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The inception of leading-edge stall on stationary, two-dimensional, smooth, thin
aerofoils at low to moderately high chord Reynolds number flows is investigated by
a reduced-order, multiscale model problem via numerical simulations. The asymptotic
theory demonstrates that a subsonic flow about a thin aerofoil can be described in
terms of an outer region, around most of the aerofoil’s chord, and an inner region,
around the nose, that asymptotically match each other. The flow in the outer region
is dominated by the classical thin aerofoil theory. Scaled (magnified) coordinates and
a modified (smaller) Reynolds number (ReM) are used to correctly account for the
nonlinear behaviour and extreme velocity changes in the inner region, where both
the near-stagnation and high suction areas occur. It results in a model problem of a
uniform, incompressible and viscous flow past a semi-infinite parabola with a far-field
circulation governed by a parameter Ã that is related to the aerofoil’s angle of attack,
nose radius of curvature, thickness ratio, and camber. The model flow problem is
solved for various values of Ã through numerical simulations based on the unsteady
Navier–Stokes equations. The value Ãs where a global separation zone first erupts
in the nose flow, accompanied by loss of peak streamwise velocity ahead of it and
change in shedding frequency behind it, is determined as a function of ReM. These
values indicate the stall onset on the aerofoil at various flow conditions. It is found
that Ãs decreases with ReM until some limit ReM (∼300) and then increases with
further increase of Reynolds number. At low values of ReM the flow is laminar
and steady, even when stall occurs. The flow in this regime is dominated by the
increasing effect of the adverse pressure gradient, which eventually overcomes the
ability of the viscous stress to keep the boundary layer attached to the aerofoil.
The change in the nature of stall at the limit ReM is attributed to the appearance
of downstream travelling waves in the boundary layer that shed from the marginal
separation zone and grow in size with either Ã or ReM. These unsteady, convective
vortical structures relax the effect of the adverse pressure gradient on the viscous
boundary layer to delay the onset of stall in the mean flow to higher values of Ãs.
Computed results show agreement with marginal separation theory at low ReM and
with available experimental data at higher ReM. This simplified approach provides
a universal criterion to determine the stall angle of stationary thin aerofoils with a
parabolic nose.
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1. Introduction
The term ‘stall’ of aerofoils refers to the significant loss of lift at a certain angle of

attack (known as the stall angle) and above. This phenomenon results from the global
(massive) separation of the flow along the aerofoil’s upper surface due to interplay
between viscous effects and adverse pressure gradients. Stall limits the lift of the
aerofoil to a maximum value and thereby reduces the operational envelope of devices
employing aerofoils.

Experimental studies of aerofoil stall at various Reynolds number flows are given
in the classical investigations of Jones (1934), Jacobs & Sherman (1937), Abbott
& von Doenhoff (1958) and Tani (1964), and the modern works by Selig et al.
(1996) and Yen & Huang (2009). The experimental data provide the stall angle of
attack for many aerofoils with various geometries. The stall angle is a function of
chord Reynolds number (Re) and aerofoil geometry. Stall angle increases with Re for
Re > 100 000. The experimental measurements also show the existence of hysteresis
loops between attached and globally separated flow states at angles of attack near
stall when Re > 100 000 (McCormick 1995, pp. 141–146). The range of angles of
attack for these loops also increases with Re. On the other hand, at relatively low
Re (Re < 10 000) this behaviour becomes undetectable and the nature of stall may
change. For example, the numerical computations of Kunz & Kroo (2001) show that
the decrease of Re results in a higher stall angle.

There are two types of stall phenomenon on stationary aerofoils: see, for example,
Anderson (2007), pp. 368–379 and the flow pictures of Ito shown in Nakayama
(1988). The first is leading-edge stall, which characterizes relatively thin aerofoils with
thickness ratios up to 15 % of the aerofoil’s chord. Here, the flow separation zone
evolves from the nose as the angle of attack is increased and the loss of suction
around the nose and of lift is rather rapid and abrupt. The second type of stall is
trailing-edge stall, which characterizes relatively thick aerofoils with thickness ratio
above 15 % where the flow separation zone develops gradually from the trailing edge
as the angle of attack is increased. Here the loss of suction and lift is gradual. In
addition, impulsive starts or sinusoidal pitching motions of an aerofoil to high angles
of attack result in unsteady leading-edge flow separation, formation of recirculating
convective eddies, and loss of lift which depends on both the aerofoil’s motion (pitch
rate and location of centre of pitch) and the flow’s complicated dynamics (shedding
frequencies and size of eddies). This is known as the dynamic stall phenomenon
(Bhaskaran & Rothmayer 1998; Carr 1988).

In the present paper we focus solely on the mechanism of the onset of the leading-
edge stall on a stationary aerofoil in a uniform and incompressible steady flow with no
background turbulence. Hereafter, reference to stall means leading-edge stall.

The experimental studies by Pavelka & Tatum (1981) demonstrate that leading-edge
stall is preceded by the appearance of a ‘short’ recirculation bubble in the boundary
layer at a much lower angle of attack. For low Reynolds number, Re < 20 000, the
flow is laminar and the short bubble grows with angle of attack and eventually
bursts into a ‘long’ laminar separation zone causing the stall of the aerofoil (with
transition to turbulence only far downstream in the separated flow region). In an
intermediate range, 30 000< Re< 300 000 (upper limit depends on the thickness ratio),
the burst of the laminar separation bubble still dominates the aerofoil’s stall. However,
in this range it is accompanied by a transition to flow unsteadiness and formation
of convective vortical eddies and turbulence at pre-stall states. For higher Reynolds
numbers, Re > 500 000, the short bubble causes immediate transition to a turbulent
boundary layer, which is less susceptible to adverse pressure gradients, keeping the
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bubble size very small (less than 1 % of the aerofoil’s chord). As the angle of attack
is increased, the bubble size decreases, the adverse pressure gradient becomes more
severe, the turbulent boundary layer separates, and the aerofoil stalls.

Theoretical studies of the leading-edge separation at the nose of an aerofoil were
presented by Werle & Davis (1972), Cebeci, Khattab & Stewartson (1980), Cheng &
Smith (1982), Ruban (1982) and Stewartson, Smith & Kaups (1982). Werle & Davis
(1972) numerically solved the classical boundary-layer equations for an incompressible
flow past a parabola at angle of attack. The inviscid solution of the velocity field on
the parabola surface was prescribed as the outer velocity of the boundary layer. It
was found that the shear stress vanishes along the parabola surface and a Goldstein-
type singularity of the stress and the boundary-layer thickness are displayed when
the vertical displacement of the stagnation point on the parabola exceeds a certain
critical value,K > 1.157, which is independent of the flow Reynolds number. Cebeci
et al. (1980) and Stewartson et al. (1982) found a similar result for K >1.155. This
value corresponds to a local pressure gradient parameter β below −0.2 (which also
characterizes the separation of a laminar boundary layer on a flat plate under an
adverse pressure gradient). Note that, according to our analysis, the matching of the
parabola flow with the classical solution of the thin aerofoil theory (which satisfies
the Kutta condition at the trailing edge) requires that K = α/√Rc/2c (here α is the
angle of incidence, c is the aerofoil’s chord, and Rc is the aerofoil’s nose radius of
curvature). This means that a necessary condition for onset of nose separation is
α > αc = 1.157

√
Rc/2c. However, this condition is not sufficient. The approach of

Werle & Davis (1972) is limited to no interaction between the boundary-layer flow and
the imposed outer flow; thereby it forces the singularity of the shear stress and can not
accurately describe the structure of a separated flow state. Hence, it results in too low
a prediction of the angle αc for the onset of separation with respect to experimental
findings (Jacobs & Sherman 1937; Abbott & von Doenhoff 1958; Selig et al. 1996).

An elegant asymptotic analysis of steady nose flow was conducted by Stewartson
et al. (1982); see also a similar analysis by Ruban (1982). This analysis extended
the Werle & Davis (1972) approach and resulted in a triple-deck theory of the steady
boundary-layer flow about the separation point, also known as the marginal separation
theory (MST). This approximation used a base velocity profile which is on the verge
of separation and allowed an interaction between the inner, nearly separated flow close
to the wall, and the outer inviscid flow around the separation point. The scales of
the flow parameters in a local region around the separation point and its power law
dependence on a modified Reynolds number ReM based on Rc,ReM = URc/ν, were
identified. An integral model equation was constructed for the solution of the flow
structure near the wall and its relationship to the pressure changes in the outer flow.
Computed results showed that attached-flow states exist when β (=K in Werle &
Davis 1972) is slightly greater than βc = 1.157. For β = βc + mΓ (ReM)

−2/5, where
m is a positive number, short closed separation bubbles appear when Γ > 2.4. The
bubble grows in size until Γ = Γc ≈ 2.75, where a fold in the solution branch occurs
and larger closed separation bubbles are found for a certain range of Γ < Γc as Γ
is decreased from Γc. For Γ > Γc ≈ 2.75 no solution of the model equation was
found, suggesting that no steady separated flow can exist under these conditions and
the bursting of the separation bubble and stall when the angle of attack is greater
than αs = [βc + mΓc(ReM)

−2/5]√Rc/2c. Sychev et al. (1998, p. 174) stated that ‘the
oscillation in the flow under consideration was found to branch off from the steady
solution in the domain of subcritical values of the Re. Typical of such flows is a
subcritical type of transition to turbulence.’ Also, Elliott & Smith (1987), working on
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FIGURE 1. Current state of the art of stall prediction. MST predictions for first separation
and for stall of a NACA 0012 wing section are compared with various available experimental
stall points.

the unsteady marginal separation theory, found that perturbations of the steady solution
are not damped in the course of time. On the contrary, a finite-time singularity appears
in the unsteady solution, the van Dommelen & Shen (1980) singularity, which suggests
the appearance of a major change in the flow.

The triple-deck approximation is limited in scope and describes only pre-stall states
with marginal separation, not stall states with massive separation. It is also limited
to a local region around the separation point which decreases in size with increase
of ReM and does not allow complete interaction between the separation zone and the
accelerating flow around the leading edge, ahead of the separation. Therefore, it cannot
describe the change of peak suction (streamwise velocity) or of wall shear stress in
the boundary layer ahead of the separation bubble that may appear when eruption of
the bubble occurs with the increase of angle of attack. The loss of peak suction is
an important characteristic of stall. Moreover, identification of stall based on lack of
solutions of the limited steady MST model equation or on a finite-time singularity
in the unsteady triple-deck approximation is only a mathematical indication that a
major change may occur in the flow which the approximations cannot capture. These
mathematical properties cannot be used as a stand-in for identifying the appearance of
a physical phenomenon that must be measured by changes in physical flow parameters.

In addition, Sychev et al. (1998, p. 172) summarized the results from steady MST
and presented formulae for the first appearance of a short separation bubble at α′ =
α′0(1+ 2.037Re−2/5

M + · · ·) and then its bursting (stall) at αs = α′0(1+ 2.376Re−2/5
M + · · ·),

where α′0 = 0.8172δ (δ is the aerofoil’s relative thickness). The formulae of Sychev
et al. (1998) are used in figure 1 to demonstrate MST’s prediction of the first
separation angle (solid line) and stall angle (dot-dashed line) as a function of Re
for the NACA 0012 aerofoil. Also shown in figure 1 are experimental points of stall
angle αs of the NACA 0012 aerofoil as taken from data in Jacobs & Sherman (1937),
Abbott & von Doenhoff (1958) and Yen & Huang (2009). Currently, no data are found
for flows with Re< 40 000 or Re> 10 million. The figure exhibits a disparity between
the MST predictions and the results measured from experiments. Moreover, the theory
predicts that stall angle decreases with Re while the experiments show the opposite
trend when Re> 40 000.
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Moreover, both numerical simulations by Kunz & Kroo (2001) and experiments by
Yen & Huang (2009) show the first appearance of short closed separation bubbles near
the aerofoil’s nose at low angles of attack which are accurately predicted by MST.
However, the experiments of Yen & Huang (2009) show for the case of the NACA
0012 at Re > 40 000 that the flow continues to maintain a globally attached state
around most of the aerofoil at a wide range of higher angles of attack, and stall occurs
only when massive separation erupts at an angle that is higher than that predicted by
MST. For example, at Re = 46 000, the leading-edge bubble appears at α = 6◦ (MST
prediction gives αs = 6.6◦) while stall occurs at α = 10◦. Therefore, MST prediction
is limited to the appearance of the first separation at low Re, but cannot predict the
nature of the flow and stall at the higher Reynolds numbers (see figure 1).

Despite being a basic and classical phenomenon in aerodynamics that limits the
envelope of aerofoil operation, the onset of stall on stationary aerofoils and its
mechanism is not yet fully understood. To the best of our knowledge, there is no
theoretical approach that can yet accurately predict the stall angle of practical aerofoils
as a function of the flow Reynolds number.

In a recent paper (Rusak & Morris 2011) we studied the leading-edge stall of
thin aerofoils at subsonic speeds and moderately high Reynolds numbers, and we
accounted for the interactions between the near-wall viscous flow and the outer
inviscid flow. The analysis resulted in a model (simplified) problem of a uniform,
compressible, steady stream at ReM past a semi-infinite, stationary, canonic parabola
with a far-field circulation governed by a parameter Ã. This parameter is related
to the angle of attack, nose radius of curvature, and camber of the aerofoil and
to flow Mach number. The model parabola problem was solved numerically using
the Reynolds-averaged Navier–Stokes (RANS) formulation, and results were used to
determine the value Ãs where a large separation zone first appears in the nose flow
concurrent with a sudden drop of the maximum suction. The change of Ãs with ReM

was computed. Predicted stall angles and maximum lift values showed agreement with
results from much of the available experimental data for various aerofoil geometries
at chord Reynolds numbers Re > 40 000 (corresponding to nose Reynolds number
ReM > 700 for a NACA 0012 wing section).

This paper extends the model problem in Rusak & Morris (2011) to investigate
the onset of leading-edge stall on stationary, thin aerofoils at low to moderately
high Reynolds numbers (ReM in the range 50 to 2100). This work also seeks to
illuminate the flow physics in this range as well as establish an overlap region with
the previously investigated stall at moderately high to high ReM. Numerical simulations
based on the unsteady, incompressible Navier–Stokes equations of a viscous flow
around a semi-infinite, stationary, canonic parabola are conducted. These simulations
are used to determine the value Ãs as a function of ReM. Computed results are
compared with MST predictions and available experimental data and shed light on the
gap witnessed in figure 1 between theory and experiments.

2. Theoretical study
We consider a stationary, thin and smooth aerofoil whose geometry is given by

y= δcFu,l(x/c) for 0 6 x 6 c, where c is the chord. The upper and lower surface shape
functions Fu,l(x/c) are described by Fu,l(x/c)= Ca(x/c)±0.5t(x/c) with thickness ratio
0 < δ� 1. Here,Ca(x/c) is the camber-line function, t(x/c) is the thickness function
and the aerofoil’s nose is parabolic with a radius of curvature Rc = 2δ2h2c (h is called
the nose curvature parameter). It should be noted that, for subsonic applications, nearly
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FIGURE 2. (Colour online) The physical model and various regions considered.

all aerofoils have parabolic nose geometry (see Abbott & von Doenhoff 1958). This
aerofoil is given in a uniform, steady, incompressible upstream flow with constant
speed U∞ along the x-axis, chord Reynolds number Re = ρU∞c/µ� 1, at low to
moderately high angle of attack α (up to the stall angle αs), and with no background
turbulence. Here ρ and µ are respectively the constant density and viscosity of the
flow. We introduce A = α/δ. We also assume that Re is sufficiently high such that
ReM = ReRc/c� 1.

The flow field around the aerofoil involves several length scales, and an analytical
solution of this flow problem is beyond reach. We offer a simplified physical model
for the attached flow around the aerofoil: see figure 2. A basic representation of
the flow is composed of a small inner region around the aerofoil’s parabolic nose
and an outer region around the rest of the aerofoil. In the inner region the flow is
characterized by large changes resulting from a stagnation point on the lower surface
and flow acceleration around the nose to a maximum speed (minimum pressure) point
on the upper surface. In the outer region the flow develops with smaller changes from
the uniform free stream. The lower and upper thin, viscous boundary layers that are
attached to the aerofoil surfaces begin at the stagnation point in the inner region and
develop through the outer region, separating near the trailing edge into the viscous
wake (note: in figure 2 the boundary layers and wake are not drawn to scale, but
are enlarged for demonstration purposes). Moreover, the far field of the inner region
matches the near-nose behaviour of the flow in the outer region, specifically outside
the boundary layers. The thin boundary layers initiated inside the inner region provide
(as they develop into the outer region) the upstream conditions for the outer region’s
thin boundary layer. The outer region’s near-aerofoil, inviscid behaviour of the velocity
and pressure provide the far-field conditions for the boundary layer.

The attached thin boundary layer of the outer region slightly modifies the potential
flow around the aerofoil via the Kutta condition at the trailing edge. Any effect due
to this interaction is likely to become more significant at higher angles of attack,
specifically when flow separation occurs near the trailing edge. In this study such
effects of trailing-edge separation are assumed to have a small influence on the inner
flow behaviour leading to stall and are excluded. Therefore, in this approach, the
boundary-layer solution in the outer region is not needed for the purpose of computing
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the flow around the leading edge. However, the development of the boundary layer
within the inner region is strongly affected by the behaviour of the flow in the outer
region surrounding the nose (which is the far field of the inner region). Therefore, an
accurate matching between the solutions of the inner and outer regions outside the
boundary layer is needed: see figure 2. Further, a complete interaction in all directions
(space and time) between this viscous boundary layer and the inner flow around the
nose must be considered as a whole.

Ultimately, this model allows a reduction of the nose flow to a flow in rescaled
coordinates with a rescaled Reynolds number (ReM) around a stationary canonic
parabola whose far field is dictated by the steady, inviscid, near-nose behaviour of
the full aerofoil geometry, as estimated from the thin aerofoil theory. This allows for
magnifying the flow behaviour near the nose and capturing the stall onset. The onset
of the leading-edge stall on an aerofoil is then related to the sudden rupturing of
the boundary layer on the parabola accompanied by a loss of peak suction ahead of
the separation bubble and change of shedding frequency behind the separation bubble
(when unsteady flow develops at certain ReM). Numerical simulations are used to
simulate the inner region flow at low to moderately high ReM and to identify the angle
for the onset of leading-edge stall on the entire aerofoil.

The present model allows for significant computational advantage through the
rescaling of both geometry and Re. Attempting to resolve similar flow details for
full geometry wing sections requires an extremely dense mesh around the section
nose, resulting in the need for adaptive mesh techniques (Webster et al. 1994), the
computational cost of which is still much higher.

In the Appendix we develop detailed asymptotic expansions of the velocity
components in the outer region around most of the aerofoil and in an inner region
near the nose, in terms of the aerofoil’s small thickness ratio δ and angle of attack
α. We also formulate the matching between these expansions. The analysis shows that
the inner-region flow is described by a reduced-order model problem. This problem
consists of an incompressible and viscous flow around a canonic parabola described by
(A 7) and (A 8), which is governed by the no-slip and no-penetration conditions along
the parabola surface, and by the steady far-field behaviour given by (A 9) where the
circulation parameter is Ã = Aw0/h. The circulation parameter Ã of the inner problem
is dictated by the aerofoil’s geometry and angle of attack. We also conclude from
the matching that for the study of leading-edge stall over thin aerofoils we can focus
solely on the inner region problem where the increasing adverse pressure gradient
on the upper surface of the parabola is directly related to the increase of Ã. The
increase in adverse pressure gradient acts against the attached viscous boundary layer
and eventually causes massive separation and stall. The error in the matching is of the
order of O(δ2, α2). For thin aerofoils of practical interest with δ < 0.15 and |α| < 15◦

the error of matching is less than a few per cent.

2.1. Stall prediction

In the present work, we look for the specific values of Ã as a function of ReM, i.e.
Ãs(ReM), at which there occurs a sudden rupturing of the boundary. This indicates
a sufficient condition for the onset of leading-edge stall on aerofoils: Ã > Ãs(ReM).
In this sense, the present results are universal. From the values of Ãs we can
predict the angle of stall of an aerofoil at a given Reynolds number. Note that
the circulation parameter is Ã = (α − δw̄0)/δh = (α − α0l − δw̄1/2)/

√
Rc/2c and then

the predicted angle of stall and maximum lift coefficient are given by (see also
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Rusak & Morris 2011):

αs = Ãs

√
Rc

2c
+ α0l + δ w̄1

2
= Ãs

√
Rc

2c
+ δw̄0 (2.1a)

and

Cl max = 2π (αs − α0l)= 2πÃs

√
Rc

2c
+ πδw̄1. (2.1b)

Here we used the relationship δh = √Rc/2c. Also note that according to the thin
aerofoil theory the aerofoil’s lift coefficient is Cl = 2π(α − α0l), where the zero lift
angle is given by α0l = δ(w̄0 − w̄1/2) and

w̄0 = 1
πA

∫ π
0

dCa

dx̄
(ϑ) dϑ, w̄1 = 2

πA

∫ π
0

dCa

dx̄
(ϑ) cosϑ dϑ, (2.2)

where x̄= x/c= (1−cosϑ)/2. Formulae (2.1a) and (2.1b) provide predictions of order
O(δ, α) and the expected error is O(δ2, α2). This means that the theory is limited
to aerofoils with small thickness ratio, and as the thickness increases the error of
this prediction also increases. Our numerical studies, presented in Rusak & Morris
(2011), indicate that for practical aerofoils the theory provides relevant predictions
when δ < 0.15 and |αs|< 15◦.

3. Numerical simulation of parabola (inner) problem
The two-dimensional, viscous, incompressible and unsteady Navier–Stokes equations

for the inner flow around a canonic parabola are

∂u

∂x
+ ∂v
∂y
= 0, (3.1a)

∂u

∂t
+ u

∂u

∂x
+ v ∂u

∂y
=−∂p

∂x
+ 1

ReM
∇2u, (3.1b)

∂v

∂t
+ u

∂v

∂x
+ v ∂v

∂y
=−∂p

∂y
+ 1

ReM
∇2v. (3.1c)

With respect to the Appendix equations, stars are removed for simplicity. Using the
vorticity–streamfunction approach, we define the axial and the normal velocities and
the vorticity by the following equations:

u= ∂ψ
∂y
, v =−∂ψ

∂x
and ω = ∂v

∂x
− ∂u

∂y
. (3.2)

This allows reduction of (3.1) to only two dependent variables and equations, namely
the streamfunction and the vorticity respectively:

∂ω

∂t
+ ∂ψ
∂y

∂ω

∂x
− ∂ψ
∂x

∂ω

∂y
= 1

ReM
∇2ω, (3.3a)

∂2ψ

∂x2
+ ∂

2ψ

∂y2
=−ω. (3.3b)
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Using the above definitions, u and v can then be computed once ψ and ω are solved,
and then the pressure can be found using the equation

∇2p=−
[
∂(u2)

∂x2
+ 2

∂(uv)

∂x∂y
+ ∂(v

2)

∂y2

]
. (3.4)

Equations (3.3) are subjected to the tangency and no-slip flow conditions on the
canonic parabola surface and the far-field behaviour as described by (A 9).

Parabolic coordinates x = (µ2 − η2)/2 and y = µη are used to transform the
field into a Cartesian computational space. Here µ is the coordinate parallel to the
surface of the parabola and η is the coordinate normal to the surface. The canonic
parabola is now described by the η = 1 surface, and flow evolves in the domain
−∞< µ <+∞, η > 1. In parabolic coordinates the velocity components can be given
by

Vµ = 1√
µ2 + η2

∂ψ

∂η
, Vη = −1√

µ2 + η2

∂ψ

∂µ
. (3.5)

Then, the Navier–Stokes equations (3.3) become

∂ω

∂t
+ 1(

µ2 + η2
) (∂ψ

∂η

∂ω

∂µ
− ∂ψ
∂µ

∂ω

∂η

)
= 1

ReM

1
µ2 + η2

(
∂2ω

∂µ2
+ ∂

2ω

∂η2

)
, (3.6a)

ω = −1
µ2 + η2

(
∂2ψ

∂µ2
+ ∂

2ψ

∂η2

)
. (3.6b)

The vorticity transport and streamfunction equations were rearranged to produce the
following conservative form:

∂ω

∂t
+ 1
µ2 + η2

(
∂

∂µ

(√
µ2 + η2Vµω

)
+ ∂

∂η

(√
µ2 + η2Vηω

))
= 1

ReM(µ2 + η2)

(
∂2ω

∂µ2
+ ∂

2ω

∂η2

)
, (3.7a)

ω = −1
µ2 + η2

(
∂2ψ

∂µ2
+ ∂

2ψ

∂η2

)
. (3.7b)

Equations (3.7) are subjected to the tangency and no-slip flow conditions on
the canonic parabola surface, i.e. Vη(µ, η = 1) = Vµ(µ, η = 1) = 0, ψ(µ, η = 1) = 0.
Using the inversion of the coordinates transform,

η =
√√

x2 + y2 − x, µ=
√√

x2 + y2 + x, (3.8)

it can be shown that the far-field behaviour as described by (A 9) results in
Φ∗ ≈ (µ2 − η2)/2 + η + Ãµ. In the far field, Vµ = (µ + Ã)/

√
µ2 + η2 and Vη =

(1− η)/√µ2 + η2, from which

ψ = µη − µ+ Ãη (3.9)

as both µ and η tend to infinity. Note that the far-field behaviour, when applied to the
whole domain, is the inviscid, steady-state solution of the problem for all Ã.

For a numerical implementation, the semi-infinite domain η > 1,−∞ < µ <∞ is
reduced to the computational domain −µmax 6 µ6 µmax and 1 6 η 6 ηmax, where µmax

and ηmax, are sufficiently large. This domain is discretized by a uniform mesh with
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constant step sizes in both directions 1µ and 1η, respectively. The index of each
grid point is (i, j) respectively, where −M 6 i 6 M, 1 6 j 6 N. Time is discretized
by constant time steps 1t with index n for each time level. The time derivative in
(3.7a) is approximated by a first-order forward difference, and second-order central
differences are used to approximate the spatial derivatives. The discretized formulation
of (3.7a) is

ωn+1
i,j − ωn

i,j

1t
+ 1

s2
i,j

[
si+1,jVn

µi+1,j
ωn

i+1,j − si−1,jVn
µi−1,j

ωn
i−1,j

21µ

+
si,j+1Vn

ηi,j+1
ωn

i,j+1 − si,j−1Vn
ηi,j−1

ωn
i,j−1

21η

]

= 1
ReMs2

i,j

[
ωn

i−1,j − 2ωn
i,j + ωn

i+1,j

(1µ)2
+ ω

n
i,j−1 − 2ωn

i,j + ωn
i,j+1

(1η)2

]
, (3.10)

where si,j =
√
µ2

i,j + η2
i,j. Equation (3.10) is rearranged to solve for ωn+1

i,j in terms of the
fields of vorticity and velocity at time level n. Once the vorticity field is progressed in
time, the streamfunction at time level n+ 1 is solved using spatial central differences:

ψn+1
i−1,j − 2ψn+1

i,j + ψn+1
i+1,j

(1µ)2
+ ψ

n+1
i,j−1 − 2ψn+1

i,j + ψn+1
i,j+1

(1η)2
=−ωn+1

i,j . (3.11)

Equation (3.11) is solved by the Jacobi iteration method. Once convergence to a given
tolerance is achieved, the velocity field at time level n+ 1 can be determined from

Vn+1
µ = 1√

µ2
i,j + η2

i,j

ψn+1
i,j+1 − ψn+1

i,j−1

21η
, Vn+1

η = −1√
µ2

i,j + η2
i,j

ψn+1
i+1,j − ψn+1

i+1,j

21µ
. (3.12)

Equations (3.10) and (3.11) are solved under the following conditions: (i) a
wall boundary condition ψn

i,j=1 = 0 for all −M 6 i 6 M; (ii) an inflow far field
ψn

i,j=N , given by the far-field potential flow behaviour (3.9), and ωn
i,j=N = 0 are

employed for −M 6 i 6 M; (iii) an outflow ψn
i=±M,j, given by the far-field flow

behaviour (3.9), and ωn
i=±M,j = 0 are used for NBL 6 j 6 N; (iv) a Neumann boundary

condition (∂ψ/∂µ)ni=±M,j = (∂ω/∂µ)ni=±M,j = 0 along the outflow boundaries i = ±M
for 1 < j < NBL which allows the outflow to evolve naturally (here NBL = N/20 is
used); (v) the vorticity ωn

i,j=1 (along the parabola surface j = 1) for −M < i < M
is computed by a second-order, forward difference approximation in the j direction,
which also accounts for the wall no-slip condition along a stationary boundary (see
details in Hoffmann & Chiang 1993), i.e. ωn

i,j=1 = (7ψn
i,j=1 − 8ψn

i,j=2 + ψn
i,j=3)/2(1η)

2.
The computations are first-order accurate in time and second-order accurate in space,

and are consistent with the original (3.7) as the mesh is refined. The field of velocity
and vorticity at time level n + 1 are used to advance the solution to the next time
step. For a given ReM and Ã, the solution of (3.10)–(3.12) is advanced in time until
time-asymptotic behaviour, steady or periodic, is achieved.

The computations are initiated in the following way. At a given ReM and Ã = 0 we
start with the inviscid, potential flow solution as an initial state and march in time until
a steady, time-asymptotic state of the viscous flow problem is found. Then, we use
this solution as an initial state for the computation of the flow evolution at the same
ReM, with an increased incremental value of Ã with essentially zero rate of change, for
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example Ã = 0.1. Similarly, each time-asymptotic state is used as an initial state for
computation of flow evolution at the next nearby value of Ã.

Certain numerical stability criteria must be satisfied in the computations. Here we
require that the Courant–Friedrichs–Lewy (CFL) number Ck, diffusion number dk, and
the cell Reynolds number ReC, that is,

Ck = a
1t

1xk
, dk = 1

ReM

1t

(1xk)
2 , Rec =1xkReM, (3.13)

obey certain limitations. In the present numerical calculations, a = Umax = 1 and xk

indicates µ or η. Extending von Neumann numerical linear stability analysis (see
chapter 4 of Hoffmann & Chiang 1993 and chapter 3 of Roache 1998) to the present
forward-in-time, central-in-space differencing scheme leads to the following stability
requirements in a two-dimensional problem: C = Cµ + Cη 6 1, d = dµ + dη 6 1/2,
and ReC 6 4/C. For example, with ReM = 700, 1µ = 0.2 and 1η = 0.025, the CFL
number dictates that 1t is less than 0.0222 and the diffusion number states that it
must be less than 0.215, while the cell Reynolds number criterion (∼141 in this case)
calls for 1t 6 0.00063. Clearly, for this case, the cell Reynolds number criterion is the
most restrictive and is therefore used as the maximum threshold for 1t, dictating small
time steps. Further, we refer to the work by Thompson, Webb & Hoffman (1985),
later verified by Sousa (2003), which states that the cell Reynolds number restriction is
overly restrictive for stable calculations. In spite of this fact, we proceed to use it as a
buffer against numerical instabilities that may result from nonlinear effects. As a result,
the CFL number is less than 0.01, which provides high accuracy of resolution of
velocity signals in time, specifically of the low-frequency waves that are shed behind
the separation bubble, convect along the parabola surface and are involved in the delay
of stall at ReM > 300.

4. Computed results
4.1. Numerical convergence studies

In the parabolic-coordinate computational space, we have an impinging uniform flow
from the top of the domain that is modified by the far-field behaviour, which is
governed by the circulation parameter. The flow runs over the plane η = 1 and splits
into two streams that run out through either side of the domain. A representative
computed field of streamlines for the steady flow case where ReM = 700 and Ã = 1.4
is shown in figure 3. The surface η = 1 is the canonic parabola (see the inner region
of figure 2) that has been ‘unwrapped’ to a flat wall via the mapping, with the
leading edge at the centre (µ = 0). Flow along the lower surface proceeds to the
left while flow on the upper surface proceeds to the right. In most computations we
used µmax = 20 and ηmax = 11 (which represent a far field of 200 nose radii from the
parabola leading edge in the physical domain). Note that the flow asymmetry about
µ= 0 exhibited in this figure results from the far-field effect through the parameter Ã.

We first conducted convergence studies of the numerical solutions with mesh
refinement. In figure 4 we show results for a representative test case, where ReM = 100
and Ã = 0.0 with four meshes: one mesh with 1µ = 0.8 and 1η = 0.025 (50 × 400),
the second with 1µ = 0.4 and 1η = 0.025 (100 × 400), a third mesh with 1µ = 0.2
and 1η = 0.025 (200 × 400), and a finer mesh with 1µ = 0.1 and 1η = 0.025
(400 × 400). The results show time-asymptotic computed velocity Vµ along the line
η = 1.025 (the closest grid line to the wall, being the most sensitive to changes in the
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FIGURE 3. Representative field of streamlines in the computational domain for ReM = 700
and Ã= 1.4.
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FIGURE 4. (Colour online) Mesh refinement study: ReM = 100; Ã= 0.0; η = 1.025.

flow) from the four meshes. Results agree all along the line as the horizontal step 1µ
is reduced, save for small variations near the domain edges. Similar agreement was
found along all other grid lines η. Further, results for Vµ along the wall-adjacent grid
line η = 1.025 from two meshes with 1µ = 0.2 and 1η = 0.0125 (200 × 800) and
1µ = 0.2 and 1η = 0.025 (200 × 400) also show agreement as the vertical step size
1η is reduced. Similar convergence of computed results was found for all other values
of ReM and Ã, as long as the flow stayed attached. For example, the case ReM = 100
and Ã = 1.7 along the grid lines η = 1.025 and 1.05 in figure 5(a,b), respectively,
demonstrates mesh convergence of computed results at low Reynolds numbers and
a state just prior to global separation. Similarly, convergence is found at a higher
Reynolds number,ReM = 700 and Ã= 1.3, shown in figure 6(a,b). It can be concluded
that a mesh with 1µ = 0.2 and 1η = 0.025 provides sufficiently converged solutions
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FIGURE 5. (Colour online) Mesh refinement study: ReM = 100; Ã= 1.7; (a) η = 1.025,
(b) η = 1.05.

for all steady flows with ReM up to 700 (see additional cases in Morris 2009). Further
convergence studies showed that smaller grid steps are needed for converged steady
flow solutions at ReM above 700.

In addition, at ReM above a certain value (300) and at high values of Ã (>1.3) the
flow exhibits the shedding of natural unsteady eddies behind the separation bubble
that convect along the upper surface of the stationary parabola while the flow remains
globally attached. Such situations play a role in the stall mechanism and require
additional mesh convergence studies to adequately resolve the velocity field and the
spectral content of dominant eddies. Figure 7 presents an example of time-averaged
streamwise velocity profiles for the case of ReM = 700 and Ã = 1.5 along grid line
η = 1.025 as computed from various meshes including 1µ = 0.2 and 1η = 0.025
(200 × 400), 1µ = 0.1 and 1η = 0.025 (400 × 400), 1µ = 0.05 and 1η = 0.025
(800 × 400), 1µ = 0.025 and 1η = 0.025 (1600 × 400), 1µ = 0.1 and 1η = 0.0125
(400 × 800), and 1µ = 0.1 and 1η = 0.00625 (400 × 1600). It can be seen that
results from the last four meshes are nearly the same. Small variations are localized
and appear only near the end of the separation bubble (5 < µ < 6) from which the
unsteady waves are shed, and the mean streamwise velocity changes from negative
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FIGURE 6. (Colour online) Mesh refinement study: ReM = 700; Ã= 1.3; (a) η = 1.025,
(b) η = 1.05.

to positive. This may be related to the complicated behaviour of the flow near the
reattachment point, i.e. the van Dommelen & Shen (1980) singularity. Also shown
in figure 7 is the instantaneous streamwise velocity along grid line η = 2.5, which
is away from the parabola surface and at the edge of the boundary layer. The
convergence of this profile with mesh refinement is evident. Moreover, the profiles
demonstrate that flow unsteadiness decays with distance from the wall and is bounded
to evolving eddies within the boundary layer. This demonstrates that the use of the
far-field steady conditions (at η = 11) is not affected by the natural flow unsteadiness
in the boundary layer.

Further, we focus on mesh refinement studies of the power spectrum density (fast
Fourier transform, FFT, analysis) of the computed unsteady streamwise velocity Vµ
along grid line η = 1.025 (wall-adjacent grid line). The analysis is based on a data
series of 1 million time steps after simulations had stabilized on a periodic flow.
Note that obtaining convergence of computed spectra is difficult in comparison to
experiments. A moving-average filter on the computed FFT curves has been employed
to slightly smooth the spectrum graph. The window of averaging was 15 points. The
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FIGURE 7. Mesh refinement study of time-averaged streamwise velocity along η = 1.025
and of instantaneous velocity at η = 2.5 for ReM = 700 and Ã= 1.5.

computed FFT results for two cases where ReM = 700 and Ã = 1.5 and 1.8 at a
representative point η = 1.025, µ = 6 (behind the end of the separation bubble and
where the unsteady eddies are shed) are shown in figure 8. The horizontal axis is
the non-dimensional frequency f (frequency scaled by 2πRc/U∞). For both cases, the
point spectrum dominant frequencies from the finer meshes (400 × 800), (800 × 400)
and (1600 × 400) are practically converged with the mesh refinement in both the
streamwise and vertical directions. The difference of dominant shedding frequencies
that appear at Ã= 1.8 around f = 0.064 from these meshes is less than 0.005.

Finally, it should also be noted that, in spite of the small localized differences in
the time-averaged velocity profiles and in the dominant frequencies displayed by the
FFTs, the global results for the numerical value of the circulation parameter at the
onset of stall remain nearly the same from computations using all meshes mentioned
above. For example, all meshes show at ReM = 700 that Ãs of global stall onset is
between 1.8 and 1.9, i.e. Ãs ∼ 1.85 ± 0.05. In the case of a NACA 0012 wing section
this range represents a quarter of a degree accuracy in determining the stall angle of
attack, which is below the experimental accuracy of measurement. Also, the dominant
frequencies of the unsteady waves before stall onset are resolved within a range of 7 %
by the finer meshes. In the case of a NACA 0012 wing section with a chord of 0.2 m
at a speed of 10 m s−1 and angle of attack of 9◦ the results for Ã = 1.8 represent a
dominant frequency of 31.5± 2.5 Hz before the onset of stall, where again the margin
of uncertainty is below the experimental accuracy of measurement.

The mesh (400 × 800) provides sufficiently converged results for the unsteady flow
cases. This mesh is therefore used in all the flow simulations at ReM = 700 and below,
where unsteady waves appear.

We also studied the effect of increasing the domain axial width µmax from 20 to
40 (µmin = −µmax), maintaining 1µ = 0.2 and 1η = 0.025. Results of the velocity
Vµ along the grid lines η = 1.025 (near the wall) and 1.5 (near the boundary-layer
edge) for the representative case of ReM = 100 and Ã = 1.7 are shown in figure 9. In
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FIGURE 8. Mesh refinement study of FFT results at η = 1.025 and µ= 6: ReM = 700;
(a) Ã= 1.5, (b) Ã= 1.8.

this case, there is a marginal separation zone and the state is just prior to the value
of Ã for global separation. We can see that the computed results fully agree in the
range of µ =−15 to 15 (which is more than 100 radii of curvature from the parabola
leading edge). However, beyond this range, the numerical end-effects related to the
choice of µmax slightly affect the velocity profile. It is concluded that, for the range
of parameters presented here, µmax = 20 is sufficient for accurate resolution of flow
details around the nose.

4.2. Flow simulation results
In the following, we study viscous flow around the stationary parabola at various ReM

and increasing values of Ã until global, massive separation (stall) is observed at a
certain Ã = Ãs. Onset of stall is identified as the state at which the peak streamwise
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FIGURE 9. (Colour online) Domain size effect: ReM = 100; Ã= 1.7.

velocity Vµ all across the boundary layer ahead of the separation zone either fails
to increase or decreases with an increase of circulation parameter (angle of attack),
accompanied by a significant eruption of the separated zone from the upper surface.
This definition applies to both steady and unsteady flows. In the case of unsteady
flows, stall is additionally accompanied by a change of shedding frequency behind the
separation zone.

To identify stall, we first plot the wall-adjacent streamwise velocity Vµ distributions
near the parabola leading edge. The wall-adjacent streamwise velocity is directly
proportional to the wall shear stress coefficient, i.e. when the wall-adjacent streamwise
velocity vanishes so does the wall shear stress, indicating separation and reattachment
points. Once there is a decrease of peak streamwise velocity along the wall-adjacent
grid line, the same happens in the streamwise velocity all across the boundary layer
from the wall to the edge of the boundary layer. This event is therefore directly related
to loss of peak suction and stall. To demonstrate this event for ReM = 100, we present
the wall-adjacent Vµ near the parabola leading edge in figure 10 at various values of Ã.
It can be seen that the peak streamwise velocity (suction and therefore lift) increases
as Ã increases from 0 to 1.75 and then suddenly decreases when Ã increases from
1.75 (thick solid line) to 1.76 (thick dotted line). A similar identification of stall with
unsteady flow situations is shown later on for ReM = 700. Note that in the range of
ReM studies in this paper the loss of suction and stall is moderate compared to the
abrupt stall that occurs at high ReM: see figures 2 and 6 in Rusak & Morris (2011) for
comparison.

The time-asymptotic (steady) Vµ profiles along equispaced grid lines within the
boundary layer, from η = 1 (the wall) to 1.325 (the boundary-layer edge), are shown in
figures 11 and 12 for ReM = 100 and Ã = 0.0 and 1.7, respectively. Along the vertical
axis are the values of streamwise velocity and the horizontal axis shows the position
along the surface. Note that the far-field speed Vη∞ =−1. Figure 11 shows the Ã= 0.0
case. As expected, the flow field is symmetric between the upper and lower surfaces
of the parabola with the stagnation point occurring at the parabola’s leading edge. We
can also see that the boundary layer is well resolved. With an increase of Ã, the
stagnation point (maximum pressure) moves under the nose to the lower surface and
a velocity peak (maximum suction point) occurs on the upper surface all across the
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FIGURE 10. A representative demonstration of stall ReM = 100: streamwise velocity near the
parabola leading edge along the surface-adjacent grid line at various Ã. Note that the increase
of maximum streamwise velocity ceases when Ã increases from 1.75 to 1.76, indicating loss
of peak suction and therefore stall.
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FIGURE 11. For ReM = 100 and Ã = 0.0,Vµ velocity profiles along 13 equispaced grid lines
in the boundary layer, from η = 1 (wall) to 1.325 (boundary-layer edge). Lower surface is µ
between −20 to 0; upper surface is µ between 0 to 20. In the computational space streamwise
velocities below the lower surface are negative.

boundary layer, just downstream of the leading edge. Following the peak velocity is
a velocity dip, or slow-down aft of the suction peak, with a recovery at a distance
away from the nose. Figure 12 shows this trend for Ã= 1.7. However, in this case the
induced velocity dip by Ã is sufficiently large to cause a small recirculation zone on
the upper surface to appear for the first time. In figure 13 we view the same steady,
marginal separation flow field in the physical space around the canonic parabola,
where the localized separation zone on the upper surface is clearly evident. This area
of negative velocity corresponds to a marginal separation zone, yet the flow is still
globally attached.
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FIGURE 12. Vµ velocity profiles in the boundary layer for ReM = 100 and Ã= 1.70 along 13
equispaced grid lines in the boundary layer, from η = 1 (wall) to 1.325 (boundary-layer edge).
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FIGURE 13. (Colour online) Streamline contours for ReM = 100 and Ã= 1.70: steady
marginal separation state. The separation zone contour on the upper surface is evident.

The computed, time-asymptotic streamline contours around the parabolic nose, with
further increases of Ã at ReM = 100, are shown in figures 14–16. In figure 14,
Ã = 1.73 and the marginal separation zone increases in size with respect to that at
Ã= 1.70 (shown in figure 13). In figure 15, Ã= 1.75 and there is a further increase in
size of the separation zone. However, figure 10 shows that the maximum streamwise
velocity (and suction) continues to increase as Ã increases from 1.7 to 1.75. In
figure 16, Ã is increased from 1.75 to 1.77 and a global separation zone dominates the
flow. It is accompanied by a decrease of maximum streamwise velocity and suction:
see figure 10. This is leading-edge stall. The figures demonstrate the transition from
marginal separation to global separation (stall) as Ã is increased from 1.75 to 1.77, and
Ãs = 1.76 for ReM = 100.

With this information we can compute the angle for the first appearance of
separation and the stall angle for the NACA 0012 wing section at Re = 6300 (which
corresponds to ReM = 100) according to both MST and present calculations. From
the present simulations the critical points correspond to an angle of attack for first
separation of 8.7◦ and a stall angle of 9.0◦. From MST (Sychev et al. 1998, p. 172),
predictions of the respective angles are 7.9 and 8.1◦. The two approaches predict
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FIGURE 14. (Colour online) Streamline contours for ReM = 100 and Ã= 1.73. The
separation zone contour on the upper surface is evident.
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FIGURE 15. (Colour online) Streamline contours for ReM = 100 and Ã= 1.75. The
separation zone contour on the upper surface is evident.
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FIGURE 16. (Colour online) Streamline contours for ReM = 100 and Ã= 1.77: steady stall
state. The separation zone contour on the upper surface is evident.

similar stall angles. Differences between the results may correspond to errors in both
formulations, such as neglect of higher-order terms in MST and discretization errors in
the present simulations.

At this point we seek to demonstrate the possible existence of a stall hysteresis
loop by reducing Ã in small steps. When Ã is reduced from 1.77 to 1.76 the
same globally separated flow solution is reached as when increasing Ã from 1.75
to 1.76, demonstrating that there may exist only one solution of the flow for Ã > 1.76.
However, when Ã is further reduced to 1.75 and to 1.73 it is found that the flow
remains globally separated: see the time-asymptotic streamline contours in figures 17
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FIGURE 17. (Colour online) Streamline contours over velocity magnitude field for ReM =
100 and Ã = 1.75 descending. The separation zone contour on the upper surface is
evident.
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FIGURE 18. (Colour online) Streamline contours over velocity magnitude field for ReM =
100 and Ã = 1.73 descending. The separation zone contour on the upper surface is
evident.

and 18, respectively. Note that these states are different from the marginal separation
states found when Ã was increased from 1.7 to 1.73 and to 1.75 (compare figures 17
and 18 with figures 14 and 15). This demonstrates the coexistence of time-asymptotic
states at these values of Ã. The flow does return to a small separation zone only
when Ã is decreased from 1.73 to 1.72. With further decrease of Ã below 1.72, the
simulations provide the same result as found for the ascending circulation parameter
cases.

This demonstrates the existence of a stall-hysteresis loop with a maximal range
between Ã = 1.72 and 1.76 for ReM = 100. Two different steady flow states exist
in this range, one describing a marginally separated state and the other a globally
separated stall state. When this information is used for a NACA 0012 wing section,
it indicates a range of stall-hysteresis of 0.2◦ at Re = 6300 – a small value, generally
undetectable by experimental methods.

The stall hysteresis loop at ReM = 100 is also demonstrated in figure 19. Here we
plot the minimum of streamwise velocity Vµ along the wall-adjacent grid line above
the upper surface (η = 1.025) versus the change in circulation parameter Ã. The arrows
along the line show the direction of hysteresis loop. The minimum of Vµ decreases
to small negative values with the increase of Ã toward Ãs, it remains nearly constant
(∼−0.03) for all stalled states, and then it increases as Ã is reduced below the range of
hysteresis and flow returns to a globally attached state.
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FIGURE 19. (Colour online) Minimum of Vµ along η = 1.025 on the upper surface as a
function of the circulation parameter. The hysteresis loop for ReM = 100 at Ã in the range
1.72 to 1.76 is demonstrated.

Similar to the ReM = 100 case, computed results show attached flow states for
ReM = 200 when Ã < 1.56 (see, for example, the streamline contours at Ã = 1.5 in
figure 20a) and for ReM = 300 when Ã < 1.48 (see figure 21a exhibiting a marginally
separated zone at Ã = 1.5). More detailed computations show that the first appearance
of a marginal separation zone for ReM = 200 is at Ã = 1.56, and when Ã is further
increased to 1.62 the flow exhibits a global separation and stall (see the streamline
contours of the post-stall state at Ã = 1.65 in figure 20b). Global separation for
ReM = 300 is first found at Ã = 1.55 (see the streamline contours of the post-stall
state at Ã = 1.6 in figure 21b). We find that Ãs = 1.62 for ReM = 200 and Ãs = 1.55
for ReM = 300. The computations for ReM up to 300 demonstrate that values of Ã
for the first appearance of separation and of global stall decrease with the increase
of ReM (compare figures 20a, 21a, both at Ã = 1.5). This is again in agreement
with predictions of MST as discussed for the case of ReM = 100. Moreover, the
computations show that at ReM = 100 the separation and global separation are laminar
and steady. Note that unsteady vorticity waves that propagate downstream appear at
the post-stall states inside the globally separated zones and the shedding point moves
upstream when ReM is increased from 100 to 300. At ReM = 300 the unsteady eddies
appear with the onset of global stall.

When ReM is increased above 300 the flow exhibits unsteadiness in the globally
attached flow (pre-stall) states for all values of Ã that are above those that correspond
to the MST stall prediction. For example, for ReM = 500 the flow is fully attached
and steady up to Ã = 1.4 (which is just below the MST stall prediction): see
figure 22(a). An instantaneous view of streamline contours in figure 22(b) shows
an unsteady globally attached state at Ã = 1.5 with localized separations generated
by small shedding vortical eddies. In this case, the streamwise velocity above and
all along the parabola upper surface remains positive in the mean. As Ã is increased
further, the unsteady waves grow in size with the increase in width of the boundary
layer. Ultimately, a globally unsteady separated flow is found at Ã = 1.68, where the
streamwise velocity near the parabola upper surface becomes negative, even in the
mean, and the maximum streamwise velocity along the grid line adjacent to the wall
does not grow with Ã. We find that Ãs = 1.68 for ReM = 500. These computations
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FIGURE 20. (Colour online) (a) Streamline contours for ReM = 200 and Ã= 1.5: attached
steady state. (b) Streamline contours for ReM = 200 and Ã= 1.65: stalled unsteady state.
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FIGURE 21. (Colour online) (a) Streamline contours for ReM = 300 and Ã = 1.5: marginally
separated steady state. (b) Streamline contours for ReM = 300 and Ã = 1.6: unsteady stall
state. Closed contours indicate the recirculation zones and the shedding of localized vortical
eddies.

demonstrate the appearance of unsteadiness in the pre-stall states and an increase of
both values of Ã for the first appearance of separation and for global stall when ReM is
above 300. We define ReM = 300 as the limit Reynolds number for laminar and steady
global stall states over the parabola (aerofoil nose).
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FIGURE 22. (Colour online) (a) Streamline contours for ReM = 500 and Ã = 1.4: attached
steady state. (b) Streamline contours for ReM = 500 and Ã = 1.5: unsteady globally attached
state. Closed contours indicate the shedding of localized vortical eddies along the upper
surface.

The flow states at ReM = 700, which is sufficiently above the limit value ReM = 300,
are studied in detail. The flow is fully attached up to Ã = 1.4 (which is slightly above
the MST stall prediction for this case): see figure 23(a). When Ã is increased above
1.4 (see, for example, figure 23b at Ã = 1.5, figure 23c at Ã = 1.7, and figure 23d at
Ã = 1.8), unsteady globally attached states are found with a local, steady clockwise
recirculation zone near the leading edge, followed by a secondary anticlockwise
recirculation zone and a tertiary eddy that breaks away and is the source of coherent
eddies that convect downstream. Similar states were also observed in Bhaskaran
& Rothmayer (1998). The steady separation bubble decreases in axial length with
increase of Ã. However, the streamwise velocity at these states above and along the
upper surface remains only slightly negative in the mean. The maximum streamwise
velocity found all across the boundary layer ahead of the separation zone continues to
grow with Ã, indicating a continued build-up of suction (lift) near the leading edge:
see figure 24. However, when Ã is further increased to 1.9 (figure 23e), a stalled
state develops. It is characterized by shorter and wider clockwise and anticlockwise
recirculation zones above the parabola upper surface along with no increase of the
maximum streamwise velocity (suction) ahead of the separation zone with Ã (with
respect to results for Ã = 1.8: see again figure 24). The tertiary and convective eddies
also increase in width. This indicates a stalled state. Detailed computations show
that Ãs = 1.88 for ReM = 700. The computations demonstrate the further increase of
the value of Ãs for appearance of global stall with increase of ReM above 300. The
unsteady post-stall state at Ã = 2 shows the further increase in size of the separation
zone and of the vortical eddies that convect downstream: see figure 23(f ).

As for the ReM = 100 case, we seek to demonstrate the possible existence of a stall
hysteresis loop at ReM = 700 by reducing Ã in small steps. When Ã is reduced from 2
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FIGURE 23. (Colour online) Streamline contours for ReM = 700 at: (a) Ã = 1.4: attached
steady state. (b) Ã = 1.5: unsteady globally attached flow (instantaneous view). (c) Ã = 1.7:
unsteady globally attached flow (instantaneous view). (d) Ã= 1.8: unsteady globally attached
state (instantaneous view). (e) Ã = 1.9: unsteady post-stall state (instantaneous view).
(f ) Ã = 2: unsteady post-stall state (instantaneous view). Closed contours in all frames
indicate the recirculation zones and the shedding of vortical eddies.

to 1.9 (see figure 25a) the same globally separated, unsteady flow solution is reached
as when increasing Ã from 1.8 to 1.9 (compare with figure 23c). This suggests that
the flow dynamics has only a global stall time-asymptotic state for Ã > Ãs = 1.88 (no
globally attached time-asymptotic state is found in this range of Ã). However, when
Ã is further reduced to 1.8 it is found that the flow remains globally separated: see
an instantaneous state of the flow in figure 25(b). This demonstrates the coexistence
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FIGURE 24. Streamwise velocity near the parabola leading edge along the surface-adjacent
grid line at various Ã. Note that the increase of maximum streamwise velocity ceases when Ã
increases from 1.8 to 1.9, indicating loss of suction and therefore stall.

of two time-asymptotic states at this value of Ã. The flow returns to an unsteady
globally attached state only when Ã is decreased to 1.75 and below. This demonstrates
the existence of a stall hysteresis loop with a maximal range between Ã = 1.75 and
1.88 for ReM = 700. Two different flow states exist in this range, one describing an
unsteady globally attached state and the other a globally stalled state. When this
information is used for a NACA 0012 aerofoil, it indicates a range of stall hysteresis
of 0.8◦ at Re= 44 000 – a small yet finite range, that can be detected by experimental
methods.

Using the various snapshots of figure 23, we plot the separated zone thickness at
the end of the static leading-edge bubble as a function of Ã: see figure 26. This is
identified by the height of the ψ = 5 contour line above the parabola upper surface.
The figure again demonstrates the onset of stall when Ã > 1.88 and the hysteresis
loop at ReM = 700. There is a clear increase in the zone thickness as Ã is increased
from 1.8 to 1.9 and to 2, indicating the onset of stall. The stall state persists as Ã is
decreased from 2 to 1.9 and to 1.8. The flow resumes an attached unsteady flow state
at Ã= 1.75.

We now present results of a power spectral (FFT) analysis of the computed unsteady
streamwise velocity Vµ along a wall-adjacent grid line around the parabola surface for
ReM = 700 when Ã> 1.4. We focus on a point µ= 6, η = 1.025 (x∗ = 17.49, y∗ = 5.9)
where the coherent convective waves are observed for all Ã > 1.4, and identify the
dominant non-dimensional frequency fdominant (frequency scaled by 2πRc/U∞) with the
maximum energy for each Ã. The results are summarized in figure 27. At the attached
flow states Ã < 1.4 the flow is steady and f = 0 for all points on the parabola. At the
unsteady, pre-stall state of Ã = 1.4 there is a sudden increase of fdominant to 0.062. The
dominant frequency stays around 0.064 for the range 1.5 6 Ã 6 1.8. As Ã is increased
further, fdominant also increases to 0.09 at Ã = 1.9 and Ã = 2. The spectral analysis
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FIGURE 25. (Colour online) A snapshot of streamline contours for ReM = 700 at: (a) Ã= 1.9
descending: unsteady stall state. (b) Ã= 1.8 descending: unsteady stall state. Closed contours
in the frames indicate the recirculation zones and the shedding of vortical eddies.
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FIGURE 26. (Colour online) Demonstrating the hysteresis stall loop at ReM = 700 from the
separation zone thickness at the end of the static leading-edge bubble as a function of Ã in the
range 1.5 to 2.

shows an increase of dominant frequency as the flow turns from pre- to post-stall
states (as Ã is increased). As Ã is decreased back along the stall hysteresis loop, the
frequency stays nearly constant (∼0.09). Then it decreases and as the flow reattaches,
a pre-stall dominant frequency is recovered. This change of dominant frequency can be
used as an additional indicator for the onset of leading-edge stall and an observability
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FIGURE 27. (Colour online) Variation of the dominant frequency at the point
µ= 6, η = 1.025 with Ã for ReM = 700.

parameter for control methodologies to delay stall: see, for example, the experimental
study by Pinier et al. (2007).

The convective waves observed in figures 23 and 25 are characterized by dominant
low-frequency convection of energy along the boundary layer downstream away from
the near-separation region. This helps the boundary layer to overcome the pressure
gradient influence and maintain a globally attached state. Moreover, we find that as the
external adverse pressure gradient becomes stronger with the increase of circulation
parameter in the range Ã< Ãs, the convective waves’ frequency slightly increases. This
allows the convection of energy downstream to further maintain a globally attached
state. However, once Ã > Ãs and a global stall appears, the greater adverse pressure
gradient dominates the flow and even the unsteady convective waves are not able to
remove enough energy to maintain the boundary layer in an attached state. This shows
that when ReM > 300 the convective unsteady coherent structures (which appear at
values of Ã slightly above MST prediction) become an integral part of the critical
balance between the viscous stresses in the boundary layer and the external adverse
pressure gradient. The balance between these three effects determines whether the
boundary layer is globally attached or stalled.

Additional simulations with further refined meshes at ReM = 1000 and 2100
were conducted, and exhibited similar behaviour. We find that at ReM = 1000 flow
unsteadiness appears when Ã > 1.3 and global stall onset occurs at Ãs = 2.05. At
ReM = 2100 flow unsteadiness appears when Ã > 1.2 and global stall onset occurs at
Ãs = 2.4.

The main results of the present simulations for ReM in the range 100 to 2100 are
summarized in figure 28. The computed universal lines of Ã versus ReM for the onset
of unsteadiness and global stall are shown. The line for the onset of unsteadiness
(dotted line) starts from ReM = 300, decreases monotonically with ReM, and is just
above the predicted stall line according to MST (Ruban 1982; Stewartson et al. 1982).
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FIGURE 28. Summary of computed results: dotted line, unsteadiness onset according to DNS
computations; solid line, global stall onset according to DNS computations; dashed line,
global stall onset according to RANS computations; dot-dashed line, stall onset according
to MST.

The line of global stall onset decreases up to the limit Reynolds number ReM = 300
and then reverses trend and increases with ReM. Moreover, in the range of ReM > 700
this line overlaps with the global stall onset line computed in Rusak & Morris (2011)
using a Reynolds-averaged Navier–Stokes (RANS) solver and employing the same
canonic model problem for high ReM flows (in the range between 700 and 100 000,
where accurate DNS simulations require a great deal of computational power).

The universal results from figure 28 are now used to calculate the properties of
the NACA 0012 wing section at a wide range of Re (based on the chord) from the
relatively low value of 6300 (which corresponds to ReM = 100) up to the moderately
high value of Re = 132 500 (which corresponds to ReM = 2100), and are added to
figure 1: see the compiled results in figure 29. Note that according to available data
(e.g. McCormick 1995; Anderson 2007), the flow over a smooth wing section in
this range of Re does not experience transition to turbulence in the nose region, yet
unsteady convective waves may appear. The numerical simulations calculated values
of angle of attack at onset of unsteadiness and onset of global stall are given by the
dotted and solid lines, respectively. Results from the Rusak & Morris (2011) RANS
canonic parabola calculations for Re between 40 000 and 9 million are given by the
dashed line. Also shown are the Rusak & Morris (2011) results of stall onset using
RANS computations for a NACA 0012 wing section at high Re flows in the range
of 40 000 to 9 million (dashed line with open squares). The MST predictions for
separation onset and stall onset are presented by the shaded solid and dot-dashed
lines, respectively. Experimental data for stall onset from the classical studies of
Abbott & von Doenhoff (1958) (solid line with diamonds) and Jacobs & Sherman
(1937) (solid line with solid squares) and from the recent study of Yen & Huang
(2009) (solid line with triangles) are presented. The present simulation results exhibit
agreement of the unsteadiness onset with the MST stall prediction (within half a
degree) and of the global stall onset with the experimental data and the two RANS
computations (within 1.5◦). We find that MST prediction may be related to the present
simulations’ prediction of unsteadiness onset. The simulations’ global stall prediction
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NACA 0012 – Abbot & von Doenhoff (1958)
NACA 0012 – Jacobs & Sherman (1937)
NACA 0012 – Yen & Huang (2009)
NACA 0012 – Ruban/Stewartson et al. (1982)
NACA 0012 – Ruban/Stewartson et al. (1982)
NACA 0012 – RANS Morris & Rusak (2011)
Parabola – RANS Morris & Rusak (2011)
Parabola – DNS DNS unsteadiness onset
Parabola – stall onset

104 105 106

Re
103 107
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FIGURE 29. Summary of major angles of attack for the NACA 0012 wing section as a
function of chord Reynolds number Re: dotted line, unsteadiness onset according to the
present simulations; black solid line, global stall onset according to present numerical
simulations; dashed line, global stall onset according to Rusak & Morris (2011) RANS
computations; shaded solid line, separation onset according to MST; dot-dashed line, stall
onset according to MST. Experimental data for stall onset: solid line with diamonds, Abbott
& von Doenhoff (1958); solid line with solid squares, Jacobs & Sherman (1937); solid line
with triangles, Yen & Huang (2009). The solid line with open squares shows the results
from Rusak & Morris (2011) of stall onset using RANS computations for a NACA0012
wing section.

may provide an upper limit for the onset of stall on the aerofoil. This is due to
the difference in geometry between a semi-infinite parabola and the aerofoil at some
distance away from the leading edge. The parabola can maintain a globally attached
flow state at slightly higher angles of attack due to the more favourable pressure
gradient that results from its ever-expanding geometry while, in the case of an aerofoil,
the geometry narrows beyond the nose region, adding to the adverse pressure gradient
and causing a slightly earlier stall.

5. Conclusions
The inception of leading-edge stall on two-dimensional, smooth, thin aerofoils at

low to moderately high Reynolds number flows in the range O(103) to O(105) can be
investigated by a reduced-order, multiscale model problem. The model (simplified)
problem consists of a uniform incompressible viscous flow past a semi-infinite
parabola with a far-field circulation governed by a parameter Ã that is related to
the aerofoil’s angle of attack, nose radius of curvature, thickness ratio, and camber.
The parameter Ã determines the pressure gradient along the parabola. Numerical
simulations of the unsteady flow are conducted at various ReM and Ã. The universal
values of Ã for the onset of flow unsteadiness in the form of vortical eddies and of Ãs

for the onset of a global nose-separation zone are determined as a function of ReM: see
figure 28. Computed results show agreement with marginal separation theory at low
ReM and with available experimental data and RANS computations at higher ReM: see
the example in figure 29.

The present study reveals the fundamental nature of leading-edge stall on a
stationary aerofoil. It is found that there exists a limit ReM (∼300). When ReM is
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below this limit, the flow is laminar and steady, even at post-stall states, and is
dominated by the increasing effect of the adverse pressure gradient which eventually
overcomes the viscous stresses ability to keep the boundary layer attached to the
aerofoil. The present prediction of onset of stall in this flow regime agrees with MST
results (Ruban 1982; Stewartson et al. 1982): Ãs decreases with ReM. However, when
ReM increases above the limit value of 300 and Ã is increased beyond the MST
prediction for stall, coherent flow unsteadiness appears inside the boundary layer in the
form of convective eddies that are shed from the marginal separation zone and, as a
result, Ãs increases with ReM. These waves grow in size with either Ã or ReM. These
unsteady convective structures relax the effect of the adverse pressure gradient on the
viscous boundary layer to delay the onset of stall in the mean flow to higher values of
Ãs compared to MST, in agreement with experimental data.

Beyond these conclusions, this stall mechanism suggests that when additional means
to promote shedding are added, additional energy can be convected downstream along
the boundary layer, away from the near-separation zone to help delay stall, beyond the
natural case, to even higher values of Ã. We are currently conducting studies of flow
reattachment and delay of stall by modelling oscillating jet actuators located in front of
the separation point and operating at the dominant frequencies shown in figure 27.
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Appendix
A.1. Outer expansion

In the outer region, we use the reference parameters c,U∞, and p∞ to scale the axial
and vertical distances, velocity components, and pressure, respectively. Specifically,
x̄ = x/c, ȳ = y/c. The dimensionless equations governing an unsteady, incompressible
flow of a Newtonian fluid are (Batchelor 1967)

∇ ·V = 0, (A 1)
∂V
∂t
+ V ·∇V =−∇p+ 1

Re
∇2V . (A 2)

Here V is the dimensionless velocity vector and p is the dimensionless pressure.
The flow is governed by the no-slip and no-penetration conditions along the aerofoil
surface.

Typically Re� 1, and the effect of viscosity is localized to the very thin boundary
layers and plays only a secondary (or even smaller) role in determining the pressure
distribution along the aerofoil. We also assume that the boundary-layer thickness is
much smaller than the aerofoil thickness, so that Re� 1/δ2. Then, except for the
boundary layers near the aerofoil surface, the flow in the outer region is dominated by
the steady and inviscid flow equations with only the no-penetration boundary condition
along the aerofoil surface,

∇ ·V = 0, (A 3)
V ·∇V =−∇p. (A 4)
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The velocity and pressure distributions along the aerofoil surfaces from this inviscid
solution are also the velocity and pressure distributions at the edge of the boundary
layers.

Since typically the aerofoil’s thickness ratio is small (0 < δ� 1), it can be shown
(see Rusak 1994) that the solution of (A 3) and (A 4) in the outer region (around most
of the aerofoil except for the nose region) is dominated by the classical linear aerofoil
theory. Then the non-dimensional velocity potential Φ̄, where V = ∇Φ̄, scaled with
U∞c, is described near the leading edge by the asymptotic expansion

Φ

U∞c
= Φ̄ ≈ x̄+ δ

(
2h
√

r̄ sin
θ

2
+ 2Aw0

√
r̄ cos

θ

2

)
+ O(r̄ log r̄, r̄). (A 5)

Here, r̄ =√x̄2 + ȳ2→ 0 and θ = arctan(ȳ/x̄). Also,

w0 = 1− 1
πA

∫ π
0

dCa

dx̄
(ϑ) dϑ, where x̄= (1− cosϑ)/2. (A 6)

This shows that there is a mis-ordering in the magnitude of the disturbances to a
uniform flow for every θ when r̄ becomes smaller than Rc. Therefore, a rescaling in
the radial direction is needed around the leading edge of the aerofoil.

A.2. Inner expansion
In the inner region around the aerofoil’s nose (0 6 x/c < Rc/c), scaled coordinates
and flow parameters are used to correctly describe the local nonlinear behaviour of
the flow, which includes the extreme velocity changes due to the near-stagnation and
suction areas around the nose. There, we use the nose radius of curvature Rc = 2δ2h2c
to scale the axial and vertical coordinates x∗ = x/Rc and y∗ = y/Rc and time is scaled
so that t∗ = t U∞/Rc. The problem in the nose region becomes, to leading order, the
flow of an incompressible, viscous stream described by the dimensionless unsteady
Navier–Stokes equations (Rusak 1994):

∇
∗
·V ∗ = 0, (A 7)

∂V ∗

∂t∗
+ V ∗ ·∇∗V ∗ =−∇∗p∗ + 1

ReM
∇
∗2V ∗. (A 8)

Equations (A 7) and (A 8) show that the inner flow problem is characterized by a
modified Reynolds number ReM = ReRc/c, which is based on nose radius of curvature
and is much smaller than Re. In this way, the local viscous effects around the aerofoil
nose are correctly accounted for, specifically when the flow tends to separate and
indicate the onset of stall. Moreover, in the inner region, to leading order, the aerofoil
is described by a canonic smooth parabola y∗ = ±√2x∗ (which sets the radius of
curvature to unity). Along the parabola’s upper and lower surfaces the no-penetration
and no-slip conditions are satisfied. In the far field of the inner region the flow is
steady and viscous effects are negligible. The velocity potential Φ∗, where V ∗ = ∇Φ∗,
is scaled with U∞Rc and in the far field of the inner region (Rusak 1994) is given by

Φ

U∞Rc
=Φ∗ ≈ x∗ +√2r∗ sin

θ∗

2
+ Ã
√

2r∗ cos
θ∗

2
+ O(log r∗, θ∗). (A 9)

Here, r∗ =√x∗2 + y∗2 →∞ and θ∗ = arctan(y∗/x∗). Equation (A 9) shows that the
inner-region far-field flow is near uniform and with higher-order correction terms that
relate to a symmetric flow due to the symmetric nose curvature and an asymmetric
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circulatory flow with the circulation parameter Ã. Equations (A 7), (A 8) and (A 9)
show that in the inner region, the flow is governed by the modified Reynolds number
ReM and the circulation parameter Ã, which is determined by the matching process
in the following section. The parameter Ã is directly associated with the pressure
distribution and its gradient, and thereby affects the boundary-layer behaviour along
the parabola surface.

A.3. Matching
The matching of the inner and the outer regions is established in an overlap region
between them and outside the thin boundary layer, where the flow is dominated by
inviscid effects. The matching is carried out with the help of an intermediate overlap
region η(δ), where rη = r̄/η(δ) held fixed in the limit δ→ 0 and δ2� η(δ)� 1. Then
as δ→ 0, η(δ)/δ2→∞, r̄ = rηη(δ)→ 0 and r∗ = ηrη/(2h2δ2)→∞. The parameter
η(δ) represents a whole order-class of limits between the inner and the outer regions,
where η(δ) = δk and k is between 0 and 2. For matching, the expansions in (A 5) and
(A 9) must read the same up to a certain order when expressed in terms of rη and
θ∗ = θ , as follows. Outer:

Φ = Φ̄U∞c

≈ U∞c

[
x

c
+ δ

(
2h
√

rηη sin
θ

2
+ 2Aw0

√
rηη cos

θ

2

)
+ O(rηη log rηη, rηη)

]
. (A 10)

Inner:

Φ = Φ∗U∞Rc

≈ U∞Rc

(
x

Rc
+
√

2ηrη
2h2δ2

sin
θ

2
+ Ã

√
2ηrη
2h2δ2

cos
θ

2
+ O

(
log

2ηrη
2h2δ2

, θ

))

= U∞c

(
x

c
+ 2hδ

√
ηrη sin

θ

2
+ 2hδÃ

√
ηrη cos

θ

2
+ O

(
log

2ηrη
2h2δ2

, θ

))
. (A 11)

The matching between (A 10) and (A 11) yields 2hδÃ= 2Aw0δ or Ã= Aw0/h.
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