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Abstract. Mixing rates, relaxation rates, and decay of correlations for dynamics defined
by potentials with summable variations are well understood, but little is known for
non-summable variations. This paper exhibits upper bounds for these quantities for
dynamics defined by potentials with square-summable variations. We obtain these bounds
as corollaries of a new block coupling inequality between pairs of dynamics starting with
different histories. As applications of our results, we prove a new weak invariance principle
and a Hoeffding-type inequality.
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1. Introduction
Let A be a countable set, called an alphabet. Consider a measurable function φ :
A× A{−1,−2,...} → R such that

∑
a∈A eφ(a,x) = 1 for all x ∈ A{−1,−2,...}. The function

φ is called a normalized potential, and the probability kernel g := eφ (also known as
g-function) is a natural generalization of Markov kernels. Let η = (ηn)Z be the canonical
projections on AZ, that is, for all x ∈ AZ and all n ∈ Z, ηn(x) = xn. For y ∈ A{0,−1,...},
let μy be the probability measure on AZ such that μy[(η0, η−1, . . .) ∈ B] = δy[B] for all
B ⊂ A{0,−1,...} measurable. For n � 0, μy[ηn+1 = a | (ηn, ηn−1, . . .) = x] = eφ(a,x) for
every a ∈ A and μy-a.e. (almost every) x in A{−1,−2,...}. Let T denote the shift operator
on A{0,−1,...}. We indicate by dTV the total variation distance, that is, if P and Q are two
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probability measures on the same σ -algebra F,

dTV(P , Q) = sup
F∈F

|P [F ] −Q[F ]|.

In this paper, we obtain upper bounds, respectively, for the relaxation rate

L(n) := sup
y,z

dTV(μ
y[ηn ∈ · ], μz[ηn ∈ · ]),

the mixing rate

M(n) := sup
y,z

dTV(μ
y[(ηj )j�n ∈ · ], μz[(ηj )j�n ∈ · ]),

and the decay rate of correlations

ρ
f ,f̂ (n) :=

∣∣∣∣
∫
f ◦ T n f̂ dμ̃−

∫
f dμ̃

∫
f̂ dμ̃

∣∣∣∣
when μ̃ is the unique shift-invariant measure compatible with φ (see the next section
for the definition of compatibility) and f , f̂ are suitable functions (see Theorem 3.6).
Bressaud, Fernández and Galves [BFG99] and Pollicott [Pol00, Proposition 1] obtained
upper bounds for L(n), M(n), and ρ

f ,f̂ (n) for potentials of summable variations and finite
alphabets. Gouëzel [Gou04] obtained sharp lower bounds for the decay of correlations
for dynamics with Hölder continuous (that is, exponentially decaying) potentials and
countable alphabet. Our contribution is twofold. We obtain upper bounds for L(n), M(n),
and ρ

f ,f̂ (n) when the variation rate vark(φ) decays as O(k−(1/2+δ′)) for any δ′ > 0.
Moreover, our results also hold for a countably infinite alphabet A. Theorem 3.2 is our main
result, showing a new upper bound for the coupling error between μy and μz. Corollary
3.3 answers a question posed in [JÖ08], in which the authors ask for a bound for L(n)
when the variation of φ is not summable. Corollary 3.4 shows a bound for M(n), which
cannot be achieved by simply using the union bound and Corollary 3.3. The result is
new even for the case of summable variations. The interest in M(n) stands from the fact
that it is the natural generalization of mixing times for Markov chains. Gallesco, Gallo
and Takahashi [GGT18] showed that M(n) converges to 0 only when vark(φ) is square
summable μ̃-a.s. (almost surely) and hence Corollary 3.4 covers the main cases of interest.
Theorem 3.6 gives an upper bound for the speed of decay of correlations, extending
Theorem 3.2 in [BFG99]. Johansson, Öberg and Pollicott [JOP12] showed, when the
alphabet A is finite, that there is a unique shift-invariant measure μ̃ compatible with φ when
vark(φ) ∈O(k−(1/2)). Moreover, Berger, Hoffman and Sidoravicius [BHS18] proved that
whenever vark(φ) ∈ O(k−(1/2−δ)) for any δ > 0, there exists a normalized potential φ that
exhibits multiple compatible shift-invariant measures. Therefore, Theorem 3.6 also covers
the main variation rates of interest under uniqueness of the compatible shift-invariant
measure. In Corollary 3.9, we use Theorem 3.6 to obtain upper bounds on the rate
of correlation decay for non-normalized potentials. We illustrate the application of our
inequalities in three cases. The first application proves a novel weak invariance principle for
additive functionals of dynamics with non-summable variations. The second application
shows that we can obtain Hoeffding-type bounds for averages of random variables when
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the variation of φ is not summable. The third example illustrates how we can apply our
results on a Poisson autoregression model, which is popular in applied works.

The proof technique is based on a renewal equation and coupling inequalities. These
ideas were developed in [BFG99, CFF02, CQ98]. We improve on the coupling bounds
obtained in [BFG99] by using a coupling between blocks of coordinates, instead of one
coordinate at a time. A block coupling idea was used in [JOP12] to obtain sharp conditions
for uniqueness of the equilibrium measure for φ on a finite alphabet A, but mixing rate was
not obtained. A difference between [JOP12] and our approach is that we upper bound the
block coupling using different renewal processes leading to a distinct renewal equation.
This new renewal equation allows us to upper bound the speed of decay of the coupling
inequality even when the variation is not summable (see Theorem 3.2).

2. Definitions
Let the alphabet A be a countable set, X = AZ, and X− = AZ− , where Z− =
{0, −1, −2, . . .}. We endow X and X− with the product topology and its corresponding
Borel σ -algebra. The topologies and σ -algebras considered on subsets of X and X− will
always be the trace topologies and σ -algebras. We denote by xi the ith coordinate of x ∈ X
and, for −∞ < i � j < ∞, we write x−i

−j := (x−i , . . . , x−j ), x−i−∞ := (x−i , x−i−1, . . .),
and x∞

i := (. . . , xi+1, xi). If i < j , xij = φ. For x ∈ X and y ∈ X−, a concatenation

x0−iy is a new sequence z ∈ X− with z0−i = x−1
−i and z−i−1−∞ = y. We take φ to be the

neutral element of the concatenation operation, that is, φx = x for all x ∈ X−. Note that
we are using the convention, consistent with the concatenation operation, that when we
scan an element x ∈ X from the left to the right we go further into the past.

Consider a measurable function φ : X− → R, which we call a potential. We say that φ
is normalized if it satisfies ∑

a∈A
eφ(ax) = 1

for all x ∈ X−. To a normalized potential φ we can associate a probability kernel g on the
alphabet A by defining g = eφ . The variation of order k � 0 of φ is defined by

vark(φ) := 1
2

sup
z∈X

sup
x,y∈X−

∑
b∈A

|φ(bz−1
−kx)− φ(bz−1

−ky)|.

When A is finite, the variation is usually defined by taking the supremum over b ∈ A
instead of the sum. Nevertheless, our definition is more convenient when the alphabet
is infinite and has appeared in the literature before [CGT20]. The constant 1/2 in the
definition relates vark(eφ) to total variation distance when φ is normalized.

We also define, for k � 0, the χ2-variation of order k of φ as

χ2
k (φ) = sup

z∈X
sup

x,y∈X−

∑
b∈A

(eφ(bz
−1
−kx) − eφ(bz

−1
−ky))2

eφ(bz
−1
−ky)

.

The use of χ2-variation to measure the regularity of potentials seems to be new;
therefore, it is interesting to compare it to variation, which is more standard. When φ
is normalized, by using the Cauchy–Schwarz inequality, we have that var2

k(e
φ) � 1

4χ
2
k (φ)
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for any k � 1. When the alphabet A is finite and φ is normalized, var2
k(φ) and χ2

k (φ)

are comparable, that is, there exist positive constants K1 and K2 such that K1 var2
k(φ) �

χ2
k (φ) � K2 var2

k(φ). The χ2-variation introduced in this work will be particularly useful
to study asymptotic properties of positive probability kernels on infinite A (cf. §8.3).

Let η = (ηn)Z be the canonical projections on X, that is, for all x ∈ X, ηn(x) = xn for
all n ∈ Z. We say that a probability measure μ on X is compatible with a normalized
potential φ if there exists a probability measure P on X− such that

μ[η0−∞ ∈ B] = P [B]

for all B ⊂ X− measurable and if, for n � 0,

μ[ηn+1 = a | ηn−∞ = x] = eφ(ax)

for every a ∈ A and μ-a.e. x in X−. Johansson, Öberg and Pollicott [JÖP07] showed that
if

∞∑
k=0

sup
z∈X

sup
x,y∈X−

∑
b∈A

(eφ(bz
−1
−kx)/2 − eφ(bz

−1
−ky)/2)2 < ∞,

then there is at most one shift-invariant invariant compatible measure with φ. From [Rei12,
Lemma 3.3.9], for k � 0, we have

∑
b∈A

(eφ(bz
−1
−kx)/2 − eφ(bz

−1
−ky)/2)2 �

∑
b∈A

(eφ(bz
−1
−kx) − eφ(bz

−1
−ky))2

eφ(bz
−1
−ky)

and hence the summability of χ2
k (φ) implies the existence of at most one shift-invariant

invariant compatible measure.
When φ is not normalized, the definition of a compatible measure loses its meaning.

Nevertheless, we can associate a set of shift-invariant measures called equilibrium states
for not necessarily normalized φ [Wal75]. Equilibrium states are characterized via a
variational principle and coincide with shift-invariant compatible measures when φ is
normalized. An equilibrium state μ̃ compatible with a normalized φ is also called a
g-measure in ergodic theory [Kea72]. In probability literature, g-measures are known as
chains of complete connections [DF37, IG90], chains of infinite order [Har55, Kea72],
random-step Markov processes [Kal90], and uniform martingales [Kal90]. Compatible
measures that are not necessarily shift-invariant are called g-chains [JOP12] or stochastic
chains of unbounded memory [GGT18]. When there is more than one shift-invariant
measure compatible with φ, we say that there is a phase transition, otherwise we say that
the shift-invariant compatible measure is unique.

3. Results
In this paper, we will work under the following assumption.

Assumption (A). φ is a potential on X− such that for all k � 1,

χ2
k (φ) �

C

k1+δ (1)

for some C > 0 and δ > 0.
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Remark 3.1. When the alphabet A is finite and φ is normalized, Assumption (A) is
equivalent to

vark(φ) �
C′

k(1+δ)/2

for some C′ > 0 and the same δ as in (1). Observe that vark(φ) is not summable when
δ ∈ (0, 1].

Now, consider X × X with the projection maps η̂ = (η̂n)n∈Z and ω̂ = (ω̂n)n∈Z such that
for (x, y) ∈ X × X, η̂n(x, y) = xn and ω̂n(x, y) = yn for all n ∈ Z. Let us also denote by
Ĉ(φ) the set of probability measures P on X × X such that the pushforward measures η̂∗P
and ω̂∗P are compatible with φ. We also introduce the process X = (Xn)n�1 such that for
all n � 1,

Xn = 1{there exists j ∈ [Kn, Kn+1), η̂j 	= ω̂j },
where (Kn)n�1 is a fixed strictly increasing sequence of natural numbers such thatK1 = 1.
Here is our main result followed by two corollaries.

THEOREM 3.2. Let φ be a normalized potential that satisfies Assumption (A). Let Kn =

nβ� for β � 1 and β > 1/δ. For all measures μ and ν compatible with φ, there exists
P ∈ Ĉ(φ) such that η̂∗P = μ, ω̂∗P = ν, and, for n � 1,

P[Xn = 1] � C1

n(βδ+1)/2 ,

where C1 is a positive constant depending on C, δ, and β.

COROLLARY 3.3. Let φ be a normalized potential that satisfies Assumption (A). If δ > 1,
we have for all n � 1,

L(n) � C2

n(1+δ)/2 ,

where C2 is a positive constant depending on C and δ.
If δ ∈ (0, 1], we have for all n � 1 and δ′ < δ,

L(n) � C3

nδ
′ ,

where C3 is a positive constant that depends on C, δ, and δ′.

COROLLARY 3.4. Let φ be a normalized potential that satisfies Assumption (A). For all
δ′ < δ, we have for all n � 1,

M(n) � C4

nδ
′/2 ,

where C4 is a positive constant that depends on C, δ, and δ′.

Remark 3.5. When δ > 1 and A is finite, we can use [BFG99, Theorem 1] and the union
bound to obtain

M(n) � C5

n(δ−1)/2 ,
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where C5 > 0 is a constant that depends on C and δ. Hence, the result in Corollary 3.4
gives a sharper upper bound, even when the potential is summable and the alphabet A is
finite.

We now look at the correlations decay for the shift-invariant measure compatible with
a potential φ. For this, we need the following definitions. Consider the shift operator
T : X− → X− such that for all x ∈ X−, T x = T x0−∞ = x−1−∞. For non-constant φ, let us
consider the seminorm

‖f ‖φ = sup
k�1

vark(f )
vark(eφ)

and the subspace of C(X−, R) defined by

Vφ = {f ∈ C(X−, R) : ‖f ‖φ < ∞}.
THEOREM 3.6. Let φ be a normalized potential that satisfies Assumption (A). Assume
that a shift-invariant probability measure μ̃ compatible with φ exists. Let f ∈ L1(μ̃) and
f̂ ∈ Vφ .

If δ > 1, we have for all n � 1,

ρ
f ,f̂ (n) �

C6

n(1+δ)/2 ‖f ‖1‖f̂ ‖φ ,

where C6 is a positive constant that depends on C and δ.
If δ ∈ (0, 1], we have for all n � 1 and δ′ < δ,

ρ
f ,f̂ (n) �

C7

nδ
′ ‖f ‖1‖f̂ ‖φ ,

where C7 is a positive constant that depends on C, δ, and δ′.

Remark 3.7. When δ > 1 and A is finite, Theorem 3.6 recovers the rate obtained in
[BFG99, Theorem 1].

Remark 3.8. When A is finite, continuity of φ guarantees the existence of a compatible
shift-invariant measure; therefore, the assumption on the existence of a compatible
measure in Theorem 3.6 is redundant. When A is infinite, the existence of a shift-invariant
compatible measure is not immediate. Sufficient conditions for existence of shift-invariant
compatible measures when A is infinite are given in [FM05, JÖP07]. See §8.3 for a
concrete example. Whenever a shift-invariant compatible measure exists, Assumption (A)
implies uniqueness of μ̃ in Theorem 3.6 [JÖP07], although uniqueness is not a priori
necessary for Theorem 3.6.

A natural question is whether we can obtain an upper bound for the rate of correlations
decay for a potential φ that is not normalized. When A is finite, we can use the same
strategy as in [BFG99, Pol00, Wal75]. The idea is to study normalized potentials ψ
that are cohomologous to φ, that is, ψ = φ + h− h ◦ T + c for some h ∈ C(X−, R) and
c ∈ R. If φ and ψ are cohomologous, then both functions have the same associated
equilibrium states [Wal75]. Hence, properties of equilibrium states for φ can be obtained
by studying shift-invariant measures compatible with ψ . Walters [Wal75] proved that
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when the rate of variation of φ is summable, there exist a unique h and a unique c
such that ψ is a normalized potential. Moreover, from the construction of h in [Wal75],
we have that vark(h) �

∑
j�k varj (φ). This implies that vark(ψ) � 3

∑
j�k varj (φ).

Using these results, we obtain the following corollary, which improves the results in
[BFG99, Pol00].

COROLLARY 3.9. Let the alphabet A be finite and φ be a potential not necessarily
normalized. Assume that there exist a constant C > 0 and δ > 0 such that

vark(φ) �
C

k(3+δ)/2 .

Let μ̃ be an equilibrium state for φ, f ∈ L1(μ̃), and f̂ ∈ Vφ .
If δ > 1, we have for all n � 1,

ρ
f ,f̂ (n) �

C8

n(1+δ)/2 ‖f ‖1‖f̂ ‖φ ,

where C8 is a positive constant that depends on C and δ.
If δ ∈ (0, 1], we have for all n � 1 and δ′ < δ,

ρ
f ,f̂ (n) �

C9

nδ
′ ‖f ‖1‖f̂ ‖φ ,

where C9 is a positive constant that depends on C, δ, and δ′.

Remark 3.10. When δ > 1, Corollary 3.9 recovers the rate obtained in [Pol00, Theorem
1(1)]. To generalize Corollary 3.9 to an infinite alphabet, we need a result equivalent to
[Wal75, Theorem 3.3] for an infinite alphabet, which is currently unavailable.

4. Technical lemmas
Here we collect some results that we will use to prove Theorem 3.2. We first recall the
definitions of the Kullback–Leibler and Pearson χ2 divergences. Let P and Q be two
probabilities on some discrete space Y. We define

DKL(P ||Q) =
∑
y∈Y

P(y) ln
(
P(y)

Q(y)

)

and

Dχ2(P ||Q) =
∑
y∈Y

(P (y)−Q(y))2

Q(y)
.

It is well known that DKL(P ||Q) � Dχ2(P ||Q) (cf. [SV16, eq. 5]).
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LEMMA 4.1. Let x, y ∈ X− and μ, ν ∈ P(φ) such that μ[η0−∞ ∈ · ] = δx(·) and
ν[η0−∞ ∈ · ] = δy(·). For all n � 1, 0 � k � n− 1, and all a, b, c ∈ X, we have

DKL(μ[ηKn+1−1
Kn

∈ · |ηKn−1
1 = a

Kn−1
Kn−k b

Kn−k−1
1 ]

× ||ν[ηKn+1−1
Kn

∈ · |ηKn−1
1 = a

Kn−1
Kn−k c

Kn−k−1
1 ])

�
Kn+1−1∑
j=Kn

χ2
j−Kn−k (φ). (2)

Proof. Let us simply denote by D the left-hand term of inequality (2). We have by the
chain rule property of the Kullback–Leibler divergence [CT06, Theorem 2.5.3] that

D =
Kn+1−1∑
i=Kn

DKL(μ[ηi ∈ · |ηi−1
1 = zi−1

Kn
a
Kn−1
Kn−k b

Kn−k−1
1 ]

× ||ν[ηi ∈ · |ηi−1
1 = zi−1

Kn
a
Kn−1
KKn−k c

Kn−k−1
1 ])

=:
Kn+1−1∑
i=Kn

Di .

Then we use the well-known bound

Di � Dχ2(μ[ηi ∈ · |ηi−1
1 = zi−1

Kn
a
Kn−1
Kn−k b

Kn−k−1
1 ]

× ||ν[ηi ∈ · |ηi−1
1 = zi−1

Kn
a
Kn−1
Kn−k c

Kn−k−1
1 ])

� χ2
i−Kn(φ)

to conclude the proof.

LEMMA 4.2. For α > 1 and 0 < a < b, we have

(b + 1)α − aα

bα − aα
� (b + 1)α−1 − aα−1

bα−1 − aα−1 . (3)

Proof. By algebraic computations, we obtain that (3) is equivalent to(
b

a

)α−1

� 1 + (b − a)

(
1 −

(
b

b + 1

)α−1)
.

This last inequality is obtained from the Bernoulli inequality (1 + x)r � 1 + rx, for r > 0
and x > −1, observing that(

b

a

)α−1

=
(

1 + b − a

a

)α−1

� 1 + (α − 1)
b − a

a

and (
b

b + 1

)α−1

=
(

1 − 1
b + 1

)α−1

� 1 − (α − 1)
1

b + 1
.
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Define, for all δ > 0, β � 1, k � 3, and n � k + 1,

nk := (nβ − (n− k)β − 2)−δ − ((n+ 1)β − (n− k)β)−δ .

LEMMA 4.3. For all δ > 0, β � 1, and k � 3, nk is a non-increasing function of n �
k + 1.

Proof. The statement of the lemma is trivial for β = 1. For β > 1, consider the function
f : [4, ∞) → R

+ defined by

f (x) = (xβ − (x − k)β − 2)−δ − ((x + 1)β − (x − k)β)−δ .

In order to prove the result, it is enough to show that the derivative of f is negative. Since

f ′(x) = −δβ[(xβ − (x − k)β − 2)−δ−1(xβ−1 − (x − k)β−1)

− ((x + 1)β − (x − k)β)−δ−1((x + 1)β−1 − (x − k)β−1)],

it is enough to show that

(x + 1)β − (x − k)β

xβ − (x − k)β − 2
� (x + 1)β−1 − (x − k)β−1

xβ−1 − (x − k)β−1 .

But this last inequality follows from Lemma 4.2.

LEMMA 4.4. For all δ > 0, β � 1, and k � 3, we have

k+1
k � 4

2β4δβ
kδβ+1 .

Proof. Observe that for k � 3,

k+1
k =

∫ (k+2)β−1

(k+1)β−3

1
x1+δ dx

� (k + 2)β − (k + 1)β + 2
((k + 1)β − 3)1+δ � β(k + 2)β−1 + 2

((k + 1)β − 3)1+δ � 4
2β4δβ
kδβ+1 , (4)

where, to obtain the second inequality in (4), we used the inequality

(a + b)α � aα + αb(a + b)α−1

for α � 1 and a, b � 0. This inequality can be obtained using the fundamental theorem of
calculus applied to the function f (x) = xα .

To obtain the last inequality in (4), we used that for k � 3,

β(k + 2)β−1 + 2 � 2β(k + 2)β−1 � 2ββkβ−1

and

(k + 1)β − 3 = (k + 1)β
(

1 − 3
(k + 1)β

)
� (k + 1)β

4
� kβ

4
.
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Finally, we recall the following lemma in [BFG99] (see also Lemma A.4 in [Gia07])
that gives an estimate for the renewal sequence that will appear in the proof of Theorem 3.2.
We state the lemma using a notation that is adapted to our purpose.

LEMMA 4.5. (Proposition 2, item (iv) in [BFG99]) Let (fk)k�1 be a sequence of positive
real numbers such that

∑∞
k=1 fk < 1. Suppose that (uk)k�1 is a sequence with u0 = 1 and

satisfies the renewal equation

un =
n∑
k=1

fkun−k .

If fn � c1/n
1+α for some α > 0 and a positive constant c1, then un � c2/n

1+α , where c2

is a constant that depends on (fk)k�1.

5. Proof of Theorem 3.2
Let x, y ∈ X− and μ, ν compatible measures such that μ[η0−∞ ∈ · ] = δx(·) and
ν[η0−∞ ∈ · ] = δy(·). We now construct the coupling of μ and ν, that we call Px,y , as
follows. We start by defining

P
x,y[η̂0−∞ ∈ · , ω̂0−∞ ∈ · ] = δx ⊗ δy .

Then, for all n � 1, given the pasts η̂Kn−1
−∞ and ω̂Kn−1

−∞ , we maximally couple η̂Kn+1−1
Kn

and

ω̂
Kn+1−1
Kn

to complete the construction of Px,y .
Next, we show that Px,y satisfies the inequality in Theorem 3.2. For all n � 1 and 0 �

k � n− 1, define

qnk = sup
x,y,a,b∈X

P
x,y[Xn = 1 | Xn−1

n−k = 0, η̂Kn−k−1
1 = a

Kn−k−1
1 , ω̂Kn−k−1

1 = b
Kn−k−1
1 ]

with the convention that if k > l, then elements of the form alk are dropped from the
conditional part. The shorthand notationXn−1

n−k = 0 means thatXn−k = 0, . . . , Xn−1 = 0.
Observe that for all n � 1 and 0 � k � n− 2, we have qnk � qnk+1.

We start by proving the following lemma.

LEMMA 5.1. Suppose that (χ2
n(φ))j�0 ∈ �1. Then there exists ε > 0 such that for all

k � 0 and all n � k + 1,

qnk �

√√√√1 − exp
(

−
∞∑
j=0

χ2
j (φ)

)
� 1 − ε. (5)

For k � 1 and n � k + 1, we also have

qnk �

√√√√√1
2

Kn+1−1∑
j=Kn

χ2
j−Kn−k (φ). (6)

Proof. Inequality (5) is a direct consequence of the Bretagnolle–Huber inequality (cf.
[SV16, eq. 4]) and Lemma 4.1. Inequality (6) is a direct consequence of the Pinsker
inequality (cf. [SV16, eq. 1]) and again Lemma 4.1.
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Now, on some probability space (�, F, P), consider the random process Y = (Yn)n�0

with values in {0, 1} such that Y0 = 1 and, for n � 1 and 0 � k � n− 1,

P [Yn = 1 | Yn−1
n−k = 0, Yn−k−1 = 1, Yn−k−2

1 ] = qnk .

For all m � 1 and a, b ∈ {0, 1}m, we say that a � b if ai � bi for i ∈ {1, . . . , m}.
By construction, for all n � 2, a, b ∈ {0, 1}n−1, and a � b, we have P [Yn = 1|Yn−1

1 =
a] � P

x,y[Xn = 1|Xn−1
1 = b]. Therefore, by applying Strassen’s theorem on stochastic

domination [Lin99] inductively on n, we can construct a coupling measure Q such that, for
a, b ∈ {0, 1}n−1 and a � b, we have Q[Yn � Xn|Yn−1

1 = a, Xn−1
1 = b] = 1. Therefore,

for all n � 1, we have Q[Yn � Xn] = 1, which implies that

P [Yn = 1] � P
x,y[Xn = 1] (7)

for all n � 1.
Now, consider the process Z = (Zn)n�0 with values in {0, 1} such that Z0 = 1 and, for

n � 1 and 0 � k � n− 1,

P [Zn = 1 | Zn−1
n−k = 0, Zn−k−1 = 1, Zn−k−2

1 ] = bk := sup
n�k+1

qnk . (8)

Observe that, for all k � 0, we have bk � bk+1. Using the same argument used to show
(7), we have that P [Zn = 1] � P [Yn = 1] for all n � 1. Also, by (6) and Lemmas 4.3 and
4.4, we have that for k � 3 and n � k + 1,

2(qnk )
2 �

Kn+1−1∑
j=Kn

χ2
j−Kn−k (φ)

� C


(n+1)β�−1∑
j=
nβ�

1
(j − 
(n− k)β�)1+δ = C


(n+1)β�−
(n−k)β�−1∑
j=
nβ�−
(n−k)β�

1
j1+δ

� C

∫ (n+1)β−(n−k)β

nβ−(n−k)β−2

1
x1+δ dx = C

nk

δ
� Cδ−1k+1

k � 4C
2β4δβδ−1

kδβ+1 .

Using (5), we obtain that bk � (2C(2β4δβδ−1)/(kδβ+1))1/2 ∧ (1 − ε) for all k � 3 and
bk � 1 − ε for 0 � k � 2.

Next, let fi := bi−1
∏i−2
k=0(1 − bk) for i � 1 (with the convention that

∏−1
j=0 = 1) and

ui := P [Zi = 1] for i � 0. We have that

P [Zn = 1] =
n∑
k=1

P [Zn = 1, Zn−1
n−k+1 = 0|Zn−k = 1]P [Zn−k = 1]

and hence the following renewal equation holds:

un =
n∑
k=1

fkun−k .

By definition, we have that
∑∞
k=1 fk = 1 − ∏∞

k=1(1 − bk). If β > δ−1, we have∑∞
k=0 bk < ∞. Hence,

∑∞
k=1 fk < 1. Moreover, when β > δ−1, we have that bk �
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c1k
−(δβ+1)/2 for some positive constant c1 that depends on C, δ, and β. From Lemma

4.5, we have that, for all n � 1,

un �
C1

n(δβ+1)/2 ,

where C1 is a positive constant that depends on C, δ, and β. Because P [Zn = 1] �
P
x,y[Xn = 1], we obtain that for all n � 1,

P
x,y[Xn = 1] � C1

n(δβ+1)/2

for β > δ−1. Because the bound is uniform on x, y ∈ X−, we obtain the desired result.

6. Proofs of Corollaries 3.3 and 3.4
6.1. Proof of Corollary 3.3. For k ∈ [Kn, Kn+1) and all y, z ∈ X−, using the coupling
inequality for total variation distance (cf. [Tho00]), we have

dTV(μ
y[ηk ∈ · ], μz[ηk ∈ · ]) � P[η̂k 	= ω̂k] � P[Xn = 1].

Then, by Theorem 3.2, we obtain

P[η̂k 	= ω̂k] �
C1

n(βδ+1)/2

for all β � 1 and β > δ−1. If δ > 1, just take β = 1. In this case k = n and thus we obtain
Corollary 3.3 with a constantC2 that depends on C and δ. If δ ∈ (0, 1), since k � (n+ 1)β ,
we have n � k1/β − 1. This leads to

P[η̂k 	= ω̂k] �
C3

k(βδ+1)/2β

for all k � 1, where C3 is a positive constant that depends on C, δ, and β. Now, observe
that for any 0 < δ′ < δ, we can choose β such that β � 1, β > δ−1, and (βδ + 1)/2β � δ′.

6.2. Proof of Corollary 3.4. Consider k ∈ [Kn, Kn+1). Let

θ = inf{n � 1 : η̂k = ω̂k for all k � n}
with the convention that inf ∅ = ∞. We start by observing that

P[θ > k] � P

[ ⋃
j�n

{Xj = 1}
]
�

∑
j�n

P[Xj = 1].

By Theorem 3.2, we obtain

P[θ > k] � C1
∑
j�n

1
n(βδ+1)/2 �

C′
1

n(βδ−1)/2

for β � 1, β > δ−1, and C′
1 a positive constant that depends on C, δ, and β. Since n �

k1/β − 1, we obtain

P[θ > k] � C4

k(βδ−1)/2β

https://doi.org/10.1017/etds.2021.65 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.65


Mixing rates for potentials of non-summable variations 2835

for all k � 1 and C4 a positive constant that depends on C, δ, and β. Finally, notice that for
all δ′ < δ, we can choose β large enough such that (βδ − 1)/2β � δ′. Using the coupling
inequality (cf. [Tho00]), we conclude that

M(n) := sup
y,z

dTV(μ
y[(ηj )j�n ∈ · ], μz[(ηj )j�n ∈ · ]) � P[θ > k].

7. Proof of Theorem 3.6
Consider Km = 
mβ� for m ≥ 1. For each x, y ∈ X−, we consider a probability space
(�, F, Px,y) that supports the random elements η̃, ω̃, and Z̃ defined as follows. Let η̃∗Px,y ,
ω̃∗Px,y be compatible with φ and η̃0−∞ = x, ω̃0−∞ = y. Also, for allm � 1 given the pasts
η̃
Km−1
−∞ and ω̃Km−1

−∞ , the blocks η̃Km+1−1
Km

and ω̃Km+1−1
Km

are maximally coupled. Under Px,y ,
the process Z̃ has the same law as the process Z defined in §5 and verifies Z̃m � X̃m :=
1{there exists j ∈ [Km, Km+1), η̃j 	= ω̃j } for all m � 1 (this is indeed possible since Z
stochastically dominates X; see §5). We denote by E

x,y the expectation with respect to
P
x,y .

Fix some n ∈ N and let k be such that n ∈ [Kk−1, Kk). We will show that∣∣∣∣
∫
f ◦ T n f̂ dμ̃−

∫
f dμ̃

∫
f̂ dμ̃

∣∣∣∣ � c1P [Zk = 1] (9)

for some positive constant c1 that depends only on C, δ, and β. From this point, Theorem
3.6 is easily obtained following the proof of Corollary 3.3. To obtain (9), we follow the
argument developed in [BFG99, §5]. Using (3.7) in [BFG99], we first observe that∣∣∣∣

∫
f ◦ T n f̂ dμ̃−

∫
f dμ̃

∫
f̂ dμ̃

∣∣∣∣ � ‖f ‖1 sup
x,y

E
x,y[|f̂ (η̃n−∞)− f̂ (ω̃n−∞)|].

For k � 1, let

θk = inf{0 � m � k : Z̃k−m = 1}.
We have

E
x,y[|f̂ (η̃n−∞)− f̂ (ω̃n−∞)|] = E

x,y
[ k∑
j=0

1{θk = j}|f̂ (η̃n−∞)− f̂ (ω̃n−∞)|
]

� ‖f̂ ‖φ
k∑
j=0

varn−Kk−j+1(e
φ)Px,y[θk = j ]. (10)

Observe that for all 0 � j � k,

P
x,y[θk = j ] = P [Zk = 0, . . . , Zk−j+1 = 0, Zk−j = 1]

=
j∏
l=1

(1 − bk−j+l)P [Zk−j = 1],
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where the bk−j+l are from (8). Now, observe that for all i � 1, we have

P [Zi = 1] =
i∑

k=1

bi−kP [Zi−1 = 0 | Zi−1
k = 0, Zk−1 = 1]

=
i∑

k=1

bi−k
i−k∏
l=1

(1 − bi−k−l)P [Zk−1 = 1].

Thus, we have that for all i � 1,

P [Zi = 1] =
i∑

k=1

fkP [Zi−k = 1]

with fk := bk−1
∏k−2
l=0 (1 − bl), k � 1. From this, we obtain

E
x,y[|f̂ (η̃n−∞)− f̂ (ω̃n−∞)|] � ‖f̂ ‖φ

(
varn−Kk+1(e

φ)

k∑
l=1

flP [Zk−l = 1]

+
k∑
l=1

varn−Kk−l+1(e
φ)

l∏
m=1

(1 − bk−l+m)P [Zk−l = 1]
)

.

We deduce that

sup
x,y

E
x,y[|f̂ (η̃n−∞)− f̂ (ω̃n−∞)|] � κ

k∑
l=1

flP [Zk−l = 1] = κP [Zk = 1]

with

κ := varn−Kk+1(e
φ)+ sup

1�l�k

varn−Kk−l+1(e
φ)

fl
.

Finally, since (varn−Kk−l+1(e
φ))/(bl−1) � 2 and

∏∞
j=0(1 − bj ) > 0 (using that b0 < 1

and
∑∞
j=0 bj < ∞), we observe that

κ � 1 + varn−Kk−l+1(e
φ)

bl−1
∏∞
j=0(1 − bj )

� c2

for some positive constant c2 depending on C, δ, and β.

7.1. Proof of Corollary 3.9. The potential φ is summable; therefore, there exists a
normalized potential ψ with the same unique equilibrium state as φ [Wal75, Theorem
3.2]. If vark(φ) � C/k(3+δ)/2, then vark(ψ) � C′/k(1+δ)/2 for some constant C′ > 0 that
depends only on C (see, for example, [Pol00, Proposition 1]). Closely following the proof
of Theorem 3.6 using the measures compatible with ψ , we obtain the desired results. The
only difference is that in (10) we use the bound

E
x,y[|f̂ (η̃n−∞)− f̂ (ω̃n−∞)|] � ‖f̂ ‖φ

k∑
j=0

varn−Kk−j+1(e
φ)Px,y[θk = j ]
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instead of

E
x,y[|f̂ (η̃n−∞)− f̂ (ω̃n−∞)|] � ‖f̂ ‖ψ

k∑
j=0

varn−Kk−j+1(e
ψ)Px,y[θk = j ].

8. Applications
8.1. Functional central limit theorem (FCLT) for potentials with non-summable varia-
tions. Let σ > 0. A function h : A → R satisfies the functional central limit theorem
(FCLT), also called the weak invariance principle, when the process {ζn(t), t ∈ [0, 1], n �
1} defined by

ζn(t) = 1
σ
√
n


nt�∑
i=0

h ◦ ηi

converges weakly to a standard Brownian motion on D[0, 1]. Tyran-Kamińska [TK05,
Section 4.3] showed that the FCLT holds when the potential φ has summable variations.
A straightforward application of Theorem 3.2 in [TK05] and our Corollary 3.3 is the
following FCLT for potentials with non-summable variations.

PROPOSITION 8.1. Assume that the alphabet A is finite and φ satisfies Assumption (A)
with δ ∈ (1/2, 1]. Let μ be shift-invariant and compatible with φ. Also, let h : A → R

be a function such that
∫
h ◦ η0 dμ = 0. If σ 2 := ∫

(h ◦ η0)
2 dμ > 0, then h satisfies the

FCLT.

Proof. Because the alphabet is finite, we have that σ 2 � ‖h‖2∞ < ∞, as required by
Theorem 3.2 in [TK05]. It remains to verify the condition on the mixing rate. Using the
processes {η̃i , i ∈ Z} and {ω̃i , i ∈ Z} introduced in the proof of Theorem 3.6, it is sufficient
to check that there exists γ > 1/2 such that

lim sup
n→∞

nγ sup
x,y

E
x,y[|h(η̃n)− h(ω̃n)|] < ∞. (11)

We have from Corollary 3.3 that, for all x, y ∈ X−,

E
x,y[|h(η̃n)− h(ω̃n)|] � 2‖h‖∞P

x,y[η̃n 	= ω̃n]

� c1

nδ
′ ,

where δ′ < δ and c1 is a positive constant that depends on C, δ, δ′, and h. Taking δ′ and γ
such that 1/2 < γ � δ′ < δ, we obtain (11).

8.2. Hoeffding-type inequality for potentials with non-summable variations. A
Hoeffding-type inequality gives finite sample bounds for deviations of additive functionals
from their mean. When the variation rate of the potential is summable, we have an
exponential inequality [GGT14, CGT20, Mar98]. Nevertheless, the rate of concentration
for potentials when the variation rate is not summable is an open question. Using our
result, we can obtain the following stretched exponential inequality for sums of random
variables.
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PROPOSITION 8.2. Assume that the alphabet A is finite and φ satisfies Assumption (A)
with δ ∈ (1/2, 1]. Let μ be compatible with φ. For all δ′ < 2δ − 1, n � 1, t � 0, and all
functions h : A → R, we have

μ

[∣∣∣∣1
n

n∑
i=1

(h(ηi)− E[h(ηi)])
∣∣∣∣ � t

]
� 2 exp

{
− C10n

δ′ t2

R(h)2

}
,

where R(h) := maxa∈A h(a)− mina∈A h(a) and C10 is a constant that depends on C, δ,
and δ′.

Proof. This is a consequence of Theorem 3.2 of [CCKR07] and Corollary 3.3. In order to
apply Theorem 3.2 of [CCKR07], we need to estimate the terms ‖D‖2

�2(N)
and ‖δf ‖2

�2(N)

(for f (x1, . . . , xn) = (1/n)
∑n
i=1 h(xi)) there. We have

‖D‖2
�2(N)

�
(

1 +
n∑
i=1

sup
x,y∈X−

P
x,y[η̂i 	= ω̂i]

)2

.

Now, for δ′ < 2δ − 1, using Corollary 3.3, we obtain

‖D‖2
�2(N)

� c1n
1−δ′ (12)

for some positive constant c1 depending on C, δ, and δ′.
For a given function f : An → R, we define the oscillation of f at site i ∈ {1, . . . , n}

by

δif := sup
xj=x′

j ,j 	=i
|f (x1, . . . , xn)− f (x′

1, . . . , x′
n)|.

Now, taking f (x1, . . . , xn) = (1/n)
∑n
i=1 h(xi), we have δif = R(h)/n for i ∈

{1, . . . , n}. Thus, we obtain

‖δf ‖2
�2(N)

=
n∑
i=1

(
R(h)

n

)2

= R(h)2

n
. (13)

Finally, using (12) and (13) in Theorem 3.2 of [CCKR07], we obtain Proposition 8.2.

8.3. Poisson autoregression model. As a second application of our results, we consider
a model with countable infinite alphabet called Poisson autoregression, which is popular
in applications [KF05]. Only the Markovian case of these models were studied in the
literature. We will show how we can choose the parameters of non-Markovian Poisson
autoregression models to satisfy the Assumption (A) and thus apply the results of §3.

Consider an absolutely converging sequence (βi)i�1 and a sequence of non-negative
integers (γi)i�1 such that S := ∑∞

i=1 |βi |γi < ∞. Consider A = Z+ and the potential φ
defined for all x ∈ X− by

φ(x) = −λ(x−1−∞)+ x0 log λ(x−1−∞)−
x0∑
k=0

log(k),
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where

λ(x−1−∞) = exp
{ ∞∑
i=1

βi(x−i ∧ γi)
}

.

For this model, we obtain

χ2
k (φ) = sup

a∈X
sup

x,y∈X−
(eλ(a

−1
−k y)(λ(a

−1
−k x)/(λ(a

−1
−k y))−1)2 − 1). (14)

Now, since e−S � λ(x−1−∞) � eS and the exponential function is locally bi-lipschitz, using
(14), we have that

c−1
1

( ∞∑
i=k+1

|βi |γi
)2

� χ2
k (φ) � c1

( ∞∑
i=k+1

|βi |γi
)2

,

where c1 is a positive constant that depends only on S.
Finally, choosing the sequences (βi)i�1 and (γi)i�1 such that

c−1
2

i(3+ε)/2 � |βi |γi � c2

i(3+ε)/2
for some ε > 0 and c2 � 1, we obtain

c−1
3
k1+ε � χ2

k (φ) �
c3

k1+ε ,

where c3 is a positive constant.
Finally, for this model, we mention that the existence of a shift-invariant probability

measure compatible with φ is obtained by applying Theorem 5.1 of [JÖP07] with K =
e2 sinh S and π equal to the Poisson law with parameter eS . Assumption (A) implies the
square summability of the variation, which guarantees the uniqueness of the shift-invariant
probability measure [JÖP07, Corollary 4.2].
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