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SUMMARY
Among the many challenges to deal with, when a robot
is interacting with its environment, friction at the contact
surface and/or at the joints is one of the most important to be
considered. In this paper we propose a control algorithm for
the tracking of position and force (unconstrained orientation
case only) of a manipulator end-effector that does not require
the robot model for implementation. This characteristic has
the advantage of making it capable to compensate friction
effects without any previous estimation. Furthermore, no
velocity measurements are needed, and the unit quaternion
is employed for orientation control. Experimental and
simulation results are provided.
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1. Introduction
When a robot manipulator is in contact with the environment,
it is necessary to control not only position but also the
force exerted at the contact. For this aim, several approaches
have been proposed in the literature (see refs. [1–3] for an
overview). In general, there are two categories for interaction
control strategies: direct and indirect. While in the first case
the contact force can be set to a desired value by using an
explicit force feedback loop, in the second one the force
control is achieved exclusively via motion control. To this
last category belong compliance and impedance control,4

while to the first one belong some techniques like hybrid and
parallel control.2 For instance, in ref. [5] hybrid schemes are
developed by using the orthogonal property of the velocity
vector. This way, force and position terms are well defined
and taken into account separately. On the other hand, note
that most control algorithms make use of velocity and force
measurements, which may not be available. Solutions to this
problem are given in refs. [6, 7].

Another important issue in force control design and
implementation is the possible lack of an accurate system
model. Some solutions to cope with this problem are given
in refs. [10, 15–16]. This is specially true when dealing with
friction effects. In ref. [8] a model is proposed that considers
many of the most important characteristics of friction,
like arbitrary steady-state, hysteretic behavior because of
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frictional lag, and spring-like behavior in stiction. It also
gives varying break-away force depending on the rate of
change of the applied force. Another phenomenon in robotic
systems is meshing friction. This is caused by the inclusion
of high-reduction gears in joint transmissions, and it is
specially important at low velocities. In ref. [9], a new model
is introduced to describe this kind of friction, and some
experimental results are presented to validate it successfully.

In this paper we introduce some essential modifications to
the force control algorithm given in ref. [10], yielding the
following remarkable differences with the original work:

(a) The velocity observer has been modified to deal with
curved surfaces. The algorithm in ref. [10] can strictly
work with planes.

(b) The new algorithm allows not only the use of the
analytical Jacobian but also of the geometrical Jacobian.
This represents an essential advantage, since the later is
easier to compute than the former.

(c) By taking advantage of the geometrical Jacobian,
the orientation problem is further analyzed to employ the
unit quaternion. It is important to point out that only the
unconstrained orientation case is considered, but keeping
an appropriate orientation of the end-effector improves
force tracking.

(d) As explained in Remark 3.2, the usual closed loop
orientation error dynamics for the unit quaternion given
by2

Δ ω̇n + K DoΔ ωn + K Po
0 Rd

dεn = 0

is simplified to

Δ ωn + kε
0 Rd

dεn = 0.

This represents an advantage, since the implementation
is simpler.

(e) External perturbation terms are considered for analysis.
Complex friction effects can be included here.

(f) A more complete set of experimental results is presented.
(g) Simulation results are presented for curved surfaces, and

the complete model of a 6-degree of freedom (DOF)
robot manipulator is written down.

(h) An alternative proof for the boundedness of the Lagrange
multiplier λ is provided.

It is important to stress that despite the very similar structure
of the control–observer scheme presented in ref. [10], the
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complete set of experiments carried out in this work for
planes are more difficult to implement than with the original
algorithm, and this would simply not work for the experiment
and the simulation presented for the robot in contact with a
sphere.

The paper is organized as follows. The robot model
for constrained movement and some properties are given
in Section 2. The force/position controller with observer
scheme is proposed in Section 3. Section 4 presents
experimental results, while Section 5 shows a simulation for
a very fast sampling time. The paper concludes in Section 6.

2. System Model and Properties
Consider an n-DOF rigid robot in contact with its
environment, represented by an m-dimensional constraint.
The dynamics of the system is then given by11

H(q)q̈ + C(q, q̇)q̇ + Dq̇ + g(q) = τ − τ p − JT
ϕ(q)λ,

(1)

where q ∈ R
n is the vector of generalized joint coordinates,

H(q) ∈ R
n×n is the symmetric positive definite inertia

matrix, C(q, q̇)q̇ ∈ R
n is the vector of Coriolis and

centrifugal torques, D ∈ R
n×n is a diagonal positive semi-

definite matrix accounting for viscous friction, g(q) ∈ R
n is

the vector of gravitational torques, τ ∈ R
n is the vector of

torques acting at the joints, τ p ∈ R
n represents any bounded

external perturbation whose first derivative is also assumed to
be bounded, and λ ∈ R

m is the vector of Lagrange multipliers
(physically represents the force applied at the contact point).
Jϕ(q) = ∇ϕ(q) ∈ R

m×n is assumed to be of full rank in
this paper.1 ∇ϕ(q) denotes the gradient of the surface vector
ϕ ∈ R

m, which maps the vector onto the normal plane at the
tangent plane that arises at the contact point described by
ϕ(q) = 0.

Remark 2.1. τ p can include complex friction terms
(modeled with smooth functions) like those described in
refs. [8, 9]. �

Our goal is to design a force control law where the desired
task is directly given in work–space coordinates. To do this,
first of all consider the following well-known relationship:

ẋ =
[

0 ṗn

0ωn

]
= J(q)q̇, (2)

where J(q) ∈ R
6×n is the geometrical Jacobian of the

manipulator, 0ωn ∈ R
ν is the angular velocity of the end-

effector, while 0 pn ∈ R
(n−ν) is the end-effector position.

We assume n = 6 and ν = 3. Whenever the robot is not
in singularity, one also has the following relationship:

q̇ = J−1(q)ẋ. (3)

1 Note that since Jϕ(q) provides directions where it is possible
to apply forces, Rank( Jϕ(q)) < m means that the constraints are
redundant because in that case at least two rows of Jϕ(q) are
dependent linearly.

Assumption 2.1. The robot doesn’t reach any singularity.
�

Remark 2.2. Notice that the robot will not reach any
singularity as long as the desired path and a neighborhood
around it do not pass through a singular configuration.
The size of the neighborhood is given by the maximal
possible error between actual and desired trajectories and
can conveniently be expressed by the constant ymax given in
Appendix A. See also Remark 1 in ref. [12] �

Then x is given in this case by

x =
[

0 pn

0φn

]
=

⎡
⎢⎣

0 pn∫ t

0

0ωndϑ

⎤
⎥⎦ . (4)

Remark 2.3. As explained in full detail in ref. [4], 0φn

in Eq. (4) does not have any physical meaning. Still there
is no analytical reason at all not to employ it as long as
only force and not torque control of the end-effector is
pursued (i.e. only unconstrained orientation is considered).
Note that a drawback of using a nonphysical variable is that
it cannot be measured and it has to be computed as said in
Section 4. �

We can further set2 x = [ x y z φx φy φz ]T.
Suppose now that we rewrite constraint ϕ(q) = 0 in
Cartesian coordinates, i.e.

ϕ(0 pn) = ϕ(x) = 0, (5)

where we make explicit that ϕ(x) = 0 indeed depends only
on the upper part of x so that the lack of physical meaning
of the lower part of this vector is not relevant. Then we have

Jϕx = ∂ϕ(x)

∂x
and Jϕ(q) = Jϕx J(q). (6)

One can rewrite Eq. (1) as

H(q)q̈ + C(q, q̇)q̇ + Dq̇ + g(q) = τ − τ p − JT(q) JT
ϕxλ.

(7)

Property 2.1. The vector ẋ can be written as

ẋ = Qx(x)ẋ + Px(x)ẋ = Qx(x)ẋ, (8)

where Qx(x)
�= (In×n − Px(x)) , Px(x)

�= J+
ϕx Jϕx, and

J+
ϕx

�= JT
ϕx

(
Jϕx JT

ϕx

)−1 ∈ R
n×m stand for the Penrose’s

pseudoinverse and Qx ∈ R
n×n satisfies rank ( Qx) = n − m.

These two matrices are orthogonal, i.e. Qx Px = O (and
in fact Qx JT

ϕx = O and Jϕx Qx = O). Note that the last
equality in Eq. (8) is due to the fact that ϕ̇(x) = Jϕx ẋ = 0
in view of constraint (5). �

2 Using x as vector and scalar (to designate the x-coordinate) should
not cause any confusion.
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Fig. 1. (Colour online) Planes tangent to the surface at actual and desired positions. (a) Large tracking error; (b) small tracking error.

To further simplify the stability analysis, we make the
following.

Assumption 2.2. The matrix Jϕx is constant. �
Remark 2.4. A direct consequence of Assumption 2.2 is

that both Qx and Px are constants, meaning that the surface is
a plane. We do this assumption only for the sake of simplicity
in designing and proving stability for our control–observer
approach. In fact, the whole analysis of the next section is
based on showing that the position and velocity errors, both
for tracking and observation, lie exclusively in the space
spanned by Qx (see Eqs. (26)–(28)). When this matrix is not
constant, the tracking error can be written as

Δx = x − xd = Qx(x)x + Px(x)x − Qx(xd)xd

−Px(xd)xd. (9)

In Fig. 1 two cases are shown, namely when the tracking
error is large, and when it is small. For the second case it can
be appreciated that

Δx ≈ Qx(x)(x − xd) = Qx(x)Δx, (10)

because it is tangent to the surface. This fact allows to carry
out a local stability analysis for a small enough region around
Δx = 0. Note, as shown in the figure, that how small the error
must be, for relationship (10) to hold depends on how smooth
is the surface. Also, after Property 2.1, it holds

Δẋ ≈ Qx(x)(ẋ − ẋd) = Qx(x)Δẋ. (11)

�

3. Force Control–Observer Design
To design the control law, consider an auxiliary variable xa

and define the tracking error as

Δx
�= x − xa. (12)

It is assumed that xa and its first two derivatives are bounded.
One may think of xa as the desired value for x. A possible
definition is given in Eq. (44) to use the unit quaternion.
On the other hand, suppose that velocity measurements are
not available, then an estimate of x is given by x̂, and the
observation error is

z
�= x − x̂. (13)

Finally, as given in ref. [12], we define the auxiliary error
variable as

x̄
�= x̂ − xa. (14)

The force error is given by

Δλ
�= λ − λd, (15)

where λd ∈ R
m is the desired bounded force, with at least its

first derivative bounded. Now, we define the sliding variable,

s
�= Qx

(
˙̄x + Λx x̄

) + J+
ϕxξ 2ΔF

�= sp + sf, (16)

where Λx ∈ R
n×n and ξ 2 ∈ R

m×m are diagonal positive
definite matrices and

ΔF =
∫ t

0
Δλdϑ. (17)

Our design approach is based on making s tend to zero.
First of all note that sp and sf are orthogonal vectors,
and Px J+

ϕx = J+
ϕx. Thus, they both must become zero if s

becomes zero. In this case, since JT
ϕx is assumed to be of full

rank, so is J+
ϕx, and one has ΔF = 0 because ξ 2 is a positive

definite matrix. However, the fact that sp becomes zero does
not necessarily implies that ˙̄x and Λx x̄ will be zero as well.
To achieve this, the observer must be designed properly. First
of all, recall that from Eq. (8) one has ẋ = Qx ẋ. On the other
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hand, Assumption 2.2 guarantees that

x = Qxx + Pxx, (18)

with Pxx �= 0. This means that the part of the vector x lying
in the space spanned by Px must be constant. Then xa must
be chosen to satisfy

xa = Qxxa + Pxxa ≡ Qxxa + Pxx, (19)

ẋa = Qx ẋa. (20)

For the estimated variable x̂, one too has

x̂ = Qx x̂ + Px x̂, (21)

˙̂x = Qx
˙̂x + Px ˙̂x. (22)

The observer has to be designed to comply with Px x̂ = Pxx
and thus Px ˙̂x = 0. To achieve this goal, we propose

x̂ = Qx

∫ t

0

˙̂xdϑ + Pxx, (23)

˙̂x = Qx

(
ẋa − Λx x̄ + kdΛz

∫ t

0
z(ϑ)dϑ + Λz z + kd z

)
,

(24)

where Λz ∈ R
n×n is a diagonal positive definite matrix and

kd is a positive constant. Obviously, one has Px ˙̂x = 0 in view
of Eq. (24). But, since Qx and Px are constants according to
Assumption 2.2, we also have

∫ t

0

˙̂xdϑ =
∫ t

0
Qx

˙̂xdϑ = Qx

∫ t

0

˙̂xdϑ. (25)

To compute Eq. (25), we took advantage of the fact that
Qx Qx = Qx. This means that the integral on the right-
hand side of Eq. (23) lies only in the space spanned by Qx,
implying that the part of the estimated vector x̂ lying in the
space spanned by Px is Pxx, which is what we were looking
for. Note, however, that it has been multiplied by Qx to deal
with curved surfaces as well. On the other hand, since we
have Pxx = Px x̂ = Pxxa, it holds

z = Qx z x̄ = Qx x̄. (26)

In other words, Px z = Px x̄ = 0. Since Qx ẋa = ẋa, then

ż = Qx ż ˙̄x = Qx
˙̄x. (27)

While Assumption 2.2 implies that only planes can be
considered, we will show by means of experiments that
the control–observer approach also works well with smooth
curved surfaces (as can be expected after Remark 2.4). This is
due to the inclusion of Qx in Eq. (24), contrary to the observer
in ref. [10]. Now, suppose that we have QxΛx = Λx Qx (for
example by setting Λx = kx I , with kx > 0). Then sp in Eq.
(16) can be rewritten as

sp = Qx

(
˙̄x + Λx x̄

) = ˙̄x + Λx x̄. (28)

From Eq. (28) one can conclude that both x̄ and ˙̄x tend to
zero if sp tends to zero, i.e. if s does. But showing that x̄ and
˙̄x tend to zero is not our main goal. Rather, this fact is used
to prove that Δx, Δẋ, z, and ż do tend to zero as well, with
a proper design of the controller. Consider

ẋr
�= Qx (ẋa − Λx x̄) − J+

ϕxξ 2ΔF + sd − K γ σ , (29)

where K γ ∈ R
n×n is a diagonal positive definite matrix and

σ ∈ R
n, with

sd = s(0)e−k1t , (30)

σ =
∫ t

0

{
Kβ s1(ϑ) + sign(s1(ϑ))

}
dϑ, (31)

s1 = s − sd, (32)

where σ (0) = 0, and Kβ ∈ R
n×n is a diagonal positive

definite matrix, k1 is a positive constant, and sign(s1)
�=

[ sign(s11) . . . sign(s1n) ]T, with s1i element of s1, i =
1, . . . , n. sd ∈ R

n could be set to zero without affecting the
stability analysis, and it is only used to get a better transient
performance by getting s1(0) = 0 (see ref. [12] for details).
Then, consider

sx
�= ẋ − ẋr (33)

= Qx (Δẋ + Λx x̄) + J+
ϕxξ 2ΔF − sd + K γ σ ,

sr
�= q̇ − q̇r = J−1(q) (ẋ − ẋr) = J−1(q)sx. (34)

Our next step is to rewrite the robot dynamics (7) in terms of
sr as follows

H(q)ṡr + C(q, q̇)sr + Dsr = τ − JT(q) JT
ϕxλ − ya, (35)

where

ya
�= H(q)q̈r + C(q, q̇)q̇r + Dq̇r + g(q) + τ p. (36)

Consider now the auxiliary variables

ẋo
�= ˙̂x − Λz z, (37)

r
�= ẋ − ẋo = ż + Λz z, (38)

so
�= ẋo − ẋr. (39)

Based on all previous definitions, the proposed control law
is

τ = −K p J−1so + JT JT
ϕxλd − JT JT

ϕxξ 1ΔF, (40)

with K p ∈ R
n×n and ξ 1 ∈ R

m×m being positive definite
matrices, and the dependence on q has been omitted for
simplicity. By substituting Eq. (40) in Eq. (35) and by taking
into account that so = sx − r , one gets

H(q)ṡr + C(q, q̇)sr + K DPsr = −JT JT
ϕxΔλ

+ K p J−1r − JT JT
ϕxξ 1ΔF − ya, (41)
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Fig. 2. (Colour online) Robot A465 of CRS Robotics in contact with a flat surface.

where K DP
�= D + K p. Equation (41) is related to the

boundedness of the tracking and force errors. We still need to
describe the dynamics of the observation error. This can be
done as explained in ref. [10] by assuming Λz Qx = QxΛz

(one can choose Λz = kz I , with kz > 0) to get

ṙ + kdr = Qx

(
Δẍ + Λx ˙̄x

)
. (42)

Now consider the following definition for the state of the
error dynamics (17), (41), and (42)

y
�= [

sT
r rT ΔFT

]T
. (43)

Theorem 3.1. Consider a bounded continuous trajectory
xa (with bounded derivatives), which is chosen far away
enough from any singularity, and a desired bounded force λd,
with bounded first derivative. Then, for the observer (23)–
(24) and the control law (40) in closed loop with system (7),
a proper combination of the gains k1, kd, Λx, Λz, Kβ , K γ ,
ξ 1, ξ 2, and K p can always be found depending on the initial
condition y(0), the desired trajectories, and the robot model
parameters so that any variable in the error dynamics given
by Eqs. (17), (41), and (42) is bounded and tracking and
observation errors (Δx, Δẋ, z, ż, ΔF, Δλ) tend to zero. �

Remark 3.1. The result of Theorem 3.1 is only local,
since gains depend on y(0). Furthermore the region of
attraction cannot be made arbitrarily large in general and,
actually, it should be chosen rather small to work with curved
surfaces. A sketch of the proof is given in Appendix A. �

Remark 3.2. As explained before, definition (4) does not
provide any physical meaning. However, for force control
the unconstrained orientation should be perpendicular to

the contact surface. The best option is to employ the unit
quaternion. First we define

ẋa =
[

0 ṗd

0ωd − kε
0 Rd

dεn

]
, (44)

with xa = ∫ t

0 ẋadϑ . kε is a positive scalar gain, 0 pd is the
desired position of the end-effector as before, 0ωd ∈ R

3 is
the desired angular velocity, and 0 Rd ∈ R

3×3 is the desired
rotation matrix, i.e. it represents the desired orientation. dεn ∈
R

3 is the vector part of the unit quaternion associated to the
rotation matrix given by d Rn = 0 RT

d
0 Rn, where 0 Rn ∈ R

3×3

is the rotation matrix between the end-effector frame and
the base frame. Note that the desired position 0 pd has to be
chosen to satisfy Eq. (5), and care should be taken to avoid
getting a not-bounded xa. Also, the desired orientation 0 Rd

has to be chosen perpendicular to the surface at ϕ(0 pd) = 0.
Then, according to Theorem 3.1, it is guaranteed that Δx →
0 and Δẋ → 0. Clearly, the position error requires no extra
analysis, but the orientation case does. When Δx = 0, the
orientation error dynamics is easily computed as

Δ ωn + kε
0 Rd

dεn = 0, (45)

where Δ ωn = 0ωn − 0ωd. It is worthy to note that the closed
loop dynamics presented in ref. [2] is more complex and
involves more gains, since it is given by

Δ ω̇n + K DoΔ ωn + K Po
0 Rd

dεn = 0, (46)

where K Do and K Po are positive definite matrices. However,
the stability analysis can be carried out in a similar way
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Fig. 3. (Colour online) (a) Polished surface with rolling end-effector (less friction); (b) not-polished surface with finger (more friction).

as done in the reference to conclude that 0 Rn → 0 Rd and
0Δω = 0ωn − 0ωd → 0. �

4. Experimental Results

4.1. Testing different levels of friction
In this section the theory of Section 3 is tested. The test
bed consists of the 6-DOF industrial rigid robot A465
of CRS Robotics, which has been especially adapted for
implementation of research control algorithms19 (see Figs. 2
and 10). We have carried out five experiments. For the
first three, we used a plane as physical constraint, while
in the fourth one a curve (part of a sphere) is employed.
Experiment 5 assumes that the surface is flat, while it is
actually slightly concave, thus introducing a mismatch in the
constraint equation.

Our first two experiments consist in making a circle on a
plane with a slope of 45◦, as shown in Fig. 2. The movement
begins at point A and goes to point B in 4 s. From there,
a circle is made which finishes again in B. The experiment
lasts 10 s. The orientation, i.e. the z-axis of the end-effector
coordinate frame, has to be perpendicular to the surface (see
Fig. 26). Also, we have chosen the x-axis to point upwards,
parallel to the surface. To check out that the control algorithm
works well under different conditions of friction, we use two
surfaces and end-effectors as shown in Fig. 3.

We have implemented the following control law in terms
of input voltages (see Appendix B for details),

V = −K p J−1so + D−1
K Dn

{
JT JT

ϕxλd − JT JT
ϕxξ 1ΔF

}
.

The different parameters of the control law are K p = diag
{2.625 1.5 2.625 2.625 2 2.625}, Λx = diag {46.5
44 47 46.5 44 46.5}, Λz = diag {45 45 45 45 45 45},
K γ = diag {0.07 0.07 0.07 0.7 0.7 0.07}, Kβ = diag
{20 19 20 19 19 19}, ξ1 = 10.7, ξ2 = 0.00001, kd =
100, k1 = 0.001, kε = 0.001.

Figure 4 shows the tracking errors Δx. Recall that
difference in the experiments is the presence or absence of
high friction on the contact surface. As can be appreciated,
the results are quite similar so that we can conclude that the
algorithm is working as foreseen in theory in this respect.
The first three elements of Δx correspond to position errors.
As can be appreciated in both cases, they are under 2 mm for
most of the time for the x- and z-axes. Regarding the y-axis,
the error became suddenly larger after 4 s. The reason is that
while the desired trajectories are continuous for position, we
have done a discontinuity in the desired velocities at t = 4
s, when the circle begins at point B, so that necessarily the
error in velocity affects the position tracking. On the other
hand, keeping the orientation constant makes the desired joint
angles to change rather abruptly, which causes increment in
the errors at t = 6 s and 9 s, when the extremes of the circle
are being done. Note, however, that the last three elements of
Δx show good outcomes. Recall that this part of the vector
has to tend to zero in order for the orientation and angular
velocity errors to do so as well. As can be seen in Fig. 4, the
maximal error is about 0.1 rad, caused also by the extremes
of the trajectory. It is important to point out that we got 0φn

by employing

0φn(kT ) = 0φn((k − 1)T ) + Jω(q){q(kT ) − q((k − 1)T )},
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Fig. 4. Experiments 1 and 2. Testing different levels of friction on contact surfaces. Tracking error vector Δx. Surface with friction (—–)
and without friction (· · ·).

where Jω(q) ∈ R
3×n is the lower part of the geometrical

Jacobian J(q) and T = 10 ms is the sampling time.
In Fig. 5 the observation errors are shown. In order to have

a better point of comparison, we use the same scales as in
Fig. 4. It can be appreciated that the observer is working very
well, and most remarkably, the outcomes are very similar for
both cases, i.e. with and without friction.

Figure 6 shows real force against desired force, and
the corresponding errors. The outcome values can only be
considered to be acceptable, although they could improve
with a smaller sampling time because it would allow to set
gains larger, specially ξ2. Note, how small this parameter
had to be set. Still, the error is bounded by ±10 N for most
of the time and it is quite similar in both cases so that one
can conclude that friction is not the cause of these errors.
At about time t = 6 s the force error becomes larger in the
unpolished surface. However, we consider that the reason is
not friction itself but a small hole that the irregular surface has
at a particular point, which causes the robot to push stronger
when falling there. We have opened a window from t = 5.5 s
to 6.5 s, where it can be seen that the errors remain bounded
by ±10 N for the polished plane.

4.2. Testing the effect of velocity in friction
The third experiment that we have carried out is basically
the very same as Experiment 1, but three times slower. Since

friction is dependent on velocity, it is aimed at analyzing
whether the performance is affected, for the better or the
worse, when the velocity diminishes. Note that it is natural
to expect better results for slower movements. In Fig. 7 we
show results for the tracking errors. It can be appreciated that
the outcomes are slightly better for slower velocities. Then
we can conclude that a slower movement is essentially not
affecting the performance in the tracking errors.

On the other hand, by comparing Fig. 5 with Fig. 8, it can
be seen that the observation errors improved. We claim that
a lower velocity is not the one single cause for this, but also
the fact that the implementation of many digitalized observer
integrals becomes less sensitive to the sampling period.

Finally, a comparison of Fig. 6 with Fig. 9 clearly shows
an improvement. In conclusion, the results are slightly better
in all cases, and much better in the force control, so that
in this case the friction factor might be the reason for the
improvement.

4.3. Testing the algorithm on a curved surface
This experiment is meant to test the proposed algorithm in
a surface that is not a plane. For this goal, we use the part
of a sphere as shown in Fig. 10. As pointed out in Section 3
(after Remark 2.4), the observer (23)–(24) together with the
control law (40) can deal with this kind of constraints.

The desired trajectory and orientation can also be seen in
Fig. 10, while the total time of the experiment is 12 s. The
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Fig. 5. Experiments 1 and 2. Testing different levels of friction on contact surfaces. Observer error vector z. Surface with friction (—–)
and without friction (· · ·).
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Fig. 6. Experiments 1 and 2. Testing different levels of friction on contact surfaces. Surface with friction (—–) and without friction (· · ·).
(a–b) Desired force (- - -) versus real force; (c–d) Force error Δλ.
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Fig. 7. Experiment 3. Slow desired trajectories. Tracking error vector Δx.
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Fig. 8. Experiment 3. Slow desired trajectories. Observer error vector z.
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Fig. 9. Experiment 3. Slow desired trajectories. (a–b) Desired force (- - -) versus real force (—–); (c–d) force error Δλ.

Fig. 10. (Colour online) Robot A465 of CRS Robotics in contact with a curved surface.

https://doi.org/10.1017/S026357471200015X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471200015X


Robot force control without dynamic model 159

0 2 4 6 8 10 12
−4

−2

0

2

4
Error Δx (x)

 (
m

m
) 

0 2 4 6 8 10 12
−4

−2

0

2

4
Error Δx (y)

 (
m

m
) 

0 2 4 6 8 10 12
−4

−2

0

2

4
Error Δx (z)

t (s)

 (
m

m
) 

0 2 4 6 8 10 12

−0.1

−0.05

0

0.05

0.1

 (
ra

d)
 

Error Δx (φ
x
)

0 2 4 6 8 10 12

−0.1

−0.05

0

0.05

0.1

 (
ra

d)
 

Error Δx (φ
y
)

0 2 4 6 8 10 12

−0.1

−0.05

0

0.05

0.1

 (
ra

d)
 

Error Δx (φ
z
)

t (s)

Fig. 11. Experiment 4. Movement on a curved surface. Tracking error vector Δx.

results for the tracking error are shown in Fig. 11. It can be
appreciated that the errors are in fact smaller than for the flat
surface. The reason is probably that the movement is less
complex from the required joint angles point of view.

Figure 12 shows the observation errors. By comparing with
Figs. 5 and 8, it can be seen that these are similar to other
cases. Finally, Fig. 13 shows the desired and real forces,
together with the corresponding error. The results are indeed
good, because for most of the time the errors are bounded by
about ±5 N.

4.4. Testing robustness in the case of not well-known
surfaces
To analyze the effect of the exact knowledge of constraint (5),
we consider making the flat surface slightly concave. Our
goal is to repeat either Experiment 1 or 2. To protect our
test bed, we preferred to repeat Experiment 2. This should
not invalidate the results because the outcomes of the first
two experiments are similar. Besides, right now we are not
testing the behavior because of friction. In Fig. 14 we show
the concave surface, while it is a matter of course that it is
assumed to be perfectly flat as before.

The results can be appreciated in Figs. 15 to 17. The direct
comparison is with Figs. 4 to 6. In general, the results are
slightly worse for position but slightly better for orientation
so that altogether we consider them to be similar. As to
force tracking, it gets clearly worse when the circle is being
made. For the first 4s the outcomes are similar in magnitude.

Since we are carrying out the faster experiment, we could
expect better results for slower movements. In any case we
think that our approach shows a good degree of robustness.
Experiments for a convex surface are quite similar to the
case of the concave one so that we omit them here for lack
of room.

5. Simulation Results
The experimental results of Section 4 were not as accurate
as expected from the theory developed in Section 3. We
claim that the reason is the digitalization process necessary
for implementation. However, for hardware issues, we were
not able to have a sampling time faster than 10 ms, which
in practice proved to be too large. Not being able to
set gains better, exact tracking was not always achieved
in the experiments. To show that our claim is correct, a
simulation has been carried out for the same robot A465
of CRS Robotics. In Appendix B the complete model of this
manipulator can be found.

We have chosen to use the same sphere as that of
Section 4.3. However, to clearly show the difference of the
control algorithm of Section 3 and that of ref. [10], the task
to be accomplished is more demanding. As illustrated in
Fig. 18, the desired trajectory is larger than that depicted in
Fig. 10. This makes more evident the curvature of the sphere.
Furthermore, the required time to reach the final position will
be smaller (the total simulation lasts for 8 s instead of 12 s
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Fig. 12. Experiment 4. Movement on a curved surface. Observer error vector z.
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Fig. 13. Experiment 4. Movement on a curved surface. (a) Desired force (- - -) versus real force (—–); (b) force error Δλ.
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Fig. 14. (Colour online) Slightly concave surface.
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Fig. 15. Experiment 5. Testing robustness in the case of not well-known surfaces. Tracking error vector Δx.
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Fig. 16. Experiment 5. Testing robustness in the case of not well-known surfaces. Observer error vector z.
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Fig. 17. Experiment 5. Testing robustness in the case of not well-known surfaces. (a–b) Desired force (- - -) versus real force (—–); (c–d)
force error Δλ.
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Fig. 18. Simulation. Desired trajectory for simulation.

of the experimental outcomes). The constraint is given by3

ϕ(x) = 1

2r
(x − h)2 + 1

2r
(y − k)2 + 1

2r
(z − l)2 − r/2 = 0,

(47)
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Fig. 19. Simulation. Tracking error vector Δx.

3 This definition allows to have Jϕx JT
ϕx = 1.

with h = 0.6 [m], k = 0 [m], l = 0.55 [m],
and r = 0.2 [m]. The sampling time has been
chosen as 0.1 ms that allowed to set K p = diag
{0.75 0.75 0.75 0.75 0.75 0.75}, ξ1 = 20, ξ2 = 20, Λx =
diag {11, 000 11, 000 11, 000 11, 000 11, 000 11, 000},
K γ = diag {1.5 1.5 1.5 1.5 1.5 1.5}, Kβ = diag
{0.5 0.5 0.5 0.5 0.5 0.5}, kd = 5000, k1 = 0.001, kε =
5, and Λz = diag {5000 5000 5000 5000 5000 5000}.

Remark 5.1. By comparing the gains used for simulation
and those employed in Section 4, it is easy to realize that
most of the ones defined here are by far larger. In general,
gains should be large enough to achieve a good performance
and the user should begin with gains related to the observer,
i.e. kd and Λz. Next Λx, ξ 1, and ξ 2 should be set carefully
large enough to diminish tracking errors. On the other hand,
K p should be chosen not too large to avoid abrupt changes
in the output. The integral gains should be kept zero until the
tracking error becomes small enough. Only then the integral
term should be included to achieve exact tracking. �

Figures 19 and 20 show tracking and observer errors,
respectively. We kept the same scale as for the experimental
results, this makes more evident that tracking has been
accomplished. Recall that our approach guarantees only local
stability so that we have chosen, just as for the experimental
results, to set initial error conditions to zero. We do not
consider this to be a disadvantage, since it is always possible
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Fig. 20. Simulation. Observer error vector z.
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Fig. 21. Simulation. (a) Desired force (- - -) versus real force (—–); (b) force error Δλ.
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Fig. 22. Simulation. Velocity tracking error vector Δẋ.

to regulate the robot’s initial position and orientation to a
specified value. As to the desired force, we were able to
choose a more complex and larger reference (we do not risk
to damage a sensor this time). The desired values go from
200 N to nearly 10 N. It can be appreciated in Fig. 21(a)
how fast the error tends to zero, although in the end there
is a small residual term of about 0.1 N (Fig. 21(b)). Still,
we consider the outcome quite acceptable according to the
theory.

Since for simulation joint and Cartesian velocities are
available, in Figs. 22 and 23 the corresponding tracking
and observation errors are shown. As could have been
expected, these are also very good and in accordance with
the theoretical development of Section 3. Finally, to show
that exact orientation tracking is being accomplished (as
it is indicated from the fact that tracking errors Δx are
zero), in Fig. 24 the orientation matrix d Rn = 0 RT

d
0 Rn is

shown. It can be checked that it is the unit matrix during
the whole simulation, meaning that the end-effector acquires
the desired orientation. Certainly, this can also be seen by
drawing both 0 Rd and 0 Rn together, as done in Fig. 25. It can
be recognized the rotation of the end-effector as depicted in
Fig. 18.

6. Conclusions
Model-free tracking and force control for rigid robots are
studied in this paper. Only unconstrained orientation motion

is considered. It is assumed that no velocity measurements
are available so that an observer is introduced that delivers
results directly in Cartesian coordinates. For implementation
only the constraint equation and the manipulator Jacobian
are necessary. To deal with the orientation problem, the
unit quaternion has been employed. The control–observer
scheme employs a second-order sliding mode variable to
avoid the knowledge of the robot model. This characteristic
allows to compensate for example friction terms without any
previous identification. It has been shown that force, tracking,
and observation errors tend to zero under the condition
that no singularity is reached. This assumption is made for
simplicity, but a subregion of the dextrous workspace free
of singularities and proper gains can always be chosen to
guarantee it. To simplify the mathematical stability analysis,
it is assumed that the contact surface is a plane, but it is shown
that the scheme also works for curved surfaces.

Experimental results are carried out to test the proposed
algorithm. The outcomes are in acceptable agreement with
the developed theory, both for flat and curve surfaces.
However, because of hardware restrictions, the sampling
time could not be set small enough to tune gains properly.
This fact avoided to get even better results and certainly
represents a disadvantage of the approach because it turns
out to be sensitive to the discretization process. To show
that with a faster sampling time outcomes can be improved,
a complete simulation for the same robot manipulator in
contact with the curved surface was carried out. For this case,
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Fig. 23. Simulation. Velocity observer error vector ż.
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Fig. 24. Simulation. Orientation matrix d Rn = [ dxn
d yn

d zn ].
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Fig. 25. Simulation. 0 Rn = [ 0xn
0 yn

0 zn ] (—–) and 0 Rd = [ 0xd
0 yd

0 zd ] (- - -).

the results were pretty well in accordance with the developed
theory.

It remains as a future work an extension of the approach
to torque control.
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simulation of cooperative robots: A case study,” Robotica 23,
615–624 (2005).

19. A. M. Castillo Sánchez, “Adaptación de Dos Robots
Industriales Para su Utilización en el Desarrollo de Nuevas
Técnicas y Algoritmos de Control,” Bachelor’s Degree Thesis
(ENEP, Universidad Nacional Autónoma de México, Mexico,
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Appendix A: Proof of Theorem 3.1
The proof of Theorem 3.1 is similar to that given in refs.
[10, 12], so that we now present a sketch and stress few
differences. First consider the next lemma.13

Lemma 6.1. If a differentiable function f (t) has a finite
limit as t → ∞, and if ḟ (t) is uniformly continuous, then it
holds ḟ (t) → 0 as t → ∞. �

As done in refs. [10, 12], we prove Theorem 3.1 in three
steps: (a) The boundedness of y in Eq. (43) implies the
boundedness of any other closed loop variable. (b) With a
proper choice of gains, the observer (23)–(24) and the control
law (40) guarantee the boundedness of the state y in closed
loop. (c) If all closed loop variables are bounded, then the
inclusion of the sign function in Eq. (31) makes all errors
tend to zero.

(a) We have to show that if ‖ y‖ is bounded by 0 < ymax <

∞, then any other signal is bounded. As said before, the main
difference of the algorithm presented here with that given in
ref. [10] is a modification in the observer so that this part of
the proof is all similar with step (a) of the proof in ref. [10].
However, in this work we present an alternative way to prove
that the Lagrange multiplier λ is bounded. This term can be
computed as explained in ref. [14] to get

λ = (
Jϕ H−1 JT

ϕ

)−1 {
Jϕ H−1{τ − τ̄ } + J̇ϕ q̇

}
, (48)

where τ̄
�= C(q, q̇)q̇ + Dq̇ + g(q) + τ p must be bounded

because it depends only on bounded variables as shown in
ref [14], and τ p is bounded by assumption. It only remains
to show that the input torque τ is bounded. By taking into
account Eq. (40), and the fact that after Eq. (34) one has
so = J(q)sr − r , it is

τ = −K p(sr − J−1r) + JT JT
ϕxλd − JT JT

ϕxξ 1ΔF,

which is bounded when y is bounded.

(b) This part of the proof can also be carried out as
explained in ref. [10] because the change in the observer
does not essentially affect it.

(c) Till now we have only shown that y is bounded.
We still have to prove that tracking, force, and observation

Z

Z

X

X
R

Y

Y

p
n

n

n

n

n

Fig. 26. Base and end-effector coordinate frames for robot A465 of
CRS robotics.

errors tend to zero. Showing that Δx, Δẋ, z, ż, and ΔF
tend to zero can be done exactly the same way as done in
step (c) of the proof in ref. [12]. One just have to take into
account Eqs. (16) and (26)–(27). Then it only remains to
show that Δλ → 0. We use Lemma 6.1 for this. First of all,
we know that ΔF is bounded and has a limit (ΔF → 0 as
t → ∞). Then, in order for Δλ to tend to zero, we only
have to show that it is uniformly continuous, or equivalently,
d
dt

Δλ is bounded. But, since Δλ = λ − λd and λd and its
derivative are assumed to be bounded, it remains only to
show that d

dt
λ is bounded. It can be seen from Eq. (48)

that λ = λ(q, q̇, ẋ, τ p, sr, r, λd, ΔF). Since the derivatives
of all functions involved in model (1) exist, one has d

dt
λ =

λ̇(q, q̇, q̈, ẋ, ẍ, τ p, τ̇ p, sr, ṡr, r, ṙ, λd, λ̇d, ΔF, Δλ). By re-
calling that τ̇ p is bounded by assumption, d

dt
λ must be

bounded because after the discussion of step (a) all variables
have been proven to be bounded, including q̈ and ẍ. �

Appendix B: Kinematics and Dynamic Model of Robot
A465 of CRS Robotics
The Cartesian position and orientation of the end-effector
of the robot A465 of CRS Robotics used in Sections 4
and 5 for control implementation is computed by measuring
joint positions and substituting them in the corresponding
direct kinematics. To achieve this goal, the standard Denavit–
Hartenberg approach has been employed.4 The base and end-
effector coordinate frames are shown in Fig. 26. For the sake
of simplicity, the middle coordinate frames are not shown
in the figure. The following homogeneous transformation
matrices have been obtained:

A1 =

⎡
⎢⎣

c1 0 s1 0
s1 0 −c1 0
0 1 0 d1

0 0 0 1

⎤
⎥⎦ A2 =

⎡
⎢⎣

c2 −s2 0 a2c2

s2 c2 0 a2s2

0 0 1 0
0 0 0 1

⎤
⎥⎦

A3 =

⎡
⎢⎣

c3 0 s3 0
s3 0 −c3 0
0 1 0 0
0 0 0 1

⎤
⎥⎦
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Table I. Direct kinematic parameters of robot A465 of CRS
Robotics.

d1 = 0.330 (m) a2 = 0.305 (m) d4 = 0.330 (m) d6 = 0.148 (m)

Table II. Nomenclature for trigonometric functions.

s1 = sin(q1) c1 = cos(q1) s23 = sin(q2 + q3)
s2 = sin(q2) c2 = cos(q2) c23 = cos(q2 + q3)
s3 = sin(q3) c3 = cos(q3)
s4 = sin(q4) c4 = cos(q4)
s5 = sin(q5) c5 = cos(q5)
s6 = sin(q6) c6 = cos(q6)

A4 =

⎡
⎢⎣

c4 0 −s4 0
s4 0 c4 0
0 −1 0 d4

0 0 0 1

⎤
⎥⎦ A5 =

⎡
⎢⎣

c5 0 s5 0
s5 0 −c5 0
0 1 0 0
0 0 0 1

⎤
⎥⎦

A6 =

⎡
⎢⎣

c6 −s6 0 0
s6 c6 0 0
0 0 1 d6

0 0 0 1

⎤
⎥⎦ .

The relationship between the robot end-effector position and
orientation with respect to the base frame is given by

0Tn =
[

0 Rn
0dn

0T 1

]
= A1 A2 A3 A4 A5 A6.

Note that it is 0 pn = 0dn. The values and definitions of
different parameters can be read in Tables I and II. Note that
inverse kinematics is not necessary for our approach. The
elements of the associated geometrical Jacobian J(q) have
been computed as

j11 = −d6s5s1c23c4 + d6s5c1s4 + d6s1s23c5 − s1s23d4

− s1a2c2,

j12 = −c1(d6s23c4s5 − d6c23c5 − c23d4 + a2s2),

j13 = c1(−d6s23c4s5 + d6c23c5 + c23d4),

j14 = −d6s5(−s1c4 + c1c23s4),

j15 = d6(c1c4c23c5 − c1s23s5 + s4s1c5),

j16 = 0,

j21 = d6s5c1c23c4 + d6s5s1s4 + d6c1s23c5 + c1s23d4 + c1a2c2,

j22 = −s1(d6s23c4s5 − d6c23c5 − c23d4 + a2s2),

j23 = s1(−d6s23c4s5 + d6c23c5 + c23d4),

j24 = −d6s5(s1c23s4 + c1c4),

j25 = −d6(s1s23s5 + s4c1c5 − s1c4c23c5),

j26 = 0,

j31 = 0,

j32 = d6s5c23c4 + d6s23c5 + s23d4 + a2c2,

j33 = d6s5c23c4 + d6s23c5 + s23d4,

j34 = −s23d6s4,

j35 = d6(s23c4c5 + c23s5),

j36 = 0,

j41 = 0,

j42 = s1,

j43 = s1,

j44 = c1s23,

j45 = −c1c23s4 + s1c4,

j46 = s5c1c23c4 + s5s1s4 + c1s23c5,

j51 = 0,

j52 = −c1,

j53 = −c1,

j54 = s1s23,

j55 = −s1c23s4 − c1c4,

j56 = s5s1c23c4 − s5c1s4 + s1s23c5,

j61 = 1,

j62 = 0,

j63 = 0,

j64 = −c23,

j65 = −s23s4,

j66 = s23c4s5 − c23c5.

In order to calculate the dynamic model of the robot, the
Euler–Lagrange method was used.4 To have a simulation as
accurate as possible, motors’ dynamics were also included,
resulting in17

(
H(q) + D−1

n Dj
)

q̈ + C(q, q̇)q̇ + (
D + D−1

n Df
)

q̇ + g(q)

= D−1
n DKV − JT(q)

(
JT

ϕxλ + f f

)
.

f f ∈ R
n represents the friction between the robot end-

effector and the contact surface. Dn, Dj, Df, and DK ∈
R

n×n are all diagonal matrices given by

Dn = diag

{
1

r2
1

· · · 1

r2
6

}
,

Dj = diag{Jm1 · · · Jm6},

Df = diag

{
fm1 + Ka1Kb1

Ra1
· · · fm6 + Ka6Kb6

Ra6

}
,

DK = diag

{
Ka1

Ra1r1
· · · Ka6

Ra6r6

}
.

For i = 1, . . . , 6, ri is the gear ratio, Jm1 is the rotor inertia,
fm1 is the rotor friction coefficient, Ka1 is the torque constant,
Ra1 is the armature resistance, and Kb1 is the back emf
constant. The corresponding values can be read in Table III.

By recalling that the inertia matrix is symmetric, the
elements of the lower part of H(q) ∈ R

n×n are given by
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Table III. Motors parameters.

Motor 1 2 3 4 5 6

ri 100 100 100 101 100 101
Jm1 (kg m2) 9.0376 · 10−5 9.0376 · 10−5 9.0376 · 10−5 4.9 · 10−6 4.9 · 10−6 4.9 · 10−6

fm1 (kg m2/s) 9.70996 · 10−5 9.70996 · 10−5 9.70996 · 10−5 0.02234 0.02234 4.6792 · 10−5

Ka1 (N m/A) 0.14234 0.14234 0.14234 0.053 0.053 0.0392
Ra1 (Ω) 0.84 0.84 0.84 2.7 2.7 6.9
Kb1 (V s/rad) 0.14229 0.14229 0.14229 0.0534 0.0534 0.0392

h11 = m2l
2
c2c

2
2 + m3(a2c2 + lc3s23)2 + m4(a2c2 + lc4s23)2

+ m5
(
(a2c2 + lc5s23c5 + d4s23 + lc5c23c4s5)2 + l2

c5s
2
4s

2
5

)
+ m6

(
(a2c2 + lc6s23c5 + d4s23 + lc6c23c4s5)2 + l2

c6s
2
4s

2
5

)
+ I122 + I211s

2
2 + I222c

2
2 + I311s

2
23 + I333c

2
23

+ I411s
2
23c

2
4 + I422c

2
23 + I433s

2
23s

2
4 + I511(s23c4c5

+ c23s5)2 + I522s
2
23s

2
4 + I533(s23c4s5 − c23c5)2

+ I611(s23c4c5c6 + c23s5c6 − s23s4s6)2 + I622(s23c4c5s6

+ c23s5s6 + s23s4c6)2 + I633(s23c4s5 − c23c5)2,

h21 = m5lc5s4s5(c23(d4 + lc5c5) − a2s2 − lc5s23c4s5)

+ m6lc6s4s5(c23(d4 + lc6c5) − a2s2 − lc6s23c4s5)

+ s23c4s4(I411 − I433) + I511s4c5(s23c4c5 + c23s5)

− I522s23s4c4 + I533s4s5(s23c4s5 − c23c5)

+ I611(s23c4c5c6 + c23s5c6 − s23s4s6)(s4c5c6 + c4s6)

+ I622(s23c4c5s6 + c23s5s6 + s23s4c6)(s4c5s6 − c4c6)

+ I633s4s5(s23c4s5 − c23c5),

h31 = −m5lc5s4s5(lc5s23c4s5 − c23(d4 + lc5c5))

− m6lc6s4s5(lc6s23c4s5 − c23(d4 + lc6c5))

+ s23c4s4(I411 − I433) + I511s4c5(s23c4c5 + c23s5)

− I522s23s4c4 + I533s4s5(s23c4s5 − c23c5)

+ I611(s23c4c5c6 + c23s5c6 − s23s4s6)(s4c5c6 + c4s6)

+ I622(s23c4c5s6 + c23s5s6 + s23s4c6)(s4c5s6 − c4c6)

+ I633s4s5(s23c4s5 − c23c5),

h41 = −m5lc5s5(lc5c23s5 + a2c2c4 + s23c4(d4 + lc5c5))

− m6lc6s5(lc6c23s5 + a2c2c4 + s23c4(d4 + lc6c5))

− I422c23 − I511s5(s23c4c5 + c23s5) + I533c5(s23c4s5

− c23c5) − I611s5c6(s23c4c5c6 + c23s5c6 − s23s4s6)

− I622s5s6(s23c4c5s6 + c23s5s6 + s23s4c6)

+ I633c5(s23c4s5 − c23c5),

h51 = −m5lc5s4(s23(lc5 + d4c5) + a2c2c5)

− m6lc6s4(s23(lc6 + d4c5) + a2c2c5) − s23s4I522

+ I611s6(s23c4c5c6 + c23s5c6 − s23s4s6)

− I622c6(s23c4c5s6 + c23s5s6 + s23s4c6),

h61 = (s23c4s5 − c23c5)I633,

h22 = m2l
2
c2 + m3

(
a2

2 + l2
c3 + 2a2lc3s3

)
+ m4

(
a2

2 + l2
c4 + 2a2lc4s3

)
+ m5(a2

2 + (s5c4lc5)2 + (d4 + c5lc5)2 + 2a2s3(d4

+ c5lc5) + 2lc5a2c3c4s5) + m6
(
a2

2 + (s5c4lc6)2

+ (d4 + c5lc6)2 + 2a2s3(d4 + c5lc6) + 2lc6a2c3c4s5
)

+ I233 + I322 + I411s
2
4 + I433c

2
4 + I511s

2
4c

2
5

+ I522c
2
4 + I533s

2
4s

2
5 + I611(s4c5c6 + c4s6)2

+ I622(s4c5s6 − c4c6)2 + I633s
2
4s

2
5 ,

h32 = m3lc3(lc3 + a2s3) + m4lc4(lc4 + a2s3)

+ m5((d4 + lc5c5)2 + a2s3(d4 + lc5c5) + (lc5c4s5)2

+ lc5a2c3c4s5)

+ m6((d4 + lc6c5)2 + a2s3(d4 + lc6c5) + (lc6c4s5)2

+ lc6a2c3c4s5) + I322 + I411s
2
4 + I433c

2
4

+ I511s
2
4c

2
5 + I522c

2
4 + I533s

2
4s

2
5 + I611(s4c5c6 + c4s6)2

Table IV. Masses, friction coefficients, moments of inertia, and centers of mass.

lc1 = 0.150 (m) lc2 = 0.140 (m) lc3 = 0.070 (m) lc4 = 0.140 (m) lc5 = 0.03 (m) lc6 = 0.04 (m)
m1 = 18.3 (kg) m2 = 15 (kg) m3 = 13.5 (kg) m4 = 10.8 (kg) m5 = 5.8 (kg) m6 = 1 (kg)

I111 = 0.8 (kg m2) I122 = 0.7 (kg m2) I133 = 0.9 (kg m2) I211 = 0.85 [kg m2] I222 = 0.8 [kg m2] I233 = 0.75 [kg m2]
I311 = 0.70 [kg m2] I322 = 0.75 [kg m2] I333 = 0.60 [kg m2] I411 = 0.45 [kg m2] I422 = 0.50 [kg m2] I433 = 0.40 [kg m2]
I511 = 0.18 [kg m2] I522 = 0.20 [kg m2] I533 = 0.15 (kg m2) I611 = 0.10 [kg m2] I622 = 0.08 [kg m2] I633 = 0.09 [kg m2]
d11 = 3 [kg m2/s] d22 = 2.6 [kg m2/s] d33 = 2.5 [kg m2/s] d44 = 1.8 [kg m2/s] d55 = 1.5 [kg m2/s] d66 = 1.2 [kg m2/s]
bx = 0.61 [N s] by = 0.61 [N s] bz = 0.61 [N s]

cbx = 0.47 (N) cby = 0.47 [N] cbz = 0.47 [N]
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+ I622(s4c5s6 − c4c6)2 + I633s
2
4s

2
5 ,

h42 = − m5lc5s4s5(d4 + lc5c5 + a2s3) − m6lc6s4s5(d4 + lc6c5

+ a2s3) + s4c5s5(I533 − I511)

− I611s5c6(s4c5c6 + c4s6) − I622s5s6(s4c5s6 − c4c6)

+ I633s4s5c5,

h52 = m5lc5c4(lc5 + d4c5) + m5lc5a2(s3c4c5 + c3s5)

+ m6lc6c4(lc6 + d4c5) + m6lc6a2(s3c4c5 + c3s5)

+ I522c4 + I611s6(s4c5c6 + c4s6)

− I622c6(s4c5s6 − c4c6),

h62 = s5s4I633,

h33 = m3l
2
c3 + m4l

2
c4 + m5(d4 + lc5c5)2 + m5(lc5c4s5)2

+ m6(d4 + lc6c5)2 + m6(lc6c4s5)2 + I322 + I411s
2
4

+ I433c
2
4 + I511s

2
4c

2
5 + I522c

2
4 + I533s

2
4s

2
5 + I611(s4c5c6

+ c4s6)2 + I622(s4c5s6 − c4c6)2 + I633s
2
4s

2
5 ,

h43 = −m5lc5s4s5(d4 + lc5c5) − m6lc6s4s5(d4 + lc6c5)

+ s4c5s5(I533 − I511) − I611s5c6(s4c5c6 + c4s6)

− I622s5s6(s4c5s6 − c4c6) + I633s4s5c5,

h53 = m5lc5c4(lc5 + d4c5) + m6lc6c4(lc6 + d4c5) + I522c4

+ I611s6(s4c5c6 + c4s6) − I622c6(s4c5s6 − c4c6),

h63 = s4s5I633,

h44 = m5(lc5s5)2 + m6(lc6s5)2 + I422 + I511s
2
5 + I533c

2
5

+ I611s
2
5c

2
6 + I622s

2
5s

2
6 + I633c

2
5,

h54 = s5c6s6(I622 − I611),

h64 = I633c5,

h55 = m5l
2
c5 + m6l

2
c6 + I522 + I611s

2
6 + I622c

2
6,

h65 = 0,

h66 = I633.

The matrix C(q, q̇) can be computed by using the Christoffel
symbols after H(q) as explained in refs. [4, 17]. We omit it
here for lack of room. The elements of the gravity vector
g(q) ∈ R

n are given by

g1 = 0,

g2 = m2glc2c2 + m3g(a2c2 + lc3s23) + m4g(a2c2 + lc4s23)

+ m5g(a2c2 + d4s23 + (c23c4s5 + s23c5)lc5)

+ m6g(a2c2 + d4s23 + (c23c4s5 + s23c5)lc6),

g3 = m3glc3s23 + m4glc4s23 + m5g(d4s23 + (c23c4s5

+ s23c5)lc5) + m6g(d4s23 + (c23c4s5 + s23c5)lc6),

g4 = − m5gs23s4s5lc5 − m6gs23s4s5lc6,

g5 = m5g(s23c4c5 + c23s5)lc5 + m6g(s23c4c5 + c23s5)lc6,

g6 = 0,

where g = 9.81(m/s2) is the gravity constant. The values of
the masses, moments of inertia, and center mass positions can
be seen in Table IV. Besides the motor friction coefficients
Df , we consider only viscous frictions. As to the matrix
D ∈ R

n×n, it is given by

D = diag{ d11 · · · d66 }. (49)

To model friction between the surface and the robot end-
effector, it is considered that the former is made out of
steel, while the later of aluminium so that it is f f =
Bv ẋ + BCsign(ẋ), with

Bv = diag{ bx by bz 0 0 0 }, (50)

BC = diag{ cbx cby cbz 0 0 0 }. (51)

Different parameters for D, Bv, and BC are given in Table IV.
The values for Bv and BC can readily be found by a simple
Internet search.

The Lagrange multiplier was computed according to

λ = (
Jϕx J(q)

(
Hq) + D−1

n Dj
)−1

J(q)T JT
ϕx

)−1

× [−ϕ̈(x) + Jϕx J̇(q)q̇ + J̇ϕx J(q)q̇

+Jϕx J(q)
(
H(q) + D−1

n Dj
)−1 (

τ − C(q, q̇)q̇

− (D + D−1
n Df)q̇ − g(q) − JT(q) f f

)]
, (52)

where

Jϕx = 1

r
[ x − h y − k z − l 0 0 0 ] . (53)

Note that instead of substituting directly the second derivative
of constraint (47), the following linear stable equation was
implemented:

ϕ̈(x) + αϕ̇(x) + βϕ(x) = 0, (54)

with α = 300 and β = 22500. See ref. [18] for details.
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