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Abstract
We prove a general multi-dimensional central limit theorem for the expected number of vertices of a given
degree in the family of planar maps whose vertex degrees are restricted to an arbitrary (finite or infinite)
set of positive integers D. Our results rely on a classical bijection with mobiles (objects exhibiting a tree
structure), combined with refined analytic tools to deal with the systems of equations on infinite variables
that arise. We also discuss possible extensions to maps of higher genus and to weighted maps.

2010 MSC Codes: Primary 05A16; Secondary 05C07, 05C10, 05C30

1. Introduction and results
In this paper we study statistical properties of planar maps, which are connected planar graphs,
possibly with loops and multiple edges, together with an embedding into the plane. Such objects
are frequently used to describe topological features of geometric arrangements in two or three
spatial dimensions. Thus, the knowledge of the structure and of properties of ‘typical’ objects may
turn out to be very useful in the analysis of particular algorithms that operate on planar maps.
We also want to emphasize the interactions with other fields such as statistical physics, proba-
bility theory, limiting continuous objects and algebraic geometry. We say that a map is rooted if
an edge e is distinguished and oriented. It is called the root edge. The first vertex v of this ori-
ented edge is called the root vertex. The face to the right of e is called the root face and is usually
taken as the outer (or infinite) face. Similarly, we call a planar map pointed if just a vertex v is
distinguished. However, we have to be really careful with the model. In rooted maps the root edge
destroys potential symmetries, which is not the case if we consider pointed maps.

The enumeration of rooted maps is a classical subject, initiated by Tutte in the 1960s: see [16].
Amongmany other results, Tutte computed the numberMn of rooted maps with n edges, proving
the formula

Mn = 2(2n)!
(n+ 2)!n!3

n,

which directly provides the asymptotic formula

Mn ∼ 2√
π
n−5/212n.
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We are mainly interested in planar maps with degree restrictions. In fact it turns out that the
subexponential part n−5/2 of the asymptotic expansion is quite universal and hence to a certain
extent describes the ‘physics’ of the combinatorial object. Furthermore, there is always a (very
general) central limit theorem for the number of vertices of given degree.

Theorem 1.1. Suppose that D is an arbitrary set of positive integers but not a subset of {1, 2}. Let
MD be the class of planar rootedmaps with the property that all vertex degrees are in D, and letMD,n
denote the number of maps inMD with n edges. Furthermore, if D contains only even numbers, then
set d = gcd{i : 2i ∈D}; set d = 1 otherwise.

Then there exist positive constants cD and ρD with

MD,n ∼ cDn−5/2ρ−n
D , n≡ 0 mod d. (1.1)

Furthermore, let X(d)
n denote the random variable counting vertices of degree d (∈D) inmaps inMD.

Then E(X(d)
n )∼ μdn and V(X(d)

n )∼ σ 2
d n for some constants μd > 0 and σd � 0 and for n≡ 0 mod

d, and the (possibly infinite) random vector Xn = (X(d)
n )d∈D (n≡ 0 mod d) satisfies a central limit

theorem, that is,
1√
n
(Xn −E(Xn)), n≡ 0 mod d, (1.2)

converges weakly to a centred Gaussian random variable Z (in �2).

Note that maps where all vertex degrees are 1 or 2 are very easy to characterize and are not
really of interest, and that in fact their asymptotic properties are different from the general case.
It is therefore natural to assume that D is not a subset of {1, 2}. Also note that for a given D, the
constants can be computed to an arbitrary standard of precision.

Since we can equivalently consider dual maps, this kind of problem is the same as the one
considering planar maps with restrictions on the face valencies. This means that the same results
hold if we replace vertex degree with face valency. For example, if we assume that all face valencies
equal 4, then we just consider planar quadrangulations (which have also been studied by Tutte
[16]). In fact, our proofs will refer just to face valencies.

Theorem 1.1 goes far beyond known results. There are some general results for the Eulerian
case where all vertex degrees are even. First, the asymptotic expansion (1.1) is known for Eulerian
maps by Bender and Canfield [3]. Furthermore, a central limit theorem of the form (1.2) is known
for all Eulerian maps (without degree restrictions) [12]. However, in the non-Eulerian case there
are almost no results of this kind; there is only a one-dimensional central limit theorem for X(d)

n
for all planar maps [13].

The uniform distribution of planar maps according to the number of edges is not the only
distribution that has been studied. Many probabilistic results on planar maps have also been
extended to other probability distributions, based on q-Boltzmann maps. Let q= (q1, q2, . . . ) be
a sequence of non-negative weights. A q-Boltzmann map is a random planar map with arbitrary
vertex degrees, where the probability of choosing a given mapM is proportional to∏

i>0
q#vertices of degree i inM
i .

When such a procedure describes a well-defined probability distribution, q is called admissible.
(We could equivalently use weights of the form

∏
q#faces of degree i inM
i by duality.)

Marckert and Miermont [14] and Miermont and Weil [15] showed that, under some integra-
bility conditions, random q-Boltzmann maps have the same profile as random uniform planar
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maps. In this spirit we will show that (under certain conditions) Theorem 1.1 also applies to
q-Boltzmann maps.

Theorem 1.2. Let q= (q1, q2, . . . ) be a weight sequence with qi = �(iα) for some α �−3/2 and
consider corresponding q-Boltzmannmaps. Furthermore, let Y(d)

n denote the random variable count-
ing vertices of degree d. Then E(Y(d)

n )∼ μdn and V(Y(d)
n )∼ σ 2

d n for some constants μd > 0 and
σd � 0, and the infinite random vector Yn = (Y(d)

n )d�1 satisfies a central limit theorem.

Again, for a given q= (q1, q2, . . . ), the constants can be computed to an arbitrary standard of
precision.

Graphs can also be embedded on surfaces other than the plane. Given a non-negative integer
g, a map of genus g is then a connected graph with a proper embedding (where any face is simply
connected) on the torus with g holes. In this setting, planar maps, drawn on the plane (or equiva-
lently, on the sphere), are simply maps of genus 0. The first results in higher genus were obtained
by Bender and Canfield [2], providing the asymptotic number of rooted maps of genus g with n
edges:

M( g)
n ∼ tgn5( g−1)/212n.

These asymptotics were later rederived via bijective methods by Chapuy, Marcus and Schaeffer
[9], leading to numerous developments in the study of maps on any surface in recent years.

In this context, we will establish a generalization of Theorem 1.1 in the bipartite case.

Theorem 1.3. Suppose that D �= {2} is an arbitrary set of positive even integers, letM( g)
D be the class

of rooted bipartite maps of genus g with the property that all vertex degrees are in D, and let M( g)
D,n

denote the number of maps in M( g)
D with n edges. Furthermore, set d = gcd{i : 2i ∈D}.

Then there exist positive constants c( g)D and ρ
( g)
D with

M( g)
D,n ∼ c( g)D n5( g−1)/2(ρ( g)

D )−n, n≡ 0 mod d. (1.3)

Furthermore, let X(d)
n denote the random variable counting vertices of degree d ( ∈D) in maps

in M( g)
D . Then E(X(d)

n )∼ μdn and V(X(d)
n )∼ σ 2

d n for some constants μd > 0 and σd � 0 and for
n≡ 0 mod d, and the (possibly infinite) random vector Xn = (X(d)

n )d∈D (n≡ 0 mod d) satisfies a
central limit theorem.

Theorem 1.1 can be easily recovered for planar bipartite maps by setting g = 0. The main dif-
ference lies in the exponent 5(g − 1)/2, which also appears to be universal for rooted maps of
genus g. Hence Theorem 1.3 is expected to hold for any D without restriction.

Theorem 1.3 covers maps on any orientable surface. For the picture to be complete, one would
need to derive a similar result for general surfaces, including non-orientable ones (for instance,
the projective plane). In the article mentioned above [2], Bender and Canfield also showed similar
asymptotics for the number of rooted maps drawn on a non-orientable surface of type h, for h any
non-negative half-integer:

M(h)
n ∼ pgn5(h−1)/212n.

This result has also been rederived bijectively by Chapuy and Dołȩga [7] using some local orien-
tations of the surface, but the bijection at play no longer preserves degrees. On the other hand,
the key bijection that we will use throughout this work was recently extended by Bettinelli [4] to
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Figure 1. An example of a planar mobile.

non-orientable surfaces, but in this case, the family of objects in bijection seem much harder to
describe and to enumerate.

Section 2 introduces planar mobiles which, being in bijection with pointed planar maps, will
reduce our analysis to simpler objects with a tree structure. Their asymptotic behaviour is derived
in Section 3, first for the simpler case of bipartite maps (i.e. when D contains only even integers),
then for families of maps without constraints onD. Sections 4 and 5 are devoted to the proof of the
central limit theorem using analytic tools from [11, 12]. Finally, in Section 6 we discuss combina-
torics and asymptotics of bipartite maps on orientable surfaces of higher genus. The expressions
we obtain are much more involved than in the planar case, but we obtain similar analytic results.

2. Planar mobiles
Instead of investigating planarmaps themselves, we will follow the principle presented by Chapuy,
Fusy, Kang and Shoilekova [8], whereby pointed planar maps are bijectively related to a certain
class of trees called mobiles, see Figure 1. (Their version of mobiles differs from the definition
originally given in [5]; the equivalence of the two definitions is not shown explicitly in [8], but
[10] gives a straightforward proof.)

Definition. A mobile is a planar tree – that is, a map with a single face – such that there are two
kinds of vertices (black and white), edges only occur as black–black edges or black–white edges,
and black vertices additionally have so-called ‘legs’ attached to them (which are not considered
edges), whose number equals the number of white neighbour vertices. A bipartite mobile is a
mobile without black–black edges. The degree of a black vertex is the number of half-edges plus
the number of legs that are attached to it. A mobile is called rooted if an edge is distinguished and
oriented.

The essential observation is that mobiles are in bijection to pointed planar maps.

Theorem 2.1. There is a bijection betweenmobiles that contain at least one black vertex and pointed
planar maps, where white vertices in the mobile correspond to non-pointed vertices in the equivalent
planar map, black vertices correspond to faces of the map, and the degrees of the black vertices cor-
respond to the face valencies. This bijection induces a bijection on the edge sets such that the number
of edges is the same. (Only the pointed vertex of the map has no counterpart.)

Similarly, rooted mobiles that contain at least one black vertex are in bijection to rooted and
vertex-pointed planar maps.

Finally, bipartite mobiles with at least two vertices correspond to bipartite maps with at least two
vertices, in the unrooted as well as in the rooted case.
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Proof. For the proof of the bijection between mobiles and pointed maps we refer to [10], where
the bipartite case is also discussed. It just remains to note that the induced bijection on the edges
can be directly used to transfer the root edge together with its direction. �

2.1 Bipartite mobile counting
We start with bipartite mobiles since they are easier to count, in particular if we consider rooted
bipartite mobiles: see [10].

Proposition 2.2. Let R≡ R(t, z, x1, x2, . . . ) be the solution of the equation

R= tz + z
∑
i�1

x2i
(
2i− 1

i

)
Ri. (2.1)

Then the generating function M ≡M(t, z, x1, x2, . . . ) of bipartite rooted maps satisfies
∂M
∂t

= 2(R/z − t), (2.2)

where the variable t corresponds to the number of vertices, z to the number of edges, and x2i, i� 1,
to the number of faces of valency 2i.

Proof. Since rooted mobiles can be considered as ordered rooted trees (which means that the
neighbouring vertices of the root vertex are linearly ordered and the subtrees rooted at these
neighbouring vertices are again ordered trees), we can describe them recursively. This directly
leads to a functional equation for R of the form

R= tz
1− z

∑
i�1 x2i

(2i−1
i
)
Ri−1

which is apparently the same as (2.1). Note that the factor
(2i−1

i
)
is precisely the number of ways

of grouping i legs and i− 1 edges around a black vertex (of degree 2i; one edge is already there).
Hence, the generating function of rooted mobiles that are rooted by a white vertex is given by

R/z. Since we have to discount the mobile that consists just of one (white) vertex, the generating
function of rooted mobiles that are rooted at a white vertex and contain at least two vertices is
given by

R/z − t =
∑
i�1

x2i
(
2i− 1

i

)
Ri. (2.3)

We now observe that the right-hand side of (2.3) is precisely the generating function of rooted
mobiles that are rooted at a black vertex (and contain at least two vertices). Summing up, the
generating function of bipartite rooted mobiles (with at least two vertices) is given by 2(R/z − t).
Finally, ifM denotes the generating function of bipartite rooted maps (with at least two vertices)
then ∂M/∂t corresponds to rooted maps where a non-root vertex is pointed (and discounted).
Thus, by Theorem 2.1 we obtain (2.2). �

It is clear that Formula (2.2) can be specialized to count MD for any subset D of even positive
integers: it suffices to set x2i = 1 for 2i ∈D and x2i = 0 otherwise.

2.2 General mobile counting
Wenow proceed to develop amechanism for generalmobile counting that is adapted from [8]. For
this, we will require Motzkin paths. A Motzkin path is a path starting at 0 and going rightwards
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Figure 2. Recursive description of mobiles leading to the system of equations (2.7).

for a number of steps; the steps are either diagonally upwards (+ 1), straight (0) or diagonally
downwards (− 1). A Motzkin bridge is a Motzkin path from 0 to 0. A Motzkin excursion is a
Motzkin bridge which stays non-negative.

We define generating functions in the variables t and u, which count the number of steps of
type 0 and −1, respectively. (Explicitly counting steps of type 1 is then unnecessary, of course.)
The ordinary generating functions of Motzkin bridges, Motzkin excursions, and Motzkin paths
from 0 to+1 will be denoted by B(t, u), E(t, u) and B(+1)(t, u), respectively. By decomposing these
three types of paths by their last passage through 0, we arrive at the equations

E= 1+ tE+ uE2, B= 1+ (t + 2uE)B, B(+1) = EB

(compare with [8]). In what follows we will also make use of bridges where the first step is either
of type 0 or −1. Clearly, their generating function B is given by B= tB+ uB(+1) = B(t + uE).

When Motzkin bridges are not constrained to stay non-negative, they can be seen as an arbi-
trary arrangement of a given number of steps +1, 0,−1. It is then possible to obtain explicit
expressions for

B�,m = [t�um]B(t, u)=
(
l+ 2m
l,m,m

)
, (2.4)

B(+1)
�,m = [t�um]B(+1)(t, u)=

(
l+ 2m+ 1
l,m,m+ 1

)
, (2.5)

B�,m = [t�um]B(t, u)= B�−1,m + B(+1)
�,m−1 = l+m

l+ 2m

(
l+ 2m
l,m,m

)
. (2.6)

Using the above, we can now finally compute relations for generating functions of proper
classes of mobiles. We define the following series, where t corresponds to the number of white
vertices, z to the number of edges, and xi, i� 1, to the number of black vertices of degree i.

• L(t, z, x1, x2, . . . ) is the series counting rooted mobiles that are rooted at a black vertex and
where an additional edge is attached to the black vertex.

• R(t, z, x1, x2, . . . ) is the series counting rooted mobiles that are rooted at a white vertex and
where an additional edge is attached to the root vertex.

Similarly to the above we obtain the following equations for the generating functions of mobiles
and rooted maps.
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Proposition 2.3. Let L≡ L(t, z, x1, x2, . . . ) and R≡ R(t, z, x1, x2, . . . ) be the solutions of the system
of equations

L= z
∑
�,m

x2m+�+1B�,mL�Rm, R= tz + z
∑
�,m

x�+2m+2B(+1)
�,m L�Rm+1, (2.7)

and let T ≡ T(t, z, x1, x2, . . . ) be given by

T = 1+
∑
�,m

x2m+�B�,mL�Rm, (2.8)

where the numbers B�,m, B(+1)
�,m , and B�,m are given by (2.4)–(2.6). Then the generating function

M ≡M(t, z, x1, x2, . . . ) of rooted maps satisfies
∂M
∂t

= R/z − t + T, (2.9)

where the variable t corresponds to the number of vertices, z to the number of edges, and xi, i� 1, to
the number of faces of valency i.

Proof. The system (2.7) is just a rephrasing of the recursive structure of rooted mobiles (see also
Figure 2). Note that the numbers B�,m and B(+1)

�,m are used to count the number of ways to cir-
cumscribe a specific black vertex and considering white vertices, black vertices and ‘legs’ as steps
−1, 0 and +1. The generating function T given in (2.8) is then the generating function of rooted
mobiles where the root vertex is black.

Finally, equation (2.9) follows from Theorem 2.1 since R/z − t corresponds to rooted mobiles
with at least one black vertex where the root vertex is white and T corresponds to rooted mobiles
where the root vertex is black. �

3. Asymptotic enumeration
In this section we prove the asymptotic expansion (1.1). It turns out that it is much easier to start
with bipartite maps. In fact the bipartite case has already been treated by Bender and Canfield [3].
However, we apply a slightly different approach, which will then be extended to cover the general
case as well the central limit theorem.

3.1 Bipartite maps
Let D be a non-empty subset of even positive integers different from {2}. Then by Proposition 2.2
the counting problem reduces to the discussion of the solutions RD ≡ RD(t, z) of the functional
equation

RD = tz + z
∑
2i∈D

(
2i− 1

i

)
RiD (3.1)

and the generating functionMD(t, z) which satisfies the relation
∂MD
∂t

= 2(RD/z − t). (3.2)

Let d = gcd{i : 2i ∈D}. Then for combinatorial reasons it follows that there only exist maps
with n edges for n that are divisible by d. This is reflected by the fact that equation (3.1) can be
rewritten in the form
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R̃= t +
∑
2i∈D

(
2i− 1

i

)
zi/dR̃i, (3.3)

where we have substituted RD(t, z)= zR̃(t, zd). (Recall that we finally work with RD/z.)

Lemma 3.1. There exists an analytic function ρD(t) with ρD(1)> 0, ρ′
D(1) �= 0 that is defined in a

neighbourhood of t = 1, and there exist analytic functions g(t, z), h(t, z) with h(1, ρD(1))> 0 that
are defined in a neighbourhood of t = 1 and z = ρD(1) such that the unique solution RD ≡ RD(t, z)
of equation (3.1) that is analytic at z = 0 and t = 0 can be represented as

RD = g(t, z)− h(t, z)
√
1− z

ρD(t)
. (3.4)

Furthermore, the values z = ρD(t)e(2π ij/d), j ∈ {0, 1, . . . , d − 1}, are the only singularities of
the function z 	→ RD(t, z) on the disc |z|� ρD(t), and for some sufficiently small η > 0 there
exists an analytic continuation of RD to the range |z| < |ρD(t)| + η, arg (z − ρD(t)e(2π ij/d)) �= 0,
j ∈ {0, 1, . . . , d − 1}.

Proof. From general theory (see [11, Theorem 2.21]) we know that an equation of the form
R= F(t, z, R), where F is a power series with non-negative coefficients, has – usually – a square-
root singularity of the form (3.4). We only have to assume that the function R→ F(t, z, R) is
neither constant nor a linear polynomial and that there exist solutions z0 > 0, R0 > 0 of the system
of equations

R0 = F(1, z0, R0), 1= FR(1, z0, R0)

which are inside the range of convergence of F. Further, we have to assume that Fz(1, z0, R0)> 0
and FRR(1, z0, R0)> 0 to ensure that (3.4) holds not only for t = 1 but in a neighbourhood of t = 1,
and the condition Ft(1, z0, R0)> 0 ensures that ρ′

D(1) �= 0.
This means that in our case we have to deal with the system of equations

R0 = z0 + z0
∑
2i∈D

(
2i− 1

i

)
Ri0, 1= z0

∑
2i∈D

i
(
2i− 1

i

)
Ri−1
0 ,

or just with a single equation ∑
2i∈D

(i− 1)
(
2i− 1

i

)
Ri0 = 1 (3.5)

(after eliminating z0). It is clear that (3.5) has a unique positive solution if D is finite. (We also
recall that all i� 1, since 2i has to be positive.) If D is infinite, we have to be more precise. In fact
we will show that (3.5) has a unique positive solution R0 < 1/4. This follows from the fact that

(i− 1)
(
2i− 1

i

)
∼ 4i

√
i

2
√

π
.

Thus, if D is infinite, it follows that the power series x 	→H(x)=∑
2i∈D (i− 1)

(2i−1
i
)
xi has radius

of convergence 1/4 and we also have H(x)→ ∞ as x→ 1/4− since each non-zero term satisfies

lim
x→1/4

(i− 1)
(
2i− 1

i

)
xi ∼

√
i

2
√

π
,
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which is unbounded for i→ ∞. Finally, we set

ρD(1)= z0 =
(∑
2i∈D

i
(
2i− 1

i

)
Ri−1
0

)−1

.

It is clear that Fz(1, z0, R0)> 0, FRR(1, z0, R0)> 0, and Ft(1, z0, R0)> 0. Hence we obtain the
representation (3.4) in a neighbourhood of z = z0 = ρD(1) and t = 1.

Next, let us discuss the analytic continuation property. If d = gcd{i : 2i ∈D} = 1 then it fol-
lows from equation (3.1) that the coefficients [zn]RD(1, z) are positive for n� n0 (for some n0).
Consequently [11, Theorem 2.21] (see also [11, Theorem 2.16]) implies that for some sufficiently
small η > 0 there is an analytic continuation to the region |z| < |ρD(t)| + η, arg (z − ρD(t)) �= 0. If
d > 1, then we can first reduce equation (3.1) to equation (3.3) for the function R̃ that is given by
RD(t, z)= zR̃(t, zd). We now apply the above method to this equation and obtain corresponding
properties for R̃. Of course, these properties directly translate to RD, and we are done. �

It is now relatively easy to obtain similar properties forMD(t, z).

Lemma 3.2. The function M ≡MD(t, z) that is given by (3.2) has the representation

MD = g2(t, z)+ h2(t, z)
(
1− z

ρD(t)

)3/2
(3.6)

in a neighbourhood of t = 1 and z = ρD(1), where the functions g2(t, z), h2(t, z) are analytic in
a neighbourhood of t = 1 and z = ρD(1) and we have h2(1, ρD(1))> 0. Furthermore, the values
z = ρD(t)e(2π ij/d), j ∈ {0, 1, . . . , d − 1}, are the only singularities of the function z 	→MD(t, z) on
the disc |z|� ρD(t), and for some sufficiently small η > 0 there exists an analytic continuation of
MD to the range |z| < |ρD(t)| + η, arg (z − ρD(t)e(2π ij/d)) �= 0, j ∈ {0, 1, . . . , d − 1}.

Proof. This is a direct application of [11, Lemma 2.27]. �

In particular it follows that MD(1, z) has the singular representation of the form (3.6) with a
dominant singularity (1− z/ρD(1))3/2 near z = ρD(1). The singular representations are of the
same kind near z = ρD(1)e(2π ij/d), j ∈ {1, . . . , d − 1}, and we have the analytic continuation
property. Hence it follows by the usual singularity analysis (see for example [11, Corollary 2.15])
that there exists a constant cD > 0 such that

[zn]MD(1, z)∼ cDn−5/2ρD(1)−n, n≡ 0 mod d,

which completes the proof of the asymptotic expansion in the bipartite case.

3.2 General maps
We now suppose thatD contains at least one odd number. It is easy to observe that in this case we
have [zn]MD(1, z)> 0 for n� n0 (for some n0), so we do not have to deal with several singularities.
By Proposition 2.3 we have to consider the system of equations for LD ≡ LD(t, z), RD ≡ RD(t, z):

LD = z
∑
i∈D

∑
m

Bi−2m−1,mLi−2m−1
D RmD , (3.7)

RD = tz + z
∑
i∈D

∑
m

B(+1)
i−2m−2,mL

i−2m−2
D Rm+1

D , (3.8)
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and also the function
TD = TD(t, z)= 1+

∑
i∈D

∑
m

Bi−2m,mLi−2m
D RmD .

Lemma 3.3. There exists an analytic function ρD(t) with ρD(1)> 0, ρ′
D(1) �= 0 that is defined in a

neighbourhood of t = 1, and there exist analytic functions g(t, z), h(t, z) with h(1, ρD(1))> 0 that
are defined in a neighbourhood of t = 1 and z = ρD(1) such that

RD/z − t + TD = g(t, z)− h(t, z)
√
1− z

ρD(t)
. (3.9)

Furthermore, the value z = ρD(t) is the only singularity of the function z 	→ RD/z − t + TD on the
disc |z|� ρD(t), and for some sufficiently small η > 0 there exists an analytic continuation of RD to
the range |z| < |ρD(t)| + η, arg (z − ρD(t)) �= 0.

Proof. The system of equations (3.7)–(3.8) – which we write in short-hand notation as LD =
F(t, z, LD, RD), RD =G(t, z, LD, RD) – is a strongly connected system of two equations such that
F and G can be expressed as power series with non-negative coefficients. It is known that such a
system of equations has in principle the same analytic properties (including the singular behaviour
of its solutions) as a single equation: see [11, Theorem 2.33]. However, we have to be sure that the
regions of convergence of F and G are large enough.

In particular, if D is finite, then we have a positive algebraic system and we are done: see [1]. In
the infinite case we have to argue in a different way. First of all, it is clear from the explicit solutions
of E= E(t, u)= (1− t −√

(1− t)2 − 4u)/(2u) and B= B(t, u)= 1/
√
(1− t)2 − 4u that F and G

(and all their derivatives with respect to LD and RD) are certainly convergent if 2|LD| − |LD|2 +
4|RD| < 1. On the other hand, it follows similarly to the bipartite case that the derivatives of F and
G are divergent if LD > 0, RD > 0, and 2LD − L2D + 4RD = 1. To see this we consider the function

B(ts, us2)= 1√
1− 2ts+ t2s2 − 4us2

=
∑
�,m

B�,ms2m+�t�um =
∑
i

si
∑
m

Bi−2m,mti−2mum.

By singularity analysis it follows (for t, u> 0) that∑
m

Bi−2m,mti−2mum ∼ c i−1/2h(t, u)−i,

where c> 0 and h= h(t, u)> 0 satisfies the equation 1− 2th+ t2h2 − 4uh2 = 0. Similarly, we can
consider derivatives of F which correspond, for example, to sums of the form∑

m
Bi−2m,mmti−2mum ∼ c′i1/2h(t, u)−i.

In particular, if h(t, u)= 1 (which is the case if 2t − t2 − 4u= 1), then this term diverges for
i→ ∞. Thus, the derivatives of F and G diverge if LD > 0, RD > 0, and 2LD − L2D + 4RD = 1.

In order to determine the singularity of the system LD = F(t, z, LD, RD), RD =G(t, z, LD, RD)
we have to find positive solutions of L0, R0, z0 of the system

L0 = F(1, z0, L0, R0), R0 =G(1, z0, L0, R0), 1= GLDFRD
1− FLD

+GRD . (3.10)

We do this in the following way. Starting with z0 = 0, we increase z0 and solve the first two equa-
tions to get L0 = L0(z0), R0 = R0(z0) till the third equation is satisfied. (Note that for z0 = 0, the
right-hand side is 0 and thus smaller than 1.) As long as the right-hand side of the third equa-
tion is smaller than 1, it follows from the implicit function theorem that there is a local analytic
continuation of the solutions L0 = L0(z0), R0 = R0(z0). Furthermore, since L0 > 0 and R0 > 0, we
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have to be in the region of convergence of the derivatives of F and G, that is, 2L0 − L20 + 4R0 < 1.
From this it also follows that the solutions L0 = L0(z0), R0 = R0(z0) naturally extend to a point
where the right-hand side of the third equation equals 1, so that the above system has a solution
(1, z0, L0, R0). Of course, at this point the derivatives of F and G have to be finite, which implies
that (1, z0, L0, R0) lies inside the region of convergence of F and G.

This finally shows that all assumptions of [11, Theorem 2.33] are satisfied. Thus, singular
representation of type (3.9) and the analytic continuation property follow for the functions
LD = LD(t, z), RD = RD(t, z). Hence, the same kind of property follows for TD = TD(t, z) and
consequently also for RD/z − t + TD. �

Lemma 3.3 shows that we are precisely in the same situation as in the bipartite case (in fact it is
slightly easier since there is only one singularity on the circle |z| = ρD(t)). Hence we immediately
get the same property forMD as stated in Lemma 3.2 and consequently the proposed asymptotic
expansion (1.1).

4. Central limit theorem for bipartite maps
Based on this previous result, we now extend our analysis to obtain a central limit theorem. In fact
this is immediate if the set D is finite, whereas the infinite case needs much more care.

Let D be a non-empty subset of even positive integers different from {2}. Then by
Proposition 2.2 the generating functions RD ≡ RD(t, z, (x2i)2i∈D) and MD ≡MD(t, z, (x2i)2i∈D)
satisfy the equations

RD = tz + z
∑
2i∈D

x2i
(
2i− 1

i

)
RiD and

∂MD
∂t

= 2(RD/z − t). (4.1)

IfD is finite, then the number of variables is finite, too, and we can apply [11, Theorem 2.33] to
obtain a representation of RD of the form

RD = g(t, z, (x2i)2i∈D)− h(t, z, (x2i)2i∈D)
√
1− z

ρD(t, (x2i)2i∈D)
. (4.2)

A proper extension of the transfer lemma [11, Lemma 2.27] (where the variables x2i are considered
as additional parameters) leads to

MD = g2(t, z, (x2i)2i∈D)+ h2(t, z, (x2i)2i∈D)
(
1− z

ρD(t, (x2i)2i∈D)

)3/2
, (4.3)

and finally [11, Theorem 2.25] implies a multivariate central limit theorem for the random vector
Xn = (X(2i)

n )2i∈D of the proposed form.
Thus, we just have to concentrate on the infinite case. In fact we proceed there in a similar way;

however, we have to take care of infinitely many variables. There is no real problem in deriving the
same kind of representation (4.2) and (4.3) if D is infinite. Everything works in the same way as in
the finite case, we just have to assume that the variables xi are sufficiently close to 1. And of course
we have to use a proper notion of analyticity in infinitelymany variables.We only have to apply the
functional analytic extension of the above cited theorems that are given in [12]. Moreover, in order
to obtain a central limit theorem we need a proper adaption of [12, Theorem 3]. This theorem
handles the case of a single equation y= F(z, (xi)i∈I , y) for a generating function y= y(z, (xi)i∈I)
that encodes the distribution of a random vector (X(i)

n )i∈I in the form

y=
∑
n

yn ·E
(∏

i∈I
xX

(i)
n

i

)
zn,
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whereX(i)
n = 0 for i> cn (for some constant c> 0) which also implies that all appearing potentially

infinite products are in fact finite. (In our case this is satisfied since there is no vertex of degree
larger than 2n if we have n edges.) Note that if we let xi = esti , then

E

(∏
i∈I

xX
(i)
n

i

)
=E

(
es·

∑
i∈I tiX

(i)
n
)

is exactly the moment generating function of the projected random variable
∑

i∈I tiX
(i)
n .

As we can see from the proof of [12, Theorem 3], the essential part is to provide tightness of
the involved normalized random vector, and tightness can be checked with the help of moment
conditions. It is clear that asymptotics of moments for X(i)

n can be calculated with the help of
derivatives of F, for exampleEX(i)

n = Fxi/(ρDFz) · n+O(1). This follows from the fact all informa-
tion on the asymptotic behaviour of the moments is encoded in the derivatives of the singularity
ρD(t, z, (xi)i∈I), and by implicit differentiation these derivatives relate to derivatives of F. More
precisely, [12, Theorem 3] says that the following conditions are sufficient to deduce tightness of
the normalized random vector:∑

i∈I
Fxi < ∞,

∑
i∈I

F2yxi < ∞,
∑
i∈I

Fxixi < ∞,

Fzxi = o(1), Fzxixi = o(1), Fyyxi = o(1), Fyyxixi = o(1),
Fzzxi =O(1), Fzyxi =O(1), Fzyyxi =O(1), Fyyyxi =O(1),

as i→ ∞, where all derivatives are evaluated at (1, ρD, (1)i∈I , y(ρD)).
The situation is slightly different in our case since we have to work with MD instead of RD.

However, the only real difference between RD andMD is that the critical exponents in the singular
representations (4.2) and (4.3) are different, but the behaviour of the singularity ρD(t, (xi)i∈I) is
precisely the same. Note that after the integration step we can set t = 1. Now tightness for the
normalized random vector that is encoded in the functionMD follows in the same way as for RD,
and since the singularity ρD(1, (xi)i∈I) is the same, we get precisely the same conditions as in the
case of [12, Theorem 3].

This means we just have to check the above conditions for

F = F(1, z, (x2i)2i∈D, y)= z + z
∑
2i∈D

x2i
(
2i− 1

i

)
yi,

where all derivatives are evaluated at z = ρD, x2i = 1, and y= RD(ρD)< 1/4. However, they are
trivially satisfied since

∑
i�1

(2i−1
i
)
iKyi < ∞ for all K > 0 and for positive real y< 1/4.

5. Central limit theorem for general maps
We now assume that D contains at least one odd number. By Proposition 2.3 we have to consider
the system of equations

LD = z
∑
i∈D

xi
∑
m

Bi−2m−1,mLi−2m−1
D RmD ,

RD = tz + z
∑
i∈D

xi
∑
m

B(+1)
i−2m−2,mL

i−2m−2
D Rm+1

D ,

for the generating functions LD ≡ LD(t, z, (xi)i∈D) and RD ≡ RD(t, z, (xi)i∈D), the generating
function

TD ≡ TD(t, z, (xi)i∈D)= 1+
∑
i∈D

xi
∑
m

Bi−2m,mLi−2m
D RmD
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and finally the generating functionMD ≡MD(t, z, (xi)i∈D) that satisfies the relation
∂MD
∂t

= RD/z − t + TD.

Again, if D is finite, we can proceed as in the bipartite case by applying [11, Theorem 2.33,
Lemma 2.27 and Theorem 2.25] which implies the proposed central limit theorem.

If D is infinite, we argue in a similar way to the bipartite case. The only difference is that we are
not starting with one equation but with a system of two equations that have the (general) form

L= F(t, z, (xi)i∈D, L, R), R=G(t, z, (xi)i∈D, L, R).
Nevertheless, it is possible to reduce two equations of this form to a single one. The proof of
[11, Theorem 2.33] shows that there are no analytic problems since we have a positive and
strongly connected system. We use the first equation to obtain an implicit function solution
f = f (t, z, (xi)i∈D, r) that satisfies

f = F(t, z, (xi)i∈D, f , r).
Then we substitute f for L in the second equation and arrive at a single functional equation

R=G(t, z, (xi)i∈D, f (t, z, (xi)i∈D, R), R)
for R= RD(t, z, (xi)i∈D). Note that the proof of [11, Theorem 2.33] assures that f is analytic
although L and R become singular. Hence, by setting

H(t, z, (xi)i∈D, r)=G(t, z, (xi)i∈D, f (t, z, (xi)i∈D, r), r)
we obtain a single equation R=H(t, z, (xi)i∈D, R) for R= RD and we can apply the same method
as in the bipartite case. Of course, the calculations become more involved. For example, we have

Hxi =Gxi +
GLFxi
1− FL

,

where
FL = ρD

∑
i∈D

∑
m

(i− 2m− 1)Bi−2m−1,mLi−2m−2
0 Rm0 ,

Fxi = ρD
∑
m

Bi−2m−1,mLi−2m−1
0 Rm0 ,

GL = ρD
∑
i∈D

∑
m

(i− 2m− 2)B(+1)
i−2m−2,mL

i−2m−3
0 Rm0 ,

Gxi = ρD
∑
m

B(+1)
i−2m−2,mL

i−2m−2
0 Rm0 .

From the proof of Lemma 3.3 we already know that 2L0 − L20 + 4R0 < 1, which implies that∑
i�1

∑
m

mK(i− 2m− 1)Bi−2m−1,mLi−2m−2
0 Rm0 < ∞

for all K > 0. Furthermore, we have FL < 1 and GR < 1. Hence it follows that
∑

i∈D Hxi < ∞. In
the same way, we can handle the other conditions, which completes the proof of Theorem 1.1.

5.1 Weightedmaps
In order to cope with weighted maps we just have to substitute xi = qi. Then the coefficient
Mq,n := [zn]M(1, z, q) is just the weighted sum of all maps with n edges. In fact, under the
condition that qi = �(iα) with α �−3/2 it follows that Mq,n ∼ c n−5/2γ n for some positive con-
stants c, γ . The reason is that we can show (almost in the same way as in Lemma 3.3) that there
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exist solutions L0 > 0, R0 > 0, ρ > 0 with 2L0 − L20 + 4R0 < 1 of the corresponding system (3.10).
The simple argument is that the series

∑
i�1

√
i · iα diverges for α �−3/2. This proves that we

have a square-root singularity for the functions L and R, etc.
The central limit theorem can also be proved in the same way as above: we just have to replace

xi with xiqi. We leave the details to the reader.

5.2 Mean and covariance
Recall that we have used [11, Theorem 2.33, Lemma 2.27 and Theorem 2.25] to prove the central
limit theorem. In fact this method also provides us with expressions for the constants μd (d ∈D)
and a covariance matrix � = (σd1, d2 )d1, d2∈D for the limiting Gaussian random variable Z. By [11,
Theorem 2.25] we have

μd = − (∂ρD/∂xd)(1, 1)
ρD(1, 1)

and σd1, d2 = μd1μd2 + δd1, d2μd1 − (∂2ρD/∂x2d)(1, 1)
ρD(1, 1)

.

In particular, in the bipartite case we have (compare also with [11, Theorem 2.23])

μ2 j =
Fx2 j

ρD(1, 1)Fz
and

σ2i,2 j = μ2iμ2 j + δi ,jμ2i

+ 1
ρD(1, 1)F3z FRR

(
F2z (FRRFx2ix2 j − FRx2iFRx2 j)− FzFx2i(FRRFzx2 j − FRzFRx2 j)

− FzFx2 j(FRRFzx2i − FRzFRx2i)+ Fx2iFx2 j(FRRFzz − F2Rz)
)
,

where

F(z, (x2i)2i∈D, R)= z + z
∑
2i∈D

x2i
(
2i− 1

i

)
Ri

and all functions are evaluated at z = z0 = ρD(1, 1), x2i = 1, R= R0, and z0, R0 are defined as in
Lemma 3.1:

R0 = F(z0, 1, R0), 1= FR(z0, 1, R0).

Thus (in the bipartite case) we get

μ2 j = z0
(
2 j− 1

j

)
Rj−1
0 and σ2 j,2k = μ2 jδj,k − μ2 jμ2k(1+ ( j− 1)(k− 1)c)

with c= 1/(R0FRR).1 We just have to observe the following relations:

Fz = R0
z0

, Fx2 j = z0
(
2 j− 1

j

)
Rj
0 = R0μ2j, Fx2ix2 j = 0, Fzz = 0,

FRx2 j = jz0
(
2 j− 1

j

)
Rj−1
0 = jμ2 j, Fzx2 j =

(
2 j− 1

j

)
Rj
0 = R0

z0
μ2 j, FzR = FR

z0
= 1

z0
.

1Gregory Miermont has pointed out to the second author a very nice probabilistic interpretation of these representations
in terms of monotype Galton–Watson trees and infinite sequences of Gaussian random variables.
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In principle the same procedure also works for non-bipartite maps, however, the expres-
sions are much more involved. Therefore we only state the results for the basic case D=N. The
corresponding constants μd and σd1,d2 are given by

μd =Ad + 2Ad

and

σd1,d2 = μd1δd1,d2 − 3
2
μd1μd2 + 729

4
(d1 − 1)(d2 − 1)Ad1−1Ad2−1

+ 9
2
((Ad1 + (d1 − 1)Ad1−1)Ad2 + (Ad2 + (d2 − 1)Ad2−1)Ad1 )

− 1
18

(39Ad1 + (d1 − 1)μd1−1)(39Ad2 + (d2 − 1)μd2−1)

− 1
2
(μd1Ad2 + μd2Ad1 )+

1
12

((d2 − 1)μd1μd2−1 + (d1 − 1)μd2μd1−1),

where

Ad = 1
6d

∑
m�0

(
d − 1

d − 2m− 1,m,m

)
4m and Ad = 1

6d
∑
m�0

(
d − 1

d − 2m− 2,m,m+ 1

)
4m.

6. Maps of higher genus
The bijection used in Section 2 relies solely on the orientability of the surface on which the maps
are drawn. Therefore it can easily be extended to maps of higher genus, that is, embedded on an
orientable surface of genus g ∈Z>0 (while planar maps correspond to maps of genus 0). The main
difference lies in the fact that the corresponding mobiles are no longer trees but rather one-faced
maps of higher genus, while the other properties still hold.

However, due to the appearance of cycles in the underlying structure of mobiles, another dif-
ficulty arises. Indeed, in the original bijection, vertices and edges in mobiles could carry labels
(related to the geodesic distance in the original map), subject to local constraints. In our setting,
the legs actually encode the local variations of these labels, which are thus implicit. Local con-
straints on labels are naturally translated into local constraints on the number of legs. But the
labels have to remain consistent along each cycle of the mobiles, which gives rise to non-local
constraints on the repartition of legs.

In order to deal with these additional constraints, and to be able to control the degrees of the
vertices at the same time, we will use a hybrid formulation of mobiles, namely g-mobiles, carrying
both labels and legs. As before, we will focus on the simpler case of mobiles coming from bipartite
maps.

6.1 Definition of g-mobiles
Given g ∈Z�0, a g-mobile is a one-faced map of genus g – embedded on the g-torus – such that
there are two kinds of vertices (black and white), edges only occur as black–black edges or black–
white edges, and black vertices additionally have so-called ‘legs’ attached to them (which are not
considered to be edges), whose number equals the number of white neighbour vertices.

Furthermore, for each cycle c of the g-mobile, let n◦(c), n→(c) and n (c) respectively be the
numbers of white vertices on c, of legs dangling to the left (anticlockwise) of c and of white
neighbours to the left of c. One has the following constraint (see Figure 3):

n→(c)= n◦(c)+ n (c) (6.1)
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Figure 3. An oriented cycle c in a g-mobile and the constraint on its left (coloured area). Notice that a similar constraint
holds on its right, but is necessarily satisfied thanks to the local properties of a g-mobile.

Figure 4. A 1-mobile on the torus and its scheme.

The degree of a black vertex is the number of half-edges plus the number of legs that are attached
to it. A bipartite g-mobile is a g-mobile without black–black edges. A g-mobile is called rooted if
an edge is distinguished and oriented. Notice that a 0-mobile is simply a mobile as described in
Definition 2.

In fact there is a direct analogue of Theorem 2.1: g-mobiles are in bijection with pointed maps
of genus g, with precisely the same properties stated in Theorem 2.1. This generalization of the
bijection to higher genus was first given by Chapuy, Marcus and Schaeffer [9] for quadrangu-
lations and by Chapuy [6] for Eulerian maps, from which we will exploit many ideas in this
section.

6.2 Schemes of g-mobiles
A g-mobile is not as easily decomposed as a planar one, due to the existence of cycles. However, it
still exhibits a rather simple structure, based on scheme extraction.

The g-scheme (or simply the scheme) of a g-mobile is what remains when we apply the following
operations (see Figure 4): first remove all legs, then iteratively remove all vertices of degree 1 and
finally replace any maximal path of vertices of degree 2 with a single edge.

Once these operations are performed, the remaining object is still a one-faced map of genus
g, with black and white vertices (note that white–white edges can now occur), where the vertices
have minimum degree 3.

To count g-mobiles, one key ingredient is the fact that there is only a finite number of schemes
of a given genus. Indeed, letting e, v and vi (i� 3) be the number of edges, vertices and vertices of
degree i in a g-scheme, respectively, one gets
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Figure 5. The variations of labels around a black vertex and along an oriented cycle.

2e= 2(v+ 2g − 1)=
∑
i�3

ivi � 3
∑
i�3

vi = 3v.

The number of vertices (respectively edges) is then bounded by 4g − 2 (respectively 6g − 3), where
this bound is reached for cubic schemes (see an example in Figure 4).

To recover a proper g-mobile from a given g-scheme, one would have to insert a suitable planar
mobile into each corner of the scheme and to substitute each edge with some kind of path of
planar mobiles. Unfortunately, this cannot be done independently: around each black vertex, the
total number of legs in every corner must equal the number of white neighbours, and around each
cycle, (6.1) must hold.

In order to make these constraints more transparent, we will equip schemes with labels on
white vertices and black corners. Now, when trying to reconstruct a g-mobile from a scheme, one
has to ensure that the local variations are consistent with the global labelling. To be precise, the
label variations are encoded as follows (see Figure 5):

• Around a black vertex of degree d, let (l1, . . . , ld) be the labels of its corners read in clockwise
order:

for all i, li+1 − li =

⎧⎪⎨⎪⎩
+1 if there is a leg between the two corresponding corners,
0 if there is a black neighbour,
−1 if there is a white neighbour.

• Along the left side of an oriented cycle, the label decreases by 1 after a white vertex or when
encountering a white neighbour and increases by 1 when encountering a leg.

The above statements hold for general – as well as bipartite – mobiles. In the following, we will
only consider bipartite mobiles, as they are much easier to decompose.

6.3 Reconstruction of bipartite maps of genus g
In the following, it will be convenient to work with rooted schemes. One can then define a canon-
ical labelling and orientation for each edge of a rooted scheme. An edge e now has an origin e−
and an endpoint e+. The k corners around a vertex of degree k are ordered clockwise and denoted
by c1, . . . , ck.

Given a scheme S, let V◦,V•, C◦, C• be the sets of white and black vertices and of white and
black corners, respectively. A labelled scheme (S, (lc)c∈V◦∪C•) is a pair consisting of a scheme S and
a labelling on white vertices and black corners, with lc � 0 for all c. Labellings are considered up
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to translation, as those will not affect local variations. For an edge e ∈ ES of S, we associate a label
with each extremity le− , le+ . If an extremity is a white vertex of label l, its label is l. If the extremity
is a black vertex, its label is the same as the next clockwise corner of the black vertex.

Let a doubly rooted planar mobile be a rooted (on a black or white vertex) planar mobile with a
secondary root (also black or white). These two roots are the extremities of a path (v1, . . . , vk).
The increment of the doubly rooted mobile is then defined as n→ − n◦ − n , which is not
necessarily 0, as the path is not a cycle.

Similarly to [6], we present a non-deterministic algorithm to reconstruct a g-mobile (see also
Figure 6).

Algorithm.
(1) Choose a labelled g-scheme (S, (lc)c∈V◦∪C•).
(2) For all v ∈V•, choose a sequence of non-negative integers (ik)1�k�deg(v), then attach ik

planar mobiles and ik + lck+1 − lck + 1 legs to ck (the kth corner of v).
(3) For all e ∈ S, replace e with a doubly rooted mobile of increment

(e)= le+ − le− +
{

+1 if e− is white,
−1 if e− is black.

(4) On each white corner of S, insert a planar mobile.
(5) Distinguish and orient an edge as the root.

Proposition 6.1. Given g > 0, the algorithm generates each rooted bipartite g-mobile whose scheme
has k edges in exactly 2k ways.

Proof. One can easily see that the obtained object is indeed bipartite. Attaching planar mobiles
and legs added at step (2) in a corner ck creates new corners, such that:

• the first carries the same label lck as ck, and
• the last carries the label lck + (ik + lck+1 − lck + 1)− ik = lck+1 + 1.

The next corner should then be labelled (lck+1 + 1)− 1= lck+1 , due to the next white neighbour,
which is precisely what we want.

In the same fashion, at step (3), a simple counting shows that each edge is replaced with a path
such that the labels along it evolve according to the scheme labelling.

We thus obtain a well-formed rooted bipartite g-mobile, with a secondary root on its scheme.
Since the first root destroys all symmetries, there are exactly 2k choices for the secondary root
which would give the same rooted g-mobile. �

6.4 Bipartite g-mobile counting
Recall that in the bipartite case, the generating series for rooted planarmobiles R≡ R(z, t, (x2i)i�1)
satisfies equation (2.3):

R/z − t =
∑
i�1

x2i
(
2i− 1

i

)
Ri. (6.2)

A g-mobile can now be uniquely decomposed as a scheme where each edge is substituted by a
sequence of elementary cells. By definition of a g-mobile, one needs to track the increment, i.e. the
variation of labels along it, of each cell to ensure that the overall cycle constraints are satisfied.
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Figure 6. Steps (1)–(3) of the algorithm.

An elementary cell is a half-edge connected to a black vertex itself connected to a white vertex
with a dangling half-edge. The white vertex has a sequence of black-rooted mobiles attached on
each side. For an elementary cell of increment i, the black vertex has k� 0 white-rooted mobiles
and k+ i+ 1� 0 legs on its left, l� 0 white-rooted mobiles and l− i+ 1 legs on its right, and its
degree is 2(k+ l+ 2).
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Figure 7. Decorating white and black vertices of a scheme.

The generating series P ≡ P(t, z, R, (x2i), s) of a cell, where smarks the increment, is

P(t, z, R, (x2i), s)= R2

t
∑
k,l�0

x2(k+l+2)Rk+l
l+1∑

i=−k−1

(
2k+ i+ 1

k

)(
2l− i+ 1

l

)
si.

Depending on the edge end colours, there might be an additional black or white vertex inserted
at the end of the sequence of elementary cells. This is reflected by an extra factor in the generating
series Se ≡ Se(t, z, (x2i), s):

S(u,v)(t, z, (x2i), s)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
1− P

if (u, v)= (◦, •) or (•, ◦),
stz
R2

(
1

1− P
− 1

)
if (u, v)= (◦, ◦),

R2

stz
1

1− P
if (u, v)= (•, •).

Finally, exploiting steps (2) and (4) in the algorithm of Proposition 6.1, the vertices of the
scheme are also decorated in the following way (see Figure 7). To each white corner is attached a
rooted planar mobile, counted by

R
zt
,

while for each black vertex v of degree d, with corners c1, . . . , cd, a sequence of legs and mobiles is
attached to the corner ck (1� k� d), such that the label variation around ck equals lck+1 − lck + 1,
which is counted by

Vv ≡Vv(z, t, (x2i)):=
∑

i1,...,id�0

⎛⎝ d∏
k=1

(
2ik + lck+1 − lck + 1

ik

)
Rik

⎞⎠ x2
(
d+∑

ik
).

We can now express the generating series QS ≡QS(t, z, R, (x2i)) of rooted bipartite g-mobiles
with scheme S:

QS = 2
z∂
∂z

1
2|E|z

|E|t|V◦|
(
R
tz

)|C◦| ∑
(lc) labelling

⎡⎣∏
e∈E

[s(e)]S(e−,e+)
∏
v∈V•

Vv

⎤⎦. (6.3)
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Proposition 6.2. The generating series M( g)
D :=M( g)

D (t, z, (x2i)) for the family of rooted bipartite
maps of genus g, where the vertex degrees belong to D, satisfies the relation

∂M( g)
D

∂t
= 2

z
∑

S scheme
of genusg

QS
(
t, z,

(
x2i�{2i∈D}

))
. (6.4)

Proof. This follows directly from the bijections between g-mobiles andmaps of genus g and equa-
tion (6.3), and by noticing that, as in the planar case, the equation can be specialized to constrained
degrees by setting the variables x2i := 0 when 2i does not belong to D. �

6.5 Asymptotics of g-mobiles
We proceed similarly to [6]. However, for the sake of brevity we will not work out all technical
details. For example, we will take only care of the (local) singular expansion and restrict ourselves
to the case d = 1.

First we need proper expansion of the coefficients of (1− P)−1.

Lemma 6.3. We have, as || → ∞,

[s]
1

1− P(t, z, R(t, z), (x2i);s)
= Csgn(t, z)αsgn(t, z)|| +O(|α±(t, z)| − δ)||,

where α±(t, z)∼ 1− c1(1− z/ρ)1/4 and C±(t, z)∼ c2(1− z/ρ)−1/4 for some positive constants
c1, c2 and ρ ≡ ρ(t, (x2i))

Proof. With the help of (3.5) it is easy to check that the following three relations hold when we
evaluate at t close to 1, x2i, 2i ∈D, close to 1, R= R0(t, (x2i)), z = ρD ≡ ρD(t, (x2i)), and s= 1:

P = 1, Ps = 0, Pss �= 0, PR �= 0.
Thus we have locally two solutions s= α1,2(t, z) of the equation P(t, z, R(t, z), (x2i), s)= 1 that
are of the form α1,2(t, z)= 1∓ c1(1− z/ρD)1/4 +O((1− z/ρD)1/2). For s with |α1(t, z)| < |s| <
|α2(t, z)| we also have |P| < 1 and consequently by Cauchy integration applied to the Laurent
series s 	→ P

[s]
1

1− P(t, z, R(t, z), (x2i);s)
= 1

2π i

∫
|s|=s0

1
1− P(t, z, R(t, z), (x2i);s)

ds
s+1 ,

where |α1(t, z)| < s0 < |α2(t, z)|. Clearly s= α1,2(t, z) are polar singularities of 1/(1− P). Thus, if
we shift the integral to a circle |s| = |α2(t, z)| + δ (for some δ > 0) and by collecting the residue at
s= α2(t, z), we get, as  → +∞,

[s]
1

1− P(t, z, R(t, z), (x2i);s)
= C2(t, z)α2(r, z)− + (|α2(t, z)| + δ)−,

where C2(t, z)= 1/Ps(t, z, R(t, z), (x2i)), α2(t, z))= c2(1− z/ρD)−1/4 +O(1). Similarly we obtain
the corresponding expansion for → −∞. Thus, setting α+(t, z)= α2(t, z)−1, α−(t, z)= α1(t, z),
C+(t, z)= C2(t, z), and C−(t, z)= C1(t, z) completes the proof of the lemma. �

With the help of these preliminaries we can determine the singular structure of the generating
functions QS(t, z, (x2i)) related to a scheme S. For the sake of brevity we will only discuss labelled
schemes where all vertices are white. Thus all edges are white–white and labels are carried by the
white vertices. Without loss of generality, one can assume that the minimal label is 0 (by shifting
all labels, as only the differences matter).
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Recall the expression of QS, from equation (6.3), when S only has white vertices:

QS(t, z, (x2i))= z∂
∂z

1
|E|z

|E|t|V◦|
(
R
tz

)|C◦| ∑
(lc) labelling

∏
e∈E

[s(e)]S(e−,e+).

In order to handle the sums over all labellings, define
λ : V◦ → [|0,M|]

(whereM = card({labels of V◦})− 1), the relative order of the labels. Labels can then be rewritten
as

for all v ∈V◦, lv =
λ(v)∑
i=1

δi, with δi ∈Z>0.

Hence we can rewrite the sum as follows, using the asymptotics of Lemma 6.3:∑
(lc) labelling

∏
e∈E

[
s(e)

]
S(e−,e+) =

∑
δ1,...,δM>0

∏
e∈E

tz
R2

[
s
∑

j Ae,jδj
]( 1

1− P
− 1

)

∼
(
tz
R2

)|E| ∑
δ1,...,δM>0

∏
e∈E

C+(t, z)α+(t, z)
∑

j Ae,jδj

∼
(
tzC(t, z)

R2

)|E| M∏
j=1

∏
e α+(t, z)Ae,j

1−∏
e α+(t, z)Ae,j

.

Finally, we obtain that

QS(t, z, (x2i))∼ z∂
∂z

1
|E|z

|E|t|V◦|
(
R
tz

)|C◦|( tzC(t, z)
R2

)|E| M∏
j=1

∏
e α+(t, z)Ae,j

1−∏
e α+(t, z)Ae,j

∼ z∂
∂z

1
|E| t

|V◦|−|E|C(t, z)|E| 1
(1− α+(t, z))M

∼ c3
z∂
∂z

1
|E|

(
1− z

ρD

)(−|E|−M)/4
.

Themain contribution will then come from cubic schemes withmaximalM, i.e.where all labels
are distinct. Thus |E| = 6g − 3,M = |V| − 1= 4g − 3. That is,

QS(t, z, (x2i)2i∈D)∼ c3
z∂
∂z

1
|E|

(
1− z

ρD(t, (x2i)2i∈D)

)−5g/2+3/2
.

Similar asymptotics can be derived –withmore technical computations – for themobiles where
the scheme also has black vertices.

Summing up over all the dominant schemes of genus g, and after an integration step, we recover
the expected singular behaviour

M( g)
D (t, z, (x2i)2i∈D)∼ c4

z∂
∂z

1
2|E|

(
1− z

ρ(t, (x2i)2i∈D)

)−5g/2+5/2
,

which corresponds to the asymptotics given in Theorem 1.3 (when we set t = 1 and x2i = 1,
2i ∈ D). The central limit theorem follows as in the planar case by varying x2i around 1.

As a final note, an expression of the same flavour as equation (6.3) can be derived for g-mobiles
coming from non-bipartite maps. However, the expression becomes much more involved and it
seems quite difficult to extract asymptotics, though it should definitely have the same shape.
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