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Abstract

There are growing efforts to mine public and common-sense semantic network databases for
engineering design ideation stimuli. However, there is still a lack of design ideation aids based
on semantic network databases that are specialized in engineering or technology-based knowl-
edge. In this study, we present a new methodology of using the Technology Semantic Network
(TechNet) to stimulate idea generation in engineering design. The core of the methodology is
to guide the inference of new technical concepts in the white space surrounding a focal design
domain according to their semantic distance in the large TechNet, for potential syntheses into
new design ideas. We demonstrate the effectiveness in general, and use strategies and ideation
outcome implications of the methodology via a case study of flying car design idea generation.

Introduction

Engineering design idea generation for innovation traditionally relies on intuition, expertise,
and cognitive capabilities, and subjects to high uncertainty. The uncertainty is even greater
for inexperienced engineering designers and emerging technologies, such as 5G telecommuni-
cations, autonomous vehicles, and flying cars (Sun et al., 2014). To inspire design ideation,
various data-driven methods and software tools have been introduced to explore and retrieve
design precedents (patents, documents, etc.) and utilize them as design stimuli (Murphy et al.,
2014; Song et al., 2017a). In general, the design stimuli have been retrieved as documents
within a limited scope of specific domains. This study focuses on retrieving design information
in a more granular level (i.e., words or phrases) in the total technology and engineering knowl-
edge base to provide more nuanced, systematic, and rapid design inspiration.

Specifically, we present a methodology that leverages a Technology Semantic Network
(TechNet) to infer generic and specific technical concepts beyond a focal design domain for
potential syntheses into new design ideas with regards to the focal domain. The core of the
methodology is the TechNet (Sarica et al., 2020), a large-scale network of technical terms
that are retrieved from patent texts in all technology domains and associated according to pair-
wise semantic distances among them. In TechNet, the terms represent generic components,
functions, structures, configurations, working principles, mechanisms, etc. in engineering
and technology. Their semantic distances indicate the technical relevance of the technical con-
cepts that the terms represent, and thus guide the inferences across concepts. This study con-
tributes to the growing literature on methods and tools for data-driven design.

In this study, we employ the TechNet-based methodology to generate new flying car design
ideas. Flying cars has attracted growing public attention in the past two decades (Gartner
Identifies Five Emerging Technology Trends That Will Blur the Lines Between Human and
Machine, 2018). Nonetheless, the existing flying car designs are still immature and far from
the convergence to a dominant design (Suarez and Utterback, 1995). The uncertainty and
vast open design possibilities of flying cars present a suitable and interesting case for the appli-
cation of our methodology for data-driven design. Furthermore, the research team also pres-
ents extensive background and experiences in automotive engineering.

In the next sections, the methodology is introduced after a review of the related literature.
Then, the case application of our methodology to flying car design idea generation is pre-
sented, and followed by a discussion on its limitations and future research directions.

Related work

Our research is inspired by the prior literature on the data-driven design aids and intends to
operationalize the comprehensive TechNet as an infrastructure for providing design inspira-
tion. Thus, we review the related prior work on data-driven design aids and semantic
networks.
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Data-driven design aids

Various data-driven methods and tools have been introduced to
support engineering design ideation. For instance, FuncSion
(Chakrabarti and Tang, 1996) generates solutions for a specific
set of functional requirements, using its database of functional
elements and their relations. VISUALIZEIT (English et al.,
2010) uses a database of component flow graphs, which are cre-
ated by applying graph grammar rules to functional graph mod-
els, to support concept generation. AskNature (Deldin and
Schuknecht, 2014) is a web-based database of biological systems,
which are organized by their biomimicry taxonomy, for the inter-
est of biologically inspired designs. IDEA-INSPIRE (Chakrabarti
et al., 2006) represents both natural and artificial systems based
on the SAPPhIRE (State-Action-Part-Phenomenon-Input-oRgan-
Effect) ontology to support the search for natural or artificial solu-
tions to a given design problem.

A growing stream of research has proposed methods to repre-
sent and retrieve patent documents as potential sources of design
inspiration. In particular, function-related representations have
attracted the greatest attention. For instance, Russo et al. (2012)
adopted the Function–Behavior–Structure ontology (Qian and
Gero, 1996) to construct systematic queries to retrieve
state-of-the-art patents for a specific design problem using
Subject–Action–Object (SAO) structures. Fu et al. (2013a) used
latent semantic analysis (LSA) of function verbs in patent texts
to associate patents in a Bayesian network to guide the selection
of patents as design stimuli. Murphy et al. (2014) represented
functional aspects of designs in patents using the Bag-of-Words
approach and mapped them with a vector space model to aid
the search for functionally analogical patents to a specific query.
Likewise, Liu et al. (2020a) proposed a framework of representing
patents with a bag-of-words approach using functional categories
and classifying them with respect to the topmost hierarchy of the
functional-basis (Stone and Wood, 2000).

Some other methods and tools represent patents beyond func-
tions. Mukherjea et al. (2005) introduced the BioMedical Patent
Semantic Web by extracting the biological terminology in patent
abstracts in the biomedical field and then associating patents by
utilizing the knowledge from biomedical ontologies. Berduygina
and Cavallucci (2020) mined the dependency structures between
individual patent claims and linguistic features in claim jargon to
support the use of the theory of inventive problem solving (TRIZ)
(Altshuller and Altov, 1996). Lee et al. (2015) constructed a mor-
phological matrix for a specific technology based on patent meta-
data and keywords to identify novel patents for uses in technology
opportunity analysis. Song et al. (2017b) focused on the classifica-
tion labels of patents in the Japanese Patent Classification System
to discern patents for technology opportunity discovery. InnoGPS
(Luo et al., 2019) uses a technology domain network map based
on the international patent classification system from information
science research (Alstott et al., 2017; Yan and Luo, 2017a) to
guide the search and retrieval of design documents and concepts
across domains to inspire creative design concept generation via
design analogy and synthesis.

A growing number of design ideation methods and tools have
utilized large public semantic networks, such as WordNet and
ConceptNet, rather than patent databases, as the backend knowl-
edge base. WordNet (Miller et al., 1990) has been the most popu-
larly utilized. For instance, WordTree (Linsey et al., 2012) uses
brainstorming sessions and the WordNet’s hierarchical structure
to populate a tree structure, in which functional aspects of the

design problem are represented with new additional verbs, to
further guide the search for analogical solutions. Yoon et al.
(2015) proposed a method to discover patents according to
their function similarity assessed by leveraging WordNet’s hierar-
chical structure. Georgiev and Georgiev (2018) developed
WordNet-based metrics to measure divergence, polysemy, and
creativity of the ideas from concept generation sessions.
Nomaguchi et al. (2019) proposed to evaluate the novelty of func-
tion combinations in design ideas based on semantic similarities
in WordNet, a word2vec model trained on Wikipedia, and these
two metrics together, and reported a negative correlation between
the human evaluations of novelty and the semantic similarity of
the combined functions.

Other than WordNet that was collectively built via direct
human efforts, a few other free online knowledge bases have
also been employed in new design ideation methods or tools.
For example, Chen and Krishnamurthy (2020) proposed an inter-
active procedure to retrieve words and terms in ConceptNet to
inspire designers. ConceptNet (Speer et al., 2017) is a large public
knowledge graph automatically extracted from Wikipedia, built
and maintained at MIT Media Lab. Han et al. (2020a) also pro-
posed to evaluate new ideas by measuring the semantic similarity
between design concepts using ConceptNet. Camburn et al.
(2020) proposed a set of new metrics for automatic evaluation
of the natural language descriptions of a large number of crowd-
sourced design ideas, and their evaluation was based on the
Freebase (Bollacker et al., 2008), another large public structured
knowledge database managed by Google.

The growing uses of such public semantic network databases
in the development of design ideation support tools have inspired
the development of semantic networks based on engineering data.
For instance, Shi et al. (2017) and Liu et al. (2020b) proposed the
use of semantic networks mined from scientific papers as sources
of inspiration for design concept generation. Chen et al. (2019)
utilized the semantic concept network from Shi et al. (2017) to
retrieve implicit and explicit design stimulation at the semantic
level and supported these stimuli with image synthesis to stimu-
late designers in ideation sessions.

On the other hand, a few recent studies employed the whole
patent database instead of focusing on a specific domain and gen-
erated network maps to resemble technology space where all
patent classes in the existing patent classification system are oper-
ationalized as nodes (Alstott et al., 2017; Yan and Luo, 2017b).
However, these studies are limited by the structure of patent clas-
sification systems and patent metadata; thus, they can only sup-
port high-level inspirations (Luo et al., 2018). Furthermore, the
studies on providing semantic-level design stimulation and evalu-
ation generally rely on common-sense knowledge bases, such as
WordNet and ConceptNet, or language models not trained specif-
ically for engineering. In fact, the engineers’ perception of tech-
nical terms is biased and represented better by knowledge bases
that are specifically trained on technological knowledge (Sarica
et al., 2020).

Semantic networks

We intend to use a semantic network of technical terms, which
covers generic engineering design concepts in all domains of tech-
nology, to support technical design inferences for idea generation.
The past two decades, but especially the last decade, witnessed
great progress in natural language processing (NLP) that allows
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researchers to introduce a few large-scale semantic networks
based on generic human knowledge. For instance, WordNet
(Miller et al., 1990), ConceptNet (Speer et al., 2017), never-ending
language learning (NELL; Mitchell et al., 1998), and Yago (Rebele
et al., 2016) are available for public uses and have enabled various
applications, such as information retrieval, semantic analysis,
knowledge exploration and discovery, and artificial intelligence
(AI), in many different fields. These knowledge databases are
often generated by linguistically and statistically learning the
information in knowledge repositories such as Wiktionary and
Wikipedia, and merging the knowledge entities, and relations
based on readily available or collaboratively created ontologies.

Despite these efforts on creating large-scale semantic networks
for generic uses, only a few engineering researchers have carried
out the same task in the context of engineering. For instance,
Shi et al. (2017) mined and analyzed 20 years of publications,
nearly 1 million engineering papers, from ScienceDirect and
1000 design posts from blogs and design websites to extract tech-
nical terms and construct a large-scale semantic network. Despite
the great amount of data collected, it is unclear if their data of dif-
ferent types can resemble comprehensive engineering knowledge
in all domains. Liu et al. (2020b) proposed a method to create a
concept network by mining the concepts from the technical docu-
ments related to a specific design problem and associating them
via the vector representations of these concepts by utilizing a
word-embedding algorithm and synset relations of the
WordNet. For the same purpose of creating a large-scale semantic
network in the context of engineering and technology, we directed
our attention to the patent data that provide more comprehensive
coverage of the engineering knowledge base.

Patents are reliable and rich sources of engineering design
knowledge (World Intellectual Property Organization, 2004;
Asche, 2017) since they have been examined rigorously to ensure
their adequateness on defining the invention, their novelty, and
usefulness. These characteristics of the patent examination pro-
cess assure the quality of the patent data and avoid redundant
designs to be documented in the patent database. Particularly,
United States Patent and Trademark Office (USPTO) patent data-
base is one of the largest patent databases, publicly available, orga-
nized in systematic catalogues of the inventions, and continuously
evolving as inventors file patent applications and new technolo-
gies emerge.

In our recent work (Sarica et al., 2020), we have constructed a
TechNet that consists of more than 4 million technology-related
terms, which represent technical concepts in all domains of tech-
nology, and their semantic distance. The complete digitalized
USPTO patent database from 1976 to October 2017 was utilized
to construct TechNet. The utilization of the complete patent data-
base was aimed to ensure the comprehensiveness of TechNet and
the balanced coverage of knowledge in all domains of technology.
In a benchmark comparison with other existing semantic network
databases including WordNet, ConceptNet, and B-link (Shi et al.,
2017), TechNet presented superior performances in terms of
retrieval and inference tasks in the specific context of technology
and engineering (Sarica et al., 2020). TechNet has been utilized to
augment patent search (Sarica et al., 2019a), technology forecast-
ing (Sarica et al., 2019b), and idea evaluation (Han et al., 2020a,
2020b).

To construct TechNet, we first mined the raw patent texts to
exact the terms (words and phrases) that represent meaningful
engineering concepts (e.g., functions, components, configura-
tions, and working principles), using NLP techniques for

phrasing, denoising, lemmatization, and so on. On this basis,
word-embedding models were trained (also in the total database)
to project the terms to vectors and form a unified vector space
that would represent the total engineering knowledge space.
Then, a large TechNet can be forged by associating the technical
terms by pairwise vector cosine similarity. The TechNet construc-
tion procedure is data-driven and unsupervised and summarized
in Figure 1. Interested readers can refer to our prior publication
(Sarica et al., 2020) for further details.

In the present paper, we introduce a methodology that utilizes
the TechNet as a backend infrastructure to support idea genera-
tion. In contrast, prior studies have either used comprehensive
common-sense knowledge databases or field-limited datasets to
provide semantic-level aids for engineering design ideation gen-
eration. The novelty of the study is in the use of a comprehensive
technology-focused semantic network trained from the technical
patent database to aid in technical idea generation.

Methodology

The spirit of our methodology is to infer new technical concepts
from those already used in prior designs of a domain according to
the term-to-term semantic distance in TechNet. Figure 2 depicts
the methodology that includes three main steps: (1) retrieve used
concepts within a focal design domain (or design object or inter-
est), (2) infer new concepts beyond the domain (i.e., the white
space concepts), and (3) relate and synthesize the white space
concepts with the original design domain to generate new ideas.
The following subsections describe the details of these steps.

Step 1: concept retrieval in a focal design domain

The first step is to use TechNet1 to retrieve the terms in the tech-
nical documents representing the prior designs in a domain (i.e.,
identify the terms that are in both the technical documents and
TechNet). These terms represent the technical concepts (e.g.,
functions, components, structures, and working principles) that
have already been used in the designs of the focal domain to
date. These prior documents need to be identified and curated
first and have complete coverage of the prior designs of the
domain. While we mine patent documents only in the case
study of the present paper, other types of design documents
(e.g., technical reports and engineering paper publications) may
also be useful for the same purpose.

These concepts can be assessed according to their importance
with regards to the focal design domain. For this purpose, we pro-
pose the following term-domain importance metric (tdit) by con-
sidering both a term’s occurrence frequency in the focal domain
and its specificity to the domain:

tdit = tft,D∗tst,D (1)

tft,D = |{d [ D:t [ d}|
|{d:d [ D}| (2)

tst,D =
∑

d[D count(t, d)∑
d[P count(t, d)

(3)

1Accessible at http://www.tech-net.org/. One can also use the public API to access
TechNet. API definitions can be found at https://github.com/SerhadS/TechNet.
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where t refers to a single term, d refers to a patent document, P
stands for the set of patents in the whole patent database, and
D refers to the set of patents in a design domain. This metric
favors the terms that are more common in the domain but not
as common in the entire patent database.

Term-domain frequency (tft,D) (0,1] is measured as the number
of patents in the domain that contain the term relative to the total
number of patents in the domain. It indicates how commonly a
concept is used in the prior designs of the domain of interest.
However, a commonly occurring concept in a domain might be
a general one for all domains. Thus, we also incorporate the
term specificity (tst,D) (0,1] metric, which is measured as the
count of the term in the patents in the domain relative to the
total count of the term in the total database. High term specificity
indicates that a concept is specific to the design domain and may
contain domain-specific characteristic design information.2

Step 2: concept inferences beyond the domain

The second step is to infer, according to the term-to-term seman-
tic similarity information in TechNet, from the terms in the prior
design documents of the focal domain to additional technical

terms that have not appeared in the prior design documents of
the focal domain. The total of these additional terms forms the
total white space to the focal design domain. Hereafter, we call
those terms outside the focal domain the white space terms and
the concepts they represent the white space concepts. The white
space concepts have varying latent relevance to those already
used in the original design domain.

To measure such a technical relevance (Ri), we assess the
semantic relevance of the white space terms to those in the docu-
ments of the focal domain and calculate it as a potential white
space term’s weighted average semantic relevance to the terms
in the focal domain:

Ri = 1
n

∑n
t=1

wi,t tdit (4)

wi,t =
∑n

j=1 vi,jvt,j����������∑n
j=1 v

2
i,j

√ ����������∑n
j=1 v

2
t,j

√ (5)

where n is the number of unique terms in the focal domain; wi,t is
the semantic similarity between the ith new term and the tth domain
term; vi is the vector representation of term i; and tdit is the weight-
ing factor, term-domain importance, defined by Eq. (1) above.

Fig. 1. A summary of the TechNet construction process
(Sarica et al., 2020).

Fig. 2. The overall methodology.

2To measure a term’s specificity to a domain, one can also use the inverse of a term’s
general popularity metric. One example is the total number of patents that contain the
term in the total database divided by the total number of patents in the database.
Based on the data of our later case study, we found this metric and the ts metric we
use in the main text is highly correlated and interchangeable.
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On this basis, we further standardize the R metric by the
z-score formulation as follows:

ZRi = Ri − mR

sR
(6)

where μR is the mean and σR is the standard deviation of the rele-
vance scores (R) of white space concepts. A negative ZR score of a
concept implies that it is more distant to the focal design domain
than average white space concepts; vice versa.

Step 3: idea generation

Then, it comes to the third step, in which the designers make
attempts to relate the previously unused white space concepts
with the original design domain to generate new design ideas.
Since the white space concepts, by definition, have not been pre-
viously used in the designs of the focal domain, new ideas that
relate and synthesize them with the focal domain naturally derive
novelty. Therefore, our proposed procedure in principle ensures the
novelty of new ideas when they are generated. In particular, the rele-
vance score (R) or its normalized form (ZR) may further guide the
search and retrieval of the white space concepts to relate to the focal
design domain for potential syntheses into new design ideas.

According to the extensive design creativity literature (Gentner
and Markman, 1997; Ward, 1998; Christensen and Schunn, 2007;
Tseng et al., 2008; Chan et al., 2011, 2015; Fu et al., 2013b; Chan
and Schunn, 2015; Song et al., 2017a; Srinivasan et al., 2018), near
stimuli to the target design domain can stimulate more ideas and
more feasible ideas (Gick and Holyoak, 1980; Weisberg, 2006; Fu
et al., 2013b; Chan et al., 2015; Keshwani and Chakrabarti, 2017;
Srinivasan et al., 2018), whereas far stimuli may stimulate fewer
ideas and ideas with high infeasibility and abstractness, but give
rise to the novelty of the generated ideas (Gentner and
Markman, 1997; Ward, 1998; Tseng et al., 2008; Srinivasan
et al., 2018). Therefore, when searching and choosing white
space concepts as potential design stimuli, one may focus on
the near-field concepts with high R values (e.g., ZR > 0) for idea-
tion productivity, but anticipate common and non-surprising
ideas. Alternatively, one may focus on the far-field concepts
with low R values (e.g., ZR < 0) for the interest of generating
novel ideas, but expect a lower chance of idea generation success
and infeasible or vague ideas. Likewise, newly generated ideas can
be instantly evaluated and compared in terms of novelty and fea-
sibility according to how distant the adopted white space concepts
are from the original domain, following the theories.

In particular, TechNet serves as the knowledge base and digital
infrastructure for the methodology and workflow above. TechNet
used in this study has 4,038,924 technology-related terms and
roughly 8 × 1012 undirected quantified semantic relevance values
between each possible pair of terms and is larger than WordNet
of 155,236 entities and 647,964 relations and ConceptNet of
516,782 entities and 1.3 × 1011 relations. To the best of our knowl-
edge, it is the largest technology-related semantic network to date.
TechNet terms cover all domains of engineering defined in the
Cooperative Patent Classification System. In particular, the distri-
bution of terms is highly correlated with the distribution of
patents across different technology domains, suggesting propor-
tional and balanced coverage of relatively large or small domains
(Sarica et al., 2020).

Thus, for a specialized design domain, TechNet enables the
exploration in a sufficiently wide engineering knowledge space

beyond the focal domain itself for the discovery of white space
concepts for creative synthesis with those within the domain.
Now, we apply the TechNet-based methodology to generating fly-
ing car design ideas.

Case study: flying car design idea generation

A flying car/roadable aircraft is a hybrid of an automobile and an
aircraft, which merges the advantage of an automobile for
door-to-door transportation with less temporal and spatial restric-
tions and higher accessibility, and the advantage of an aircraft for
faster transportation without bounding by road and traffic condi-
tions, and geographical limitations (Crow, 1997; Kim et al., 2013).
The worsening traffic jam problems in megacities, complex and
rapid emergency rescue needs, as well as growing public support
on sustainability (lower carbon emissions) steer the public interest
in designing flying cars for dual-medium (road-air) transporta-
tion (Follmann and da Cunha, 1997). The prospective advantages
of flying cars have attracted the attention of several companies
and motivated them to design, prototype, and test flying cars,
even in the city environment.3 Fundamentally, there are two
main technical paths to design a flying car: designing an aircraft
that is roadable or designing an automobile that is flyable.
These paths are adopted by aircraft companies and the automo-
bile manufacturers, respectively, prioritizing the fly mode and
the drive mode, respectively.

Even though public interest just increased recently, the flying
car designs date back to 1917. Glenn Curtiss designed and proto-
typed the first flying car that could only hover (Stockbridge,
1927). This was followed by several attempts of specialized inven-
tors such as Taylor Aerocar (Jensen, 1971) and Fulton Airphibian
(Ziesloff, 1957), automobile manufacturers such as Carrozzeria
Colli (Bridgman, 1952) and Chrysler (Harding, 1998), and aircraft
manufacturers such as Curtiss-Wright (Harding, 1998). These
attempts resulted in several working prototypes, but none of them
proceeded to mass production. On the other hand, the past two
decades witnessed increasing public interest in flying cars, followed
by the entrance of several companies into the domain, such as
AeroMobil in Slovakia, Airbus in France, MetroSkyways in Israel,
PAL-V in the Netherlands, and Terrafugia in the USA (Singh,
2017). Figure 3 presents two prototypes of PAL-V and Aeromobil,
taking two different approaches for shifting between the drive
mode and the fly mode, vertical take-off and landing (VTOL), or
short take-off and landing (STOL), respectively.

Retrieving used concepts in prior flying car designs

We conducted an exhaustive search for flying car patents in the
USPTO patent database that resulted in a set of 164 flying car
patents between 1974 and 2018. The exhaustive search process
combined patent text mining, citation analysis, inventor, and clas-
sification relationships to retrieve relevant patents. In particular,
the set of relevant patents was expanded by employing an iterative
process involving heuristic learning from patents retrieved in each
iteration. Each iteration involves validity checks and expands
query keywords, the citation network, and the set of inventors
until convergence to a fixed set of patents. Hence, the whole pro-
cess ensures the completeness and accuracy of the retrieved patent
set (Song and Luo, 2017).

3Media coverage about unmanned logistics flights of EHANG.
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2396 unique technical terms in TechNet are retrieved from the
titles and abstracts of the flying car patents. These retrieved terms
cover various types of engineering concepts, such as working
principles, main functions, sub-functions, structures, configura-
tions, physical subsystems, modules, and components of prior fly-
ing car designs. Table 1 reports the top 30 terms with respect to
tdi scores based on Eq. (1).

Some of these terms are synonymous notions of the flying car
such as “aerocar” and “roadable aircraft”, which directly indicate
inventors’ design tendencies, for example, a car that can fly or a
plane that can be driven on roads. A subset of terms refers to spe-
cific concepts that define the working principles of flying cars in
both air and road environments, such as “upward lift force”,
“variable-environment”, and “ground propulsion”. Such terms
as “center of gravity”, “telescopic wing”, “nose-height”, and
“directional flight propulsion” point out the problem or solution
foci of designers. The “center of gravity” of the vehicle becomes a
challenging issue for dual-mode operations. “Nose-height” is an
important parameter in airplane docking systems, which will be
also an issue for flying cars. “Directional flight propulsion” is a
concept used in both VTOL and hovering. Moreover, many
terms in the list refer to physical components (e.g., “payload
clamp”, “multiple ducted fan”, and “ground module”) and desired
functional performances (e.g., “lowered energy consumption”,
“larger lift”, “powerful suction”, “faster flight”, “advanced vertical
agility”, and “easily convertible”).

In brief, these terms allow us to develop a quick understanding
of frequently used technical concepts in the existing designs of fly-
ing cars.6 In other words, these terms succinctly describe a
domain-specific concept space of prior flying car designs. They
serve as the starting and reference point for the inferences to
and selection and evaluation of other white space concepts
beyond prior flying car designs for new flying car design ideation.

Retrieve white space concepts

There are more than 4 million technical concepts in TechNet,
whereas 2396 of them have already been used in prior flying
car designs. Thus, there still exist enormous design opportunities
via the synthesis of white space concepts with flying cars. In the

meantime, the large size of the white space also demands struc-
tured guidance for the search and retrieval of concepts. Here,
we focus on semantic distance as the guiding variable to retrieve
white space concepts from the near-field to far-field to prior fly-
ing car designs as potential ideation stimuli and make attempts to
relate and synthesize them with flying cars as the way to generate
new design ideas. Based on design creativity theories, white space
concepts with relatively high latent relevance to flying car designs
are more likely to stimulate ideas and more feasible ideas, whereas
the far-field concepts are anticipated to be less effective in stimu-
lating new ideas but may contribute to greater novelty of the new
ideas once they are generated.

We first retrieve the top 100 most relevant white space terms to
each of the 2396 terms in the flying car patent set. The total set
consists of 107,529 unique terms.7 The ZR scores of these terms
lie in the range of [−4.449, 7.565] where 89% of them have ZR

Fig. 3. Examples of flying cars: (a) VTOL designed by PAL-V4 and (b) STOL designed by Aeromobil5.

Table 1. Top 30 concepts already used in existing flying car designs

Rank TechNet concepts Rank TechNet concepts

1 VTOL vehicle 16 Morphable air

2 Roadable aircraft 17 Directional flight
propulsion

3 Upward lift force 18 Roadable vehicle

4 Center of gravity 19 Nose-height

5 Ground propulsion 20 Multiple ducted fan

6 ATV function 21 Ground module

7 Telescopic wing 22 Faster flight

8 Flying car 23 Roadable

9 Aerocar 24 Larger lift

10 Ducted fan vehicle 25 Medical transport

11 Advanced vertical
agility

26 Lowered energy
consumption

12 Payload clamp 27 Conventional
rotorcraft

13 Ducted fan vtol vehicle 28 Powerful suction

14 Air module 29 Ducted fan

15 Variable-environment 30 Easily convertible

4Image retrieved from https://www.pal-v.com/en/ (accessed date: January 31, 2020).
5Image retrieved from https://www.aeromobil.com/ (accessed date: January 31, 2020).
6In a comparison test, we found that these technical concepts are more representative

and specific to flying cars, than those general terms identified simply based on term
occurrence in the domain (i.e., wing, fuselage, aircraft, rotor, propeller, air, body, drive,
ground, fly, control, duct, mount, wheel, connect, form, longitudinal axis, pair, flight,
configure, frame, lift, road, extend, engine, land, generate, side, attach, and located).

7Meaning that more than half of the returned terms from the previous step either
appear in focal 2396 terms or are repeating.

270 Serhad Sarica et al.

https://doi.org/10.1017/S0890060421000020 Published online by Cambridge University Press

https://www.pal-v.com/en/
https://www.aeromobil.com/
https://doi.org/10.1017/S0890060421000020


> 0. The ZR score of each term is calculated, based on Eq. (6),
against a random sample of 100,000 white space terms with a
mean (μR = 0.2646) and standard deviation (σR = 0.0660) in the
distribution of their Ri scores defined in Eq. (4). We consider
this set of concepts approximate a relatively large and diverse
but still confined “near-field” to the focal flying car design
domain in the total TechNet. Note that, alternative white space
term discovery methods can be adopted for this step as well.8

Table 2 lists the top 30 white space concepts according to their
ZR scores, which fall in the range of [6.460, 7.565]. We will use
this set of concepts as the nearest stimuli for idea generation later.

Next, we divide the total set of 107,529 terms into 10 equal-size
quantiles from high to low ZR, and randomly sampled 10 terms in
each quantile. This results in a set of 100 randomly selected near-
field concepts in Table A1 in Appendix. This second set of white
space concepts may provide a balanced coverage of a large and
diverse near-field surrounding existing flying car designs. Their
ZR scores lie in [−0.812, 5.964] and all are below the ZR scores
of the nearest 30 concepts in the first stimuli set (Table 2).

On this basis, we further randomly sample 100 concepts from
the total TechNet regardless of their semantic distance to the fly-
ing car domain (Table A2 in Appendix). Their ZR scores range in
[−1.673, 4.311]. Figure 4 compares the distributions of these two
randomly sampled sets of 100 white space concepts by ZR scores.
The mean ZR score of the 100 near-field random concepts is 1.6
and greater than 0, whereas the totally random concept set exhi-
bits a nearly symmetrical distribution with a mean ZR of −0.04.

In brief, the first two sets of white space concepts are retrieved
by preferring technical concepts near those already used in exist-
ing flying cars, and many of them are from either car or aircraft
domains (based on Tables 2 and Table A1 in Appendix). In con-
trast, the third set of white space concepts are retrieved without
any constraint with regard to their semantic distance to flying
cars and may come from any domain in the total technology
space. Although the second set is also randomly sampled, the ran-
dom draws were within a confined near-field. Figure 5 sum-
marizes the relations of the three sets of white space concepts
resulting from different retrieval strategies.

Idea generation with white space concepts as stimuli

Then, these three sets of 30, 100, and 100 white space concepts are
used as inspirational stimuli for generating new flying car design
ideas. Three of the four coauthors of the paper, with basic engineer-
ing knowledge of flying cars, went through each concept in the three
stimuli sets one by one and made attempts to apply the ideation
heuristic of relating and synthesizing each white space concept
with flying cars to generate new design ideas. We spent 30–
45 min on each set of stimuli to generate ideas individually.

Ideation with the nearest white space stimuli (30 concepts)
As reported in Table 2, we were able to generate new ideas that
relate and synthesize 16 out of the 30 nearest stimuli with flying
cars. For instance, the nearest white space concept “payload

mount adapter assembly” (ZR = 7.565) is a normal one for the air-
craft operation and can be transferred to flying car designs for
payload management. “Ordnance ejector systems” (ZR = 7.318)
are used in military aircraft and can also be used in flying cars
for easy delivery of small cargos. A “deicer control system” (ZR
= 7.18) can be employed for a flying car to enable continuous
operation. “Inverted airfoil” (ZR = 7.176) designs that are com-
mon in aircraft can be adopted to enhance the flight performance
of flying cars as well. A flying car may also include a “wing tip
docking system” (ZR = 6.995) that is common in aircraft, for
demanding operations, higher thrust, or larger loads.

The designs of current flying cars are generally more similar to
airplane designs than car designs since the air drag issue in the fly
mode is more challenging for fuel efficiency, travel range
enhancements, and safety. But, to make the flying cars a real alter-
native in the current transportation system, the drive mode should
also be considered fairly. For this purpose, some of the nearest
concepts may provide inspiration. For instance, such concepts
as “virtual-wheeled” (ZR = 6.874) using transformable wheels to
enable continuous motion in rough terrain conditions, “front
underfloor structure” (ZR = 6.888) that were developed to reduce
the air resistance of land vehicles, and “lane mark recognition”
(ZR = 6.924) which is a basic function in autonomous vehicles,
are all potentially applicable and valuable to flying car designs.

In addition, “retractable lifting blade” (ZR = 6.864) designs can
be used to achieve a more compact drive-mode operation.
“Torque split gearbox” (ZR = 6.802) is used in rotary-wing aircraft
to enable dual counter-rotating rotor operation and can also be
used to introduce new propulsion solutions for flying cars.
“Rolling motion stability control” (ZR = 6.802) is a cruise stability
system that senses the possible rolling motion of a land vehicle
and corrects it using break and acceleration controls. If flying
cars are to become practical, industry standards such as stability
control for automobiles will be eventually integrated into flying
cars. Moreover, “solar battery mounting structure” (ZR = 6.972)
suggests the adoption of solar power as a primary or secondary
power source in flying cars, and the “vehicle battery diagnosis sys-
tem” (ZR = 6.868) can be adopted for flying car battery management.

In principle, as long as an idea is generated via the synthesis of
a white space concept with flying cars, its novelty is ensured.
However, the novelty is a matter of degree and may correspond
to the semantic distance of the specific stimulating concept from
the white space to the original design domain. Particularly, most
of the nearest white space concepts in Table 2 are from existing
designs of either aircraft or automobiles and suggest straightforward
flying car design opportunities by simply adopting them into flying
cars. The ease to conceive these design ideas and the high feasibility
to implement them is enabled by the high latent relevance of the
stimuli to prior flying car designs. But, the novelty of such ideas
is also naturally limited.

Ideation with random stimuli in a wider near-field (107,529
concepts)
To generate more novel design ideas, we explore more distant
stimuli in the white space by focusing on the 100 randomly
selected concepts in the near-field set. Since these concepts
are among the nearest 100 concepts for some of the prior flying
concepts, they define a large but still rather confined near-field
to flying cars. With these 100 stimuli, the three engineers in our
team generated 21, 30, and 34 ideas, respectively, in 30–45 min.
Some of these ideas overlap and the integration of them leads to
a set of 59 unique ideas, with inspiration from 46 white space

8If required computational resources are available, one can directly calculate the rela-
tive relevance of each of about 4 million unused terms to the prior terms in TechNet and
rank them to identify the most relevant ones. Alternatively, we retrieve a certain number
of new terms to each prior term, pool them together, and rank them. Even though in the
main case we focused on 100 new terms for each prior term, one can implement a higher
or lower number to adjust the scope of exploration. One can also implement a threshold
value of the semantic relevance between potential new terms to a prior term to determine
which and how many new terms to retrieve for pooling and ranking.
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concepts out of the set of 100, as reported in Table A1 in
Appendix. The efficacy of this set of 100 concepts to inspire
idea generation (46 of 100) is slightly lower than that of the
case in A) above when we sought inspiration from the nearest
30 white space concepts (16 of 30). Meanwhile, we generated
relatively more novel ideas.

For example, such concepts as “golf club” (ZR =−0.114) and
“watch movement” (ZR =−0.812) are rather distant from flying
cars, land vehicles, or aircraft, but inspired us to generate new
ideas. One idea is the flyable golf cart that can transport golf
clubs and/or even golfers across air on large golf fields. “Watch
movement” (ZR = −0.812) semantically inspired us to generate

Table 2. The ideas generated with the nearest 30 concept stimuli surrounding prior flying car designs

Terms ZR Generated ideas

Payload mount adapter
assembly

7.565 Add a “payload mount adapter” to a flying car for carrying useful payloads

Modular passenger seat 7.460 Adopt modular passenger seats to adopt for the needs of different passengers

Ordnance ejector system 7.318 Add an “ordnance ejector systems” to a flying car for carriage and easy delivery of small cargos

Fuel pipe joint 7.219

Deicer control system 7.176 Add a deicer system to a flying car to enable continuous operations in cold environments

Inverted airfoil pylon 7.134 “Inverted airfoil” designs from prior aircraft designs can be adopted and tested for similar flight
performance improvements in jet aircraft

Toilet arrangement 7.110

Wireless headset
communication system

7.075

Radio navigation antenna
system

7.042

Auxiliary hydrostatic drive
system

7.011

Wing tip docking system 6.995 “Wing tip docking systems” designed for conventional aircraft can offer inspiration for collective and
combined operation of flying cars for highly demanding operations which may need higher thrust, or larger
load capacity

Bumper beam structure 6.976

Solar battery mounting
structure

6.972 Adopt solar power as a primary or secondary power source in flying cars

Directional electroacoustical
transducing

6.937

Lane mark recognition 6.924 Add “lane mark recognition” to the flying/landing/driving assistance system of a flying car

Electric motor mounting
structure

6.905

Immobiliser/alarm 6.895

Starting clutch control system 6.895

Front underfloor structure 6.888 Design “front underfloor structure” to reduce air drag

Virtual-wheeled 6.874 Use transformable wheels to enable continuous motion even in rough terrain conditions

Vehicle battery diagnosis system 6.868 Design a batter diagnosis system that covers the battery performances in flying and driving modes

Retractable lifting blade 6.864 Retractable lifting blade designs can be used to achieve a more compact drive-mode operation

Brake pedal structure 6.812

Jet engine nacelle 6.803 “Jet engine nacelle” for the design of the “ducted fan” of flying cars

Torque split gearbox 6.802 “Torque split gearbox”, which is often used in rotary-wing aircraft can be also applied to flying cars to
enable dual counter-rotating rotor operation

Rolling motion stability control 6.802 “Rolling motion stability control” system for flying cars

Conduit harness retention 6.801

Ice auger attachment 6.788

Exterior mirror vision system 6.786

Radio frequency connector
assembly

6.460

The table is sorted according to the ZR scores of the stimuli, whereas the sequence of the provision of the concepts to the engineers was randomized during the ideation process.
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the idea of incorporating the function of real-time monitoring
and displaying the movement of a flying car itself and the moving
objects in the surrounding. In another example, the relatively far
“breakable” (ZR =−0.568) concept stimulated an abstract idea of
a highly modular flying car architecture with breakable fly and
drive modules. Such new ideas appear to be more novel but
also less feasible or more abstract than those inspired by the near-
est 30 white space concepts in the first stimuli set.

Among those inspirational concepts with positive ZR values,
“marine environment” (ZR = 0.364) inspired all three engineers
to generate the same idea of a vehicle that can fly in the air,
drive on the land, and sail on water (and even underwater).
Another interesting idea is a self-roadable missile or a flying vehi-
cle with bombs to be used as weapons, stimulated by the white
space concept “Load-carrying missile” (ZR = 2.045). “Removable
juicer” (ZR = 2.148) invoked the idea of designing a modular sub-
system for the flying mode that can be removed or detached when
the flying car is driven on the ground. “Scooter-like” (ZR = 3.133)
stimulated the idea of a flying scooter. “Air-buoyant” (ZR = 3.341)
inspired all three engineers to generate new ideas, including one
that combines a zeppelin, airplane, and car to increase the energy
efficiency of the fly mode and assist take-off. These stimuli are
neither related to aircraft nor cars and contribute to greater nov-
elty in the resultant ideas than those in Table 2.

Meanwhile, this set of 100 near-field stimuli still includes some
concepts from either land vehicle or aircraft design domains, such
as “propfan engine”, “vtol augmentation”, “taxi system”, “hybrid
diesel vehicle”, “agriculture vehicle”, “spanwise wing insert”, “sup-
plemental weather radar”, and “altimeter”. Again, it is easy and

straightforward to conceive their relevance to flying cars, but the
synthesis only leads to ideas with limited novelty. For example,
the “autonomous flying” (ZR = 4.503) stimulus invoked the idea
of flying cars with autopilot systems. In general, the second sample
of stimuli from a wider but still confined near-field provides more
diverse inspiration to designers, and the resulting ideas are also
more diverse in terms of their novelty and feasibility.

Ideation with random stimuli in the total TechNet (more than 4
million concepts)
To generate even more novel design ideas, we explore an even
wider space of concepts in the total TechNet as potential stimuli.
In this case, we focus on the third set of 100 stimuli that were ran-
domly sampled from anywhere in TechNet, without any prefer-
ence regarding semantic distance. Again, we attempted to relate
and synthesize each of the 100 concepts with flying cars to gener-
ate new design ideas. In this run, the three engineers generated 11,
4, and 18 ideas, respectively. Some of these ideas are rather similar
or overlapping. The integration of them leads to a set of 27 unique
ideas, with inspiration from 23 white space concepts, as reported
in Table A2 in Appendix. While this case shows that even purely
randomly retrieved concepts from TechNet can inspire us for idea
generation, the stimulation efficacy (23 of 100) is lower than those
of the nearest concepts (16 of 30) and the random stimuli from a
confined near-field (46 of 100).

As shown in Table A2 in Appendix, among this set of 100 ran-
dom stimuli, the nearer stimuli inspired us to generate more ideas.
We only made sense of a small portion of the 56 white space con-
cepts with ZR < 0. Specifically, we were inspired by only two con-
cepts with ZR <−0.244 and unable to obtain inspiration from any
white space concept with ZR <−0.945. The ideas generated with
far stimuli (which have ZR < 0) include using a flying car to
spray paint on big structures or buildings, with the inspiration
from the concept of “spray paint” (ZR = −0.945), applying
“e-coating” (ZR =−0.711) technologies to coat flying car surfaces
to prevent corrosives, using flying cars for “firefighting” (ZR =
−0.244) and “large-scale hydraulic mining” (ZR =−0.055) with
installing specialty apparatuses, operating flying vehicles along a
“single rail” (ZR = −0.185) in the air, and using a “quick release
buckle” (ZR =−0.183) to allow easily detaching the wings or pro-
pellers of a flying car when transitioning to the land driving
mode. These ideas exhibit moderate novelty and feasibility.

The concepts with positive ZR scores lead to more ideas and
higher feasibility of the generated ideas. For instance, the concept
of “sterilizing small object” (ZR = 4.311) inspired one of the
engineers to conceive the idea of using flying cars to sterilize
neighborhoods or sites in a pandemic. This is a highly feasible

Fig. 4. Distributions of the stimuli by semantic distance to existing flying car designs,
including 100 concepts randomly selected from the nearest 107,529 concepts (red)
and the 100 concepts randomly selected from the entire TechNet (textured).

Fig. 5. The three stimuli sets.
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and useful idea. In fact, after the COVID-19 outbreak in January
2020, helicopters and trucks had been used to spray disinfectants
across several cities in China during the lockdown periods. The
concept of “solid rocket booster” (ZR = 2.127) is from the domain
of rocket engineering, and all three engineers easily related it to
flying cars and generated the same idea of incorporating an
affordable rocket booster to assist flying car take-off. The
“inflated” concept (ZR = 1.761) invoked the idea of using an infla-
table security system to cover the flying car cabin when crashing.
“Paper currency collection” (ZR = 1.473) invoked the idea of using
armored flying cars to physically transfer money, which is carried
out by trucks or helicopters in bank operations today. “Adaptive
data communication” (ZR = 0.809) can be adopted in a flying
car to preserve effective data links between satcom, radio, and
4G/5G communication mediums. The concept “prediction objec-
tive” (ZR = 0.798) suggests a proactive autopilot system that is
based on predicting environmental factors on the pre-defined path
of the flying car for updating the path accordingly. Observing the
“minicam” (ZR = 0.67) concept, we conceived the idea of using
multiple minicams to capture and monitor the environment
and surroundings of a flying car. “Conventional titanium alloy”
(ZR = 0.55) may be used to make the flying car body and parts.

Summary of the case study

The three ideation runs demonstrate three different strategies to
retrieve white space concepts as stimuli to inspire idea generation
for a focal design domain. The first strategy favors the extremely
nearest stimuli. The second strategy allows sampling a wider spec-
trum of stimuli in terms of their semantic distance to the focal
domain, but still favors the near-field. The third strategy is a
total random retrieval regardless of the semantic distance of stim-
uli to the focal design domain. The fact that these different strat-
egies all retrieved inspirational stimuli shows the general
effectiveness of the TechNet for idea generation.

At the same time, the idea generation efficacy, and the novelty
and feasibility of the ideas generated vary with respect to the stim-
uli from different strategies. With the nearest stimuli, the first
exercise had the highest stimulation efficacy, indicated by the por-
tion of provided stimuli that invoked ideas. Both the first and sec-
ond exercises favor near-field stimuli, despite the different extents
present higher stimulation efficacies than the third exercise when
the stimuli were randomly drawn from the large TechNet of more
than 4 million concepts.

While almost all the ideas generated in the first exercise are
highly feasible given the nearest stimuli that appear mostly from
the car and aircraft domains, these ideas are also not surprising
or novel. In contrast, by retrieving and providing stimuli with a
wider range of semantic distance to the focal domain, the second
and third exercises allowed us to generate more novel ideas with
varied feasibility. In general, the ideas generated using highly rel-
evant (i.e., positive and high ZR values) stimuli also appear to be
highly feasible. While the ideas generated with semantically dis-
tant stimuli (i.e., negative and low ZR values) are naturally
more novel, they also appear to be less feasible or more vague.

The stimuli set of the third exercise included farther stimuli
and more stimuli with ZR < 0 than the stimuli set of the second
exercise (Fig. 4). While the concepts from far fields may unleash
the potential for novel idea generation, the engineers find it diffi-
cult to conceive their relevance to the original domain. As
reported in Table A2 in Appendix, we attempted but failed to
make sense of most of the far-field stimuli with ZR < 0. We
were unable to obtain inspiration from any (and a large number)
of far stimuli with ZR <−0.945 (Fig. 6b). By contrast, in the sec-
ond exercise, we only retrieved a small number of far stimuli with
ZR < 0 (with all of them having ZR >−0.815) but were able to find
inspiration from most of them (Fig. 6a). These results suggest,
despite the need to explore far stimuli for potential novel ideas,
overly far concepts in the white space may be ineffective for
idea stimulation. A balanced stimuli retrieval strategy with regards
to the semantic distance from the stimuli to the original domain is
needed.

These findings from our case study resonate with the prior
studies on design stimulation that have suggested near-field stim-
uli are more effective to inspire designers and produce more fea-
sible ideas (Fu et al., 2013b; Chan et al., 2015; Srinivasan et al.,
2018; Goucher-Lambert and Cagan, 2019), whereas far-field stim-
uli are less effective but may contribute to novelty of the ideas
once they are generated (Gentner and Markman, 1997; Ward,
1998; Chan et al., 2015; Luo et al., 2018; Srinivasan et al.,
2018). Observing such tradeoffs, Fu et al. (2013a, 2013b) hypoth-
esized that the stimuli from the “middle ground” may be desir-
able. He and Luo (2017) suggested that the most valuable
inventions are based on mainly conventional combinations of
prior work and a minor insertion of highly novel combinations.

In practice, different designers may follow these theoretical
understandings to explore, retrieve, and mix design stimuli of var-
ied semantic distance to a focal design domain according to their

Fig. 6. Distribution of ZRi of white space stimuli in the (a) second and (b) third exercises. Red histograms denote the distribution of all stimuli retrieved and pro-
vided to engineers. Textured histograms represent the distribution of the effective stimuli that invoked ideas.
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differed preferences in ideation effectiveness and idea feasibility ver-
sus idea novelty and radical innovation potential. In particular, the
quantified semantic distance (R or ZR scores) between white space
concepts and the focal design domain in the large TechNet provides
a new basis for guiding the search, retrieval, and selection of near to
far stimuli to support design idea generation and evaluation.

Summary and concluding remarks

In this paper, we have presented a methodology based on a large
semantic network of technical terms (TechNet) for generating
new design ideas. Specifically, the methodology infers new tech-
nical concepts away from the previously used ones in a focal
design domain according to their semantic relevance in
TechNet and synthesizes the new concepts in the white space
with the original ones to generate new design ideas. Our case
study, including three flying car idea generation exercises based
on three white space concept retrieval strategies with varied pref-
erences toward near to far stimuli, shows the general effectiveness
of our methodology for simultaneous idea generation and evalu-
ation, as well as varied ideation performances from different stim-
uli retrieval strategies.

The methodology focuses on white space inspiration and the
use of semantic distance to guide stimuli retrieval in the total
TechNet. By focusing on retrieving and synthesizing design stim-
uli from the white space to the original domain, the novelty (and
patentability) of new ideas is naturally ensured when they are gen-
erated. Meanwhile, our metrics on the semantic distance of white
space concepts to the focal domain can provide indications of
both the novelty of a new idea and the feasibility of realizing
the idea. Thus, the stimulation distance in the semantic network
is the key variable to guide the retrieval of stimuli for different
ideation performance tradeoffs (e.g., quantity, feasibility, and nov-
elty) and to inform the instant evaluation and comparison of the
ideas generated or to be generated. Moreover, we have developed a
web-based interface (http://www.Tech-Net.org/) and public API
(https://github.com/SerhadS/TechNet) to support the use of the
proposed methodology for idea generation and evaluation with
TechNet.

This study contributes to the growing literature on data-driven
design (Altshuller and Altov, 1996; Mukherjea et al., 2005;
Chakrabarti et al., 2006; Murphy et al., 2014) and NLP-based
design analytics (Mukherjea et al., 2005; Fu et al., 2013a;
Murphy et al., 2014; Shi et al., 2017). Aside from design ideation
support, the TechNet-based methodology can also be tweaked for
an extensive range of applications, such as knowledge discovery,
topic mapping, technology forecasting, innovation, and business
intelligence. That is, TechNet may serve as an infrastructure for
AI applications related to technology and engineering.

This research presents several limitations, which suggest future
research opportunities and directions. First, there exist alternative
semantic distance metrics and retrieval strategies than the ones
covered in the present study and deserve further exploration.
Second, TechNet consists of only one type of relation among
terms and does not differentiate the type of terms, such as com-
ponents, functions, structures, configurations, working principles,
and mechanisms. Future development of TechNet may include
different types of relations and also discern the relation and con-
cept types during the retrieval process. Third, our proposed
methodology starts with retrieving patents that can represent
the focal domain (e.g., flying car). The completeness and the
accuracy of the retrieved patent set bound the results. Hence,

patent retrieval methods with high recall and precision rates
need to be developed or adopted as complementary to this
study (Benson and Magee, 2013; Song and Luo, 2017).

Furthermore, we only conducted one case study with three
engineers to demonstrate the effectiveness of the proposed method-
ology. More case studies, in diverse technical contexts and with
more engineers of different experience levels and backgrounds,
may allow us to discover other contextual factors on outcomes of
the proposed methodology. Also, comparative evaluation against
alternative methods that retrieve ideation stimuli from such seman-
tic networks as WordNet and ConceptNet by semantic distance
(Han et al., 2020b) may further reveal the advantages and disadvan-
tages of our methodology among the alternatives.

We hope the readers view this study as an invitation rather
than the conclusion of the research efforts to construct, fine-tune,
and apply the TechNet to data-driven design.

Competing interests. The authors declare no competing interests.
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Appendix: Ideas generated with stimuli randomly sampled from near-field and entire TechNet

Table A1. The ideas generated with random concept stimuli from a confined near-field

Terms ZR Generated ideas

Glove box structure 5.964

Automatic wedging 5.186

Forced landing 4.909

Autonomous flying 4.503 • Autonomous flying car or flying cars with autopilot systems

Plasma arc coating 4.282

Propfan engine 4.182 • Flying cars driven by propfan engines

Vtol augmentation 3.980 • VTOL flying car

Taxi system 3.670 • The taxi system of airplanes can be adopted for landing and take-off operations of flying cars

Economical high speed 3.417

Air-buoyant 3.341 • Inflatable air-buoyant as an emergency and safety solution in a flying car
• Flying cars with devices that can generate and remove air buoyancy
• A design that combines a zeppelin, airplane, and car to increase the energy efficiency of flying cars and
particularly decrease the power required for take-off
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Table A1. (Continued.)

Terms ZR Generated ideas

Low friction safety system 3.317

Demountable disc 3.270

Towing attitude 3.226 • Towable autonomous flying cargo compartment which is not physically but wirelessly attached to the
flying car, holding only cargo. There may be multiple flying cargo compartments wirelessly attached to
a flying car, towing the cargo autonomously, without powering the cargo compartment

Scooter-like 3.133 • Flying scooter
• Transformable scooters for both flying in the air and running on the ground
• A bicycle or scooter-like vehicle which uses paths above pedestrian walkways (e.g., they can use the
sheltered walkways) and they are highly automated to avoid crashing with other flying bicycles or
scooters

Exhaust nozzle flap seal 3.071

Lightweight rigid frame 3.027 • Flying cars made of lightweight rigid materials

Adjustable wheel set 2.905 • Adjustable wheels for the flying car
• Flying cars with adjustable wheel sets for vehicle and aircraft scenarios (taking-off and landing)

Hybrid diesel vehicle 2.879 • Hybrid diesel + electric flying car

Multitrack vehicle 2.842 • Flyable multitrack vehicles that can operate in air and multi-terrain environment
• A flying car which can land on anywhere independent of the landscape or ground structure

Infant seat support 2.732 • Adjust infant seat designs for seats in a flying car

Target roll angle 2.664

Rotor-head-end 2.645

Wet shaving cartridge 2.635

Torque assist control 2.442

Pickup hood 2.433 • A flying car like a cabriolet or convertible car that has a retractable roof for leisure.

High efficiency solar panel 2.424 • Solar powered flying car; providing most energy needs, at least for urban travels.

Agricultural vehicle 2.298 • Flyable agricultural vehicles
• Low cost flying car may elevate the efficiency of agricultural spraying and animal herd control practices,
especially maybe useful for large farms and large-scale farmers.

Wafer lift assembly 2.280

Wearable swing 2.227 • Wearable swing for emergency uses in a flying car

Unutilized energy 2.212 • Flying cars that can recover unutilized energy, such as engines waste energy and brake energy

Spanwise wing insert 2.155 • Spanwise wing insert when the flying car is driving on the road
• Flying cars with detachable wings

Assault bombing 2.155 • Multi-role short-range flying cars that are capable of short-range surveillance and light attack to provide
superiority on land-based operations. This can be achieved by integrated FLIR, light arms, and light
infrared missiles

Removable juicer 2.148 • Flying cars with removable modules for flying functions
• A removable battery compartment for electric flying cars

Piezo-resonance 2.085

Supplemental weather radar 2.071 • Flying cars with a weather radar can plan paths according to the weather

Upward-arching 2.071

Load-carrying missile 2.045 • A self-roadable missile, or a flying vehicle with bombs to be used as weapons

Guitar cleaning kit 1.914

Rear window module 1.877

Radial imaginary line 1.836

Mobile wireless platform 1.750 • Flying cars with mobile wireless platforms for communication

Dirt collection bag 1.738

(Continued )
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Table A1. (Continued.)

Terms ZR Generated ideas

Divergent flap 1.691

Turbofan 1.667 • Flying cars driven by turbofan engines

Cooling fan 1.632

Forbidden network 1.600 • A flying car that can automatically avoid forbidden routes due to security issues

Disabler valve 1.544

Distance estimation data 1.477 • Flying cars that can automatically accumulate surrounding data and adjust path accordingly

Standby emergency power 1.467 • Standby emergency fuel tank or battery pack in a flying car
• Electric flying cars with spare batteries providing standby emergency power

Accelerator pedal 1.439

Shearing ram 1.398

High density artificial stone 1.280

Fuel supply controller 1.277

Portable telemetry device 1.277 • Flying cars can be used as a flock of telemetry devices traveling over the city to collect data

Cargo vehicle 1.256 • Flying cargo; flying cars operating with pre-defined paths for delivering cargo
• Autonomous delivery robots and flying car joint mission as cargo delivery service providers. All flying
cars would have universal attachment apparatus for mid-size delivery robots that can handle a specific
load of cargo. The individuals those have flying cars may collect those robots from their neighborhoods
and drop them near their jobs or wherever they are going.

Altimeter 1.235 • Include an altimeter in the flying car

Physical dial 1.197

Disposable apron 1.159

Turbine section 1.127 • Designing the propeller blades of the flying car such that while not flying they can be used for
generating electric using wind power

Actuating lever 1.126

Control panel 1.073

Rich fuel condition 1.064 • Flying cars that can plan paths according to the environment and fuel conditions

Back-twisted 1.052

Cannula/needle 1.044

Drive mode 1.044

Multistage stroke 1.042

Cross-ventilated 0.952 • Cross ventilation for flying car cabin air conditioning

Dual mode 0.941

Personnel accountability 0.929

Dissipate 0.852

Bayonet-insertion 0.771

Transient echo 0.711

Inertia torque 0.592

Yarn leaf 0.532

Water-tight 0.527 • Water-tight and buoyant passenger compartment in flying cars to allow water landing, cruise and
take-off

Payload data segment 0.506

Sealing 0.474

Fluid medium 0.467

Rotating speed 0.455

(Continued )
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Table A1. (Continued.)

Terms ZR Generated ideas

Velocity compaction 0.427

Detonate 0.386

Marine environment 0.364 • A vehicle that can drive on road, fly in air, cruise on water, and swim under water

Position information 0.323 • Flying cars that can communicate real-time position information with other mobile systems and
transportation control centers

Initial position 0.253

Led light source 0.195

Browsing 0.130

Communications satellite 0.124 • A satellite-based communication module for autonomous operation and monitoring of flying cars and
air traffic

Charge capacity limit 0.115 • Electric flying cars with large battery capacity

Performance requirement 0.102

Traffic load −0.074 • Flying cars that can communicate with other vehicles, airplanes, and flying cars, detect and analyze the
traffic around themselves, and plan their own paths accordingly

Pretensioner −0.111 • Pretensioner for driver seats to adjust belt tightness during different flying or driving modes

Golf club −0.114 • Flying golf carts for multi-mode transportation in large golf fields

Recursive radon −0.126

Folded portion −0.144 • Flying cars with foldable components (e.g., wings) to reduce air drags during road driving

Amplitude −0.458

Increased turbulence −0.483 • The structures required for driving and flying modes increase turbulence and novel designs to minimize
such increased air turbulence are required

• Flying cars that can detect turbulent environment and adjust paths accordingly
• Design of two types of flying cars. One is for city transportation, with specifications for lower altitudes
and not for extreme weather conditions. The other is for inter-city travels, which can withstand extreme
weather conditions and provide safe travels in higher altitudes.

Breakable −0.568 • Flying cars with a modular architecture, with standard detachable fly-mode subsystems that can be
found in different distribution locations

Laser light −0.680 • Flying cars that have laser-based obstacle detectors such as lidar to deal with high air traffic

Incomplete combustion −0.792

Watch movement −0.812 • Flying cars with monitoring and displays of the movement of moving objects in the surrounding

The table is sorted according to the ZR scores of the stimuli, whereas the sequence of the provision of the concepts to the engineers was randomized during the ideation process.

280 Serhad Sarica et al.

https://doi.org/10.1017/S0890060421000020 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000020


Table A2. The ideas generated with random concept stimuli from TechNet

Terms ZR Generated ideas

Sterilizing small object 4.311 • Flying cars to sterilize neighborhoods or sites in a pandemic condition, using a spraying apparatus

Yawed vehicle 2.467

Movable solar collector 2.439 • Mid-air charging stations for electric flying cars that restore electricity generated by solar cells
• Retractable solar panels for flying car that can be extended when parked, and retracted on the go

Solid rocket booster 2.127 • An affordable rocket booster system for flying car take-off

Grille armor 1.903

Interchangeable trailer 1.830 • Interchangeable car and flight modules for the flying cars

Inflated/deployed 1.761 • The inflatable security system that covers the cabin of the flying car in the case of crash

Color barcode pattern 1.682

Paper currency collection 1.473 • Armored flying car to physically transfer money

Coad ministered antigen 1.371

Detachable seat member 1.258 • Detachable air propeller for flying car; when only used as a land vehicle, detach the wings or propeller
• A detachable seat to increase baggage capacity of the flying car

Grip dynamometer 1.153

Flight test 1.120 • A decentralized autonomous preflight test system that runs on the flying car. Before authorized to fly,
an autonomous networked system gets the result and controls if the flying car is fit for flying, and
authorizes backward

Electric generator hydraulic pump 0.977

Bioswellable suture 0.898

Travel blade slot 0.870

Adaptive data communication 0.809 • The adaptive data communication system that seamlessly channels between satcom, radio, and 4G/5G
communication mediums to preserve healthy data links

Prediction objective 0.798 • The proactive autopilot system that minimizes pilot’s actions by predicting environmental issues on the
defined path of the flying car and updating the path accordingly

Broken flywheel 0.726 • An intelligent computer system in the flying car for taking over controls in the case of malfunction

Weak magnet 0.705 • Use weak magnetized materials as sensors in flying cars to be used in parking spots

Minicam 0.670 • Use multiple minicams for capturing the environment of flying cars

Spacecraft attitude control system 0.658 • Use attitude control systems to guide the operations and control of flying cars

Generic source code 0.633

Conventional titanium alloy 0.550 • The flying car body made of titanium alloy

Tokenized query 0.545

Landing section 0.502

Closed filtering system 0.462

Reflectance inversion 0.461

Spot sampling system 0.461

Slidable leg part 0.333 • Flying cars with slidable wings or rotors that can adjust positions according to payloads and
passengers on board

Coalescing dryer 0.295

Bimetallic switching mechanism 0.294

Rate matching parameter 0.279

Read injector 0.250

Malariae 0.200

Data-duplicating 0.198 • Predictive inflight simulation of the flying car to change the path

(Continued )
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Table A2. (Continued.)

Terms ZR Generated ideas

Myoclonic epilepsy 0.176

Long range cable 0.161

Savory flavor granule 0.135

Floating drilling rig 0.129

Oil vinegar 0.121

Acoustical 0.118

Semiconductor wafer fabrication
equipment

0.062

Stretched styrenic resin sheet 0.036

Image/video content −0.047

Large-scale hydraulic mining −0.055 • Flying vehicle for hydraulic mining

Outgoer safety −0.111

Programmable nonvolatile
memory eeprom

−0.171

Quick release buckle −0.183 • Quick release buckle for releasing the wings or propellers when transitioning to the land mode
• Use a detachable interface like quick release buckle to detach the cabin from the rest of flying car in the
case of distress

Single rail −0.185 • Flying vehicle that can also attach to and move along single rail
• Integration of flying cars to monorail systems to avoid traffic on the ground

Scatterometry regression −0.238

Firefighting helmet −0.244 • Using flying car for fire fighting

Lofty fibrous −0.259

Electronic signal −0.309

Delay-buffer −0.358

Enlargement lens system −0.377

Electronic energy level −0.380

Interior cross section −0.382

Gene regulation system −0.383

Wet pigment −0.392

Bromoaromatic −0.400

Intermediary security −0.414

Moat nitride −0.415

Thermophilic denitrification −0.464

Tunnel medium −0.473

Roll-laminator −0.550

Strand guide member −0.555

Transparent flame retardant −0.562

Download request −0.626

Uncertain factor −0.642

Electroosmotic flow pump −0.686

E-coating −0.711 • E-coating on the surface of the flying car to protect it from corrosives

Silicon-film −0.738

Multichromophore −0.785

Caulobacter −0.795

(Continued )
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Table A2. (Continued.)

Terms ZR Generated ideas

Oblivious −0.803

Storage capacity error −0.809

Dye bleach catalyst −0.842

Upkeep −0.861

Spray paint −0.945 • Flying car with spray paint apparatus to paint big structures or building

Polyethylene polymerization −0.959

Flowback −0.974

Adaptive speech −1.024

Full resolution −1.058

Electrosurgical probe −1.074

Barrel distortion −1.094

Network communication
component

−1.130

Electrorheological material −1.156

Bond gap −1.177

Punishment −1.226

Phosphosilicate glass layer −1.233

Working time −1.277

Clay nanocomposite −1.291

Timing control section −1.303

Organ tissue −1.409

Total hip −1.414

Fine nickel −1.495

Acoustical stack −1.542

Sinusoidal voltage waveform −1.573

Spectrum-imaging −1.673

The table is sorted according to the ZR score of the stimuli, whereas the sequence of the provision of the concepts to the engineers was randomized during the ideation process.
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