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Abstract
This paper investigates the benefits of international cooperation under uncertainty about
global warming through a stochastic dynamic game. We analyze the benefits of coopera-
tion both for the case of symmetric and asymmetric players. It is shown that the players’
combined expected payoffs decrease as climate uncertainty becomes larger, whether or not
they cooperate. However, the benefits from cooperation increase with climate uncertainty.
In other words, it is more important to cooperate when facing higher uncertainty. At the
same time, more transfers will be needed to ensure stable cooperation among asymmetric
players.
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1. Introduction
Climate change is likely to have a wide range of impacts in both developed and devel-
oping countries. In the fifth assessment report by the IPCC (Intergovernmental Panel
on Climate Change), the international community has accepted the main mechanisms
relating emissions and atmospheric CO2 concentration to the rise in global mean tem-
perature. With a growing consensus that the global warming is happening and it is
mainly due to anthropogenic emissions of greenhouse gases (GHGs), the international
community has agreed on the need for joint action to limit GHG emissions. However,
current international cooperation has not been effective (Finus and Pintassilgo, 2013).
One important problem is free riding, given that climate stability is a global public good
(see, e.g., Hoel, 1993; Wirl, 1996). Unless there is binding international law which forces
countries to participate in an agreement to reduce GHG emissions, each country can
choose to stay outside the agreement and enjoy (almost) the same benefits of reduced
GHGs emissions as if it participated in the agreement, while it doesn’t bear any of the
costs of reducing emissions (Hoel, 1993).
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In addition to the free-riding problem, it has been argued that the huge uncertainties
surrounding climate change can be one of the reasons for the lack of cooperation (see,
e.g., Kolstad, 2007; Barrett and Dannenberg, 2012; Finus and Pintassilgo, 2013). Due to
these uncertainties, it is almost impossible to know the exact effects of one more unit
of GHG emissions today on global temperature, and thus damage, in the future. This
could make individual countries hesitant about investing in emission abatement and
cooperating with other countries. For instance, uncertainty was one of the arguments
used by former US President George W. Bush for his decision to pull the US out of
the Kyoto Protocol. As quoted by Kolstad (2007), President Bush wrote in a letter to
senators: ‘I oppose the Kyoto Protocol . . .we must be very careful not to take actions that
could harm consumers. This is especially true given the incomplete state of scientific
knowledge.’ (See also Finus and Pintassilgo, 2013).

If climate uncertainty could reshape the abatement strategies of individual countries,
this might also have an effect on their expected welfare. However, these effects might be
different depending on whether the countries cooperate with each other. This implies
that uncertainty could have an impact on the potential welfare gains from cooperation
for individual countries, thereby affecting the incentives for cooperation among coun-
tries. Therefore, it is important to investigate whether this would be true in a normative
perspective and to see in precisely what way dealing with uncertainty could reshape
climate policies and change the incentives for international cooperation on climate
change.

In this paper, we extend the deterministic dynamic game for international pollu-
tion control in Dockner and Long (1993) to study the welfare gain from international
cooperation under climate uncertainty. We analytically compare the cooperative and
non-cooperative solutions of the game with the aim of answering the following ques-
tions. How does uncertainty about global warming affect the net welfare of individual
countries in the respective non-cooperative and cooperative cases? How does climate
uncertainty affect the benefits (welfare gains) from international cooperation (and thus
the side payments among countries)? By focusing on players’ payoffs under uncertainty,
we show that the expected payoffs of players decrease as climate uncertainty becomes
greater, whether or not they cooperate. However, the expected welfare gain from inter-
national cooperation is larger with greater climate uncertainty, implying that it is more
important to cooperate when facing greater uncertainty. At the same time, however,
more transfers will be needed to ensure stable cooperation among asymmetric players.

There are numerous studies on climate uncertainty and its effect on climate policy
design. Some authors investigated the optimal timing to slow global warming under
uncertainties (see, for instance, Conrad, 1997; Pindyck, 2000, 2002; Bahn et al., 2008),
the value of learning for climate change uncertainties (e.g., Peck and Teisberg, 1993; Kol-
stad, 1996; Kelly and Kolstad, 1999), the optimal choice of policy instruments tomitigate
climate change in the presence of uncertainty (e.g., Pizer, 1999, 2002; Hoel and Karp,
2001, 2002), and the strategic interactions between producers of fossil fuels and a tax-
ing government concerned about consumers’ welfare under climate uncertainty (e.g.,
Wirl, 2007). Moreover, literature on the effect of uncertainty (and learning) on interna-
tional cooperation has emerged recently (for instance, Kolstad, 2007; Kolstad and Ulph,
2008, 2011; Barrett and Dannenberg, 2012; Karp, 2012; Finus and Pintassilgo, 2013).
Notably, Harstad (2016) investigates the harmful (short-term) climate agreements and
optimal (long-term) agreement taking into account uncertainty. Battaglini and Harstad
(2016) studies the participation and duration of international environmental agreements
in a dynamic game in which countries pollute and invest in green technologies when the
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contract is incomplete. Bréchet et al. (2012) numerically examines the benefits of interna-
tional climate cooperation under uncertainty through a stochastic integrated assessment
model, finding that uncertainty generates additional benefit from cooperation, namely
risk reduction.

The closest papers to ours are those by (Xepapadeas, 1998, 2012) andWirl (2008). Like
us, they analyze non-cooperative versus cooperative solutions. Their focus, however, is
different. Xepapadeas (1998) studies optimal policy adoption rules of emission abate-
ment for cooperative and non-cooperative solutions under uncertainty about global
warming damages, while Wirl (2008) focuses on how uncertainty affects pollution
control strategies in cooperative and non-cooperative solutions for both irreversible
emissions and reversible emissions. Finally, Xepapadeas (2012) focuses on the cost of
ambiguity and robustness in international pollution control when the regulator has con-
cerns regarding possible misspecification of the natural system that is used to model
pollution dynamics. Moreover, by limiting their analysis to players who are symmetric
in terms of benefits and damages, these studies ignore the heterogeneity among play-
ers in terms of optimal emission strategies and total payoffs and thus the analysis on
welfare transfers between players is omitted (see, e.g., Wirl, 2008; Xepapadeas, 2012).
We analyze the results for both the case of symmetric players and the case of asymmet-
ric players, and investigate the side payments that are needed to ensure stability of the
cooperation.

The contribution of this paper is as follows. First, we use a stochastic dynamic game
with climate uncertainty and analyze the effect of climate uncertainty on the players’
payoffs rather than on the effect on emissions strategies only and this allows us to further
examine the effect of uncertainty on the benefits of international cooperation. Second,we
analytically and numerically investigate the effect of uncertainty taking into account the
asymmetry of players (countries) whereasmost of the extended transboundary pollution
control models for incorporating uncertainty in the literature assume the symmetry of
players (see, e.g., Wirl, 2008; Xepapadeas, 2012). Last but not least, we also investigate
the possible transfers among players to ensure cooperation and how they would change
with climate uncertainty.

The paper is organized as follows. Section 2 presents the stochastic dynamic game.
Section 3 presents the non-cooperative and cooperative solutions of the game. The effects
of climate uncertainty under the cases of symmetric players and asymmetric players are
analyzed in sections 4 and 5, respectively. Section 6 provides some numerical illustra-
tions. Finally, section 7 concludes the paper. Some proofs are relegated to an online
appendix.

2. The model
The deterministic part of the game is based on the international pollutant control model
developed by Dockner and Long (1993). As in that paper, we assume that there are
two countries (indexed by i = 1, 2) and a single consumption good in the world. The
production of the consumption good in country i results in CO2 emissions Ei:

Yi = Fi(Ei),

where Yi is the output in country i. Both countries’ emissions contribute to global
warming. The future temperature (measured in ◦C above the pre-industrial average) is
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stochastic due to the uncertainty of the climate system.1 Following the specification for
climate uncertainty in Wirl (2007), the global mean temperature is assumed to follow
the Ito process:

dT(t) = [E1(t)+ E2(t)]dt + σT(t)dz,T(0) = T0 ≥ 0, (1)

where Ei(t) is measured in units that lead to an expected increase of global average tem-
perature by 1◦C. It can be seen from (1) that the expected temperaturewill be determined
by the accumulation of CO2 emissions in the atmosphere and that the stochastic part of
the temperature is a geometric Brownian motion (σ > 0 is the relative standard error
and z is a standard Wiener process).2 As in Wirl (2007), the parameter σ can be con-
sidered a measurement of the degree of (relative) uncertainty. A larger σ would imply a
greater degree of uncertainty.

Country i enjoys utility/benefit Ui(Yi) from consumption but suffers damage from
global warming Di(T). As in Dockner and Long (1993) and its follow-ups, Ui(·) and
Di(·) have quadratic forms (which are prevailing in the literature, see, e.g., Wirl, 2008;
Xepapadeas, 2012) such that country i gets the normalized utility from consumption
Ui(Fi(Ei(t))) = aiEi(t)− [Ei(t)]2/2 and faces the damage of global warmingDi(T(t)) =
εi/2[T(t)]2, where ai and εi are positive constants. The net benefit/utility for country i
is therefore:

Bi(Ei(t),T(t)) = aiEi(t)− 1
2
[Ei(t)]2 − εi

2
[T(t)]2.

Without loss of generality, we set a1 = a, and a2 = ϕa; ε1 = ε, and ε2 = γ ε. Note that
if ϕ = 1 and γ = 1, the two countries have symmetric benefits and damages.

Without cooperation between the two countries, country iwill choose CO2 emissions
Ei to maximize its discounted stream of net benefits from consumption:

E

∫ ∞

0
e−rt

{
aiEi(t)− 1

2
[Ei(t)]2 − εi

2
[T(t)]2

}
dt, (2)

subject to the global temperature dynamics (1). r is the discount rate, which is assumed to
be the same for both countries. The expectation signE(·) appears due to the uncertainty
of global warming implied in (1). Therefore, we have a stochastic dynamic game inwhich
the dynamics of global mean temperature involve uncertainty. As in Wirl (2007), it is
further assumed that σ 2 < r, which will ensure that the net present value of expected

1This is where we incorporate uncertainty into the deterministic game in Dockner and Long (1993).
Alternatively, one could use CO2 stock instead of temperature as the state variable and make it follow a
stochastic process. However, in the context of climate change, there is more uncertainty about temperature
than carbon stock, i.e., we are unsure of howmuch one more unit of emissions will increase the global tem-
perature and how large the damage would be if the temperature is increased, while CO2 stock and current
emissions can be more or less measured, implying less uncertainty surrounding the evolution of CO2 stock.
Therefore, this paper follows the specification in Wirl (2007) and uses temperature instead of CO2 stock as
the (stochastic) state variable.

2This specification of stochastic global temperature has some plausible properties. For instance, an
increase in the mean temperature is associated with higher variance, which is consistent with the argument
in Dalton (1997). See more details in Wirl (2007). Furthermore, the simple (linear) relationship between
global mean temperature and accumulated emissions is well supported by the latest IPCC report (IPCC,
2013: 28).
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damage remains finite. As we shall see in section 3 below, the solution concept used for
the game would be Markov-perfect Nash equilibrium.

With cooperation between countries, the two countries will jointlymaximize the joint
net benefit stream (by choosing theCO2 emissions in the two countries:E1 andE2) which
is the sum of each country’s net benefit:3

E

∫ ∞

0
e−rt

{
a[E1(t)+ ϕE2(t)] − 1

2
[[E1(t)]2 + [E2(t)2]] − ε(1 + γ )

2
[T(t)]2

}
dt, (3)

subject to the global temperature dynamics (1). The solution of the cooperative game can
be considered as a first-best outcome where the countries are able to achieve an agree-
ment for emission control. Therefore, one can get some insights into the benefits (welfare
gains) from international cooperation for individual countries by comparing their pay-
offs under cooperative strategies with those under non-cooperative strategies. As can be
noted in themodel setup,we donot impose non-negativity (or irreversibility) constraints
on the control variables, implying that emissions are assumed to be reversible. That is,
active but costly reduction of the stock of emissions (cleanup) is assumed to be feasible.4
As argued byXepapadeas (2012), though there aremany cases in pollution control where
a more realistic assumption would be to impose the non-negativity constraint, the irre-
versibility can be considered as a consequence of the policymaker’s inability to reduce
the stock of pollution, and without the non-negativity constraint low emissions just have
no option value since cleanup is possible. Therefore, we follow Xepapadeas (2012) and
do not consider the emission irreversibility in this paper. 5

3. Non-cooperative and cooperative solutions
In this section, we derive the solution of the game for the non-cooperative and coopera-
tive case, respectively. Comparedwith an open-loopNash equilibrium, aMarkov-perfect
Nash equilibrium is more informative because it provides a subgame perfect equi-
librium that is dynamically consistent. Therefore, we assume that players are playing
Markovian strategies rather than open-loop strategies. Markovian strategies imply that
each player will choose an emission strategy at time t based on the state of the system
(i.e., temperature T) at that time.

3We take a different approach from List and Mason (2001), who investigated the optimal institutional
arrangements (local versus central) for transboundary pollutants in a deterministic dynamic game and
assumed a common time path of emissions for the two regions, i.e., E1(t) = E2(t), in the cooperative (cen-
tral authority) case. Here we relax this restriction and assume that the emissions paths for two asymmetric
countries can be different to maximize their joint payoffs in the cooperative case.

4With a monotonously increasing utility function, such as U(F(E))=ln(E), negative produc-
tion/emissions would not be possible. However, to keep the tractability for analytic solutions, we resort
to the quadratic utility function and thus model the game in a linear-quadratic setting, which is prevailing
in the literature.

5See a detailed discussion on this assumption in Xepapadeas (2012). The analysis in this paper is focused
on the solutions with reversible emissions, which is also due to the difficulty of obtaining transparent and
analytical solutions with irreversible emissions (cleanup is not feasible), and the analysis with irreversible
emissions could be an interesting area for further research, which will require the assistance of other means
such as numerical methods. See Wirl (2008) for a novel study investigating the tragedy of the commons in
a stochastic game considering both reversible and irreversible emissions.
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3.1 Non-cooperative case
Define the value function for player i when the players do not cooperate as Vi(T). Then,
the Markovian strategies of player 1 and player 2, E1(T) and E2(T), need to satisfy the
following Hamilton-Jacobi-Bellman (HJB) equations:

rV1(T) = max
E1

{
aE1 − 1

2
[E1]2 − ε

2
T2 + [E1 + E2(T)] · V ′

1(T)+
(
1
2
σ 2T2

)
V ′′
1 (T)

}

(4a)

rV2(T) = max
E2

{
aϕE2 − 1

2
[E2]2 − γ ε

2
T2 + [E1(T)+E2] · V ′

1(T)+
(
1
2
σ 2T2

)
V ′′
2 (T)

}
,

(4b)

whereV ′
i (T) andV

′′
i (T) are the first- and second-order derivatives of the value function

Vi(T)with respect to the state variable, i.e., global temperatureT. The second derivatives
of the value functions appear due to the stochastic nature of the problem (Dockner et al.,
2000).

From the first-order conditions for the maximization of the right-hand side of HJB
equations (4a) and (4b), one can find the optimal emission strategy for the two players
as:

E1(T) = a + V ′
1(T) (5a)

E2(T) = aϕ + V ′
2(T). (5b)

Equations (5a) and (5b) state that players’ optimal emission strategy would depend on
the instantaneous marginal benefits of more emissions and also the marginal intertem-
poral effect. Plugging (5a) and (5b) into the HJB equations (4a) and (4b), and after some
straightforward calculations, one can obtain:

rV1(T) = 1
2
[a + V ′

1(T)]
2 − ε

2
T2 + [aϕ + V ′

2(T)] · V ′
1(T)+

(
1
2
σ 2T2

)
V ′′
1 (T) (6a)

rV2(T) = 1
2
[ϕa + V ′

2(T)]
2 − γ ε

2
T2 + [a + V ′

1(T)] · V ′
2(T)+

(
1
2
σ 2T2

)
V ′′
2 (T).

(6b)

Due to the linear-quadratic structure of the game, we know the value function is
quadratic:

Vi(T) = κi + μiT + 1
2
ηiT2, i = 1, 2, (7)

where κi, μi, ηi are the coefficients to be determined. Substituting (7) into (6a)–(6b), we
have:

r
[
κ1 + μ1T + 1

2
η1T2

]
= 1

2
[a + μ1 + η1T]2

+ [ϕa + μ2 + η2T][μ1 + η1T] − ε

2
T2 + σ 2T2

2
η1 (8a)
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r
[
κ2 + μ2T + 1

2
η2T2

]
= 1

2
[ϕa + μ2 + η2T]2

+ [a + μ1 + η1T][μ2 + η2T] − γ ε

2
T2 + σ 2T2

2
η2. (8b)

Equating the coefficients of 1, T and T2 on both sides of (8a) and (8b) leads to the
following system of equations:

1
2
rη1 = 1

2
[η1]2 + η1η2 − ε

2
+ σ 2

2
η1 (9a)

rμ1 = [a + μ1]η1 + η2μ1 + η1[ϕa + μ2] (9b)

rκ1 = 1
2
[a + μ1]2 + [ϕa + μ2]μ1 (9c)

1
2
rη2 = 1

2
[η2]2 + η1η2 − γ ε

2
+ σ 2

2
η2 (9d)

rμ2 = [ϕa + μ2]η2 + η1μ2 + η2[a + μ1] (9e)

rκ2 = 1
2
[ϕa + μ2]2 + [a + μ1]μ2. (9f)

By solving the system of equations (9a)–(9f), one can determine the coefficients for
the value function Vi(T), i = 1, 2. However, it should be emphasized that the general
case (with arbitrary values of ϕ and γ ) does not allow for explicitly analytical solutions of
(9a)–(9f). Therefore, our analysis will concentrate on some cases where analytical results
are possible, as we shall see in sections 4 and 5 below.

3.2 Cooperative case
As mentioned above, in the cooperative case, the two countries will jointly choose E1
and E2 to maximize (3), subject to the global temperature dynamics (1). If we define the
value function in this case asW(T), the following HJB equation can be obtained:

rW(T) = max
E1,E2

{a[E1 + ϕE2] − 1
2 [(E1)

2 + (E2)2] − (1+γ )ε
2 T2

+ [E1 + E2] · W′(T)+ 1
2σ

2T2W′′(T)}. (10)

The first-order conditions for the maximization of the right-hand side yield:

E1(T) = a + W′(T) (11a)

E2(T) = aϕ + W′(T). (11b)

Similarly to the non-cooperative case (equations (5a)–(5b)), it can be seen from equa-
tions (11a)–(11b) that the players’ optimal emission strategy in the cooperative case also
depends on both the instantaneous marginal benefits of emissions and the marginal
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intertemporal effect. Plugging (11a)–(11b) into the HJB equation (10), after some
calculations we have:

rW(T) =
[
W′(T)+ a(1 + ϕ)

2

]2

+ a2(1 − ϕ)2

4
− ε(1 + γ )

2
T2 +

(
1
2
σ 2T2

)
W′′(T). (12)

Again, we know the value function is in a quadratic form:

W(T) = ζ + ψT + 1
2
ξT2, (13)

where ζ , ψ , and ξ are the coefficients to determine. Plugging (13) into (12), we have:

r[ζ + ψT + 1
2
ξT2] = [ψ + ξT]2 + a(1 + ϕ)[ψ + ξT]

+ a2(1 + ϕ2)

2
− ε(1 + γ )

2
T2 + 1

2
σ 2T2ξ . (14)

Equating the coefficients on both sides, one can get the following system of equations:

1
2
rξ = ξ2 − ε(1 + γ )

2
+ ξσ 2

2
(15a)

rψ = 2ψξ + a(1 + ϕ)ξ (15b)

rζ = ψ2 + a(1 + ϕ)ψ + a2(1 + ϕ2)

2
, (15c)

from which one can obtain:

ξ = (r − σ 2)−
√
(r − σ 2)2 + 8ε(1 + γ )

4
(16a)

ψ = a(1 + ϕ)ξ

r − 2ξ
= 1

2

[
ar(1 + ϕ)

(r − 2ξ)
− a(1 + ϕ)

]
(16b)

ζ = 1
r

[
ψ + a(1 + ϕ)

2

]2
+ a2(1 − ϕ)2

4r
. (16c)

We have thereby determined the coefficients for the value function W(T). While the
effect of uncertainty σ will be investigated later on, the effect of some other parameter
can also be seen from (16a)–(16c). For instance, it is straightforward to find that the
sign of ∂ξ

∂γ
is negative, which implies that (together with equations (11a) and (11b)) the

optimal emissions will decrease with temperature more dramatically when the damage
from climate change for country 2 becomes higher (i.e., a larger γ ), which is consistent
with the expectation.
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Table 1. Coefficients for value functions in the case of symmetric players

V(T) W(T)

κ = 1
2r
(a+ μ)(a+ 3μ) ζ = 1

r
[a+ ψ]2

μ = 2aη
r − 3η

= 2a
3

[
r

r − 3η
− 1

]
ψ = 2aξ

r − 2ξ
= a

[
r

r − 2ξ
− 1

]

η = (r − σ 2)−
√
(r − σ 2)2 + 12ε
6

< 0 ξ = (r − σ 2)−
√
(r − σ 2)2 + 16ε
4

< 0

4. The case of symmetric players
In this section, we investigate the game described above under the assumption that
the two countries are symmetric in benefits from emissions and damages from global
warming, i.e., ϕ = 1 and γ = 1.

4.1 Expected payoffs
Due to the symmetry of the two countries, both countries will achieve the same pay-
off in the equilibrium, which implies that the value function in the non-cooperative
solution would be identical for both countries, i.e., V1(T) = V2(T) = V(T), imply-
ing that the coefficients of the value functions V1(T) and V2(T) satisfy κ1 = κ2 = κ ,
μ1 = μ2 = μ, and η1 = η2 = η. Therefore, the symmetry of the two countries would
imply that (9a)–(9f) can be degenerated as:

1
2
rη = 1

2
[η]2 + [η]2 − ε

2
+ σ 2

2
η (17a)

rμ = [a + μ]η + ημ+ η[a + μ] (17b)

rκ = 1
2
[a + μ]2 + [a + μ]μ. (17c)

By solving this system of equations, one can determine the coefficients for the value
function V(T), as in the first column of table 1.6 Given the initial temperature T0,
the (expected) payoff for each country in the non-cooperative case will be VNC(T0) =
V(T0) = κ + μT0 + 1

2η[T0]2.
Similarly, with the symmetric players, the coefficients for the value function under

cooperation, W(T), i.e., (16a)–(16c), would degenerate into the second column of
table 1.

4.2 Non-cooperative versus cooperative strategies
In the case of symmetric players, the emission strategies of the two players would be
identical, as can be seen from (5a) and (5b). Taking into account the expression of the
value function, one can obtain the optimal emission strategy for each country in the
non-cooperative case:

ENCi (T) = a + μ+ ηT, (18a)

6Complete calculations are available from the authors upon request.
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Table 2. Coefficients for value functions in the particular case of asymmetric players

V1(T) V2(T) W(T)

κ1 = 1
2r
[a+ μ1]2 + 1

r
ϕaμ1 κ2 = 1

2r
(ϕa)2 ζ = 1

r

[
ψ + a(1+ ϕ)

2

]2
+ a2(1− ϕ)2

4r

μ1 = η1a(1+ ϕ)

r − η1

= ar(1+ ϕ)

r − η1
− a(1+ ϕ)

μ2 = 0 ψ = a(1+ ϕ)ξ

r − 2ξ
= 1
2

[
ar(1+ ϕ)

(r − 2ξ)
− a(1+ ϕ)

]

η1 =
r − σ 2 −

√
(r − σ 2)2 + 4ε
2

< 0

η2 = 0 ξ = (r − σ 2)−
√
(r − σ 2)2 + 8ε
4

< 0

and the optimal emission strategy for country i in the cooperative case:

ECi (T) = a + ψ + ξT, (18b)

where μ, η, ψ , and ξ are as in table 1.
In the online appendixA1,we show that ξ − η < 0 andψ − μ < 0. Therefore, for the

same temperature T, we have ECi (T) < ENCi (T). That is, each country tends to over-emit
CO2 in the non-cooperative case, compared with the cooperative case. If we denote the
temperatures at which countries would stop emitting (i.e., would have zero emissions)
for the non-cooperative and cooperative cases as T̄NCand T̄C, respectively, we have:
T̄NC = a + μ/−η and T̄C = a + ψ/−ξ . Because 0 < ψ + a < μ+ a and ξ < η < 0
(see table 1 and online appendix A1), we have T̄NC > T̄C > 0. That is, countries will
stop emissions at a lower temperature under international cooperation.This result is
consistent with the general findings in the literature (e.g., Dockner and Long, 1993;Wirl,
2008).7

Moreover, in online appendix A2 we show that ∂η/∂σ < 0, ∂μ/∂σ < 0, ∂ξ/∂σ <
0 and ∂ψ/∂σ < 0, which implies that ∂ENCi (T)/∂σ = ∂μ/∂σ + ∂η/∂σT < 0 and
∂ECi (T)/∂σ = ∂ψ/∂σ + ∂ξ/∂σT < 0 for a given temperature T ≥ 0. That is, uncer-
tainty will make countries more cautious about their emissions, whether they cooperate
or not. This is consistent with the previous findings on the consequences of uncertainty
in the context of the tragedy of the commons (see, e.g., Wirl, 2008): larger uncertainty
reduces pollution. However, in contrast to the previous studies, the focus of this paper
is on the effects of climate uncertainty on the welfare of individual countries in non-
cooperative as well as cooperative solutions and on the welfare gain from international
cooperation. Therefore, more emphasis will be put on the effects of uncertainty on these
measurements in the following sections.

7Though these (intermediate) results share some similarities with the literature, we still keep them here
to show how the standard results in the literature regarding the cooperative versus non-cooperative solu-
tions appear in our specific settings of the model where the state variable is temperature rather than the
accumulated emissions (as in the literature) and to facilitate the understanding of the formal results that we
shall discuss below.
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4.3 Effect of uncertainty on the welfare of individual countries
Due to the symmetry of players, both countries achieve the same payoff VNC(T0) =
V(T0) in the non-cooperative case, while both also obtain the same payoff VC(T0) =
1/2W(T0) in the cooperative case, where T0 is the initial temperature. To see the effect
of uncertainty on an individual country’s welfare, let us take the derivative of VNC(T0)
and VC(T0) with respect to the parameter σ , which is the measurement of climate
uncertainty. That is,

∂VNC(T0)

∂σ
= ∂κ

∂σ
+ ∂μ

∂σ
T0 + 1

2
∂η

∂σ
[T0]2 (19a)

∂VC(T0)

∂σ
= 1

2
∂ζ

∂σ
+ 1

2
∂ψ

∂σ
T0 + 1

4
∂ξ

∂σ
[T0]2. (19b)

Based on the coefficients of value functions in table 1, the following results can be
established and demonstrated for the case with symmetric players.

Proposition 1. Larger climate uncertainty reduces the expected welfare of individual
countries, whether or not they cooperate with each other.

Proof : Since it has been shown in online appendix A2 that ∂η/∂σ < 0, ∂μ/∂σ <
0, and ∂κ/∂σ < 0, one can know that ∂VNC(T0)/∂σ = ∂κ/∂σ + ∂μ/∂σT0 + 1/2∂η/
∂σ [T0]2 < 0 for T0 ≥ 0, which implies that, in the non-cooperative case, the expected
payoff for each country will be reduced by greater uncertainty about global warming.

Similarly, the negative signs of ∂ξ/∂σ , ∂ψ/∂σ , and ∂ζ/∂σ (see the proofs in online
appendixA2) imply ∂VC(T0)/∂σ = 1/2∂ζ/∂σ + 1/2∂ψ/∂σT0 + 1/4∂ξ/∂σ [T0]2 < 0
for T0 ≥ 0. That is, the expected payoff for each country will be reduced by greater
climate uncertainty in the cooperative case as well.

Therefore, we know that, no matter whether or not the two countries cooperate with
each other, higher uncertainty about global warming will reduce the expected welfare of
individual countries. �

4.4 Effect of uncertainty on benefits of international cooperation
The welfare gain from international cooperation (WGIC) for each country can be cal-
culated as the difference between the payoff in the cooperative case and that in the
non-cooperative case:

WGIC = VC(T0)− VNC(T0)

=
(
1
2
ζ + 1

2
ψT0 + 1

4
ξ [T0]2

)
−

(
κ + μT0 + 1

2
η[T0]2

)

=
(
1
2
ζ − κ

)
+

(
1
2
ψ − μ

)
T0 + 1

2

(
1
2
ξ − η

)
[T0]2.

(20)

It is well known that collective well-being can be increased if all countries cooperate in
managing shared environmental resources such as the climate and ozone layer (Barrett,
1994). This implies that one can always expect that the two players’ combined payoff in
the cooperative case would be larger than that in the non-cooperative case. Taking into
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account the symmetry of the two players (an equal split of the collective payoff), this
leads to:

Lemma 1. It is always beneficial for the countries to cooperate, no matter how large the
climate uncertainty is.

Though Lemma 1 directly follows from well-known general economics results, one
can rigorously prove that this is true in our particular case by some straightforward cal-
culations. In online appendix A3, we demonstrated that 1/2ζ − κ > 0, 1/2ψ − μ > 0,
and 1/2ξ − η > 0 hold for allσ (under the assumption thatσ 2 < r). Therefore, we know
from equation (20) that the welfare gain from cooperation for each country (for a given
initial temperatureT0 ≥ 0) is positive for allσ . That is, each country can always get a pos-
itive welfare gain from international cooperation, no matter how large the uncertainty
is.

We know that the expected welfare gain from international cooperation is positive
(Lemma 1). But how will the size of the welfare gain from cooperation change with
climate uncertainty? To see this, take the derivative of WGIC (see (20)) with respect
to σ :

∂WGIC
∂σ

=
(
1
2
∂ζ

∂σ
− ∂κ

∂σ

)
+

(
1
2
∂ψ

∂σ
− ∂μ

∂σ

)
T0 + 1

2

(
1
2
∂ξ

∂σ
− ∂η

∂σ

)
[T0]2. (21)

As we shall state in Proposition 2, one can demonstrate that ∂WGIC/∂σ > 0, which
implies that the expected welfare gain from cooperation for each country (i.e.,WGIC) is
increasing in the magnitude of climate uncertainty (i.e., increasing in parameter σ ).

Proposition 2. The expected WGIC is an increasing function of climate uncertainty. The
larger the uncertainty, the more each country can gain from cooperation.

Proof : See online appendix A4. �

Proposition 2 highlights one of the most important findings of this study. The eco-
nomic intuition behind this is as follows: An increasing σ implies that the random
variations in temperature T caused by the diffusion term σT(t)dz, representing the risk
involved in emitting GHGs, is increasing. This increase in risk increases the countries’
expected shadow costs of temperature ∂Vi/∂T in the non-cooperative case relatively
more than the expected shadow cost ∂W/∂T in the cooperative case. This is derived
from the fact that in the non-cooperative case the countries individually maximize their
expected net benefit streams, thus facing lower expected shadow costs of temperature
and leading to higher optimal emissions level and higher temperature, compared to the
case when two countries maximize the joint expected net benefit stream in the coopera-
tive case. Consequently, the expected value of discounted net benefit to each country in
the non-cooperative case decreases relativelymore than the expected value of discounted
net benefits in the cooperative case as σ increases.

Given 1/2ψ − μ > 0 and 1/2ξ − η > 0 (see online appendix A3), it is easy to show
that: ∂WGIC/∂T0 = (1/2ψ − μ)+ (1/2ξ − η)[T0] > 0 for T0 ≥ 0, which implies the
expected WGIC for each country is increasing in the initial global temperature T0 as
well. That is, the importance of international cooperation increases with a higher initial
temperature: the higher the initial temperature, the more important it is to have inter-
national cooperation. The intuition is that the climate damage increases in temperature,
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thereby making the emissions in the cooperative case (relative to the emissions in the
non-cooperative case) become even more conservative when the temperature is higher.

5. The case of asymmetric players
We focused on the case of symmetric players in the previous section. However, in reality,
countries are asymmetric: some countries are affected a lot by climate change, while oth-
ers are affected less; the benefits from emissions can also be very different. Therefore, it is
important to investigate the case of asymmetric players. The case of asymmetric players
corresponds to the case where ϕ �= 1 or/and γ �= 1. As mentioned in section 3, the gen-
eral (asymmetric) case (with arbitrary value of ϕ and γ ) does not allow for an explicitly
analytical solution of the non-cooperative game. Therefore, following List and Mason
(2001), let us focus the analysis with asymmetric players on a polar extreme case where
γ = 0, which represents the extreme case in which country 2 does not suffer from the
environmental damage of global warming.

5.1 Expected payoffs
If we assume γ = 0, it is easy to see that the optimal emission strategy of country 2 in
the non-cooperative case is to set E2(T) = ϕa, which implies country 2 is not a strategic
player anymore in this case, i.e., at each instant of time, country 2 will receive the instan-
taneous net benefit B2 = 1/2(ϕa)2. In other words, we would have κ2 = 1/2r(ϕa)2,
μ2 = 0, and η2 = 0 in the value function for country 2, V2(T) = κ2 + μ2T + 1/2η2T2.
If one plugs in the values of κ2, μ2, and η2, equations (9a)–(9c) become:

1
2
rη1 = 1

2
[η1]2 − ε

2
+ σ 2

2
η1 (22a)

rμ1 = [a + μ1]η1 + ϕaη1 (22b)

rκ1 = 1
2
[a + μ1]2 + ϕaμ1. (22c)

From this system of equations, one can solve for η1, μ1, and κ1, as shown in the first
column in table 2. With the assumption of γ = 0, the coefficients for the value function
under cooperationW(T), i.e., (16a)–(16c), degenerate into the third column of table 2.
It can be observed from table 2 that the following relations hold:

2ξ − η1 = −
√
(r − σ 2)+ 8ε +

√
(r − σ 2)2 + 4ε

2
< 0 (23a)

2ψ − μ1 = a(1 + ϕ)[r(2ξ − η1)]
(r − 2ξ)(r − η1)

< 0. (23b)

5.2 Non-cooperative versus cooperative strategies
Recall that, without the constraint of cooperation, country 2will behave non-strategically
and the optimal emission strategy for country 2 is always to set ENC2 (T) = ϕa. For coun-
try 1, the optimal emission strategy under non-cooperation in this case, plugging the
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value function V1(T) into (5a), is:

ENC1 (T) = a + μ1 + η1T. (24a)

The optimal emission strategies for the two countries under cooperation would be

EC1 (T) = a + ψ + ξT (24b)

EC2 (T) = aϕ + ψ + ξT, (24c)

where μ1, η1, ψ , and ξ are as in table 2.
Since ξ < 0 and ψ < 0, we know that ENC2 (T) > EC2 (T) for a given temperature T,

i.e., country 2 tends to over-emit CO2 in the non-cooperative case. In online appendix
B1, we show that ξ − η1 > 0 and ψ − μ1 > 0, which implies EC1 (T) > ENC1 (T) for the
same given temperature T. That is, country 1 tends to under-emit CO2 in the non-
cooperative case, compared with the cooperative (efficient) case, to compensate for the
excess emissions of country 2.

Moreover, online appendix B2 shows that ∂η1/∂σ < 0, ∂μ1/∂σ < 0, ∂ξ/∂σ < 0 and
∂ψ/∂σ < 0 for this asymmetric case, which implies that ∂ENC1 (T)/∂σ = ∂μ1/∂σ +
∂η1/∂σT < 0, ∂ENC2 (T)/∂σ = 0 and ∂ECi (T)/∂σ = ∂ψ/∂σ + ∂ξ/∂σT < 0 (i = 1, 2)
for a given temperature T ≥ 0. This implies that both countries will be more cautious
about their emissions when facing greater climate uncertainty in the cooperative case,
while in the non-cooperative case only country 1 will be more cautious.

5.3 The possibility of cooperation
As shown before, the payoffs under international cooperation can be simply split equally
to each country in the case of symmetric players, while the split of surplus is not easy in
the case of asymmetric players. Therefore, let us focus on the total payoffs for the two
countries in the asymmetric case. To see how beneficial international cooperation is,
again, one has to compare the expected payoffs under the case of non-cooperation with
those under cooperation. Specifically, the total welfare gain from international coopera-
tion (TWGIC), i.e., the difference between the combined payoff under cooperation and
that under non-cooperation, is:

TWGIC = W(T0)− [V1(T0)+ V2(T0)]

= ζ + ψT0 + 1
2
ξ [T0]2 −

(
κ1 + μ1T0 + 1

2
η1[T0]2 + 1

2r
[ϕa]2

)

= �+ (ψ − μ1)T0 + 1
2
(ξ − η1)[T0]2,

(25)

where� = ζ − κ1 − (1/2r)[ϕa]2.

Lemma 2. The total expected payoffs for the two countries are larger when they cooperate,
no matter how large the climate uncertainty is and how asymmetric the two players are in
terms of marginal benefits from emissions.

Again, Lemma 2 follows directly from the well-known general results that collective
well-being can be increased if all countries cooperate inmanaging shared environmental
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resources. We can also rigorously show that this is true for our particular case. More
specifically, if one can show that (25) has a positive sign, we know that cooperation is
beneficial, in the sense that it will increase the sum of the two players’ expected payoffs.
In online appendix B1, we show that ξ − η1 > 0 andψ − μ1 > 0. Let us now investigate
the sign of the constant term in (25), i.e., � = ζ − κ1 − 1/2r[ϕa]2. In online appendix
B3, we show that� > 0 holds for any ϕ > 0. Together with ξ − η1 > 0 andψ − μ1 > 0
(see online appendix B1), we know from (25) that, for a given initial temperatureT0 ≥ 0,
TWGIC = W(T0)− [V1(T0)+ V2(T0)] > 0 for all σ (σ 2 < r) and for any ϕ > 0.

That is, no matter how asymmetric the two players are in terms of marginal bene-
fits from emissions, the total surplus of cooperation will always be positive for the two
countries. Also, similar to the results for the symmetric case, the positive gain from
cooperation holds for all different magnitudes of climate uncertainty.

5.4 Effect of uncertainty on the benefits of cooperation
Let us first investigate the effect of uncertainty on players’ payoffs in the non-
cooperative case and the cooperative case, respectively. Recall that, in the non-
cooperative case, the expected payoffs of the two players are V1(T0) = κ1 + μ1T0 +
1/2η1[T0]2 and V2(T) = (ϕa)2/2r, respectively. Clearly, the expected payoff of coun-
try 2 does not depend on the level of climate uncertainty (σ ) because country 2 does
not suffer any climate damage (γ = 0). For country 1, online appendix B2 shows
that ∂η1/∂σ < 0, ∂μ1/∂σ < 0, and ∂κ1/∂σ < 0, which implies that ∂V1(T0)/∂σ =
∂κ1/∂σ + ∂μ1/∂σT0 + 1/2∂η1/∂σ [T0]2 < 0. That is, the expected (non-cooperative)
payoff of country 1 will be lower for greater climate uncertainty. However, one can show
that the total welfare gain from cooperation (i.e., TWGIC as defined in equation (25)) is
increasing in climate uncertainty for our case of asymmetric players aswell, which is con-
sistent with the result in the case of symmetric players, as summarized in the proposition
below.

Proposition 3. The TWGIC is an increasing function of climate uncertainty. The greater
the uncertainty, the larger the total gain from cooperation.

Proof : See online appendix B4. �

This result can be considered as an extension of the result summarized in Proposition
2 to the case of asymmetric players. Again, it reflects the fact that climate uncertainty
becomes another source of externality that the collective actions of countries can deal
with more efficiently than unilateral actions. The higher the uncertainty, the larger the
externality from ‘risk’, the more gain from cooperation.

5.5 Payoff transfers to ensure stability of the cooperation
We know that, in the asymmetric case, international cooperation is also beneficial, in
the sense that cooperation will increase the sum of two players’ expected payoffs over
the entire time horizon. However, because country 2 suffers no damages from global
warming, it does not have a direct incentive to cooperate. Nevertheless, it is possible to
provide sufficient incentives for country 2 to agree to cooperate, for example, by offering
a side payment mechanism, as we shall show below.

As proposed by Petrosyan (1997) and (Yeung and Petrosyan, 2004, 2006), to ensure
that players have the incentives to cooperate for the whole game horizon, we need to
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ensure that both group rationality and individual rationality constraints are satisfied.
Group rationality requires the players to seek a set of cooperative strategies/controls
which ensure that Pareto optimality is achieved and that all potential gains from cooper-
ation are captured. More specifically, group rationality requires the players to maximize
their joint payoffs, as we have demonstrated above.

Individual rationality implies that neither player will be worse off than before under
cooperation, i.e., each player receives at least the payoff he or she would have received if
playing against the rest of the players. The violation of the individual rationality principle
would lead to a situation in which the players deviate from the agreed-upon cooperative
solution and play non-cooperatively. In the case of symmetric players discussed above,
we assume that the payoffs under cooperation will be split equally among the symmet-
ric players, and we have shown that an equal split of the payoffs under cooperation can
ensure that each country receives at least the payoff it would have received if playing
non-cooperatively. However, in the case of asymmetric players, the split of the payoffs is
not easy to define. Therefore, following Petrosyan (1997) and (Yeung and Petrosyan,
2004, 2006), we formulate a payoff distribution scheme over time to ensure individ-
ual rationality, which will make the cooperation among countries time consistent, i.e.,
guarantee the dynamic stability of the cooperative solution. The dynamic stability of the
cooperative solution involves the property that, as the game proceeds along an optimal
trajectory, players are guided by the same optimality principle at each instant of time, and
hence do not possess incentives to deviate from the previously adopted optimal behavior
throughout the game.

Substituting (24b) and (24c) into the differential equation (1) yields the dynamics of
the optimal (cooperative) trajectory:

dT(t) = [a(1 + ϕ)+ 2ψ + 2ξT(t)]dt + σT(t)dz,T(0) = T0 ≥ 0, (26)

where ψ and ξ are as shown in table 2. The solution to (26) can be expressed as:

T∗(t) = T0 +
∫ t

0
[a(1 + ϕ)+ 2ψ + 2ξT∗(τ )]ds +

∫ t

0
σT∗(τ )dz(τ ). (27)

Denote�∗
t as the set of realizable values of T∗(t) at time t generated by the stochastic

process (27) andT∗
t as an element in the set�∗

t . Assume that, at time instant t > 0 (recall
that t = 0 is the starting time of the game) when the initial state is T∗

t ∈ �∗
t , the agreed

upon optimality principle assigns an imputation vectorπ(T∗
t ) = [π1(T∗

t ),π2(T∗
t )]. That

is, the players agree on an imputation of the total cooperative payoff W(T∗
t ) in such a

way that the expected payoff of player i is equal to πi(T∗
t ) and satisfies

∑2
i=1 πi(T

∗
t ) =

W(T∗
t ). Then we know individual rationality requires that:

πi(T∗
t ) ≥ Vi(T∗

t ) for i = 1, 2, (28)

where Vi(·) is the value function of player i in the non-cooperative case, as defined in
section 5.1.

We know that individual rationality (28) has to hold at every instant of time t > 0
and that violation of individual rationality can lead to deviation from the cooperative
trajectory, which implies that the Pareto optimum under cooperation is not achieved by
the two players.

Following Petrosyan (1997) and (Yeung andPetrosyan, 2004, 2006), we can formulate
a payoff distribution scheme over time so that the imputationswith individual rationality
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can be achieved. DenoteG(τ ) = [G1(τ ), G2(τ )] as the instantaneous payoff of the coop-
erative game at time τ ∈ [0, ∞). Gi(τ ) must satisfy the following condition to ensure
group rationality:

G1(τ )+ G2(τ ) = a[EC1 (T
∗
τ )+ ϕEC2 (T

∗
τ )]

− 1
2

[
[EC1 (T

∗
τ )]

2 + [EC2 (T
∗
τ )]

2
]

− ε(1 + γ )

2
[T∗
τ ]

2, (29)

where the right-hand side of (29) is the sum of instantaneous net benefits of the two
countries under cooperation along the cooperative trajectory {T∗

τ }τ≥0. Also, along the
cooperative trajectory {T∗

τ }τ≥0, the imputation π i(T∗
τ ) should satisfy:

πi(T∗
τ ) = Eτ

{∫ ∞

τ

e−r(s−τ)Gi(s)ds|T(τ ) = T∗
τ

}
for i = 1, 2, and T∗

t ∈ �∗
t ,

(30)
where Eτ is the expectation taken at time τ .

As assumed before, in the cooperative game, the players agree to maximize the sum
of their expected payoffs. Let us further assume that the players divide the total cooper-
ative payoff, satisfying the Nash bargaining outcome. Then the imputation scheme has
to satisfy the following:

• at time t = 0, an imputation πi(T0) = Vi(T0)+ 1
2 [W(T0)− ∑2

j=1 Vi(T0)] is
assigned to player i (i = 1, 2); and

• at time τ ∈ (0, ∞), an imputation πi(T∗
τ ) = Vi(T∗

τ )+ 1
2 [W(T∗

τ )− ∑2
j=1 Vi(T∗

τ )]
is assigned to player i for i = 1, 2, and T∗

τ ∈ �∗
t .

Since we have shown above that W(T)− ∑2
j=1 V

i(T) > 0,8 we know that such an
imputation scheme will satisfy individual rationality (28). And it can be demonstrated
that a payoff distribution procedure with an instantaneous imputation rate at time
τ ∈ [0, ∞) as followswill yield a time consistent cooperative solution that satisfies group
rationality (29) and can achieve such an imputation π(T∗

τ ) = [π1(T∗
τ ), π2(T∗

τ )] that
satisfies the Nash bargaining outcome and ensures individual rationality (15b).9

Gi(τ ) = Gi(T∗
τ ) = 1

2

{
rVi(T∗

τ )− V
′
i (T

∗
τ )[a(1 + ϕ)+ 2ψ + 2ξT∗

τ ] − 1
2
σ 2T2 · V ′′

i (T∗
τ )

}

+ 1
2

{
rW(T∗

τ )− W′(T∗
τ )[a(1 + ϕ)+ 2ψ + 2ξT∗

τ ] − 1
2
σ 2T2 · W′′(T∗

τ )

}

− 1
2

{
rVj(T∗

τ )− V
′
j (T

∗
τ )[a(1 + ϕ)+ 2ψ + 2ξT∗

τ ] − 1
2
σ 2T2 · V ′′

j (T∗
τ )

}
.

(31)

The payoff distribution procedure in equation (31) is derived from the imputation
πi(T∗

τ ) = Vi(T∗
τ )+ 1

2 [W(T∗
τ )− ∑2

j=1 Vi(T∗
τ )] which guarantees that each player, at any

8See the proof of Lemma 1 in section 4.4 (i.e, the positive sign of equation (20)), and the proof of Lemma
2 in section 5.3 (i.e., the positive sign of equation (25)).

9The demonstration is straightforward by applying Theorem 5.8.3 and Proposition 5.8.1 in Yeung and
Petrosyan (2006), and is therefore omitted here. It is available from the authors upon request.
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point τ in time, receives an expected net benefit stream that is at least as large as the
expected net benefit stream Vi(Tτ ) in the non-cooperative case (individual rationality),
and hence does not possess incentives to deviate from the previously adopted optimal
behavior throughout the game. Secondly, it divides the welfare gain from cooperation
equally between the players. The instantaneous payoff distribution procedure in (31)
thus yields a time-consistent solution in the sense that it will ensure that players play
cooperative strategies throughout the game.

Plugging the value functions that we obtained in section 5.1 into equation (31) yields
the specific payoff distribution procedures for our model:

G1(τ ) = 1
2

{
r[κ1 + μ1T∗

τ + 1
2
η1(T∗

τ )
2] + r[ζ + ψT∗

τ + 1
2
ξ(T∗

τ )
2]

−r[κ2 + μ2T∗
τ + 1

2
η2(T∗

τ )
2]

}

− 1
4
σ 2(T∗

τ )
2[η1 + ξ − η2] − 1

2
[a(1 + ϕ)+ 2ψ + 2ξT∗

τ ][(μ1 + η1T∗
τ )

+ (ψ + ξT∗
τ )− (μ2 + η2T∗

τ )] (32a)

G2(τ ) = 1
2

{
r[κ2 + μ2T∗

τ + 1
2
η2(T∗

τ )
2] + r[ζ + ψT∗

τ + 1
2
ξ(T∗

τ )
2]

−r[κ1 + μ1T∗
τ + 1

2
η1(T∗

τ )
2]

}

− 1
4
σ 2(T∗

τ )
2[η2 + ξ − η1] − 1

2
[a(1 + ϕ)+ 2ψ + 2ξT∗

τ ][(μ2 + η2T∗
τ )

+ (ψ + ξT∗
τ )− (μ1 + η1T∗

τ )]. (32b)

where the values of κi, μi, ηi, ζ , ψ , and ξ are as in table 2. The instantaneous payoff
distribution procedure in (32a)–(32b) yields a time-consistent solution to the cooper-
ative game studied above, in the sense that it will ensure that players play cooperative
strategies throughout the game.

The instantaneous payoff transfers from country j to country i at time instant τ are
determined by the differences between the payoff distribution procedures in equations
(32a)–(32b) and the countries’ actual net benefit streams Bi(ECi (T

∗
τ ), T∗

τ ) at the optimal
emissions strategies in the cooperative case. Hence:

Fi(τ ) = Gi(τ )− Bi(ECi (T
∗
τ ),T

∗
τ ) = Gi(τ )− aiECi (T

∗
τ )

+ 1
2
[ECi (T

∗
τ )]

2 + εi

2
[T∗
τ ]

2, (33)

where ECi (·) is the optimal emission strategies under cooperation, as in (24b) and (24c).
As we show numerically below, for a given temperatureT0, the initial instantaneous pay-
off transfer (τ = 0 in equation (33)) from country 1 to country 2 is positive and increases
as climate uncertainty becomes larger. This result follows directly from the need for
country 2 to be increasingly compensated, the larger its reductions in emissions are. The
transfer must satisfy individual rationality for country 2, i.e. prevent losses resulting in a
welfare level lower than the welfare in the non-cooperative Nash equilibrium.
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Figure 1. Effect of climate uncertainty in the case of symmetric players (T0 = 1◦C).

6. Numerical illustrations
To complement the theoretical analysis above, we numerically examine how the
expected payoff/welfare for each country in both cases (cooperative and non-
cooperative) and the welfare gain from international cooperation will change with the
parameter σ , which measures the uncertainty about global warming, through some
numerical illustrations. The value of the parameter in the benefit function is set as a = 1,
which is consistent with the setting in Long (2010: 65). The damage parameter is set as
ε = 0.0047 for an average country to be consistent with the damage parameter used for
the world in Wirl (2007). The discount rate is set as r = 0.04 to be consistent with the
value used in List and Mason (2001).10 By using these parameter values, one can obtain
the illustrative results regarding the effect of the uncertainty about global warming in the
case of symmetric players (figures 1 and 2) and that in the case of asymmetric players
(ϕ = 0.5 in the illustration) as shown in figure 3.

10The choice of discount rate is critical to climate policy assessments.Most of the studies on climate policy
design use a discount rate between 1 per cent and 5 per cent. For instance, the discount rate used in Hoel
and Karp (2002) is 3 per cent while that used in Newell and Pizer (2003) is 5 per cent. The value used in this
paper, 4 per cent, which lies in between, is consistent with that used by List and Mason (2001).
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Figure 2. Effect of climate uncertainty in the case of symmetric players (T0 = 3◦C).

It can be seen from figures 1 and 2 that players’ expected payoffs will decrease with
higher climate uncertainty, whether or not they cooperate. Besides, it can be observed
that theWGIC is an increasing function of parameter σ . These results are consistent with
the theoretical predictions above for the symmetric case: even though the expected wel-
fare of individual countries will be reduced by greater uncertainty about climate change
in both the non-cooperative and cooperative cases, the (expected) WGIC is an increas-
ing function of climate uncertainty. That is, the greater the climate uncertainty, themore
important it is to have international cooperation.

From figure 3, one can see that the conclusions also hold for our particular case of
asymmetric players where country 2 does not suffer from climate damages. It can be
observed that, since player 2 does not suffer from climate damages, the uncertainty about
climate change and initial temperature will not affect its expected payoff in the non-
cooperative case, as illustrated by figure 3b. For country 1, its expected payoff in the non-
cooperative case still decreases as climate uncertainty becomes larger. The total payoff
under cooperation is also decreasing with uncertainty, as shown in figure 3c. However,
the total welfare gain from cooperation is found to be an increasing function of climate
uncertainty. These results are consistent with the theoretical predictions above.

Besides, based on equation (33), one can illustrate the effect of uncertainty on the
instantaneous payoff transfers between countries. By setting τ = 0 in equation (33), we
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Figure 3. Effect of climate uncertainty in the case of asymmetric players (ϕ = 0.5, γ = 0).

focus on the initial payoff transfers, given the initial temperature T0. As can be seen in
figure 4, the transfers should go from country 1 to country 2 to ensure the stability of
cooperation, given that country 2 does not suffer from climate damage. Also, the greater
the uncertainty, the more country 1 needs (and is willing to) to transfer to country 2 to
ensure cooperation.

As mentioned above, the non-cooperative solutions for the more general asymmet-
ric case (ϕ �= 1 and γ �= {0, 1}) cannot be obtained analytically and would need the
assistance of numerical methods. That is, given the model parameters, one can numer-
ically solve the system of equations (9a)–(9f) to obtain the coefficients of players’ value
functions with different values of climate uncertainty, and then investigate the effect of
uncertainty and conduct comparisons with the cooperative solutions (see (16a)–(16c)).

Table 3 presents some numerical results to complement the analytical analysis above
(where the asymmetric case is somewhat extreme). The bottom section in table 3 presents
the results with larger climate uncertainty, compared with the top section. In each
section, the parameter values of (ϕ, γ ) reflect the asymmetry between the two players. It
can be seen from table 3 that the total payoffs in the cooperative case (W) will decrease
as the climate uncertainty becomes larger. The same will happen for the combined pay-
offs in the non-cooperative case (V1 + V2). That is, climate uncertainty has a negative
effect on the combined payoffs of players, whether or not they cooperate with each other.
However, the welfare gain from cooperation (W − [V1 + V2]) is always positive and
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Figure 4. Effect of climate uncertainty on the initial transfers between countries.

increases as uncertainty becomes larger, which suggests that international cooperation is
more important when facing greater climate uncertainty. Besides, the numerical results
show that it is possible, in the case of asymmetric players, that the non-cooperative payoff
of one player is reduced by larger climate uncertainty while the non-cooperative payoff
of the other player is increased by larger uncertainty. For instance, with (ϕ, γ ) = (1, 2),
where the two players have identical benefits from emissions but player 2 faces larger cli-
mate damages, a larger climate uncertainty (a change in σ from 0.01 to 0.08) will reduce
the non-cooperative payoff of player 2 (V2) but increase that of player 1 (V1). In this
case, a larger climate uncertainty provides an incentive to the country with higher dam-
age to implement relatively larger emission reductions (which also reduces its payoff)
compared to the other country that, as a response, free rides by emitting more and thus
increases its payoff. However, as stated above, the overall effect of increasing uncertainty
is a reduction in the combined payoffs (V1 + V2).

In addition, it can be seen from table 3 that the initial payoff transfer from player 2
to player 1 (F1) varies as the asymmetry between players or the degree of climate uncer-
tainty changes.11 For instance, when the two players are fully symmetric, there is no need

11The payoff transfer from player 1 to player 2 (F2) is just the negative of F1, i.e., F1 + F2 = 0, and is
therefore omitted in table 3. That is, one can see the direction of transfer from either F1 or F2.
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Table 3. Somemore simulation results (r = 0.04, a = 1, ε = 0.0047)

V1(T0 = 1) V2(T0 = 1) V1(·)+ V2(·) W(T0 = 1) W(·)− ∑2
j=1 Vj(·) F1(τ = 0)

σ = 0.01

(ϕ, γ ) = (1, 1) −3.3094 −3.3094 −6.6188 0.8126 7.4314 0.0000

(ϕ, γ ) = (1, 0.1) −26.2697 11.6593 −14.6104 1.9177 16.5281 −0.4600
(ϕ, γ ) = (2, 0.1) −73.9175 48.1363 −25.7812 11.0984 36.8796 −0.9977
(ϕ, γ ) = (1, 2) 6.6014 −17.5776 −10.9762 0.2921 11.2682 0.3888

(ϕ, γ ) = (2, 2) −0.5897 −16.9844 −17.5741 7.5452 25.1192 0.8324

σ = 0.08

(ϕ, γ ) = (1, 1) −3.4158 −3.4158 −6.8317 0.7543 7.5860 0.0000

(ϕ, γ ) = (1, 0.1) −27.3362 11.7478 −15.5884 1.8042 17.3926 −0.4779
(ϕ, γ ) = (2, 0.1) −76.2823 48.3338 −27.9485 10.8489 38.7973 −1.0354
(ϕ, γ ) = (1, 2) 6.8365 −18.1914 −11.3549 0.2558 11.6107 0.4050

(ϕ, γ ) = (2, 2) −0.0641 −18.3472 −18.4113 7.4668 25.8782 0.8662

for a payment transfer between them. In contrast, with a very small γ , i.e., player 2 suf-
fers much less from climate damage than player 1, the transfers to player 1 are negative,
which implies the need for payment transfers from player 1 to player 2 to support the sta-
bility of cooperation. Also, the transfers needed to stabilize cooperation are larger when
climate uncertainty is higher. With γ = 2, when player 2 faces twice as much damage as
does player 1, payment transfers from player 2 to player 1 are necessary to ensure stable
cooperation, and the needed transfers are larger with higher climate uncertainty.

7. Concluding remarks and further research
This paper investigates the effect of climate uncertainty on international cooperation
through a stochastic dynamic game in which the global temperature increase due to
CO2 emissions is uncertain. It is shown that, even though greater climate uncertainty
will reduce the expected welfare of players in both the non-cooperative and cooperative
cases, it is always beneficial to cooperate with each other, and the expected welfare gain
from international cooperation is larger with greater climate uncertainty. That is, the
greater the uncertainty about global warming, the more important it is to have interna-
tional cooperation on emission control. At the same time, more transfers will be needed
to ensure stable cooperation among asymmetric players. These results suggest that the
climate uncertainty can become another source of externality which lowers individual
countries’ welfare. Since this kind of externality from ‘risk’ can also be free ridden by
individual countries, the gain from cooperation will be larger if this externality (due to
climate uncertainty) is larger.

Our results have important policy implications. In reality, individual countries
become hesitant in climate cooperation and believe that they should not act or coop-
erate due to the uncertainty surrounding climate change. However, our results show
cooperation can always benefit a country, provided there is an appropriate side payment
mechanism.Moreover, the benefits from cooperation are larger when the climate uncer-
tainty is higher, implying that it ismore important to cooperatewhenwe aremore unsure
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about the future temperature increase. This suggests that with high climate uncertainty
(due to the lack of scientific knowledge), we should make more efforts to help reach the
international cooperation, which, of course, would require more side payment. How-
ever, as the climate research advances, which leads to less uncertainties regarding the
evolution of global warming, the required size of side payment might be reduced.

This study is notwithout limitations. For instance, the analysis presented here is based
on the game’s analytical solutions, which can only be obtained for the case of uncon-
strained emissions (i.e., reversible emissions). The case of irreversible emissions (which
can be more realistic), unfortunately, does not allow for an analytical solution and a
comprehensive analysis for this case may need the assistance of advanced numerical
methods. Therefore, we omit the discussion of irreversible emissions in our analysis.
Further research should use numerical analysis to examine how uncertainty affects the
benefits of international cooperation under the assumption of irreversible emissions.

Another possible extension is to include asymmetric uncertainty in themodel. That is,
the level of climate uncertainty can vary significantly in different countries or regions.
More specifically, the temperature means as well as variances in the two countries or
regions in themodel can be different. Each regional temperature is affected by emissions
from both regions, though the uncertainties governing the evolution of temperatures
in the two regions may be different. This problem can be modeled as a stochastic
dynamic game with two state variables, which can only be solved with the assistance
of numerical methods.12 Our numerical simulations show that, for two regions that dif-
fer in climate uncertainty only, one region will be worse off in its payoff (welfare) as
its own climate uncertainty becomes larger, but better off as the other region’s uncer-
tainty becomes larger, in the absence of cooperation. The TWGIC cooperation increase
with each region’s climate uncertainty, though the total payoffs of the two regions under
cooperation will be reduced by higher climate uncertainty in either region. Also, the size
of the initial instantaneous payoff transfer (if any) to one region to ensure stable coop-
eration is negatively related to its own climate uncertainty but positively related to the
other region’s uncertainty. That is, in order to ensure cooperation, the countries/regions
with higher uncertainty in climate need to compensate the ones with lower uncertainty.
A more general and analytical analysis on the effect of asymmetric uncertainty in this
context can also be a direction for further research.

Supplementary material
The supplementary material for this article can be found at https://doi.org/ 10.1017/
S1355770X18000219.
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