaves.

† Assign a probabilityof (1/numberof leaf under parent class
¼1/N ) toeach leaf.Forexample, assignprobabilityof 1/36
to NonTransitiveVerb,Divide, and Import. It is
assumed that all leaf nodes have equal likelihood of occur-
rence (uniform probability distribution).

† For the rest of the subclasses under the parent class,
count the number of leaves (n) under them. For example,
the count of leaves under class Branch is n ¼ 4.

† Probability of all subclasses other than leaf is the num-
ber of leaf nodes under the selected class divided by
the total number of leaf nodes under its parent class
(n/N ). For example, probability of occurrence of class
Branch ¼ 4/36.

† After determining the probability of occurrence of the
class, the entropy measure is applied for calculating
the taxonomy entropy of the class.

TEci ¼ � log2 Pcið Þ (3)

where TEci is the taxonomy entropy of the ith class ci and Pci

is the probability of occurrence of class ci. For example, the
TE of class Branch (TEbranch) is calculated as follows:

TEBranch ¼ � log2 PBranch ¼ � log2
4
36
� 2:97 bits: (4)

4.2. Calculating size entropy

The size of a class refers to the number of individuals, or in-
stances, of the class at any given time. The size entropy of
class ci is calculated using Eq. (5).

SEci ¼ � log2
1

Nci

� �
, (5)

Fig. 5. Hierarchical structure of the verb class.
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where Nci is the number of instances for class ci. For example,
if there are nine instances under the class Material, then

SEcmaterial ¼ � log2
1
9
¼ 2:197 bits: (6)

For compound classes such as Behavior, size and taxon-
omy entropy are measured through summation of the entro-
pies associated with the constituting classes, namely, Sub
ject, PrimarySubject, Object, PrimaryObject,
Verb, and Adjunct.

EBehavior ¼ ESubject þ EPrimarySubject þ EObject þ EPrimaryObject

þ EVerb þ EAdjunct: (7)

A Java-based tool was developed based on the proposed algo-
rithm. The tool measures the information content of the re-
quirements represented ontologically. The developed tool
uses OWL application program interface for interacting
with the ontology. The user needs to translate the engineering
requirements written in natural language into ReqOn repre-
sentation. The tool receives an OWL/XML file as the input
a measures the information content of the selected require-
ment statements or classes as shown in Figure 6 and Figure 7.
For example, the information content of the requirement state-
ment “the suspension can carry riders weighting up to 250
lbs.” is measured to be 22.12 bits. It should be noted that
this value should be treated as a relative value. A similar
requirement statement, such as “the suspension supports

riders,” contains 17.21 bits of information meaning that, in
comparison to the previous requirement, is less informative.
Different components of information content for these two
examples are provided in Table 4.

The proposed information content measure can be used for
various purposes such as comparing the performance of dif-
ferent engineering design teams, evaluating the productivity
of design projects with respect to information gain, and com-
paring different families of products with respect to informa-
tion content measure.

5. SPECIFICITY AND COMPLETENESS
EVALUATION

The information content measure that was introduced in the
previous section can be used for evaluating the overall perfor-
mance of engineering design teams with respect to the rate of
information gain or uncertainty reduction. However, there is a
need to evaluate the quality of the generated requirement quan-
titatively. Joshi and Summers (2014) developed a method for
evaluation of specificity and completeness of requirements writ-
ten in natural language. As the number of requirements in a pro-
ject grows, manual analysis and evaluation of requirements be-
comes error prone and tedious. In the presence of a formal
ontology, it is possible to automatically evaluate the quality
of the requirement statements. Specificity and completeness
are used as the metrics of quality evaluation in this work.

Fig. 6. Screenshot of the information content measurement tool for classes.
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5.1. Completeness analysis

Completeness analysis is conducted through checking the
presence of the necessary elements in the requirement state-
ment. Requirements are often incomplete in the early stages
of design to promote innovation and creative thinking. How-
ever, the focus of the completeness analysis in this paper is on
structural and syntactic completeness and not technical com-
pleteness. If a requirement contains all of the required ele-
ments, depending on its type, it is considered to be a complete

requirement structurally. Otherwise, it is incomplete. Table 5
and Table 6 show the essential properties of functional and
nonfunctional requirements, respectively.

To assign a completeness score to each instance of the
Requirement class, a Boolean data property named hasCom
pletenessScore was introduced. The domain of the
property hasCompletenessScore is the Requirement
class, and its range is between 0 and 1. A functional require-
ment will have a completeness score of 1 if it describes a
behavior, which has exactly one product, one primary sub-

Fig. 7. Screenshot of the information content measurement tool for full requirement statements.

Table 4. Different components of IC for two example requirements

Functional Requirement: Suspension Can Carry Riders Weighing ,250 lb

Object Property Data Property Property Value Class TEci SEci Eci

hasPrimarySubject Suspension Product 0 3.3 3.3
hasPrimarObject Riders User 0 2.08 2.08
hasProduct Suspension Product 0 3.3 3.3
hasVerb Carries Transfer 2.94 2.4 5.34
hasAdjunct Weighing ,250 lb Measure adjunct 2.89 3.3 6.19

isFunctional True NA 1
isConstraint True NA 1

Total 5.83 14.38 22.21

Functional Requirement: Suspension Supports Riders

hasPrimarySubject Suspension Product 0 3.3 3.3
hasPrimarObject Riders User 0 2.08 2.08
hasProduct Suspension Product 0 3.3 3.3
hasVerb Supports Secure 4.74 1.79 6.53

isFunctional True 1
isConstraint True 1

Total 4.74 10.47 17.21
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ject, one verb, and one primary object (if the verb is transi-
tive). A nonfunctional requirement will have a complete-
ness score of 1 if it has exactly one product, one primary
subject, and describes at least one attribute. Table 7 shows
examples of complete functional and nonfunctional require-
ments. Adjuncts contribute to the specificity of require-
ments, and they are not included in completeness analysis.
A requirement can be structurally complete without an ad-
junct.

Completeness score computation and assignment is imple-
mented through Semantic Web Rule Language (SWRL) rules
as shown in Table 8. The first two rules compute the com-
pleteness score for functional and nonfunctional requirements,
and the last two rules classify requirements as complete or in-
complete requirements. Incomplete requirements are returned
to the design team for revision.

5.2. Specificity analysis

Complete requirements can be further analyzed to evaluate
their specificity. Specificity reflects the level of details incorpo-
rated in the requirement. More specific requirements are more
informative. For complete functional requirements, five criteria
are used for specificity analysis, namely, existence of second-
ary subject, depth of verb, existence of secondary object, num-
ber of adjunct, and existence of a measure adjunct.

5.2.1. Existence of more than one subject

Requirements with more than one subject are more specific
or informative. For example, the requirement statement “hand
truck has a base pad that holds large and odd-shaped loads
securely,” has a primary subject, base pad, and a secondary
subject, hand truck, whereas, the requirement statement

Table 6. Cardinality restriction of essential properties for nonfunctional requirement

Property Name Property Type Domain Range Cardinality Restriction

hasProduct Object Requirement Product 1 hasProduct exactly 1 Product
hasPrimarySubject Object Requirement Subject 1 hasPrimarySubject exactly 1 Subject
describesAttribute Object Nonfunctional

Requirement
Attribute 1 describesAttribute minimum 1

Attribute

Table 5. Cardinality restriction of essential properties for functional requirement

Property Name Property Type Domain Range Cardinality Restriction

hasProduct Object Requirement Product 1 hasProduct exactly 1 Product
describesBehavior Object Functional Requirement Behavior 1 describesbehavior exactly 1 Behavior
hasPrimarySubject Object Behavior Subject* 1 hasPrimarySubject exactly 1 Subject
hasVerb Object Behavior Verb 1 hasVerb exactly 1 Verb
hasPrimaryObject Object Behavior Object* 1 hasPrimaryObject exactly 1 Product

Table 8. SWRL rules for completeness score assignment

Rule 1

FunctionalRequirement(?f ) ^ hasProduct(?f, ?x) ^

describesBehavior(?f, ?b) ^ hasPrimarySubject(?b, ?p) ^

hasVerb(?b, ?v) ^ hasPrimaryObject(?b, ?o)�
hasCompletenessScore(?f, 1)

Rule 2

NonFunctionalRequirement(?n) ^ hasProduct(?n, ?x) ^

describesAttribute(?n, ?a) ^ hasPrimarySubject(?n, ?p)

� hasCompletenessScore(?n, 1)

Rule 3

Requirement(?x) ^ hasCompletenessScore(?x, 1)� Complete(?x)

Rule 4

Requirement(?x) ^ hasCompletenessScore(?x, 0)� Incomplete(?x)

Table 7. Example of complete functional and nonfunctional
requirement

Functional Requirement
Example 1: Suspension Reduces Vibration to the Hands

hasProduct Exactly 1 Suspension
describesBehavior Exactly 1 Reduces vibration to the hands
hasPrimarySubject Exactly 1 Suspension
hasVerb Exactly 1 Reduces
hasPrimaryObject Exactly 1 hands

Nonfunctional Requirement
Example 1: Suspension Weighs Between 5 and 10 lb

hasProduct Exactly 1 Suspension
hasPrimarySubject Exactly 1 Suspension
describesAttribute Minimum 1 Weight
hasUpperValue Optional 10
hasLowerValue Optional 5
hasUnit Optional Pounds
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Table 9. Algorithm to calculate specificity score of functional requirement

Algorithm 1

Individual
: R Types:Functional Requirement , describesBehavior value “behavior1”
Individual : behavior1 , Types:Behavior
if
(

behavior1 hasPrimarySubject exactly 1 Subject and
hasSecondarySubject some Subject

){
scorei ¼ 20 };
else if (behavior1 hasPrimarySubject exactly 1 Subject ){
score1 ¼ 10};
else score1 ¼ 0;
return score1 ;

Algorithm 2

Individual
: R Types:Functional Requirement , describesBehavior value “behavior1”
Individual : behavior1 , Types:Behavior , hasVerb exactly 1 Verb
Individual : verb1 , Types:Verb
Literal : d xsd:integer d� depth of Verb
score2 ¼ 10 * d ;
return score2 ;

Algorithm 3

Individual
: R Types:Functional Requirement , describesBehavior value “behavior1”
Individual : behavior1 , Types: Behavior
if
(

behavior1 hasPrimaryObject exactly 1 Object and
hasSecondaryObject some Object

){
scorei ¼ 20 };
else if (behavior1 hasPrimaryObject exactly 1 Object ){
scorei ¼ 10};
else score3 ¼ 0;
return score3;

Algorithm 4

Individual
: R Types:Functional Requirement , describesBehavior value “behavior1”
Individual : behavior1 , Types: Behavior , hasAdjunct some Adjunct
Literal : n xsd:integer
n� Count of Adjunct
Error! Bookmark not defined. ;
else score4 ¼ 20};
return score4 ;

Algorithm 5

Individual
: R Types:Functional Requirement , describesBehavior value “behavior1”
Individual : behavior1 , Types: Behavior
if (behavior1 hasAdjunct some MeasureAdjunct) {
score5 ¼ 10 };
else score5 ¼ 0;
return score5 ;

Algorithm 6

Total Score =
∑5

i−1
Wi × Scorei

Total Score = 5× score1 ×+ 4× score2 + 3× score3 + 2× score4 + 1× score5 (8)

Maximum possible Total Score ¼ 370
After Normalizing,

Specificity Score = Total Score
370

(9)
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“hand truck holds large and odd-shaped loads securely,” has
only a primary subject, hand truck. The first requirement
describes a function of a component of the product while
the second requirement describes a function of the product it-
self. As discussed before, a more specific requirement is not
necessarily preferred over a less specific one due to confining
the feasible design space. Designers are usually encouraged
to start with a less specific list of requirements for more effec-
tive use of design freedom. In the hand truck example, the
more specific requirement forces the designer to incorporate
a base pad into the design concept.

5.2.2. Depth of verb

The depth criterion is used as a measure of specificity be-
cause it can be argued that deeper classes in a taxonomy are
more specific than top-level classes. The proposed ontology
uses hierarchical structure for some of classes such as
Verb, Energy, Material, Adjunct, and Attribute.
The class Verb is the most significant constituent of a func-
tional requirement. Therefore, its depth is used as a criterion
for specificity analysis.

5.2.3. Existence of more than one object

Functional requirements with a transitive verb have at least
one object. Requirements with more than one object are
deemed more informative because they further delineate the
design problem. For example, the requirement statement
“The suspension preserves the steering characteristics of
the bike” has a primary object “Steering Characteristic”
and a secondary object Bike.

5.2.4. Number of adjuncts

The specificity of functional requirements can be further
improved through using adjuncts. For example, in the require-
ment statement “the hand truck holds boxes securely on steep
slopes,” securely is an AdverbialAdjunct, while on
steep slopes is a LocativeAdjunct. A study of more
than 200 well-defined requirements revealed that a typical re-
quirement with a reasonable level of specificity has two ad-
juncts.

Existence of a measure adjunct. The requirements that
contain a Measure Adjuncts are typically among the
most informative requirements. For example, the requirement
statement “The suspension has a maximum vertical deflection
at the seat mount of 8 mm at 250 lbs. static load” is pointing to
an important design variable (maximum vertical deflection)
with important implications for the final design. This type
of requirement is typically generated during the later stages
of the concept design phase.

The specificity of functional and nonfunctional require-
ments is quantified through the specificity score. A continu-
ous scale of 0 to 1 is used to represent the specificity score
of the requirements. Table 9 shows the procedure used for
calculating the specificity score of functional requirement.
A similar procedure is used for nonfunctional requirements.

The weights used in Eqs. (8) and (9) depend on the nature of
the design project, and they are recommended to the user by
the system. For example, for new design projects where the de-
sign is conceived functionally without any reference to phys-
ical forms, more weight is put on verbs. Using the proposed
scoring method, requirements can be classified into three
classes: highly specific (specificity score . 0.75), moderately
specific (0.75 . specificity score . 0.5), and not specific (0.5
. specificity score). SWRL rules are used to determine the
equivalent specificity class of a requirement. Table 10 shows
examples of requirements for a bike suspension with different
levels of specificity based on the proposed scoring method.

6. REQUIREMENT CLASSIFICATION

Automated requirement classification is another utility of
ReqOn. Requirement classification and organization facili-
tates search and retrieval of requirements. An efficient and
intelligent requirement search mechanism helps designers ex-
plore past design solutions that have addressed similar design
problems. Based on Pahl et al.’s approach (1984) engineering
requirements can be classified under different categories
such as safety, performance, production, geometry, and ergo-
nomics depending on their nature. For example, the require-
ments that belong to the Kinematics category typically deal
with the type of motion of the product, direction of motion,
velocity, and acceleration. As another example, Environ-
mental requirements are the requirements that address the
need for controlling the adverse environmental impacts of
the product. Figure 8 shows the different categories of func-
tional and nonfunctional requirements in this work.

6.1. Classification of nonfunctional requirements

The type of nonfunctional requirements is determined based on
the type of the attribute used in the requirement. A two-step
method is used for classifying nonfunctional requirements.
The type of attribute is determined through a keyword matching
approach, and then the requirements are classified using SWRL
rules. A Java-based tool is developed for this purpose. The tool
analyzes each instance of the Attribute class and then
matches it with a set of predefined keywords. Examples of key-
words pertaining to different attribute classes are shown in
Table 11.

Table 10. Example requirements with low, medium, and high
specificity

Requirement
Specificity

Score
Specificity

Level

1. The suspension is easy to install. 0.47 Low
2. The suspension fits a wide variety

of tires. 0.59 Medium
3. The suspension allows easy traversal

on slow difficult terrain. 0.75 High
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Once the attribute type is identified, SWRL rules will be used
to infer the requirement type. Examples of such rules are given
in Table 12. For example, if a nonfunctional requirement
describes an attribute that belongs to the class Size, the require-
ment is categorized under the Geometry class. Therefore, re-
quirement statement “The frame of the ingot oven is not taller
than 51/2 feet” is classified as a geometric requirement.

6.2. Classification of functional requirements

For functional requirements, verbs are used for inferring the
type of the requirement. Unlike attribute instances, verb in-

stances do not need to be classified because their type is al-
ready defined at the time of instantiation in ReqOn. There-
fore, SWRL rules can be directly applied to requirements
for classification purpose. The developed tool parses the re-
quirement statement in its ontological form and extracts the
verb instance and identifies its type. For example, in the re-
quirement statement “The suspension traverse easily on a dif-
ficult terrain,” the verb traverse is an instance of the Trans
port class. As a result, through executing the appropriate
SWRL rule, this requirement is classified as a Transport re-
quirement. Examples of SWRL rule for functional require-
ment classification are given in Table 13.

Fig. 8. Classification of requirement.

Table 11. Example keywords for selected attributes

Attribute
Subclass Keywords

Related
Requirement

Type

Arrangement Arrangement, display, setup, alignment, organization, order, group, etc. Geometry
Capacity Capacity, volume, etc. Energy
Color Color, paint, hue, tint, tone, shade, pigment, stain, dye, etc. Ergonomics
Consumption Consumption, expend, dissipation, utilization, etc. Energy
Cooling Cooling, cool, refrigerate, chill, cool off, cold, etc. Energy
Deformation Deform, deformation, buckle, contort, warp, impair, twist, distort, bend, deflect, out of shape,

disfigure, etc. Force
Heating Heating, warm, reheat, warm up, heat up, etc. Energy
Load Load, cargo, consignment, goods, bundle, strain, etc. Force
Pressure Pressure, stress, force, thrust, etc. Force
Portability Portable, portability, mobile, mobility, movable, movability, adjustability, adaptability, etc. Portability
Price Cost, price, expense, charge, fee, fare, sum, amount, estimate, expenditure, etc. Cost
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7. CONCLUSIONS

In this work, a novel method for representation, evaluation,
and classification of engineering requirements was intro-
duced. The core technical contributions of this work are two-
fold: developing a comprehensive ontology for requirement
representation based on OWL and developing quantitative
methods and metrics for requirement evaluation supported
by automated ontological reasoning. The tools, models, and
methods developed in this work enable more intelligent man-
agement of engineering requirements particularly in the early
stages of design process.

A Java-based automated tool was built to translate natural
language requirement statements into OWL ontology. The
tool is based on the linguistic structure of a requirement state-
ment, and it was developed in such a way that the user does
not require any knowledge of OWL ontology modeling to
use it. Further, necessary methods and metrics to measure
the information content of a requirement statement were es-
tablished. A semiautomatic tool was created to measure the
information content of a single requirement statement or a
whole set of requirements for a product. The proposed infor-
mation content metric can be used for evaluating the perfor-
mance of design teams with respect to information generation
rate. Furthermore, to evaluate the quality of a requirement

statement, necessary metrics and rules were developed to
measure the completeness and specificity of a requirement
statement. A tool was developed to evaluate and assert the
completeness and specificity of a requirement. In addition,
a method for automated classification of requirements using
ontological reasoning was introduced.

It should be noted that the methodologies presented in this
work are tailored for requirement statements that already fol-
low a semistructured syntax and grammar. For more unstruc-
tured texts and nontextual information, such as those found in
technical standards or service guidelines, a more complete set
of protocols should be developed. It can be argued that ontol-
ogies can be used for representation of different types of arti-
fact because they model the world at the most abstract and
conceptual level. Therefore, the proposed approach can be ap-
plied to other types of design artifacts, particularly textual de-
sign artifacts.

There are multiple possibilities for extension of this work in
the future. The proposed ontology can be used for ensuring the
consistency of product specifications and resolving potential
conflicts and ambiguities. Further exterminations and analysis
are required to study how the information content of require-
ments for a given product correlates with the complexity of
the products. Although the proposed requirements ontology
was developed to support intelligent requirement analysis, it

Table 13. Example of SWRL rules of requirement classification (functional)

Verb Class
Requirement

Class SWRL Rule

Distribute Operation Distribute ?z( ) ^ FunctionalRequirement ?x( ) ^ describesBehavior ?x , ?y
( )

^ hasVerb(?y , ?z) � Operation ?x( )

Transport Transport Transport ?z( ) ^ FunctionalRequirement ?x( ) ^ describesBehavior ?x , ?y
( )

^ hasVerb ?y , ?z
( )

� Transports ?x( )

Display Signal Signal ?z( ) ^ FunctionalRequirement ?x( ) ^ describesBehavior ?x , ?y
( )

^ hasVerb ?y , ?z
( )

� Signals ?x( )

Actuate Kinematics Actuate ?z( ) ^ FunctionalRequirement ?x( ) ^ describesBehavior ?x , ?y
( )

^ hasVerb(?y , ?z) � Kinematics ?x( )

Table 12. Example of SWRL rules of requirement classification (nonfunctional)

Rule 1

NonFunctionalRequirement ?x( ) ^ Size ?y
( )

^ describesAttribute ?x, ?y
( )

� Geometry ?x( )

Rule 2

Affordability ?y
( )

^ NonFunctionalRequirement ?x( ) ^ describesAttribute(?x, ?y) � Cost(?x)

Rule 3

Price ?y
( )

^ NonFunctionalRequirement ?x( ) ^ describesAttribute(?x, ?y) � Cost(?x)

Rule 4

Installation ?y
( )

^ NonFunctionalRequirement ?x( ) ^ describesAttribute(?x, ?y) � Assembly(?x)

Rule 5

AssemblyMeasure ?y
( )

^ NonFunctionalRequirement ?x( ) ^ describesAttribute(?x, ?y) � Assembly(?x)
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could be used for enabling semantic information exchange
and knowledge management and reuse during the requirement
planning phase. A formal ontology with explicit semantics not
only provides the requirement planning process with more
structure but also facilitates retrieval and reuse of the require-
ments from similar design projects. If engineering requirements
are mapped to different design features of the existing products
in the design repository, designers can adopt the existing con-
cepts, or their variations, to address new design problems.

Extension of the ontology defines another avenue for future
work. The ontology is rich with respect to the vocabulary for
functional requirements because it is based on the vocabulary
of the FB, but the nonfunctional side of the ontology needs fur-
ther expansion. In particular, there is a need for extending the
Attribute class of the ontology and include a taxonomy
that covers various type of attributes such as attributes durabil-
ity, recyclability, serviceability, color, and ease of use. The on-
tology needs to be evolved continually such that it can capture
the needs, desires, and beliefs of customers more accurately.
Developing the methodology for ontology evolution, by itself,
is research problem that needs to be addressed independently.
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