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bending, skewing and finite-size effects
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Invariant solutions of shear flows have recently been extended from spatially periodic
solutions in minimal flow units to spatially localized solutions on extended domains.
One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic
snaking, a process by which steady-state solutions grow additional structure smoothly
at their fronts when continued parametrically. Homoclinic snaking is well understood
mathematically in the context of the one-dimensional Swift–Hohenberg equation.
Consequently, the snaking solutions of plane Couette flow form a promising
connection between the largely phenomenological study of laminar–turbulent
patterns in viscous shear flows and the mathematically well-developed field of
pattern-formation theory. In this paper we present a numerical study of the snaking
solutions of plane Couette flow, generalizing beyond the fixed streamwise wavelength
of previous studies. We find a number of new solution features, including bending,
skewing and finite-size effects. We establish the parameter regions over which snaking
occurs and show that the finite-size effects of the travelling wave solution are due to
a coupling between its fronts and interior that results from its shift-reflect symmetry.
A new winding solution of plane Couette flow is derived from a strongly skewed
localized equilibrium.

Key words: nonlinear dynamical systems, pattern formation, transition to turbulence

1. Introduction
Invariant solutions of the Navier–Stokes equations are known to play an important

role in the dynamics of turbulence at low Reynolds numbers (Kawahara, Uhlmann
& van Veen 2012). Invariant solutions in the form of equilibria, travelling waves
and periodic orbits have been computed precisely for canonical shear flows such
as pipe flow (Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Duguet, Pringle &
Kerswell 2008), plane Couette flow (Nagata 1990; Kawahara & Kida 2001; Viswanath
2007; Gibson, Halcrow & Cvitanović 2009) and plane Poiseuille flow (Waleffe 2001;
Gibson & Brand 2014). The development of the invariant-solutions approach to
turbulence has largely occurred in the simplified context of small, periodic domains
or ‘minimal flow units’ (Jiménez & Moin 1991). More recently, invariant solutions
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with localized support have been computed for flows on spatially extended domains.
These include spanwise-localized equilibria and travelling waves of plane Couette flow
(Schneider, Gibson & Burke 2010a; Schneider, Marinc & Eckhardt 2010b; Deguchi,
Hall & Walton 2013; Gibson & Brand 2014), and spanwise-localized travelling waves
(Gibson & Brand 2014) and a periodic orbit (Zammert & Eckhardt 2014a) of plane
Poiseuille flow. Avila et al. (2013) computed a streamwise-localized periodic orbit of
pipe flow, Mellibovsky & Meseguer (2015) a streamwise-localized periodic orbit of
plane Poiseuille flow, Brand & Gibson (2014) a doubly localized equilibrium solution
of plane Couette flow and Zammert & Eckhardt (2014b) a doubly localized periodic
orbit of plane Poiseuille flow. The existence and structure of these spatially localized
solutions suggests that they are relevant to large-scale patterns of laminar–turbulent
intermittency, such as turbulent stripes, spots and puffs. For example, the periodic
orbit of Avila et al. (2013) shares the spatial structure and complexity of turbulent
puffs in pipe flow, and its bifurcation sequence provides a compelling explanation of
the development of transient turbulence in pipes. The doubly localized equilibrium of
Brand & Gibson (2014) has the characteristic shape and structure of turbulent spots
in low-Reynolds-number plane Couette flow, and for a range of Reynolds numbers
sits on the boundary between laminar flow and turbulence. Analysis of these localized
solutions has so far focused on their bifurcations from spatially periodic solutions
(Chantry, Willis & Kerswell 2014; Mellibovsky & Meseguer 2015) and linear analysis
of their decaying tails (Brand & Gibson 2014; Gibson & Brand 2014).

The spanwise-localized invariant solutions of plane Couette flow of Schneider
et al. (2010b), are notable for being the first localized solutions discovered, for
their relation to the widely studied equilibrium solution of Nagata (1990), Clever
& Busse (1997) and Waleffe (1998) (hereafter NBCW), and for exhibiting the
particularly interesting feature of homoclinic snaking. Homoclinic snaking is a
process by which localized solutions grow additional structure at their fronts in
a sequence of saddle-node bifurcations when continued parametrically (Woods &
Champneys 1999, Burke & Knobloch 2006, 2007a, Schneider et al. 2010a; see
also § 3.1). Homoclinic snaking occurs in a number of pattern-forming systems with
localized solutions, including binary fluid convection (Batiste & Knobloch 2005) and
magneto-convection (Batiste et al. 2006), and it is well-understood mathematically
for the one-dimensional Swift–Hohenberg equation (Burke & Knobloch 2006,
2007a; Beck et al. 2009). Knobloch (2015) provides a comprehensive review of
localization and homoclinic snaking in dissipative systems. Though no explicit
connection between the Swift–Hohenberg and the Navier–Stokes equations is known,
the striking similarity of the localized plane Couette solutions and the localized
solutions of Swift–Hohenberg with cubic–quintic nonlinearity suggests there might be
a mathematical connection between the two systems. These similarities include the
structure of localization, the snaking behaviour, the even/odd symmetry of the snaking
solutions and the existence of asymmetric rung solutions (Schneider et al. 2010a).
One might envision, for example, that a reduced-order model of the localized solutions
(Hall & Sherwin 2010; Hall 2012; Beaume et al. 2015) might relate the spanwise
variation of their mean streamwise flow to the cubic–quintic Swift–Hohenberg
equation. Such a relation would link the mathematically well-developed field of
pattern-formation theory to the localized solutions of shear flows cited above, or
to recent numerical studies of laminar–turbulent pattern formation in extended shear
flows (Barkley & Tuckerman 2005; Duguet, Schlatter & Henningson 2010; Tuckerman
et al. 2014).

In support of developing such connections between pattern-formation theory and
shear flows, we present in this paper a more detailed analysis of the snaking solutions
of Schneider et al. (2010a,b). In particular, we examine the effects of varying the
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streamwise wavelength Lx of the solutions compared with the fixed Lx = 4π of
Schneider et al. (2010a). We find that homoclinic snaking is robust in Lx and that
the snaking region moves upwards in Reynolds number with decreasing Lx. The
ranges of streamwise wavelength and Reynolds number in which snaking solutions
exist is found to be 1.7π 6 Lx 6 4.2π and 165 6 Re 6 2700. In addition, we find
several interesting solution properties that are suppressed at the parameters studied
in Schneider et al. (2010a). As Lx decreases below 4π and Re increases above
165, the localized solutions deform appreciably compared with their strictly periodic
counterparts, the localized equilibria exhibiting a linear skewing and the travelling
waves a quadratic bending. We show that skewing and bending are related to the
respective symmetries of the equilibrium and travelling wave solutions, and that
bending induces finite-size effects in the travelling waves that scale as the inverse of
their spanwise width. In contrast, skewing induces no such finite-size effects on the
equilibrium solution. We show that the skewed solutions lead to a new periodically
winding form of the NBCW equilibrium solution of plane Couette flow.

The structure of this paper is as follows. Section 2 outlines the problem formulation
and numerical methods. Section 3 describes the features of the localized solutions at
fixed streamwise wavelength Lx, including homoclinic snaking, bending, skewing and
finite-size effects. Section 4 discusses the effects of varying streamwise wavelength,
including the regions of wavelength and Reynolds number over which snaking occurs,
the breakdown of snaking outside these regions, and the stability of the solutions.
Section 5 discusses the periodic pattern in the interior of the localized solutions and
its relation to the NBCW solution. The new winding solution is presented in § 5.

2. Problem formulation, methodology and conventions

Plane Couette flow consists of an incompressible Newtonian fluid between two
infinite parallel plates moving at constant relative velocity. The Reynolds number is
given by Re = Uh/ν where U is half the relative wall speed, h is half the distance
between the walls and ν is the kinematic viscosity. The x = (x, y, z) coordinates are
aligned with the streamwise, wall-normal and spanwise directions, where streamwise
is defined as the direction of relative wall motion. After non-dimensionalization, the
walls at y=±1 move at speeds ±1 in the x direction, and the laminar velocity field
is given by yex. We decompose the total fluid velocity into a sum of the laminar flow
and the deviation from laminar: utot = yex + u. Hereafter we refer to the deviation
field u(x, t)= [u, v, w](x, y, z, t) as ‘velocity.’ In these terms the laminar solution is
specified by u= 0, p= 0 and the Navier–Stokes equations take the form

∂u
∂t
+ y

∂u
∂x
+ vex + u · ∇u=−∇p+ 1

Re
∇2u, ∇ · u= 0. (2.1)

The computational domain Ω = [−Lx/2, Lx/2] × [−1, 1] × [−Lz/2, Lz/2] has
periodic boundary conditions in x and z and no-slip conditions at the walls.
For spanwise-localized solutions, Lz is set to be large so that Ω approximates
a spanwise-infinite domain. We use L̂z to denote the spanwise wavelength of
nearly periodic, small-wavelength patterns within the spanwise-localized solutions;
typically L̂z � Lz. In the present work we impose zero mean pressure gradient in
all computations, leaving the mean (bulk) flow to vary dynamically. As described in
Gibson, Halcrow & Cvitanović (2008) and Gibson et al. (2009), direct numerical
simulations are performed with Fourier–Chebyshev spatial discretization with
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2/3-style dealiasing and semi-implicit time-stepping. Travelling-wave and equilibrium
solutions of (2.1) are computed with a Newton–Krylov hookstep algorithm. Spatial
discretizations are chosen so that truncated Fourier coefficients are O(10−5) at most
and truncated Chebyshev coefficients are O(10−9). The computational domain length
Lz is chosen so that the magnitude of velocity is no more than 10−3 at z = ±Lz/2.
The adequacy of spatial resolution was tested by recomputing solutions at higher
resolution. Most of the results discussed in § 3, for example, were computed with
24 × 33 × 512 gridpoints on a 3π × 2 × 24π domain, for Reynolds numbers in the
range 200 6 Re 6 350. All software and solution data are available for download at
http://www.channelflow.org.

The equilibrium and travelling-wave solutions discussed here are all steady states
(in a fixed or travelling frame of reference, respectively), so the energy dissipation
rate balances the power input from wall shear instantaneously:

D= I = 1
2Lx

∫ Lx/2

−Lx/2

∫ Lz/2

−Lz/2

(
∂u
∂y

∣∣∣∣
y=−1

+ ∂u
∂y

∣∣∣∣
y=1

)
dx dz. (2.2)

Note that D is defined in terms of the deviation velocity u and not the total velocity
utot, so that D measures the excess energy dissipation of spanwise-localized solutions
over the laminar flow, which has D = 0. Since the internal structure of a spanwise-
localized solutions stays roughly constant as non-laminar structure grows at its fronts,
D serves as a good measure of the spanwise width of a solution. The lack of Lz
normalization makes the D of a spanwise-localized solution insensitive to the choice
of spanwise length for the computational domain in which it is embedded.

For discussing the symmetries of the flow we follow the conventions of Gibson &
Brand (2014), here adding the action of symmetries on the pressure field. Let

σx : [u, v,w, p](x, y, z)→[−u, v,w, p](−x, y, z),
σy : [u, v,w, p](x, y, z)→[u,−v,w, p](x,−y, z),
σz : [u, v,w, p](x, y, z)→[u, v,−w, p](x, y,−z),

τ (1x, 1z) : [u, v,w, p](x, y, z)→[u, v,w, p](x+1x, y, z+1z),

 (2.3)

and let concatenation of subscripts indicate products, e.g. σxy = σxσy. For (`x, `z)-
periodic fields we define two half-wavelength translation operators τx= τ(`x/2, 0) and
τz= τ(0, `z/2). The standard group-theoretic angle-bracket notation indicates the group
formed by a set of generators; for example 〈σxy, τxσz〉 = {e, σxy, τxσz, τxσxyz}, where e
is the identity (Dummit & Foote 2004).

3. Solution properties at fixed streamwise wavelength
3.1. Snaking

The primary notable feature of the localized solutions is their homoclinic snaking.
Under continuation in Reynolds number at fixed streamwise wavenumber, the localized
equilibrium and travelling-wave solutions follow curves that snake upwards in the
Re,D plane, as shown in detail in figure 1 and over a larger range of D in figure 4(d).
Velocity fields corresponding to the labelled points in figure 1(a) are shown in figure 2.
Figure 2(a–c) shows that the travelling-wave solution grows additional structure at
the solution fronts as it moves upwards in D along the snaking curve, while the
interior structure remains nearly constant. The structure of the fronts is the same at
alternating saddle-node points (a,c), while the saddle-node point (b) between them has
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FIGURE 1. (Colour online) Homoclinic snaking of localized solutions at Lx = 3π.
(a) Snaking curves at low D (small spanwise width) for localized equilibrium (EQ),
travelling-wave (TW) and rung (RN) solutions. Labels indicate the solutions shown as
velocity fields in figure 2. (b) Snaking curves at high D (large spanwise width). Filled
circles indicate the points of zero skewing (for equilibria) and zero bending (for travelling
waves) along the snaking curves; signed open circles mark the positions and signs of the
maxima in magnitude of skewing and bending (see § 3.3). Pressure fields for the labelled
points are shown in figure 3. Both subplots are details of the Lx=3π snaking curve shown
in figure 4(d).

front structure of opposite streamwise sign. Note that due to the σxy symmetry of plane
Couette flow, every travelling-wave solution u with wave speed cx has a symmetric
partner σxyu with wave speed −cx. The σxyu symmetric partner of figure 2(b) has
fronts with the same structure and streamwise sign as figure 2(a,c).

Figure 1(a) also shows ‘rung’ solutions that bifurcate from the equilibrium solution
in a pitchfork bifurcation near the saddle-node bifurcation points of the equilibrium
and connect to the travelling wave near their saddle-node points (or vice versa). The
rung solutions are asymmetric, as if formed from an amplitude envelope that drifts
in the spanwise direction as the solution grows away from its pitchfork bifurcation
point (see Kao, Beaume & Knobloch 2014, figure 6). The rung solutions can also be
understood as a combination of two solutions near the saddle-node bifurcation point,
with the same Reynolds number and the same internal structure, but with different
spanwise widths D. For example, the equilibria marked 2d and 2f in figure 1(a) and
depicted as streamwise velocity fields in figure 2(d, f ) are indistinguishable within
the interior −5 < z < 5. But their differing values of D indicate different spanwise
widths. The contour lines of the fronts of 2( f ) extend towards |z| ≈ 9, whereas those
of 2(d) reach just |z| ≈ 7. The rung solution shown as figure 2(e) and marked 2e in
figure 1(a) can then be understood as splicing together the left half of figure 2(d)
and the right half of figure 2( f ). This splicing can be done over a range of Re in the
interior of the saddle-node bifurcation, i.e. along the black lines of the rung branches
shown figure 1(a). The splicing construction is necessarily inexact, since the rung
solutions have no symmetries and hence travel in both x and z, compared with the
equilibrium, which is fixed. However, it is close enough that such spliced equilibria
converge quickly to the rung solutions under Newton–Krylov hookstep search. The
rung solutions in this paper were computed by splicing and refinement, followed by
continuation in Reynolds number.
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FIGURE 2. (Colour online) Velocity fields of localized solutions illustrated by contours
of streamwise velocity in the y = 0 midplane, u(x, 0, z) and arrow plots of the
streamwise-averaged cross-stream velocity, [v̄, w̄](y, z). Eight contour levels are evenly
spaced between ±0.9, with negative u in dashed blue lines and positive in solid red.
Contour lines for ū = 0 are superimposed on the arrow plots. (a–c) The travelling-wave
(TW) solution at the three successive lower saddle-node bifurcation points marked on the
snaking curve in figure 1(a). (d, f ) The equilibrium (EQ) solution at Re= 260 above and
below an upper saddle-node bifurcation, and (e) the rung (RN) solution at Re= 260, at
points labelled in figure 1(a). The solution is shown for Lx = 3π and on a subset of the
Lz = 16π computational domain.

3.2. Symmetries of localized solutions

The differences between travelling waves, equilibria and rungs are intimately related
to the different symmetries of those solutions, which can be understood in terms
of symmetry-breaking bifurcations of the more symmetric, spatially periodic NBCW
solution. This is discussed in detail in Gibson & Brand (2014); here we present a
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brief summary. With proper placement of the z origin, the travelling waves have a
τxσz ‘shift–reflect’ symmetry. That is, a travelling-wave solution satisfies u= τxσzu or

[u, v,w, p](x, y, z)= [u, v,−w, p](x+ `x/2, y,−z). (3.1)

Solutions with this symmetry can travel in x but not z, since the inversion in z about
the origin locks the z phase of the solution, but no such restriction exists for x. For
similar reasons, the travelling waves can have non-zero mean streamwise velocity,
but their mean spanwise velocity must be zero. The τxσz symmetry of the localized
travelling waves arises from a subharmonic-in-z bifurcation of the (`x, `z)-periodic
NBCW solution, which has symmetries 〈τxσz, τxzσxy〉 when taken in the spatial phase
of Waleffe (2003), The subharmonic-in-z bifurcation necessarily breaks the τxzσxy

symmetry, since this symmetry implies `z periodicity, as follows. If τxzσxyu = u,
then (τxzσxy)

2u= u. But a brief calculation shows that (τxzσxy)
2 = τ(0, `z). Thus, the

bifurcated solution loses the τxzσxy symmetry of NBCW and retains only τxσz.
The localized equilibrium solution has σxyz inversion symmetry, satisfying

[u, v,w, p](x, y, z)= [−u,−v,−w, p](−x,−y,−z). (3.2)

As a result of the inversion of all velocity components about the origin, the
spanwise-localized solutions with this symmetry are prevented from travelling in x or
z, and the spatial average of all velocity components is zero. The σxyz symmetry of
the localized equilibrium arises from a similar bifurcation of a phase-shifted NBCW
solution. Shifting the NBCW solution by a quarter-wavelength in z, u → τ 1/2

z u,
changes each of its symmetries s to the conjugate symmetry τ−1/2

z sτ 1/2
z (Gibson

et al. 2009). A brief calculation shows that the conjugated symmetry group of
the phase-shifted NBCW solution is 〈τxzσxy, σxyz〉. The τxzσxy symmetry implies
`z-periodicity, as before, so the subharmonic-in-z bifurcation breaks the τxzσxy

symmetry but retains σxyz.
The symmetries of the travelling-wave and equilibrium solutions and the lack of

symmetry in rung solutions are evident in the velocity-field plots shown in figure 2.
The z-mirror, x-shift τxσz travelling-wave symmetry (3.1) is particularly apparent in
the fronts of the midplane u contour plots of figure 2(a–c), and an even z-mirror
symmetry is apparent in the corresponding x-averaged cross-stream [v̄, w̄](y, z) plots.
It is also evident from these plots why the travelling-wave solution travels in x. In
each of figure 2(a–c), both the u(x, 0, z) plots and the [v̄, w̄](y, z) plots show a clear
imbalance between the positive/negative streamwise streaks. In comparison, for the
equilibrium solutions, the σxyz symmetry of the equilibrium matches each streamwise
streak at negative z with an equal streak at positive z of opposite sign. The rung
solution figure 2(e), in contrast, has no symmetry at all. The lack of symmetry in
the rungs is due fundamentally to their symmetry-breaking bifurcations from the
travelling-wave and equilibrium solutions. It can also be understood physically as
a consequence of the formation of rungs via splicing as described in § 3.1, which
clearly breaks the σxyz symmetry of the equilibrium solution (or the τxσz symmetry
if constructed by splicing travelling waves). The complete lack of symmetry in rung
solutions means they generally have non-zero wave speeds and non-zero net velocity
in both the streamwise and spanwise directions.
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3.3. Bending, skewing and finite-size effects
The equilibrium (EQ), travelling-wave (TW) and rung solutions (RN) shown as
velocity fields in figure 2 are at low D and thus have small spanwise width. The
three different types of solutions appear at first glance to consist of a few copies of
the same spanwise-periodic structure placed side-by-side, with fronts on either side
that taper to laminar flow. This description, however, is neither entirely accurate nor
complete. First of all, the interior structure of the three types of solutions must differ
at least slightly because the solution types move at different wave speeds (cx= cz= 0
for equilibria, cx 6= 0, cz = 0 for travelling waves and cx 6= 0, cz 6= 0 for the rungs).
But further differences between the three solutions types become apparent at higher
D and greater spanwise width. In this subsection we show that:

(i) the EQs skew, displaying a linear tilt in x against z (figure 3a);
(ii) the TWs bend, displaying a quadratic curvature in x against z (figure 3b);

(iii) the EQ snaking region has constant bounds in Re (figure 4d);
(iv) the TW snaking region is wider but converges to the EQ’s as D−1 (figure 4d);
(v) the TW’s streamwise wave speed decreases to zero as D−1, (figure 4c);
(vi) the EQ’s interior structure is periodic and winds in x, z (figure 3a); and

(vii) the TW’s interior structure is non-periodic and slowly modulated in z (figure 3b).

The common thread among these phenomena is the interplay between the fronts
and the interior structure. Much of the above can be understood by assuming that the
fronts are the determining structures of the solutions, and viewing the other properties
as a consequences of the fronts and their orientations, as determined by the solution
symmetries.

In this paragraph we present a brief sketch of the interplay between the fronts,
symmetries and solution properties. A fully detailed presentation follows in the
remainder of the subsection. For the equilibrium, the odd symmetry and opposite
orientation of the fronts about the origin produces a linear x, z skew within the
solution’s interior. The uniform linear skew allows for periodic structure in the
interior that winds linearly in x, z. The winding periodic structure oscillates with D,
but is otherwise independent of the solution’s overall spanwise width. Consequently,
many equilibrium solution properties are independent of the overall spanwise width. In
contrast, for the travelling wave, the even z-mirror symmetry and similar orientation of
the fronts produces quadratic x, z bending in the interior. This curvature necessarily
breaks the periodicity of the solution’s interior structure and couples the interior
structure and global properties to the spanwise width. The wave speed, bending,
snaking region and interior modulation of the travelling wave all vary according to
the relative size of the fronts to the spanwise width, that is, as D−1.

Bending and skewing are most clearly illustrated in terms of the solution pressure
fields for the points marked on the snaking curve of figure 1(b). The interior structure
of the equilibrium solution in figure 3(a) is oriented along a diagonal line in the x, z
plane, whereas that of the travelling wave in figure 3(b) curves upward in x with
increasing z. We call the former effect skewing and the latter bending. Skewing is
an x, z-odd phenomenon associated with the σxyz equilibrium symmetry (3.1), which
gives an odd symmetry p(x, z)= p(−x,−z) in the y= 0 midplane. Similarly, bending
is x, z-even and associated with the τxσz travelling-wave symmetry (3.2), which gives
an even symmetry p(x, z) = p(x + `x/2, −z) in the midplane. We quantify skew or
bending by the slope (dx/dz) or curvature (d2x/dz2) of an interpolating function that
passes through the local minima and maxima of the midplane pressure field. Measured
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FIGURE 3. (Colour online) Bending and skewing. Contour plots of pressure p(x, 0, z) in
the y = 0 midplane are shown for localized equilibrium (EQ) and travelling-wave (TW)
solutions with maximum and zero skewing and bending, corresponding to points marked
on figure 1(b). (a) EQ at maximum skewing, (b) TW at maximum bending, (c) EQ at zero
skewing, and (d) TW at zero bending. Eight contour levels are evenly spaced between
p=±0.025, dashed blue for negative p and solid red for positive. The solution is shown
for Lx = 3π and on a subset of the Lz = 16π computational domain.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

17
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.177


Homoclinic snaking in plane Couette flow 539

this way, bending and skewing are nearly constant throughout the interior of any given
solution, as illustrated by the lines of constant slope or curvature in figure 3.

It is notable that the fronts of equilibrium and travelling-wave solutions are
indistinguishable at maximum skew/bend (for example, the right-hand sides near
z ≈ 20 in figure 3a,b) and also at zero skew/bend (figure 3c,d). The fronts on the
left-hand sides are determined from the right by symmetry. For the equilibrium, the
odd p(x, z) = p(−x, −z) symmetry means the dx/dz slope of the structure has the
same sign and magnitude at both the left and right fronts, so that the two fronts can
be connected by a uniform periodic structure with constant slope. Importantly, the
constant linear slope means the equilibrium solution can exist two steps higher up in
D (spanwise width) on the snaking curve, with the same internal winding structure
and the same fronts, simply by adding more of the same interior periodic winding
structure (or one step by adding half as much and flipping the solution with σz). The
fact that the equilibrium solution can be extended in spanwise width this way with no
change in interior structure thus explains why it snakes in a fixed region of Reynolds
numbers, independently of D.

The even p(x, z) = p(x + `x/2, −z) symmetry of the travelling wave, on the other
hand, means that the fronts impose a dx/dz slope with opposite signs at either
end, so that the line connecting them generally must curve, as in figure 3(b). We
observe two features of this curvature in all localized travelling-wave solutions. First,
the curvature is constant throughout the solution interior, so that the slope changes
uniformly throughout. Thus, in marked contrast to the equilibrium, the pattern on the
interior of travelling wave is not periodic, but instead changes smoothly throughout.
This is apparent in the changing relative streamwise phase of adjacent pressure
minima and maxima of the travelling wave in figure 3(b), but also more subtly in
the long-z modulation of the pressure field, which is seen most clearly in the change
of negative pressure contours from one end of the solution to the other. The positive
pressure field has a similar modulation, which is less apparent here but can be
highlighted by a different choice of contour levels. Second, the slopes at the fronts
vary between fixed bounds, the same bounds as for equilibria. Consequently, as the
solution widens upwards along the snaking curve, the curvature decreases, and the
interior structure becomes more periodic.

Finite-size effects and D−1 scaling are illustrated by Figure 4(a–c) which shows
bending, skewing and wave speed as a function of D, in comparison with the Re,D
snaking in figure 4(d). Several features are notable. First, the solutions snake twice
as fast in Re as in skewing, bending or wave speed. This is due to the fact that the
points of maximum magnitude in skewing and bending near the upper saddle-nodes in
figure 1(b) have opposite sign. Second, the travelling wave’s bending and streamwise
wave speed curves are nearly identical (figure 4a,c) in all aspects, including position
of minima, maxima and zeros, D−1 scaling and, remarkably, magnitude. Sizable
discrepancies between bending and wave speed occur only for D < 40, when
the travelling wave consists of only a few copies of the interior periodic pattern
(e.g. figure 2a,b). The nearly identical magnitudes of non-dimensionalized bending
and wave speed holds only for Lx = 3π; at other Lx the two quantities are strongly
correlated but differ in magnitude by a factor of two or less.

Third, each of the travelling wave’s bending, wave speed and Re snaking plots
has a D−1 envelope, whereas the corresponding plots for the equilibrium are constant
in D. As argued above, the constancy of the equilibrium’s behaviour in D is due to
the fact that, with linear skew, the solution can be extended in z and thus bumped
up to a higher position on the snaking curve at the same Reynolds number simply
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FIGURE 4. (Colour online) Bending (a), skewing (b) and wave speed (c) in comparison
with the snaking in Reynolds number (d) for the equilibrium (EQ), travelling-wave (TW)
and rung (RN) solutions at Lx= 3π. Dotted lines show the D−1 envelope of wave speed
and bending for the travelling wave and the constant-D envelope of equilibrium skewing.
In (d) two independent dotted lines of form Re+ cD−1 are shown. The values of Re for
the two lines were set as the lower and upper bounds of the equilibrium snaking curve
(Re= 236 and Re= 268), and the values of c chosen to fit the envelope of the travelling-
wave snaking curve. Labelled points correspond to pressure fields shown in figure 3. The
breakdown of homoclinic snaking for D > 160 in (d) occurs when the spanwise growth
of the localized solution reaches the edges of the Lz = 24π computational domain.

by adding another copy of the periodic pattern in the interior. Thus, the equilibrium
snakes between constant bounds in Reynolds number and skewing. For the travelling
wave, on the other hand, if we take the slope dx/dz at the fronts as boundary
conditions for constant interior curvature d2x/dz2 over a spanwise width that scales
as D, then the curvature must scale as D−1dx/dz. Given that the slope of the fronts
oscillates between fixed bounds, the bending then must oscillate between bounds that
scale as D−1. For large D the curvature thus approaches zero, and the interior of
the solution approaches a constant periodic pattern with skewing, bending and wave
speed approaching zero.

At the point of zero bending (figure 3d), the interior structure of the travelling
wave is periodic and practically indistinguishable from the structure of the equilibrium
at zero skew (figure 3c). These points occur near low-Re saddle-node bifurcations
(figure 1b), suggesting that the reason for the close match in the lower bound in Re
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FIGURE 5. (Colour online) Core, front, tail structure of the localized solutions.
(a) Maximum magnitude of streamwise velocity (maxxy |u|) and magnitude of mean
streamwise velocity (|〈u〉xy|) as a function of z for the travelling wave at a point of
maximum bend (Re = 275, D = 48). The |〈u〉xy| line is dotted when 〈u〉xy is negative.
(b) Magnitude of the kxth streamwise Fourier mode for kx = 0, 1, 2, as measured by the
root-mean-square magnitude of ûkx(y, z) over y as a function of z. The computational
domain is 3π× 24π.

of the equilibrium and travelling-wave snaking regions is that the two solutions near
the lower bifurcation point differ mainly in the orientation of one front. Lastly, the
complete lack of symmetry in rung solutions means that they generally travel in z as
well as x; however, the non-dimensionalized z wave speeds are on the order of 10−5.

3.4. Core, front, tail structure
The localized solutions are formed from nearly periodic, large-amplitude core
structures that taper into small-amplitude, exponentially decaying tails. The near
periodicity of the core and the tapering fronts are apparent in figures 2 and 3.
Figure 5 illustrates the small-amplitude tails as well, through logarithmic plots of
velocity magnitude as a function of the spanwise coordinate z. Figure 5(a) shows
|〈u〉xy|(z), the magnitude of the xy-average streamwise flow, and maxxy |u|(z), the
maximum over x, y of the magnitude of the streamwise flow. Figure 5(b) shows the
root-mean-square magnitude over y of several streamwise Fourier modes as a function
of z. The central feature of these plots is the dominant exp(−α|z|) scaling of the
tails (where α = 2π/Lx), consistent with the linear analysis presented in Gibson &
Brand (2014). This analysis showed that for large |z|, the tails of spanwise-localized,
streamwise-periodic solutions are dominated by the kx=±1 streamwise Fourier modes,
which take the form û±1(y) exp (±2παi(x− cxt)− α|z|)+ c.c. The exp(−α|z|) scaling
of the kx = 1 mode is apparent in figure 5(b). The magnitude of the streamwise
velocity in the tails (maxxy |u|) is dominated by the kx =±1 modes and thus has the
same exp(−α|z|) scaling, as shown in figure 5(a). The exp(−2α|z|) scaling of the
kx = 0 Fourier mode in figure 5(b) results from a resonance between the kx = ±1
modes, which, when summed and substituted into the nonlinearity u · ∇u, produce an
exp(−2α|z|) forcing term in the kx= 0 momentum equation. The kx= 0 Fourier mode
carries the xy-average velocity, so |〈u〉xy| in figure 5(a) has exp(−2α|z|) scaling. The
dominant kx= 1 mode thus produces a small, decaying, but non-zero and constant-sign
mean streamwise velocity in the solution tails.
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FIGURE 6. (Colour online) Net streamwise flow and wave speed of the travelling wave.
The net streamwise flow ū= (LxLy)

−1
∫

xyz u dx dy dz of the travelling wave at Lx= 3π varies
between roughly fixed bounds, in comparison with the D−1 scaling of the wave speed.
Wave speed is magnified by a factor of 20 for visibility.

The mean streamwise flow 〈u〉xy(z) of the travelling wave has a number of
interesting features due to its z-even symmetry, which results from the σzτx symmetry
of the solution u. For one, 〈u〉xy(z) has the same sign in both tails (positive for the
solution depicted in figure 5). In addition, even z symmetry allows for imbalance
between positive and negative mean streamwise velocity when integrated across the
core and front regions. For example, there are three positive 〈u〉xy streaks and four
negative large-magnitude streaks across the core and initial front of the travelling
wave in figure 5, flanked by two lower-magnitude positive streaks. Integrating across
the core, fronts and weak positive tails gives a net negative streamwise flow across the
entire computational domain. Thus we have, with zero pressure gradient conditions, a
steady-state solution whose streamwise flow is net negative in the interior, net positive
in the tails and net negative over the whole flow domain. Figure 6 shows how the
net streamwise flow ū= 1/(LxLy)

∫
xyz u dx dy dz varies along the snaking curve (again,

the lack of Lz normalization provides for a measure of the deviation from laminar
flow that is insensitive to the computational domain). Note that ū varies between
roughly fixed bounds as the spanwise width (D) increases, because it results from an
N versus N + 1 imbalance of large-magnitude streamwise streaks of opposite sign.
This is in contrast to wave speed and bending, which result from balances between
the fixed-sized fronts and the increasing core and therefore scale as D−1. For the
localized equilibrium solution ū is zero and the streamwise flows in the ±z tails have
opposing sign, due to σxyz symmetry of u and consequent odd symmetry in 〈u〉xy(z).

4. Effects of varying streamwise wavelength
4.1. Snaking region and snaking breakdown

In this section we examine the effects of changing the streamwise wavelength Lx.
The central results are that snaking is robust in Lx over the range 1.7π 6 Lx 6 4.2π
or 0.48 6 α 6 1.2, and that the snaking region moves upward in Reynolds number
with decreasing Lx, with snaking observed over the range 165 6 Re 6 2700. Each
of these bounds is reported to two digits accuracy. Thus, the localized solutions
and the homoclinic snaking behaviour occur over a wide range of Reynolds
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FIGURE 7. (Colour online) Snaking as a function of streamwise wavelength Lx. (a)
Snaking curves for the equilibrium (EQ), travelling-wave (TW) and rung (RN) solutions
at Lx = 4π, 3π, 2.5π and 2π, with the snaking curves moving upwards in Re as Lx
decreases. (b) Detail of snaking curve for Lx= 2.5π. (c) Snaking breakdown for Lx> 4.2π.
(d) Snaking breakdown for Lx < 1.7π.

numbers, including the Re ≈ 300–400 range where Barkley & Tuckerman (2005)
and Duguet et al. (2010) observed laminar–turbulent patterns in plane Couette flow.
Figure 7(a) shows snaking curves for the localized solutions at a variety of streamwise
wavelengths. The interlinked snaking structure of the equilibrium, travelling-wave and
rung solutions is preserved under variation in Lx with the following trends. As Lx
decreases, the snaking region moves upwards in Re and widens. As in the Lx = 3π
case, the width in Re of any given equilibrium snaking curve is constant in D,
whereas the amplitude of the travelling-wave snaking region decays as D−1. For
Lx = 4π the excess amplitude of travelling-wave snaking region over the equilibrium
is too small to be observed.

Figure 7(c,d) illustrates the breakdown of homoclinic snaking outside the range
1.7π 6 Lx 6 4.2π. Above and below these bounds, the solutions are unable to grow
additional structure indefinitely at the fronts. Instead of snaking indefinitely, the
solution curves turn around and continue to higher Reynolds numbers at roughly
constant spanwise width. For Lx values just beyond the given range, the solutions
snake a few times before turning around, as illustrated by the Lx = 1.6π and 4.5π
curves in figure 7(c,d). Figure 7(b) illustrates a peculiar defect in the homoclinic
snaking scenario that occurs at the particular value Lx = 2.5π. At this streamwise
wavelength the snaking curve for the travelling wave solution has two distinct
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FIGURE 8. Snaking region and maximum skewing as a function of wavelength. (a) The
snaking region in Re as a function of Lx for the localized equilibrium. The shaded region
indicates the range of Re within which snaking occurs at a given Lx. (b) Maximum
magnitude of skewing of the equilibrium solution as a function of Lx. For both figures,
dots mark measured values and the curves are interpolated.

branches. The solid curve labelled ‘TW branch 1’ was continued downward from
high Reynolds numbers and small spanwise widths (D≈7) where it connects smoothly
to the other snaking curves via continuation in Lx. However this solution branch does
not snake; rather it turns around in a saddle-node bifurcation and continues back to
at least Re= 2000 at finite spanwise width. In contrast the dot-dashed curve labelled
‘TW branch 2’ does snake upward in D; it constitutes the bulk of the Lx = 2.5π
travelling wave snaking curve shown in figure 7(a). The branch-2 travelling wave
was obtained from the endpoint of the rung solution at Re≈ 360, D≈ 22.5. At fixed
Lx = 2.5π, the two branches remain distinct to Re = 2000 at least, though they can
be connected by continuation in the two parameters Re, Lx. We have observed similar
defects in snaking curves at several other values of Lx (not shown). It is possible that
the snaking breakdown observed for Lx < 1.7π and Lx > 4.2π is of this type. That
is, there might be branches of the solution curves for such Lx at higher D that are
disconnected from the non-snaking solution curves pictured in figure 7(c,d). We have
confirmed this in a few particular instances; for example, by continuing a D = 90
solution from Lx = 4π to Lx = 4.3π, where it forms an isola above and disconnected
from a lower-D solution branch.

Figure 8(a) shows the snaking region of the localized equilibrium in Reynolds
number as a function of the streamwise wavelength Lx. Snaking also occurs when the
solutions are continued in Lx with Re fixed, within the same shaded Re, Lx parameter
regions. The boundaries of the snaking region in Re decrease roughly exponentially
with Lx for Lx 6 3π. As Lx increases to 4.2π, the lower bound of the snaking region
approaches a minimum of roughly Re = 165. It is notable that the breakdown of
snaking at Lx ≈ 4π closely coincides with the vanishing of the amplitude of the D−1

scaling in the travelling wave’s snaking region, as seen figure 7(a). Similarly, the
magnitudes of bending and skewing decrease with increasing Lx, and at Lx ≈ 4π are
too small to be observed in plots of the velocity or pressure fields. Figure 8(b) shows
the magnitude of the oscillation in skewing over the snaking curve as a function of
Lx, as measured by the slopes of the lines through pressure minima and maxima, as
shown in figure 3(b). It is possible that the breakdown of snaking for Lx > 4.2π is
related to the disappearance of these effects at Lx ≈ 4π.
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FIGURE 9. (Colour online) A defect in a localized solution after the breakdown of
snaking. The streamwise velocity of the Lx= 4.5π localized equilibrium solution is shown
for Re = 175 and D = 37, on the upper branch of the Lx = 4.5π curve in figure 7(c).
Plotting conventions are the same as in figure 2.

The breakdown of snaking for both Lx < 1.7π and Lx > 4.2π appears to be
associated with the development of defects in the interior pattern of the solution.
Instead of continuing to snake by growing additional structure at the fronts, the
solutions develop defects at the spanwise centre and continue to high Reynolds
numbers. Figure 9 shows the defect in the Lx = 4.5π equilibrium solution at
(Re, D) = (175, 37), on the upper branch of the Lx = 4.5π curve in figure 7(c).
Defects in the Lx < 1.7π solutions are quite weak and appear as subtle variations
in visualizations of the velocity and pressure fields. The breakdown of snaking and
development of central defects observed here is quite similar to that observed by Kao
et al. (2014) for the Swift–Hohenberg equation with heterogeneous forcing (see their
figure 8).

4.2. Stability
Figure 10 shows the number of unstable eigenvalues of the Lx = 3π and 4π
equilibrium solutions in comparison with their Re,D snaking curves. At Lx = 3π the
equilibrium has a minimum of two or three unstable eigenvalues at small spanwise
width (low D). Thus, it is not strictly an edge state of the flow (Schneider & Eckhardt
2006; Skufca, Yorke & Eckhardt 2006). However, one of the corresponding unstable
eigenfunctions is antisymmetric, making the solution an edge state of the flow when
constrained to σxyz symmetry. In both cases there is a general trend toward more
unstable modes as the solution grows in spanwise width. The Lx = 3π, D ≈ 100
solutions depicted in figure 3(a,c) have O(20) unstable eigenvalues. Superimposed
on this general trend is an oscillation in which the number of unstable eigenvalues
increases and decreases along the snaking curve. For both cases the local maxima
(minima) in the number of unstable modes occur at points of maximum (minimum)
skewing magnitude. In other words, strongly skewed solutions are more unstable
than solutions with weak or zero skew. The same trends occur at Lx = 2π, with
the smallest-width solution starting with six unstable eigenvalues. The trend towards
more instabilities with increasing spanwise width contrasts with the one-dimensional
Swift–Hohenberg equation, for which the number of unstable eigenvalues oscillates
between zero and two with each cycle along the snaking curve (Burke & Knobloch
2007a,b).
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FIGURE 10. (Colour online) Instability of the localized equilibrium in relation to spanwise
width and wavelength. The number of unstable eigenvalues of the localized equilibrium
solution as a function of spanwise width (D), overlaid on the Re, D snaking curve for
(a) Lx = 3π and (b) Lx = 4π.

5. The periodic pattern of the core
5.1. Relation of the periodic pattern to the NBCW solution

Schneider et al. (2010a,b) established that the snaking solutions are closely related to
the NBCW equilibria, in that they result from a localizing bifurcation of NBCW and
resemble the structure of NBCW in their interior. However, the relationship between
the core structure and the NBCW solutions is more complicated than previously
supposed. In particular, for Lx 6 3π, the interior pattern and the NBCW solution
lie on distinct solution curves when continued in Reynolds number, although these
curves can be connected by continuation in the higher-dimensional parameter space
Lx, Lz, Re.

To compare the interior pattern with the NBCW solution, we extracted one copy
of the interior pattern of the equilibrium at a variety of Lx values, as illustrated for
Lx= 3π in figure 11. We begin in figure 11(a) with a streamwise-localized equilibrium
solution at a point along the snaking curve of zero skew, in order to maximize the
spanwise periodicity of the interior pattern. The natural spanwise wavelength L̂z= 5.70
of the interior pattern was determined by finding the zeros of 〈u〉xy(z) on either side
of z = 0. In figure 11(a) these points are marked with vertical lines at z = ±2.85.
The nearly periodic interior pattern was then interpolated onto uniformly spaced grid
points for a spanwise periodic computational domain of width Lz = 5.70 and refined
with a Newton–Krylov search to the equilibrium shown in figure 11(b). We performed
this operation to find the equilibrium solution corresponding to the interior periodic
pattern at several streamwise wavelengths in the range 2π 6 Lx 6 4π. In each case
the divergence and the Gibbs phenomenon of the interpolated field were small and
the Newton–Krylov refinement converged quickly onto an equilibrium solution. The
natural aspect ratio of the interior pattern was always found to be in the range 1.656
Lx/L̂z 6 1.75.

Figure 11(d) shows bifurcation diagrams for the NBCW solution and periodic
equilibria computed from the interior pattern for Lx = 2π, 3π and 4π. Since these
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FIGURE 11. (Colour online) Extraction of the interior periodic pattern of a spanwise
localized solution. (a) The spanwise-localized equilibrium at point of zero skew, Lx = 3π,
D= 47 and Re= 237. Vertical lines at z=±2.85 mark one copy of the nearly periodic
interior structure. (b) A periodic equilibrium obtained by Newton–Krylov refinement of
the structure extracted from (a), with Lx, Lz= 3π, 5.7 and Re= 237. (c) The lower-branch
NBCW equilibrium at the same parameter values as (b), obtained by continuation. Plotting
conventions for (a–c) are the same as in figure 2. (d) Bifurcation curves for the interior
periodic pattern and the NBCW equilibrium for Lx = 2π, 3π and 4π and aspect ratios
Lx/Lz=1.74,1.65,1.74 respectively. The periodic interior pattern and lower-branch NBCW
equilibrium shown in (b,c) are marked on the Lx = 3π curve with a circle and square
respectively. The interior patterns extracted from spanwise-localized equilibrium at Lx= 2π
and 4π are also marked with circles.

solutions are periodic in both the spanwise and streamwise directions, we use the
conventional measure of energy dissipation and wall shear rate

Dtot = Itot = 1
2LxLz

∫ Lx/2

−Lx/2

∫ Lz/2

−Lz/2

(
∂utot

∂y

∣∣∣∣
y=−1

+ ∂utot

∂y

∣∣∣∣
y=1

)
dx dz. (5.1)

The circles mark the Re, Dtot positions of the interior-pattern equilibrium solutions
computed from localized solutions as described above, and the lines indicate the
parametric continuation of these solutions in Re. For Lx = 4π it was straightforward
to continue the NBCW solution to the same aspect ratio and Reynolds number and
confirm that the pattern and the NBCW solution were the same. However, as Lx
decreases, the upper portion of the solution curve pinches off at a codimension-two
bifurcation point near Lx = 3π, Re= 237, leaving the interior pattern and NBCW on
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FIGURE 12. (Colour online) A winding equilibrium solution of plane Couette flow at
Re = 268. The solution is strictly periodic in x but has z periodicity involving a phase
shift in x of the form u(x, y, z+ 5.642)= u(x− 0.496, y, z). A total of 19 copies of the
3π× 5.642 pattern fit in the 3π× 107.2 periodic computational domain. Contours of the
midplane pressure field p(x, z) are shown with the same plotting conventions as figure 3.

distinct solution curves. This pinching occurs at an Lx value just below the Lx = 3π
solution curve shown in figure 11(d). For Lx= 2π, the solution curves for the interior
pattern (dash-dot line marked with a circle) and the NBCW solution (dash-dot, no
marker) are distinct.

5.2. A winding solution of plane Couette flow
It is possible to compute a spatially periodic winding solution from a skewed localized
equilibrium, that is, a solution with fundamental domain size Lx, L̂z that is strictly
periodic in x, but whose z periodicity involves a phase shift in x,

u(x, y, z+ L̂z)= u(x−1x, y, z). (5.2)

One such solution is illustrated in figure 12. The solution was computed starting
with a localized equilibrium with strong skewing, like that shown in figure 3(a).
An iterative process of continuation in the computational domain length Lz and
adjustment of skewing by continuation in Reynolds number was performed to find a
localized equilibrium whose interior pattern divided the computational domain evenly
(Lz/L̂z

.= N ∈ Z) and whose skew precisely aligned with the x, z diagonal of the
computational domain. N copies of this winding interior pattern were then interpolated
onto the computational domain as shown in figure 12 and refined with Newton–Krylov
search. The resulting winding solution shown in figure 12 at Re = 268 has an
Lx = 3π, Lz = 107.2 computational domain and N = 19, giving L̂z = Lz/N

.= 5.462,
1x= Lx/N

.= 0.496, and winding symmetry u(x, y, z+ 5.642)= u(x− 0.496, y, z). The
winding symmetry and u=σxyzu were enforced during the Newton–Krylov search. It is
likely that other winding solutions of shear flows could be computed without recourse
to skewed localized solutions, simply by applying skewing coordinate transformations
to known spatially periodic solutions and refining with Newton–Krylov search.

6. Conclusions
We have shown that homoclinic snaking is robust under changes in streamwise

wavelength for the spanwise-localized solutions of plane Couette flow of Schneider
et al. (2010a). Homoclinic snaking occurs for these solutions over streamwise
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wavelengths in the range 1.7π 6 Lx 6 4.2π and Reynolds numbers 165 6 Re 6 2700,
and the snaking region moves upwards in Re as Lx decreases. The localized
equilibrium, travelling-wave and rung solutions thus exist at arbitrarily large spanwise
widths over a wide range of Reynolds numbers. Several new properties of the
solutions become apparent as Lx decreases below 4π, most importantly the linear
skewing of the equilibrium and quadratic bending of the travelling wave. The
travelling wave exhibits finite-size effects such as D−1 scaling of the bending, wave
speed and snaking region, due to the non-uniform structure in the solution core
induced by the quadratic bending. The linear skewing of the localized equilibrium
solution, on the other hand, induces no such finite-size effects. Its core region is very
nearly periodic, close enough that a strictly periodic winding solution can be easily
developed from it. The number of instabilities of the localized solutions increase
with Reynolds number, with spanwise width and with skewing. Thus, at a fixed
Reynolds number, from a statistical viewpoint one would expect narrow patches of
the localized pattern to appear more frequently than wide patches, and with weak
rather than strong skewing.

The homoclinic snaking of these localized solutions suggests the Navier–Stokes
equations might be related to the Swift–Hohenberg equation under plane Couette flow
conditions and for certain parameter ranges and flow states. A primary motivation
for this paper is to clarify the parameter ranges and solution structures for which
this connection might occur. Our results indicate that homoclinic snaking is a
finite-Reynolds, finite-wavelength effect and that the streamwise wavelength and
the Reynolds-number snaking region are strongly coupled. Thus it is unlikely
that an analytic understanding of homoclinic snaking in shear flows will be
found via asymptotic analysis in large-Reynolds or large-wavelength limits. If the
spanwise-localized solutions are to be understood as a long-wavelength modulation
of a small-wavelength, spanwise-periodic pattern, our results show that the periodic
pattern is a form of the NBCW solution at aspect ratio Lx/Lz ≈ 1.7. For Lx < 3π,
under continuation in Reynolds number, the periodic pattern lies on a solution curve
distinct from the widely studied NBCW lower-branch solution.

We see no clear connection between the skewing of the localized equilibrium
solution and the skewed laminar–turbulent patterns observed in plane Couette flow by
Barkley & Tuckerman (2005, 2007) and Duguet et al. (2010). The localized solutions
exist over a much wider range of Reynolds numbers than the 3006Re6 400 range of
observed laminar–non-laminar patterns. As shown in figure 7(a), this range depends
very much on the streamwise length Lx. For the Lx = 3π length studied in § 3, the
Reynolds number range for snaking is very similar to 300 6 Re 6 400.

Also, the skewing of the localized equilibrium is a streamwise phase shift of
the interior pattern as function of spanwise coordinate, whereas the skewing of
observed laminar–turbulent patterns is in the orientation of the boundary between the
turbulent patches and the surrounding laminar flow. In contrast, the localized solutions
studied here are strictly streamwise periodic, and thus have laminar–non-laminar
boundaries aligned with the streamwise direction. One potential route to finding
invariant solutions with skewed laminar–non-laminar boundaries would be to find a
streamwise-localized form of a winding solution like that described in § 5.2. However,
the angles observed in the literature for laminar–turbulent patterns are quite different
than those observed here. These are typically reported as the angle β between the
laminar–turbulent boundary and the streamwise x direction; β and skew dx/dz are
related by β = cot−1(dx/dz). Duguet et al. (2010) report a range of 20◦ 6 β 6 70◦
for the boundaries of turbulent patches in plane Couette flow for 324 6 Re 6 380.
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Barkley & Tuckerman (2005) find the range 15◦ 6 β 6 65◦ for laminar–turbulent
patterns in a tilted minimal flow unit at Re = 350. From figure 8, the localized
equilibria that snake within this range of Reynolds numbers have skew 0 6 |dx/dz|6
0.15 or 81 6 β 6 90.
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