
 

Parallel kinematic machine design with kinetostatic model
Dan Zhang and Clément M. Gosselin
Département de Génie Mécanique, Université Laval, Québec, Québec (Canada) G1K 7P4
E-mail: gosselin@gmc.ulaval.ca, Dan.Zhang@nrc.ca

(Received in Final Form: January 2, 2002)

SUMMARY
In this paper, a new method – named lumped kinetostatic
modeling – to analyze the effect of the link flexibility on the
mechanism’s stiffness is provided. A new type of mecha-
nism whose degree of freedom (dof) is dependent on a
passive constraining leg connecting the base and the
platform is introduced and analyzed. With the proposed
kinetostatic model, a significant effect of the link flexibility
on the mechanism’s precision has been demonstrated. The
influence of the change in structure parameters, including
material properties, on the system behavior is discussed. In
the paper, the geometric model of this kind of mechanism
is first introduced. Then, a lumped kinetostatic model is
proposed in order to account for joint and link compliances;
some results and design guidelines are obtained. Finally, the
optimization of the precision is addressed using a genetic
algorithm.

KEYWORDS: Kinetostatic model; Link flexibility; Precision
optimization; Parallel mechanisms.

1. INTRODUCTION
In the past decades, many researchers have studied parallel
mechanisms1–5 and showed that parallel mechanisms have
the potential advantages of high stiffness, high speeds, low
inertia and large payload capacity. Therefore, more and
more researchers have applied such mechanisms in different
kinds of practical uses, such as aircraft simulator1,6,7

adjustable articulated trusses,8 mining machines,9 pointing
devices10 and micro-positioning devices.11 Recently, it has
been developed as high precision machine tools12–15 by
many companies such as Giddings & Lewis, Ingersoll,
Hexel, Geodetic and Toyoda, etc. The Hexapod machine
tool14–18 is one of the successful applications.

Philosophically, most of the work which has been done
was built upon the concept of a traditional “Gough-Stewart”
mechanism type. This suggests that most parallel mecha-
nisms have six degrees of freedom. A question left open in
previous works is: The vast majority of the machining is
done with less than six degrees of freedom, so why should
we pay for six? In this paper, we propose several new types
of parallel mechanisms with fewer than 6-dof, since
machining is accomplished by orienting an axisymmetric
body (the tool), which requires only 5 degrees of freedom.
Meanwhile, the error of the platform in the presence of the
manufacturing tolerances, joint clearances and leg flexibility
is known as sensitivity analysis.19 This issue has received

little attention in the past. However, these influences could
not be neglected in practice, and it has been shown that if
the mechanism flexibility is considered, then the perform-
ances may become very poor and the main feature of the
mechanism vanishes. Also there may exist singular mecha-
nism configurations which must be avoided during motion,
but that cannot be found from the mobility analysis of the
rigid legged mechanism model.19 The relationships between
the mechanism stiffness and the flexibility of the links are
derived in this paper and the necessity of taking the links’
flexibility into account is demonstrated.

In the paper, a series of n-dof parallel mechanisms, which
consist of n identical actuated legs with 6-dof and one
passive constraining leg with n-dof, are presented. The
degree of freedom of the mechanism is dependent on
the passive leg’s degree of freedom. One can improve the
rigidity of this type of mechanism through optimizing
the links’ rigidity and mechanism geometric dimensions to
reach the maximized stiffness and precision. Also this series
of mechanisms has the characteristic of reproduction since
they have identical actuated legs. Thus, the entire mecha-
nism essentially consists of repeated parts, offering price
benefits for manufacturing, assembly and purchasing.

In what follows, we first describe one configuration of
this type of mechanisms. Then, the lumped models for links
and joints are introduced and some virtual joints concepts
are proposed in order to replace the compliance of the links.
A general kinetostatic model of such parallel mechanisms
with lumped models is presented and analyzed. Some
discussions are presented: one is the influence of the change
in structure parameters, including material properties on the
system behavior, and the other is the behavior vs. structural
parameters which also lays a foundation for optimization
studies. Finally, global stiffness optimization is performed
using genetic algorithms and the optimal results lead to
stiffnesses that are 2.8 times that of the original design.

2. GEOMETRIC MODELING
One configuration of the type of parallel mechanisms
studied in this paper is shown in Figures 1 and 2. It is a
4-dof parallel mechanism with prismatic actuators and the
joint distribution both on the base and on the platform is
shown in Figure 3. This mechanism consists of five
kinematic chains, including four variable length links with
identical topology and one passive link, connecting the fixed
base to a moving platform. Four of the kinematic chains
have an identical topology. In this 4-dof parallel mecha-
nism, the kinematic chains associated with the four identical
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legs, from base to platform, consist of a fixed Hooke joint,
a moving link, an actuated prismatic joint, a second moving
link and a spherical joint attached to the platform. The fifth
chain (central leg) connecting the base to the platform is a
passive constraining leg and has a different architecture
from the other four identical chains. It consists of a revolute
joint attached to the base, a moving link, a revolute joint, a
second moving link and a Hooke joint attached to the
platform. This last leg is used to constrain the motion of the

platform to only four degrees of freedom. This mechanism
could be built by using only four legs, i.e. by removing one
of the four identical legs and actuating the first joint of the
passive constraining leg. Both arrangements lead to similar
kinematic equations. However, in the latter case, the
symmetry of actuation would be lost.

Since the platform of the mechanism has four degrees of
freedom, only four of the six Cartesian coordinates of the
platform are independent. In the present study, the inde-
pendent coordinates have been chosen for convenience as
(x, z, �i, �j), �i, �j are the joint angles of the Hooke joint

Fig. 1. CAD model of the spatial 4-dof parallel mechanism with
prismatic actuators (Figure by Gabriel Côté).

Fig. 3. Position of the attachment points: (a) on the base, (b) on the platform.

Fig. 2. Schematic representation of the spatial 4-dof parallel
mechanism with prismatic actuators.
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attached to the platform. Since this mechanism is used to
constrain the rotation around the Z axis and the translation
along the Y axis, one can know the orientation of the
platform by specifying the joint angles �i, �j.

Similar mechanisms with 3-dof and 5-dof can be built.
They have three or five identical legs with 6 degrees of
freedom and one passive leg with 3 degrees of freedom or 5
degrees of freedom, respectively. The aim of using the
passive leg is to limit the degrees of freedom to the desired
ones. Since the external loads on the platform will induce
bending and/or torsion in the passive leg, its mechanical
design is a very important issue which can be addressed
using the kinetostatic model proposed here. The final
geometry of the passive leg may be significantly different
from the generic representation given in Figure 1. This leg
is generally located at the center of the platform to minimize
the internal constraint forces and torques.

3. KINETOSTATIC MODELS

3.1. Lumped models for joints and links
In order to simplify the modelling of the stiffness, link
stiffnesses will be lumped into local compliant elements
(springs) located at the joints. This is justified by the fact
that no dynamics is included in the model (it is purely
kinematic) and that limited numerical accuracy is accept-
able. Indeed, the objective of this study is to obtain
engineering values for the stiffness and to determine which
areas of the workspace lead to better stiffness properties.

For joints, bending happens variously between the
actuated and unactuated joints and also varies between
the spatial case and the planar case. For instance, in the
planar case, the unactuated revolute joint doesn’t induce
bending while in the spatial case, bending exists in a

direction perpendicular to the joint. Hence, it is necessary to
establish a lumped joint model for each possible case. Inside
each lumped joint model, except the actuator itself,
deformations caused by link flexibility can be considered as
virtual joints fixed at this point, the details are illustrated in
references {20, 21] and Tables I and II.

3.2. Kinetostatic models with rigid links
In reference [20], the velocity equations are derived as
follows and they will be used to obtain the kinetostatic
model for the mechanism with rigid links.

The velocity equations can be written as

At=B�̇ (1)

where vector �̇ is defined as

�̇=[�̇1 �̇2 . . . �̇n]
T, n=3, 4 or 5 (2)

where �̇i is the ith joint velocity, where t is the twist of the
platform defined as t=[�T ṗT]T, where � the angular
velocity of the platform and ṗ is the velocity of one point of
the platform. Moreover, matrices A and B are defined as

A=[a1 a2 . . . ai]
T (3)

B=diag[�1, �2, . . . , �n], n=3, 4 or 5 (4)

According to the principle of virtual work, one has

�T�̇=wTt (5)

where � is the vector of actuator forces applied at each
actuated joint and w is the wrench (torque and force)
applied to the platform and where it is assumed that no
gravitational forces act on any of the intermediate links. In
practice, gravitational forces may often be neglected in
machine tool applications.

Table I. Lumped joint model for planar system.
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One has w=[nT fT]T where n and f are respectively the
external torque and force applied to the platform.

From the velocity equation of the mechanism, one
obtains

�TB–1At=wTt (6)

Considering the constraining leg, one can write

Jn+1�̇n+1 = t, n=3, 4 or 5 (7)

where Jn+1 and �̇n+1 are respectively the serial Jacobian and
the joint velocity vector associated with the passive leg.
Substituting Equation (7) into Equation (6), one has

�TB–1AJn+1�̇n+1 =wTJn+1�̇n+1 (8)

The latter equation must be satisfied for arbitrary values
of �̇n+1 and hence one can write

(AJn+1)
TB–T�=Jn+1

T w (9)

The latter equation relates the actuator forces to the
Cartesian wrench, w, applied at the end-effector in static
mode. Since all links are assumed rigid, the compliance of
the mechanism will be induced solely by the compliance of
the actuators. An actuator compliance matrix C is therefore
defined as

C�=�� (10)

where � is the vector of actuated joint forces and �� is the
induced joint displacement. Matrix C is a (n� n) diagonal
matrix whose ith diagonal entry is the compliance of the ith
actuator.

Now, Equation (9) can be rewritten as

�=BT(AJn+1)
–TJn+1

T w (11)

The substitution of Equation (11) into Equation (10) then
leads to

��=CBT(AJn+1)
–TJn+1

T w (12)

Moreover, for a small displacement vector ��, Equation (1)
can be written as

���B–1A�c (13)

where �c is a vector of small Cartesian displacement and
rotation defined as

�c=[�pT ��T]T (14)

in which ��, the change of orientation, is defined as

��=vect(�QQT) (15)

where �Q is the variation of the rotation matrix and vect( · )
is the vector linear invariant of its matrix argument.

Similarly, Equation (7) can also be written, for small
displacements, as

Jn+1��n+1 ��c (16)

where ��n+1 is a vector of small variations of the joint
coordinates of the constraining leg.

Substituting Equation (13) into Equation (12), one gets

B–1A�c=CBT(AJn+1)
–TJn+1

T w (17)

Premultiplying both sides of Equation (17) by B, and
substituting Equation (16) into Equation (17), one obtains,

AJn+1��n+1 =BCBT(AJn+1)
–TJn+1

T w (18)

Then, premultiplying both sides of Equation (18) by
(AJn+1)

–1, one obtains,

��n+1 =(AJn+1)
–1BCBT(AJn+1)

–TJn+1
T w (19)

Table II. Lumped joint model for spatial system.
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and finally, premultiplying both sides of Equation (19) by
Jn+1, one obtains,

�c=Jn+1(AJn+1)
–1BCBT(AJn+1)

–TJn+1
T w (20)

Hence, one obtains the Cartesian compliance matrix as

Cc =Jn+1(AJn+1)
–1BCBT(AJn+1)

–TJn+1
T (21)

with

�c=Ccw (22)

where Cc is a symmetric positive semi-definite (6� 6)
matrix, as expected.

It is pointed out that, in nonsingular configurations, the
rank of B, C and Jn+1 is n and hence the rank of Cc will be
n, where n=3, 4 or 5, depending on the degree of freedom
of the mechanism. Hence, the nullspace of matrix Cc will
not be empty and there will exist a set of vectors w that will
induce no Cartesian displacement �c. This corresponds to
the wrenches that are supported by the constraining leg,
which is considered infinitely rigid. These wrenches are
orthogonal complements of the allowable twists at the
platform. Hence, matrix Cc cannot be inverted and this is
why it was more convenient to use compliance matrices
rather than stiffness matrices in the above derivation.

In the next section, the kinetostatic model will be
rederived for the case in which the flexibility of the links is
considered. In this case, stiffness matrices will be used.

3.3. Kinetostatic models with flexible links
According to the principle of virtual work, one can write

wTt=�n+1
T �̇ �n+1 +�T�̇ (23)

where � is the vector of actuator forces and �̇ is the vector
of actuator velocities (actuated legs), and �n+1 is the
vector of joint torques in the constraining leg. This vector is
defined as follows, where Kn+1 is the stiffness matrix of the
constraining leg,

�n+1 =Kn+1���n+1 (24)

Matrix Kn+1 is a diagonal (6� 6) matrix in which the ith
diagonal entry is zero if it is associated with a real joint
while it is equal to ki if it is associated with a virtual joint,
where ki is the stiffness of the virtual spring located at the ith
joint. The stiffness of the virtual springs is determined using
the structural properties of the flexible links as shown in
reference [20].

If the compliance of the links and joints is included,
(6�n) virtual joints are added in order to account for the
compliance of the links reference [20]. Hence, the Jacobian
matrix of the constraining leg becomes

J�n+1�̇ �n+1 = t, n=3, 4 or 5 (26)

where

�̇ �n+1 =[�̇n+1,1 . . . �̇n+1,6]
T, n=3, 4 or 5 (26)

From Equations (25) and (1), Equation (23) can be rewritten
as

wTt=�T
n+1(J�n+1)

–1t+�T B–1At (27)

Since this equation is valid for any value of t, one can
write

w=(J�n+1)
–T�n+1 +ATB–T� (28)

which can be rewritten as 

w=(J�n+1)
–TKn+1�� �n+1 +ATB–TKJ�� (29)

where KJ is a (n� n) diagonal joint stiffness matrix for the
actuated joints.

Using the kinematic equations, one can then write:

w=(J�n+1)
–TKn+1(J�n+1)

–1�c+ATB–TKJB
–1A�c (30)

which is in the form

w=K�c (31)

where K is the Cartesian stiffness matrix, which is equal to

K=[(J�n+1)
–TKn+1(J�n+1)

–1 +ATB–TKJB
–1A] (32)

Matrix K is a symmetric (6� 6) positive semi-definite
matrix, as expected. However, in this case, matrix K will be
of full rank in non-singular configurations. Indeed, the sum
of the two terms in Equation (32) will span the complete
space of constraint wrenches.

4. APPLICATION OF THE KINETOSTATIC
MODELS
Now let us take the 4-dof parallel mechanism with prismatic
actuators as an example to illustrate the effect of the flexible
links on the parallel mechanism. According to Figure 2, the
parameters used in this example are given as

�=30°, 	=60°,

Rp =12 cm, Rb =22 cm,

ki1 =1000 N/m, i=1, . . . ,4

where ki1 is the actuator stiffness, and the Cartesian
coordinates are given by

x�[–2, 2] cm, y�[–2, 2] cm, z=68 cm,

�i =�
/3, �j =2
/3,

The kinetostatic model has been implemented for this 4-dof
mechanism for both cases, with flexible links and with rigid
links. A program has been written with Mathematica and the
stiffness trends are obtained in each direction with the
change in link stiffnesses (i.e, the link’s flexibility). Figure 4
shows the Cartesian stiffness components of this mecha-
nism as a function of the stiffness of the virtual springs
(representing the stiffness of the links), for the reference
configuration.

From Figure 4, it is clearly seen that the stiffness in the
constrained directions is a linear function of the links’
stiffness. This is so because the stiffness in these directions
is independent from the actuators’ stiffness.

4.1. Results

(a) Comparison of parallel mechanisms with rigid links
and with flexible links.
The comparison between the parallel mechanism with
rigid links (without virtual joints) and the parallel
mechanism with flexible links (with virtual joints) is
given in Table III.

From Table III, one can find that with the improve-
ment of the link stiffness, the mechanism’s compliance
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is very close to that of the mechanism with rigid links.
This means that one can assume the flexible mechanism
to be rigid only if the link stiffness reaches a high
value.

From Figure 4 and Table III, one can find that K�z
and

Ky are getting infinite while the flexible links are getting
rigid, it corresponds to the motions prevented by the
passive leg. The stiffness in Z is the largest one among
all the directions because of the structure’s symmetrical
configuration. All these observations are in accordance
with what would be intuitively expected.

(b) Analysis of the effects of the flexible links.
Table IV shows the effects of the flexible links on the
global stiffness of the mechanism. It confirms that if the
passive constraining leg’s lumped stiffness Kpassive

changes from 103 to 107, and the actuator stiffness
Kactuator is fixed at 103, then the stiffness change in the
passive constraining leg affects only the constrained
directions.

(c) Stiffness mapping.
The analysis described above will now be used to obtain
the compliance maps for the 4-dof mechanisms. Figure
5 shows the compliance mapping on a section of the

workspace of the platform.  Visualization tools to aid in
the use of such expressions have been developed. To
this end, a program has been written using Mathema-
tica. After giving the initial values, then the contour
maps can be shown as in Figure 5 From such plots one
can determine which regions of the workspace will 
satisfy some compliance criteria.

4.2. Design guidelines
Given a certain configuration of the mechanism, one can
find its global stiffness in all directions as the function of
actuator stiffness and passive constraining leg’s lumped
stiffness. For instance, for the configuration specified as

x=0, y=0, z=68 cm,

�i =�
/3, �j =2
/3,

the expression becomes

K�x
=0.00850551Ka (33)

K�y
=0.0262118Ka (34)

K�z
=0.00324Ka +0.5926K52 +0.148K54 (35)

Kx =0.0704587Ka (36)

Fig. 4. Evolution of the stiffness with link’s stiffness in �z and y directions (all the other directions are constants).

Table III. Comparison of the mechanism compliance between the mechanism with rigid links and the mechanism with flexible links.

Kactuator Kpassive ��x
��y

��z
�x �y �z

1000 1000 0.52371 1.41939 1.5� 10–3 0.915208 5.78� 10–4 0.0111974
1000 102Ka 0.51707 1.40514 1.5� 10–5 0.909087 5.78� 10–6 0.0111429
1000 104Ka 0.516404 1.4046 1.5� 10–7 0.908726 5.78� 10–8 0.0111393
1000 107Ka 0.516397 1.40459 1.5� 10–10 0.908722 5.78� 10–11 0.0111393
1000 rigid 0.516397 1.40459 0.0 0.908722 0.0 0.0111393

Table IV. Effect of the passive constraining leg’s lumped stiffness on the Cartesian stiffness.

Kactuator Kpassive K�x
K�y

K�z
Kx Ky Kz

1000 1000 8.50551 26.21 743.98 70.4587 2223.51 3628.32
1000 104Ka 8.50551 26.21 7.40741� 106 70.4587 1.92� 107 3628.32
1000 106Ka 8.50551 26.21 7.40741� 108 70.4587 1.92� 109 3628.32
1000 107Ka 8.50551 26.21 7.40741� 109 70.4587 1.92� 1010 3628.32
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Ky =0.301Ka +0.961K52 +0.961K54 (37)

Kz = 3.62832Ka (38)

where Ka represents the actuator stiffness, K52 and K54

represent the first and second (from bottom to platform)
link’s lumped stiffnesses of the passive constraining leg.

Fig. 5. Compliance contour maps for the spatial 4-dof parallel mechanism with prismatic actuators.
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Based on the results of the preceding section and the
expression of Equations (33)–(38), the following design
guidelines can be established and as reference for design of
this kind of mechanism:

(i) With the improvement of the link stiffness, the
mechanism’s compliance is very close to that of
the mechanism with rigid links. This means that one
can assume the flexible mechanism to be rigid only if
the link stiffness reaches a high value (107Kactuator).

(ii) The global stiffness is in direct proportion to that of
actuator stiffness and has no relationship with the
rigidity of passive leg’s, except for the constrained
directions.

(iii) The passive constraining leg’s lumped stiffness
doesn’t affect all the directional stiffnesses, it plays a
very important role of limiting the platform’s motion
to the desired ones.

(iv) The limitation of platform’s rotation around Z and
translation along Y are dependent on the actuator
stiffness and  passive leg’s lumped stiffness.

(v) If K52 ≠K54, i.e. the passive constraining leg’s first link
(from bottom to platform) is not as rigid as the second
link, then the first link’s rigidity is more important
than the second link’s in the aspect of limiting the
platform’s degrees of freedom, this can be found from
the coefficients of K52 and K54 in Equations (35) and
(37).

(vi) Only if the passive constraining leg’s lumped stiffness
Kpassive is large enough (102Kactuator), then can it play the
role of limiting the rotation around the Z axis and
the translation along the Y axis.

(vii) From the Equations (33)–(38), one can find that the
stiffness along the Z axis is the largest one among all
the directions, and K�y

is larger than K�x
.

One also finds the following facts about the mechanism
after performing several tests and varying the parameters of
the mechanism:

(i) For a certain platform size, the larger the link length,
the smaller the global stiffness in all directions.

(ii) For a given link length, the larger the platform size
(within a certain range), the larger the torsional
stiffness values around the X and Y axes, and the
smaller the stiffness values along the X and Z axes.

(iii) One can find that the stiffness behavior is nonlinearly
proportional to the structural parameters, hence it
makes sense for global stiffness optimization, i.e.
feasible optimal designs can maximize the stiffness.

4.3. Optimization
In this research work, the Genetic Algorithm is applied
for the optimization, it is based on Darwin’s survival-
of-the-fittest principles.22–24 As most of the conventional
optimizations are search for optima from point to point, are
danger of falling in local optima, but the genetic algorithms
search for optima from population to population, and can
escape from local optima easily. The global stiffness for a
certain manipulator configuration is expressed by a 6� 6
matrix, as discussed before. The diagonal elements of the

matrix are the manipulator’s pure stiffnesses in each
direction. To obtain the maximum stiffness in each direc-
tion, one can write an objective function, Equation (39), to
maximize or write an objective function, or Equation (40),
with compliance elements whose negative is to be maxi-
mized.

val=�1K11 +�2K22 +�3K33 +�4K44 +�5K55 +�6K66 (39)

or

val=� (1�11 +2�22 +3�33 +4�44 +5�55 +6�66) (40)

where

Kii (i=1, . . . ,6) represents the diagonal elements of the
manipulator’s stiffness matrix,

�ii (i=1, . . . ,6) represents the diagonal elements of
manipulator’s compliance matrix,

�i, i (i=1, . . . ,6) are the weight factors for each
directional stiffness/compliance, which characterizes the
priority of the stiffness in this direction.

This would maximize the SUM of the diagonal elements.
Although one could not maximize each diagonal element
individually, one always can optimize each stiffness by
distributing the weighting factors. Once the objective
function is written, a search domain for each optimization
variable (lengths, angles, stiffness, etc.) should be specified
to create an initial population, the limits of the search
domain are set by a specified maximum number of
generations or population convergence criteria, since GAs
will force much of the entire population to converge to a
single solution. 

(a) Parameters selection.
In order to use genetic algorithms properly, one has to
determine several parameter settings: chromosome
representation, selection function, the genetic operators
making up the reproduction function, the creation of the
population size, mutation rate, crossover rate, and
the evaluation function.

For the problem studied here, the chromosomes
consist of the architecture parameters (coordinates of
the attachment points, coordinates of the moving
platform, link length, vertex distributions at base and
moving platform, platform height, etc.) and behavior
(actuator stiffness and lumped stiffness, etc.) of the
manipulators. However, from Equations (33)–(38), it is
clear that the Cartesian stiffness is a linear function of
the link and actuators stiffnesses. Hence, the optimum
solution always corresponds to the maximum link or
actuator stiffnesses and these parameters are not
included in the optimization variables.

In order to obtain the maximum global stiffness,
seven architecture parameters will be considered as
optimization variables, for a certain configuration. The
vector of optimization variables is therefore

s=[Rp, Rb, l51, l52, z, Tp, Tb] (41)

where

Rp is the radius of the moving platform,
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Rb is the radius of the base platform.

l51, l52 are the link length for the 1th and 2nd link
respectively of passive leg.

z is the height of the platform.

Ta, Tb are the angles to determine the attachment points
on the base and on the platform.

and their bounds are

Rp�[10, 14] cm, Rb�[20, 26] cm,

l51�[52, 70] cm, l52�[52, 70] cm,

z�[66, 70] cm,

Ta�[25, 35]°, Tb�[55, 65]°

In this research work, the minimizing objective function
Equation (40) is used and the other options are given
as

i =1 i=1, . . . ,6,

P=80

Gmax =100

where

P is the population,

Gmax is the maximum number of generations.

(b) Results.
A program based on genetic algorithms is written for
searching the best solutions, the results are given only
for one case with �55 =�
/3, �56 =2
/3. Figure 6 shows
the evolution of the best individual for 100 generations.
The geometric and behavior parameters found by the
GA after 100 generations are

s=[Rp, Rb, l51, l52, z, Ta, Tb]

=[14, 26, 70, 55, 66, 35, 55]

and the compliance in each direction is

�=[��x
, ��y

, ��z
, �x, �y, �z]

=[0.12, 0.57, 3.747� 10–3, 0.32, 5� 10–11, 3.345� 10–3]

the sum of the compliances is 1.017897,  Initially, the
parameters for this manipulator were given as

s�=[Rp, Rb, l51, l52, z, Ta, Tb]

=[12, 22, 68, 68, 68, 30, 60]

and the compliance in each direction was

��=[���x
, ���y

, ���z
, ��x, ��y, ��z]

=[0.5164, 1.4, 1.5� 10–10, 0.91, 5.78� 10–11, 0.011]

The sum of the compliances is 2.84085. Hence, after
optimization, the sum of the stiffnesses is improved by
a factor of 2.8 just by slightly adjusting the geometric
dimensions.

Figure 6 shows that after sufficient number of
generations (around 60 generations), the track of the
best solution and the track of the average of the
population converge to the fixed best solution.

5. CONCLUSIONS
A new type of n-DOF parallel mechanism with one passive
constraining leg is presented in this paper which can be
applied for machine tools.  The lumped kinematic analysis
of spatial parallel n-degree-of-freedom mechanisms has
been introduced. One of the geometric architectures of the
mechanism has been shown. The lumped link and joint

Fig. 6. The performance evolution.
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theory is proposed for the study of the flexible structure, and
two general kinetostatic models of such mechanisms with
both rigid and flexible links are given respectively. They are
used for mechanism behavior analysis for the case of 4-dof
prismatic actuated parallel mechanism. Finally, it has been
demonstrated that the kinetostatic model can also be used
for design and optimization.
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